
A Small Subgroup Attack on Arazi’s Key

Agreement Protocol

Dan Brown

Certicom Research, Canada

dbrown@certicom.com

Alfred Menezes

Dept. of C&O, University of Waterloo, Canada

ajmeneze@uwaterloo.ca

Abstract

In 1993, Arazi presented a key agreement protocol that integrates
the Diffie-Hellman key agreement protocol and the digital signature
algorithm (DSA). In this note, we present a small subgroup attack on
Arazi’s protocol whereby an attacker can learn another entity’s DSA
private key. The attack illustrates the importance of public-key vali-
dation, i.e., checking that group elements received from another party
do indeed have the prescribed order. The attack also demonstrates
that extreme care must be exercised when two or more cryptographic
protocols are combined to design a new protocol.

Keywords: small subgroup attack, key agreement

1 Introduction

Small subgroup attacks on Diffie-Hellman key agreement procotols [3] are
described in [5]. In such attacks, a party A attempts to deduce partial
information about B’s private key b by inducing B to raise a group element
α cleverly chosen by A to the power b. For example, if α is an element
in a subgroup of small order l, then if A learns αb she can efficiently find
b mod l by exhaustive search.
This paper presents a realistic small subgroup attack on a key agree-

ment protocol proposed in 1993 by Arazi [2]. Arazi’s protocol is interest-
ing because it integrates the Diffie-Hellman key agreement protocol with
a standardized signature scheme, the DSA [7]. The attack we present is
noteworthy because it is the first example of how the partial-information

1



leakage attack of Howgrave-Graham and Smart [4] on ElGamal-type signa-
ture schemes can be applied to attack a protocol with a different crypto-
graphic objective, namely key agreement. We begin by reviewing the DSA
signature scheme and Arazi’s key agreement protocol before presenting the
attack in Section 2.

The Digital Signature Algorithm. Domain parameters for DSA are
(p, q, g) where p and q are primes such that q divides p − 1 and q has
bitlength at least 160, and g ∈ Z∗

p is an element of order q. H denotes a
cryptographic hash function such as SHA-1. Each entity A has a private
key a selected uniformly at random from the integers in the interval [1, q−1]
(denoted a ∈R [1, q − 1]) and a corresponding public key QA = ga mod p.
To sign a message m, A does the following:

1. Select x ∈R [1, q − 1].

2. Compute R = gx mod p and r = R mod q. If r = 0 then go to Step 1.

3. Compute x−1 mod q and e = H(m).

4. Compute s = x−1{e+ ar} mod q. If s = 0 then go to Step 1.

5. A’s signature for the message m is (r, s).

To verify A’s signature (r, s) on m, B obtains authentic copies of the
domain parameters (p, q, g) and A’s public key QA and does the following:

1. Verify that r and s are integers in the interval [1, q − 1].

2. Compute e = H(m), w = s−1 mod q, u1 = ew mod q, and u2 =
rw mod q.

3. Compute V = gu1Qu2

A mod p and v = V mod q.

4. Accept the signature if and only if v = r.

Arazi’s Key Agreement Protocol. This uses the one-time public keys
R in DSA as the ephemeral public keys for the Diffie-Hellman key agreement
protocol. In addition, R is signed using DSA in order to authenticate the
ephemeral public keys. Since attacks on protocols can be very subtle, we
describe Arazi’s protocol in full detail.
Domain parameters are (p, q, g) as defined for DSA. A’s key pair is

(a,QA), and B’s key pair is (b,QB).

1. A does the following:

(a) Select x ∈R [1, q − 1].

(b) Compute RA = gx mod p and rA = RA mod q. If rA = 0 then
go to 1(a).

2



(c) Compute x−1 mod q and eA = H(RA).

(d) Compute sA = x−1{eA+arA} mod q. If sA = 0 then go to 1(a).

(e) Send (RA, sA) to B.

2. B does the following:

(a) Compute rA = RA mod q. Verify that rA, sA are integers in
[1, q − 1].

(b) Compute e = H(RA), w = s−1
A mod q, u1 = ew mod q, u2 =

rAw mod q.

