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Quantum symmetries of a
structure defined by maps

𝐴1, . . . , 𝐴𝑘

↔ Category
⟨𝐴1, . . . , 𝐴𝑘⟩
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Category C = ⟨𝑚, 𝜓 ⟩ = ⟨ , ⟩, C (𝑘, 𝑙) = {non-crossing partitions of 𝑘 + 𝑙 points}
Fact: The diagrammatic description is faithful for 𝑁 ≥ 4
Application: A finite space 𝑋 = {1, . . . , 𝑁 }, 𝑁 ≥ 4 has quantum symmetries

Finite quantum space = special Frobenius ∗-algebra → the same category

Application: All finite spaces of a given fixed size are quantum isomorphic
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Category C = ⟨𝑚, 𝜓 , 𝐴⟩ = ⟨ , , ⟩, C (𝑘, 𝑙) = {planar labelled graphs with 𝑘 + 𝑙 labels}
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Equivalently, transformation matrix between two self-conjugated mutually unbiased orthonormal
bases

Equivalence of Hadamard matrices involves

permuting rows,

permuting columns,

multiplying a row by −1,
multiplying a column by −1

Diagrammatic category D = ⟨ , , ⟩ satisfying : = = , = 1
𝑛

Reduced diagrams: simple planar bipartite labelled graphs with vertices having even degree
(counting input/output strings as well) not equal to zero or two

TH
M Every Hadamard matrix (graph) of size 𝑛 ≥ 4 has quantum symmetries.

Any two Hadamard matrices (graphs) of the same size are quantum isomorphic.
[G. ’22]
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Some (open) questions
Duality of association schemes

Studying some other category based on the ZX-calculus

Determining the quantum automorphism group of Hadamard matrices / graphs

Anything else?


