Constructing elliptic curve isogenies in quantum subexponential time

Andrew Childs

David Jao

Vladimir Soukharev

University of Waterloo

arXiv:1012.4019

Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently

- factor integers
- calculate discrete logarithms (in any group)

This breaks two common public-key cryptosystems:

- RSA
- elliptic curve cryptography

How do quantum computers affect the security of PKC in general?

Practical question: we'd like to be able to send confidential information even after quantum computers are built

Theoretical question: crypto is a good setting for exploring the potential strengths/limitations of quantum computers

Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!

Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key cryptosystems based on the assumption that it is hard to construct an *isogeny* between given elliptic curves

Best known classical algorithm takes time about $q^{1/4}$ [Galbraith, Hess, Smart 02]

Our main result:

Given two (isogenous, ordinary, with same endomorphism ring) elliptic curves over \mathbb{F}_q , there is a quantum algorithm that constructs an isogeny between them in time $L_q(\frac{1}{2}, \frac{\sqrt{3}}{2})$ (assuming GRH), where

 $L_q(\alpha, c) := \exp\left[(c + o(1))(\ln q)^{\alpha}(\ln \ln q)^{1-\alpha}\right]$

Outline

- I. Elliptic curves
- 2. Isogenies
- 3. The abelian hidden shift problem
- 4. Computing the action of the ideal class group
- 5. Removing heuristic assumptions
- 6. Unknown endomorphism ring
- 7. Solving the abelian hidden shift problem with polynomial space
- 8. Open problems

Elliptic curves

Let ${\mathbb F}$ be a field of characteristic different from 2 or 3

An elliptic curve E is the set of points in \mathbb{PF}^2 satisfying an equation of the form $y^2 = x^3 + ax + b$

Elliptic curve group

Geometric definition of a binary operation on points of E:

Algebraic definition: for $x_P \neq x_Q$, $\lambda := \frac{y_Q - y_P}{x_Q - x_P}$ $x_{P+Q} = \lambda^2 - x_P - x_Q$ $y_{P+Q} = \lambda(x_P - x_{P+Q}) - y_P$ for P = Q, $\lambda := \frac{3x_P^2 + a}{2y_P}$ for $(x_P, y_P) = (x_Q, -y_Q)$, $P + Q = \infty$

This defines an abelian group with additive identity ∞

Elliptic curves over finite fields

Cryptographic applications use a finite field \mathbb{F}_q

Example: $y^2 = x^3 + 2x + 2$

Elliptic curve isogenies

Let E_0, E_1 be elliptic curves

An isogeny $\phi: E_0 \to E_1$ is a rational map

$$\phi(x,y) = \left(\frac{f_x(x,y)}{g_x(x,y)}, \frac{f_y(x,y)}{g_y(x,y)}\right)$$

(f_x, f_y, g_x, g_y are polynomials) that is also a group homomorphism: $\phi((x, y) + (x', y')) = \phi(x, y) + \phi(x', y')$

Example ($\mathbb{F} = \mathbb{F}_{109}$):

$$E_0: y^2 = x^3 + 2x + 2 \qquad \stackrel{\phi}{\to} \qquad E_1: y^2 = x^3 + 34x + 45$$
$$\phi(x, y) = \left(\frac{x^3 + 20x^2 + 50x + 6}{x^2 + 20x + 100}, \frac{(x^3 + 30x^2 + 23x + 52)y}{x^3 + 30x^2 + 82x + 19}\right)$$

Deciding isogeny

Theorem [Tate 66]: Two elliptic curves over a finite field are isogenous if and only if they have the same number of points.

There is a polynomial-time classical algorithm that counts the points on an elliptic curve [Schoof 85].

Thus a classical computer can decide isogeny in polynomial time.