(c) Compute V = gu1Qu2

A mod p.

(d) Terminate the protocol if V 6= RA.

(e) Select y ∈R [1, q − 1].

(f) Compute RB = gy mod p and rB = RB mod q. If rB = 0, go to
2(e).

(g) Compute y−1 mod q and eB = H(RB).

(h) Compute sB = y−1{eB + brB} mod q. If sB = 0 then go to 2(e).

(i) Send (RB , sB) to A.

(j) Compute the shared secret K = R
y
A mod p.

3. A does the following:

(a) Compute rB = RB mod q. Verify that rB , sB are integers in
[1, q − 1].

(b) Compute e = H(RB), w = s−1
B mod q, u1 = ew mod q, u2 =

rBw mod q.

(c) Compute V = gu1Qu2

B mod p.

(d) Terminate the protocol if V 6= RB .

(e) Compute the shared secret K = Rx
B mod p.

Remark. An important attribute of ephemeral Diffie-Hellman key agree-
ment is known-key security. That is, if an adversary C learns one or more
secrets K established by A and B, then this does not help the adversary
learn any other secrets established by A and B. Nyberg and Rueppel [9]
showed that Arazi’s protocol does not have the attribute of known-key se-
curity. Suppose that (RA, sA) and (RB , sB) are the (non-secret) messages
exchanged in one run of Arazi’s protocol. Let rA=RA mod q, w=s

−1
A mod

q, u1=H(RA)w mod q and u2=rAw mod q. Similarly, let rB=RB mod q,
w=s−1

B mod q, u1=H(RB)w mod q and u2=rBw mod q. Then

K = gxy = g(u1+au2)(u1+bu2) = gu1u1Qu1u2

A Qu1u2

B (gab)u2u2 .

3



This shows that shared secrets can be computed from the long-term shared
secret gab and other non-secret information. Hence if C learns K, then C
can efficiently compute gab, and thus compute all other secrets established
by A and B.

Remark. In order to save bandwidth, Arazi’s protocol can be modified so
that (rA, sA) and (rB , sB) are exchanged instead of (RA, sA) and (RB , sB).
The attack presented in this paper also works on this modified protocol.

2 The Attack

The goal of the attack is for A to obtain B’s DSA signing key b. In practice,
the DSA prime p has bitlength 1024, while q has bitlength 160. Let t be
the highest power of 2 that divides p − 1. Certainly we have t ≥ 1. We
henceforth assume without much loss of generality that t ≥ 2. Let α ∈ Z∗

p

be an element of order 2t. The attack proceeds as follows.

Public key selection. A selects a public key QA = gaα mod p. Note
that QA is an invalid public key since Qq

A 6≡ 1 (mod p). A then gets QA

certified by a Certification Authority (CA)—the certificate on QA produced
by the CA can be used by B to verify that she has an authentic copy of A’s
public key. In practice (as dictated by PKI standards such as [1, Section
2.3] and [6, Section 4]), the CA does not perform public key validation, i.e.,
the check that Qq

A ≡ 1 (mod p) and QA 6≡ 1 (mod p). Rather, the CA
performs a proof of possession (POP) of a private key test whereby A has
to submit a DSA signature generated with respect to QA on some message
m of a predetermined format, and the signature is thereafter verified by
the CA. The following shows that A can successfully pass the POP test
even though QA is invalid. A repeatedly generates DSA signatures (r, s)
on m using private key a until u2 ≡ 0 (mod 2

t), where u2 = rs−1 mod q;
heuristically, the expected number of trials is 2t. The CA will then accept
(r, s) as A’s signature for m with public key QA since

Qu2

A ≡ (ga)u2αu2 ≡ (ga)u2 (mod p).

