Quantum symmetries of Hadamard matrices

Algebraic Graph Theory Seminar

Daniel Gromada

25 September 2023

Diagrammatic categories

• $O_n = \{ U \in M_n(\mathbb{C}) \mid U_{ij} = \overline{U}_{ij}, UU^{\mathrm{T}} = \mathbf{1}_{n \times n} = U^{\mathrm{T}}U \}$

• $O_n = \{U \in M_n(\mathbb{C}) \mid U_{ij} = \overline{U}_{ij}, UU^{\mathrm{T}} = 1_{n \times n} = U^{\mathrm{T}}U\}$ $C(O_n^+) = C^*(u_{ij} \mid u_{ij} = u_{ij}^*, uu^{\mathrm{T}} = 1_{n \times n} = u^{\mathrm{T}}u)$

• $O_n = \{U \in M_n(\mathbb{C}) \mid U_{ij} = \overline{U}_{ij}, UU^{\mathrm{T}} = 1_{n \times n} = U^{\mathrm{T}}U\}$ $C(O_n^+) = C^*(u_{ij} \mid u_{ij} = u_{ij}^*, uu^{\mathrm{T}} = 1_{n \times n} = u^{\mathrm{T}}u)$ • $S_n = \{U \in M_n(\mathbb{C}) \mid U_{ij}^2 = U_{ij} = \overline{U}_{ij}, \sum_j U_{ij} = 1 = \sum_i U_{ij})$ $C(S_n^+) = C^*(u \in M_n(\mathbb{C}) \mid u_{ij}^2 = u_{ij} = u_{ij}^*, \sum_j u_{ij} = 1 = \sum_i u_{ij})$

- $O_n = \{U \in M_n(\mathbb{C}) \mid U_{ij} = \bar{U}_{ij}, UU^{\mathrm{T}} = 1_{n \times n} = U^{\mathrm{T}}U\}$ $C(O_n^+) = C^*(u_{ij} \mid u_{ij} = u_{ij}^*, uu^{\mathrm{T}} = 1_{n \times n} = u^{\mathrm{T}}u)$ • $S_n = \{U \in M_n(\mathbb{C}) \mid U_{ij}^2 = U_{ij} = \bar{U}_{ij}, \sum_j U_{ij} = 1 = \sum_i U_{ij})$ $C(S_n^+) = C^*(u \in M_n(\mathbb{C}) \mid u_{ij}^2 = u_{ij} = u_{ij}^*, \sum_j u_{ij} = 1 = \sum_i u_{ij})$ • For a graph Γ with adjacency matrix A,
- Aut $\Gamma = \{U \in M_n(\mathbb{C}) \mid U_{ij}^2 = U_{ij} = \overline{U}_{ij}, \sum_j U_{ij} = 1 = \sum_i U_{ij}, AU = UA\}$ $C(\operatorname{Aut}^+ \Gamma) = C^*(u \in M_n(\mathbb{C}) \mid u_{ij}^2 = u_{ij} = u_{ij}^*, \sum_j u_{ij} = 1 = \sum_i u_{ij}, Au = uA)$

•
$$O_n = \{U \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ \beta(U \otimes U) = \beta\}$$

 $C(O_n^+) = C^*(u_{ij} \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ \beta(u \otimes u) = \beta)$
• $S_n = \{U \in M_n(\mathbb{C}) \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ Um = m(U \otimes U), \ \psi U = \psi)$
 $C(S_n^+) = C^*(u \in M_n(\mathbb{C}) \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ um = m(u \otimes u), \ \psi u = \psi)$
• For a graph Γ with adjacency matrix A ,
 $\operatorname{Aut} \Gamma = \{U \in M_n(\mathbb{C}) \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ Um = m(U \otimes U), \ \psi U = \psi, \ UA = AU)$

 $C(\operatorname{Aut}^{+} \Gamma) = C^{*}(u \in M_{n}(\mathbb{C}) \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ um = m(u \otimes u), \ \psi u = \psi, \ uA = Au)$

$$O_{n} = \{U \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ \beta(U \otimes U) = \beta\}$$

$$C(O_{n}^{+}) = C^{*}(u_{ij} \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ \beta(u \otimes u) = \beta)$$

$$S_{n} = \{U \in M_{n}(\mathbb{C}) \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ Um = m(U \otimes U), \ \psi U = \psi)$$

$$C(S_{n}^{+}) = C^{*}(u \in M_{n}(\mathbb{C}) \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ um = m(u \otimes u), \ \psi u = \psi)$$

$$W: V \to \mathbb{C}, \ \psi_{i} = 1$$

$$W: V \to \mathbb{C}, \ \psi_{i} = 1$$

For a graph Γ with adjacency matrix A ,

$$Aut \Gamma = \{U \in M_{n}(\mathbb{C}) \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ Um = m(U \otimes U), \ \psi U = \psi, \ UA = AU)$$

$$C(A = t^{\dagger} \Gamma) = C^{*}(u \in M(\Omega) \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ um = m(u \otimes u), \ \psi U = \psi, \ UA = AU)$$

