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Finite (quantum) spaces

Category € = (m,¥) = (A, 1), E(k,]) = {non-crossing partitions of k + [ points}
Fact: The diagrammatic description is faithful for N > 4

Application: A finite space X = {1,..., N}, N > 4 has quantum symmetries

Finite quantum space = special Frobenius *-algebra — the same category

Application: All finite spaces of a given fixed size are quantum isomorphic



(Quantum) graphs
m Category ¢ = (m, ¥, A) = (A, 1,8), C(k 1) = {planar labelled graphs with k + [ labels}
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Hadamard matrices

= A matrix with mutually orthogonal rows/columns filled with +1 entries

m Equivalently, transformation matrix between two self-conjugated mutually unbiased orthonormal
bases

m Equivalence of Hadamard matrices involves
= permuting rows,
= permuting columns,
= multiplying a row by —1,
= multiplying a column by —1

= Diagrammatic category 7 = ([, p, %) satisfying  := & = o, ﬁ - %#

m Reduced diagrams: simple planar bipartite labelled graphs with vertices having even degree
(counting input/output strings as well) not equal to zero or two

% Every Hadamard matrix (graph) of size n > 4 has quantum symmetries.

-:;_ Any two Hadamard matrices (graphs) of the same size are quantum isomorphic.

[G.22]
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Some (open) questions

m Duality of association schemes
halved and folded hypercube duality

Asked 2 years, 3 months ago  Modified 2 years, 3 months ago  Viewed 113 times

Notation. Consider the group I' = Z5. I will denote the group operation aditively and by

€ =(0,....0,1.0,....0) | denote the canonical generators. Let's define also €, := 0 and

1 g1 = (1,1,....1) = €] + -+ + €. lwill denote by 7; € C(I") = CT the character
corresponding 1o €;. Thatis 7;(a) = (—=1)" fora = (@i, ..., a,) € I'. I will also denote

w = lonand Ty =71 Tl

Halved hypercube graph can be defined as the Cayley graph corresponding to I” with respect to
the generating set S = (& }j<i<, U {& + €] }1<jc /<, Or maybe a bit nicer:

S = e + € Ju<i<j<n. In general, the set of vertices in a given distance d from the vertex O is
givenby Sy = {e, + - +¢€;,, |0 < iy < iy < iy < n). Sinceitis a Cayley graph of an
abelian group T, the eigenveciors of the adjacency matrix are exacily the characters of I". One
can easily compute the spectrum, which is not that impertant, but the eigenspaces look as follows
Vi =span{t, -7, | 1 i) < <ig<n+1}.

Folded hypercube graph can be defined as the Cayley graph corresponding to I” with respect to
the generating set .S = (€], ..., €, €441 }. The set of vertices in distance d from O is given by
Sq=le, + - +e, |1 <0 < <ig <n+ 1} and the eigenspaces by

Vg =span{r; « 1, |0 i) < <izg <0},

Observation. The two graphs are dual to each other in the sense that the set .§; C T for one
exactly matches the eigenspace Vy C CI for the other.

Questions. Does this duality have any deeper meaning? Is this a more general phenomenon? |
mean, can one define a dual graph for any, let's say, Cayley graph of an abelian group such that
taking the dual twice, one arives at the original one? If so, | would appreciate some reference.

graph-theory | | algebraic-graph-theory | | cayley-graphs

Share Cite Edit Delete Flag asked Jun 2, 2021 at 8:12

ﬁ Daniel

3 4 \What, you're seeing is an instance of duality on the association scheme of an abelian group. A more
helpful comment is that the case you have (Z4) can be by the d from
coding theory. — Chris Godsil Jun 2. 2021 at 13:5
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m Determining the quantum automorphism group of Hadamard matrices / graphs

Some clues for Walsh matrices:
THEOREM 1. For n = 3 there exist 13 different fundamental groups (see

Table 1):
Cn, CN,C0, C, K, Ky, L, I, IO, My, ML, T, S,

n

Table I gives the minimal n-restricted Post class for each group and order of

A206707 Order of largest automorphism group of a Hadamard matrix of order 4n. 9 the group, where
192, 21504, 190080, 10321920, 6840, 760320, 58968, 20478689280 (list; graph; refs; listen; history; text; ) no
internal format) pn =202, g =@ —1).
=1

Table L. Fundamental groups

No.  Group Notation  Post class ~ Order
5 o ¥ 0~ 5 o 1 Universal Cn G 7]
A028368  a(n) = (Product {j=1..n-1} (27j-1)) * 2~binomial(n+1,2). 2 Preserving | o )
1, 2, 8, 192, 21504, 10321920, 20478689280, 165140158353920, 5369036568306647040, 3 Proserving 0 O o @ -y
700981414358115837542400, 366798338802685125615786393600, 768480666818860817418136536376934400 +  Proserving 1 and 0 o @ @ 2!
(list; graph; refs; listen; history; text; internal format) 5 Selfdual K Dy gn—typan!
OFFSET 8,2 6  Selfdual, preserving 1 and 0 K, Dy (2r=! = )2t
LINKS Table of n, aln) for n=0..11. 7 Affine L, L Pngn
I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. 8  Dual linear LY L,
Math. 46 (1997), 147-167. ®  ife O I Pr—1qn
10 Affine self-dual My Ls Pngn—1
11 Linear self-dual M, Ly Prn—iqn-1
12 Renaming Tn (on ni2"

13 Permutation Sn O n!
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Duality of association schemes
Studying some other category based on the ZX-calculus

Determining the quantum automorphism group of Hadamard matrices / graphs

Anything else?