The endomorphism ring

The set of isogenies from E to itself (over $\overline{\mathbb{F}}$) is denoted $\operatorname{End}(E)$

We assume E is ordinary (i.e., not supersingular), which is the case arising in proposed cryptosystems; then $\operatorname{End}(E) \cong \mathcal{O}_{\Delta} = \mathbb{Z}[\frac{\Delta + \sqrt{\Delta}}{2}]$ is an imaginary quadratic order of discriminant $\Delta < 0$

We also assume that $End(E_0) = End(E_1)$ (again, as in proposed cryptosystems)

Let $\operatorname{Ell}_{q,n}(\mathcal{O}_{\Delta})$ denote the set of elliptic curves over \mathbb{F}_q with n points and endomorphism ring \mathcal{O}_{Δ} , up to isomorphism

Represent curves up to isomorphism by their j-invariants

$$E: y^{2} = x^{3} + ax + b \quad \Rightarrow \quad j(E) = 12^{3} \frac{4a^{3}}{4a^{3} + 27b^{2}}$$

Representing isogenies

The degree of an isogeny can be exponential (in $\log q$)

Example: The multiplication by m map,

$$(x,y) \mapsto \underbrace{(x,y) + \dots + (x,y)}_{m}$$

is an isogeny of degree m^2

Thus we cannot even write down the rational map explicitly in polynomial time

Fact: Isogenies between elliptic curves with the same endomorphism ring can be represented by elements of a finite abelian group, the *ideal class group* of the endomorphism ring, denoted $Cl(\mathcal{O}_{\Delta})$

A group action

Thus we can view isogenies in terms of a group action

*:
$$\operatorname{Cl}(\mathcal{O}_{\Delta}) \times \operatorname{Ell}_{q,n}(\mathcal{O}_{\Delta}) \to \operatorname{Ell}_{q,n}(\mathcal{O}_{\Delta})$$

 $[\mathfrak{b}] * j(E) = j(E_{\mathfrak{b}})$

where $E_{\mathfrak{b}}$ is the elliptic curve reached from E by an isogeny corresponding to the ideal class $[\mathfrak{b}]$

and j(E) is the j-invariant of E

This action is regular [Waterhouse 69]: for any E_0, E_1 there is a unique [b] such that $[b] * j(E_0) = j(E_1)$

Isogeny-based cryptography

Example: Key exchange

```
Public parameters:field \mathbb{F}_q<br/>elliptic curve E \in \operatorname{Ell}_{q,n}(\mathcal{O}_\Delta)Private key generation:choose an ideal \mathfrak{b} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_k^{e_k}<br/>where \mathfrak{p}_1, \ldots, \mathfrak{p}_k have small norm<br/>and e_1, \ldots, e_k are smallPublic key:[\mathfrak{b}] * j(E)
```

To establish a shared private key,

Alice publishes $[\mathfrak{b}_A] * j(E)$ Bob publishes $[\mathfrak{b}_B] * j(E)$ Alice computes $[\mathfrak{b}_A] * [\mathfrak{b}_B] * j(E)$ Bob computes $[\mathfrak{b}_B] * [\mathfrak{b}_A] * j(E)$ $= [\mathfrak{b}_A] * [\mathfrak{b}_B] * j(E)$

The abelian hidden shift problem

Let A be a known finite abelian group Let $f_0 : A \to R$ be an injective function (for some finite set R) Let $f_1 : A \to R$ be defined by $f_1(x) = f_0(xs)$ for some unknown $s \in A$ Problem: find s

For A cyclic, this is equivalent to the dihedral hidden subgroup problem

More generally, this is equivalent to the HSP in the generalized dihedral group $A\rtimes\mathbb{Z}_2$

Isogeny construction as a hidden shift problem

Define
$$f_0, f_1 : \operatorname{Cl}(\mathcal{O}_\Delta) \to \operatorname{Ell}_{q,n}(\mathcal{O}_\Delta)$$
 by
 $f_0([\mathfrak{b}]) = [\mathfrak{b}] * j(E_0)$
 $f_1([\mathfrak{b}]) = [\mathfrak{b}] * j(E_1)$

 E_0, E_1 are isogenous, so there is some $[\mathfrak{s}]$ such that $[\mathfrak{s}]*j(E_0)=j(E_1)$

Since * is a group action, $f_1([\mathfrak{b}]) = f_0([\mathfrak{b}][\mathfrak{s}])$

Since * is regular, f_0 is injective

So this is an instance of the hidden shift problem in ${\rm Cl}(\mathcal{O}_\Delta)$ with hidden shift $[\mathfrak{s}]$

Kuperberg's algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves the abelian hidden shift problem in a group of order N with running time $\exp[O(\sqrt{\ln N})] = L_N(\frac{1}{2}, 0)$.