 $C(\operatorname{Aut}^{+} \Gamma) = C^{*}(u \in M_{n}(\mathbb{C}) \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ um = m(u \otimes u), \ \psi u = \psi, \ uA = Au)$

Representation categories

•
$$\mathscr{C}(k,l) := \operatorname{Mor}(u^{\otimes k}, u^{\otimes l}) = \{T : V^{\otimes k} \to V^{\otimes l} \mid Tu^{\otimes k} = u^{\otimes l}T\}$$

•
$$O_n = \{U \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ \beta(U \otimes U) = \beta\}$$

 $C(O_n^+) = C^*(u_{ij} \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ \beta(u \otimes u) = \beta)$
• $S_n = \{U \in M_n(\mathbb{C}) \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ Um = m(U \otimes U), \ \psi U = \psi)$
 $C(S_n^+) = C^*(u \in M_n(\mathbb{C}) \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ um = m(u \otimes u), \ \psi u = \psi)$
• For a graph Γ with adjacency matrix A ,
 $Aut \Gamma = \{U \in M_n(\mathbb{C}) \mid UU^{\dagger} = 1_{n \times n} = U^{\dagger}U, \ Um = m(U \otimes U), \ \psi U = \psi, \ UA = AU)$
 $C(Aut^+ \Gamma) = C^*(u \in M_n(\mathbb{C}) \mid uu^{\dagger} = 1_{n \times n} = u^{\dagger}u, \ um = m(u \otimes u), \ \psi u = \psi, \ uA = Au)$

Representation categories

•
$$\mathscr{C}(k,l) := \operatorname{Mor}(u^{\otimes k}, u^{\otimes l}) = \{T : V^{\otimes k} \to V^{\otimes l} \mid Tu^{\otimes k} = u^{\otimes l}T\}$$

Quantum symmetries of a
structure defined by maps \leftrightarrow
 A_1, \dots, A_k Category
 $\langle A_1, \dots, A_k \rangle$

• Category $\mathscr{C} = \langle m, \psi \rangle = \langle \downarrow, \downarrow \rangle$, $\mathscr{C}(k, l) = \{\text{non-crossing partitions of } k + l \text{ points} \}$

• Category $\mathscr{C} = \langle m, \psi \rangle = \langle \downarrow, \uparrow \rangle$, $\mathscr{C}(k, l) = \{\text{non-crossing partitions of } k + l \text{ points} \}$

• Fact: The diagrammatic description is faithful for $N \ge 4$

- Category $\mathscr{C} = \langle m, \psi \rangle = \langle \downarrow, \uparrow \rangle$, $\mathscr{C}(k, l) = \{\text{non-crossing partitions of } k + l \text{ points} \}$
- Fact: The diagrammatic description is faithful for $N \ge 4$
- Application: A finite space $X = \{1, ..., N\}, N \ge 4$ has quantum symmetries

- Category $\mathscr{C} = \langle m, \psi \rangle = \langle \downarrow, \uparrow \rangle$, $\mathscr{C}(k, l) = \{\text{non-crossing partitions of } k + l \text{ points} \}$
- Fact: The diagrammatic description is faithful for $N \ge 4$
- Application: A finite space $X = \{1, ..., N\}, N \ge 4$ has quantum symmetries
- Finite quantum space = special Frobenius *-algebra \rightarrow the same category

- Category $\mathscr{C} = \langle m, \psi \rangle = \langle \downarrow, \uparrow \rangle$, $\mathscr{C}(k, l) = \{\text{non-crossing partitions of } k + l \text{ points} \}$
- Fact: The diagrammatic description is faithful for $N \ge 4$
- Application: A finite space $X = \{1, ..., N\}, N \ge 4$ has quantum symmetries
- Finite quantum space = special Frobenius *-algebra \rightarrow the same category
- Application: All finite spaces of a given fixed size are quantum isomorphic

(Quantum) graphs

• Category $\mathscr{C} = \langle m, \psi, A \rangle = \langle \downarrow, \uparrow, \ddagger \rangle$, $\mathscr{C}(k, l) = \{\text{planar labelled graphs with } k + l \text{ labels} \}$