Obtaining partial information about B’s ephemeral private keys

y. A now repeatedly selects x ∈R [1, q−1] and computes RA = gxα mod p,
rA = RA mod q, eA = H(RA) and

sA = x−1{eA + arA} mod q, (1)

until rA 6= 0, sA 6= 0, and

(rAs
−1
A mod q) ≡ 1 (mod 2t). (2)

4



We can reasonably assume that rAs
−1
A mod q is uniformly distributed among

the equivalence classes of integers modulo 2t for x selected uniformly at ran-
dom from [1, q − 1]; then the expected number of trials is 2t. A now sends
(RA, sA) to B who accepts this pair (Steps 2(a)–2(d) of the Arazi protocol)
since

V ≡ gu1Qu2

A ≡ gu1(ga)u2αu2 ≡ gxα (mod p)

by (1) and (2). B then sends RB and sB to A. B computes K = R
y
A mod p;

note that K ≡ gxyαy (mod p). A computes K ′ = Rx
B mod p; note that

K ′ ≡ gxy (mod p).
Now, suppose that B uses K (or a key derived from it, for example

by taking the appropriate number of bits of H(K)) in a symmetric-key
protocol with A. For concreteness, suppose that B uses K as a key for
a secure MAC algorithm and sends A the tag T = MACK(M) for some
message M . A computes Ti = MACKi

(M) for each i ∈ [0, 2t − 1] where
Ki = K ′αi mod p until Ti = T . When this occurs, then with overwhelming
probability (since the MAC is secure) Ki = K whence i = y mod 2t. In
this way, A learns the t least significant bits of B’s ephemeral private key
y.

Computing B’s private key b. By repeating the procedure described
above d times, A obtains d messages and B’s DSA-signatures on them,
as well as the t least significant bits of each ephemeral private key. The
technique introduced by Howgrave-Graham and Smart [4] (see also [8]) can
then be used to efficiently recover B’s private key b.
Experiments conducted by Nguyen and Shparlinski [8] were successful

in recovering b when (t, d) = (4, 70) and (t, d) = (3, 100). It failed when
(t, d) = (2, 150). Thus, assuming that t ≥ 3, our attack can be expected to
be successful for some d ≤ 70. This number of iterations d is very reasonable
in many scenarios, for example when A is a client and B is a web server.
Thus our attack on Arazi’s protocol should be considered a realistic one.

3 Conclusions

We have presented a realistic attack on a key agreement protocol proposed
by Arazi. The attack can be prevented by checking that the long-term
public keys QA or ephemeral public keys RA are indeed non-trivial elements
of the unique subgroup of order q of Z∗

p. (However, we do not claim that
other attacks are not possible even with these checks in place.) The attack
illustrates the importance of public-key validation, i.e., checking that group
elements received from another party do indeed have the prescribed order.
The attack also demonstrates that extreme care must be exercised when
two or more cryptographic protocols are combined to design a new protocol.

5



Acknowledgements

We thank Colin Boyd for bringing reference [9] to our attention.

References

[1] C. Adams and S. Farrell, Internet X.509 Public Key Infrastructure:

Certificate Management Protocols, RFC 2510, March 1999. Available
from http://www.ietf.org

[2] B. Arazi, “Integrating a key distribution procedure into the digital sig-
nature standard”, Electronics Letters, 29 (1993), 966-967.

[3] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE
Transactions on Information Theory, 22 (1976), 644-654.

[4] N. Howgrave-Graham and N. Smart, “Lattice attacks on digital signa-
ture schemes”, Designs, Codes and Cryptography, 23 (2001), 283-290.

[5] C. Lim and P. Lee, “A key recovery attack on discrete log-based schemes
using a prime order subgroup”, Advances in Cryptology–Crypto ’97,
Lecture Notes in Computer Science, 1294 (1997), 249-263.

[6] M. Myers, C. Adams, D. Solo and D. Kemp, Internet X.509 Certificate

Request Message Format, RFC 2511, March 1999. Available from http:
//www.ietf.org

[7] National Institute of Standards and Technology, Digital Signature Stan-
dard, FIPS Publication 186, 1994.

[8] P. Nguyen and I. Shparlinski, “The insecurity of the Digital Signa-
ture Algorithm with partially known nonces”, Journal of Cryptology,
15 (2002), 151-176.

[9] K. Nyberg and R. Rueppel, “Weaknesses in some recent key agreement
protocols”, Electronics Letters, 30 (1994), 26-27.

6