Main idea: Clebsch-Gordan sieve on coset states

Thus there is a quantum algorithm to construct an isogeny with running time $L_N(\frac{1}{2},0) \times c(N)$

where c(N) is the cost of evaluating the action

The same approach works for any group action (cf. "hard homogeneous spaces" [Couveignes 97])

Computing the action

Problem: Given E, Δ , $\mathfrak{b} \in \mathcal{O}_{\Delta}$, compute $[\mathfrak{b}] * j(E)$

Direct computation (using modular polynomials) takes time $O(\ell^3)$ for an ideal of norm ℓ

Instead we use an indirect approach:

- Choose a factor base of small prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_f$
- Find a factorization $[\mathfrak{b}] = [\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_f^{e_f}]$ where e_1, \ldots, e_f are small
- Compute $[\mathfrak{b}] * j(E)$ one small prime at a time

By optimizing the size of the factor base, this approach can be made to work in time $L(\frac{1}{2}, \frac{\sqrt{3}}{2})$.

Removing heuristic assumptions

Similar ideas appear in previous (classical) algorithms for isogenies:

- Galbraith, Hess, Smart 02: introduced idea of working in the ideal class group to compute the isogeny for a given ideal in time $q^{1/4}$
- Bisson, Sutherland 09: compute End(E) in subexponential time
- Jao, Soukharev 10: compute the isogeny for a given ideal in subexponential time

All of these results require heuristic assumptions in addition to the Generalized Riemann Hypothesis

We use a result on expansion properties of Cayley graphs of the ideal class group [Jao, Miller, Venkatesan 09] to avoid extra heuristics: our result assumes *only* GRH

The same technique works to remove the heuristic assumptions (except GRH) from the algorithm for isogeny computation []ao, Soukharev 10]

Unknown endomorphism ring

Computing in $\operatorname{Cl}(\mathcal{O}_\Delta)$ requires us to know Δ

All proposed isogeny-based cryptosystems take \mathcal{O}_{Δ} to be a maximal order, so we can compute Δ as follows:

- Compute t(E) := q + 1 #E
- Factor $t(E)^2 4q = v^2D$ where D is squarefree
- Then $\Delta = D$

But what if Δ is unknown?

Bisson, Sutherland 09: compute End(E) in time $L(\frac{1}{2}, \frac{\sqrt{3}}{2})$ (under significant heuristic assumptions)

Bisson II (using our expander graph idea): compute $\operatorname{End}(E)$ in time $L(\frac{1}{2}, \frac{1}{\sqrt{2}})$ under only GRH; also gives a new idea that improves the exponent of the group action computation from $\frac{\sqrt{3}}{2}$ to $\frac{1}{\sqrt{2}}$

Polynomial space

Kuperberg's algorithm uses space $\exp[\Theta(\sqrt{\ln N})]$

Regev 04 presented a modified algorithm using only polynomial space for the case $A = \mathbb{Z}_{2^n}$, with running time

$$\exp[O(\sqrt{n\ln n})] = L_{2^n}(\frac{1}{2}, O(1))$$

Combining Regev's ideas with techniques used by Kuperberg for the case of a general abelian group (of order N), and performing a careful analysis, we find an algorithm with running time $L_N(\frac{1}{2}, \sqrt{2})$

Thus there is a quantum algorithm to construct elliptic curve isogenies using only polynomial space in time $L_q(\frac{1}{2}, \frac{\sqrt{3}}{2} + \sqrt{2})$

Kuperberg's approach

Consider the hidden shift problem in \mathbb{Z}_N

Standard approach to the hidden shift problem makes states

$$|\psi_x\rangle := \frac{1}{\sqrt{2}}(|0\rangle + \omega^{sx}|1\rangle) \qquad \qquad \omega := e^{2\pi i/N}$$

with $x \in \mathbb{Z}_N$ uniformly random

Suppose we can make $|\psi_1\rangle \otimes |\psi_2\rangle \otimes |\psi_4\rangle \otimes \cdots \otimes |\psi_{2^{\lfloor \log_2 N \rfloor}}\rangle$; then a QFT reveals s

Idea: Combine states to make ones with more desirable labels

This gives an algorithm with running time $2^{O(\sqrt{\log N})}$, but we have to store many states at once