- A matrix with mutually orthogonal rows/columns filled with ±1 entries
- Equivalently, transformation matrix between two self-conjugated mutually unbiased orthonormal bases

- A matrix with mutually orthogonal rows/columns filled with ±1 entries
- Equivalently, transformation matrix between two self-conjugated mutually unbiased orthonormal bases
- Equivalence of Hadamard matrices involves
 - permuting rows,
 - permuting columns,
 - multiplying a row by −1,
 - multiplying a column by −1

- A matrix with mutually orthogonal rows/columns filled with ±1 entries
- Equivalently, transformation matrix between two self-conjugated mutually unbiased orthonormal bases
- Equivalence of Hadamard matrices involves
 - permuting rows,
 - permuting columns,
 - multiplying a row by −1,
 - multiplying a column by −1
- Diagrammatic category $\mathscr{D} = \langle \Box, \end{matrix}, \end{matrix}, \end{matrix}$ satisfying $\Box := \frown = \frown, \quad \ddagger = \frac{1}{n} \stackrel{\downarrow}{\circ}$
- Reduced diagrams: simple planar bipartite labelled graphs with vertices having even degree (counting input/output strings as well) not equal to zero or two

- A matrix with mutually orthogonal rows/columns filled with ±1 entries
- Equivalently, transformation matrix between two self-conjugated mutually unbiased orthonormal bases
- Equivalence of Hadamard matrices involves
 - permuting rows,
 - permuting columns,
 - multiplying a row by -1,
 - multiplying a column by −1
- Diagrammatic category $\mathscr{D} = \langle \Box, \end{matrix}, \end{matrix}, \end{matrix}$ satisfying $\Box := \frown = \frown, \quad \ddagger = \frac{1}{n} \stackrel{\flat}{,}$
- Reduced diagrams: simple planar bipartite labelled graphs with vertices having even degree (counting input/output strings as well) not equal to zero or two

—[G. '22]

Every Hadamard matrix (graph) of size $n \ge 4$ has quantum symmetries. Any two Hadamard matrices (graphs) of the same size are quantum isomorphic.

Duality of association schemes

halved and folded hypercube duality

Asked 2 years, 3 months ago Modified 2 years, 3 months ago Viewed 113 times

Notation. Consider the group $\Gamma = \mathbb{Z}_{2}^{n}$. I will denote the group operation aditively and by $e_{i} = (0, ..., 0, 1, 0, ..., 0)$ I denote the canonical generators. Let's define also $e_{0} := 0$ and $\mathbf{1} \quad e_{n+1} := (1, 1, ..., 1) = e_{1} + \cdots + e_{n}$. I will denote by $\tau_{i} \in C(\Gamma) \simeq \mathbb{C}\Gamma$ the character corresponding to e_{i} . That is $\tau_{i}(a) = (-1)^{a_{i}}$ for $a = (a_{1}, ..., a_{n}) \in \Gamma$. I will also denote \mathbf{v} $\tau_{0} = 1_{C(\Gamma)}$ and $\tau_{n+1} = \tau_{1} \cdots \tau_{n}$.

Halved hypercube graph can be defined as the Cayley graph corresponding to Γ with respect to the generating set $S = \{\epsilon_i\}_{1 \le i \le n} \cup \{\epsilon_i + \epsilon_i\}_{1 \le i \le n}$. Or maybe a bit nicer:

$$\begin{split} S &= \{\epsilon_i + \epsilon_j\}_{0 \leq i \leq j \leq n}. \text{ In general, the set of vertices in a given distance d from the vertex 0 is given by $S_d = \{\epsilon_i_1 + \cdots + \epsilon_{i_{2d}} \mid 0 \leq i_1 < i_2 \cdots < i_{2d} \leq n$.] Since it is a Cayley graph of an abelian group Γ, the eigenvectors of the adjacency matrix are exactly the characters of Γ. One can easily compute the spectrum, which is not that important, but the eigenspaces look as follows $V_d = \text{span}\{\tau_{i_1} \cdots \tau_{i_d} \mid 1 \leq i_1 < \cdots < i_d \leq n+1\}. \end{split}$$

Folded hypercube graph can be defined as the Cayley graph corresponding to Γ with respect to the generating set $S = \{e_1, \dots, e_n, e_{n+1}\}$. The set of vertices in distance d from 0 is given by $S_d = \{e_{i_1} + \dots + e_{i_d} \mid 1 \le i_1 < \dots < i_d \le n+1\}$ and the eigenspaces by $V_d = \operatorname{span} \{\tau_i, \dots, \tau_{i_d} \mid 0 \le i_1 < \dots < i_{2d} \le n\}$.

Observation. The two graphs are dual to each other in the sense that the set $S_d \subset \Gamma$ for one exactly matches the eigenspace $V_d \subset \mathbb{C}\Gamma$ for the other.

Questions. Does this duality have any deeper meaning? Is this a more general phenomenon? I mean, can one define a dual graph for any, let's say, Cayley graph of an abelian group such that taking the dual twice, one arives at the original one? If so, I would appreciate some reference.

graph-theory algebraic-graph-theory cayley-graphs

Share Cite Edit Delete Flag

3 Muthat, you're seeing is an instance of duality on the association scheme of an abelian group. A more helpful comment is that the case you have (Z²) can be described by the Hadamard transform from coding theory. – Chris Godid Jun 2, 2021 at 13:53

Duality of association schemes

- Duality of association schemes
- Studying some other category based on the ZX-calculus

- Duality of association schemes
- Studying some other category based on the ZX-calculus What about

$$\langle \Box, \bigstar, \bigstar \rangle \subset \langle \Box, \bigstar, \forall \rangle \subset \langle \Box, \forall, \forall \rangle$$

imposing

$$\bigvee_{i} = \frac{1}{\sqrt{N}} \bigvee_{i}, \qquad \stackrel{\circ}{\frown} = \mathop{\mathrm{r}}_{i}, \qquad \bigvee_{i} = \mathop{\mathrm{t}}_{i}$$

- Duality of association schemes
- Studying some other category based on the ZX-calculus
- Determining the quantum automorphism group of Hadamard matrices / graphs

- Duality of association schemes
- Studying some other category based on the ZX-calculus
- Determining the quantum automorphism group of Hadamard matrices / graphs
 Some clues for Walsh matrices:

```
A206707 Order of largest automorphism group of a Hadamard matrix of order 4n.
192, 21504, 190080, 10321920, 6840, 760320, 58968, 20478689280 (list; graph; refs; listen; history; text; internal format)
```

 A028368
 a(n) = (Product {j=1..n-1} (2^j-1)) * 2^binomial(n+1,2).

 1, 2, 8, 192, 21504, 10321920, 20478689280, 165140150353920, 5369036568396647040, 700981414358115837542400, 366798338802685125615786393600, 768480666818860817418136536376934400

 (list; graph; refs; listen; history; text; internal format)
 0FFSET
 0,2

 LINKS
 Table of n, a(n) for n=0..11.
 I. Strazdins, <u>Universal affine classification of Boolean functions</u>, Acta Applic. Math. 46 (1997), 147-167.

THEOREM 1. For $n \ge 3$ there exist 13 different fundamental groups (see Table I):

```
C_n, C_n^{(1)}, C_n^{(0)}, C_n', K_n, K_n', L_n, L_n^{(1)}, L_n^{(0)}, M_n, M_n', T_n, S_n.
```

Table I gives the minimal n-restricted Post class for each group and order of the group, where

$$p_n = 2^{\binom{n+1}{2}}, \qquad q_n = \prod_{j=1}^n (2^j - 1)$$

Table I. Fundamental groups

No.	Group	Notation	Post class	Order
1	Universal	C_n	C_1	2 ⁿ !
2	Preserving 1	$C_{n}^{(1)}$	C_2) (27. 1))
3	Preserving 0	$C_{n}^{(0)}$	C_3	$\left\{ (2^n - 1)! \right\}$
4	Preserving 1 and 0	C'_n	C_4	$(2^n - 2)!$ $2^{n-1}!2^{2^{n-1}}$
5	Selfdual	K_n	D_3	
6	Selfdual, preserving 1 and 0	K'_n	D_1	$(2^{n-1}-1)!2^{2^{n-1}-1}$
7	Affine	L_n	L_1	p_nq_n
8	Dual linear	$L_{n}^{(1)}$	L_2)
9	Linear	$L_{n}^{(0)}$	L_3	$p_{n-1}q_n$
10	Affine self-dual	M_n	L_5	$p_n q_{n-1}$
11	Linear self-dual	M'_n	L_4	$p_{n-1}q_{n-1}$
12	Renaming	T_n	O_4	$n!2^n$
13	Permutation	S_n	O_1	n!

- Duality of association schemes
- Studying some other category based on the ZX-calculus
- Determining the quantum automorphism group of Hadamard matrices / graphs
- Anything else?