Regev's approach: Combining more states

New idea: combine $k \gg 1$ states at a time

To cancel ℓ bits of the label:

$$\begin{array}{l} \frac{1}{\sqrt{2^k}} \sum_{y \in \{0,1\}^k} \omega^{s(x \cdot y)} |y\rangle |x \cdot y \mod 2^\ell \rangle \\ \mapsto \frac{1}{\sqrt{|Y_r|}} \sum_{y \in Y_r} \omega^{s(x \cdot y)} |y\rangle \end{array}$$
 measurement gives r
$$Y_r = \{y \in \{0,1\}^k \colon x \cdot y \mod 2^\ell = r\} \end{array}$$

Compute the set Y_r (takes time 2^k)

Project onto span $\{|y_1\rangle, |y_2\rangle\}$ and relabel:

$$\mapsto \frac{1}{\sqrt{2}} \left(|0\rangle + \omega^{s(x \cdot y_2 - x \cdot y_1)} |1\rangle \right)$$

Success probability is reasonable provided $k \gg \ell$ Note: it is not necessary to have $|Y_r| = O(1)$

Regev's approach: The pipeline of routines

For j = 0, 1, ..., m, let S_j include the states with last $j\ell$ bits canceled

Repeat

While for all j there are fewer than k states from S_j

Make a state from S_0

End while

Combine k states from some S_j to make a state from S_{j+1} Until there is a state from S_m

We never store more than O(mk) states at a time

If combinations work perfectly, we need to eventually make $1+k+k^2+\dots+k^m\approx k^m \ \ {\rm states}$

By Chernoff bounds, even if the combinations only succeed with constant probability, we only need $k^{(1+o(1))m}$ states

Optimizing the tradeoff

Cancel k bits in each of m stages: $mk \approx \log_2 N$

Running time of combination procedure: $\approx 2^k$

Total number of combinations: $\approx k^m$

Overall running time: $\approx 2^k k^m = 2^{k+m\log k}$

Let $k = c\sqrt{\log N \log \log N}$

Then $2^{k+m\log k} = L(\frac{1}{2}, c + \frac{1}{2c})$

Optimized with $c=\frac{1}{\sqrt{2}}\text{, giving running time }L(\frac{1}{2},\sqrt{2})$

Making smaller labels

Given: states with labels in $\{0, 1, \ldots, B - 1\}$ (uniformly random) Produce: states with labels in $\{0, 1, \ldots, B' - 1\}$ (uniformly random)

$$\begin{array}{l} \frac{1}{\sqrt{2^{k}}} \sum_{y \in \{0,1\}^{k}} \omega^{s(x \cdot y)} |y\rangle |\lfloor (x \cdot y)/2B' \rfloor \rangle \\ \mapsto \frac{1}{\sqrt{|Y_{q}|}} \sum_{y \in Y_{q}} \omega^{s(x \cdot y)} |y\rangle \end{array}$$
 measurement gives q

Compute the set $Y_q = \{y \in \{0,1\}^k \colon \lfloor (x \cdot y)/2B' \rfloor = q\}$

Project onto $\operatorname{span}\{|y_1\rangle, |y_2\rangle\}$ or $\operatorname{span}\{|y_3\rangle, |y_4\rangle\}$ or ...

Use rejection sampling to ensure that the distribution over the resulting label is uniform over $\{0, 1, \ldots, B' - 1\}$

Lemma: This succeeds with constant probability if $4k \le \frac{B}{B'} \le \frac{2^k}{k}$

Reducing to the cyclic case

For a general abelian group $\mathbb{Z}_{N_1} \times \cdots \times \mathbb{Z}_{N_t}$, hidden shift states have the form

$$|\psi_x\rangle := \frac{1}{\sqrt{2}} \left(|0\rangle + \exp\left[2\pi i \left(\frac{s_1 x_1}{N_1} + \dots + \frac{s_t x_t}{N_t}\right)\right]|1\rangle\right)$$

If we can produce states with all components of x but one (say, the tth) equal to zero, we reduce to the cyclic case

Combination procedure: similar to the one for making smaller labels, using the quantity t = 1

$$\mu(x) := \sum_{j=1}^{t-1} x_j \prod_{j'=1}^{j-1} N_{j'}$$

Procedure and its analysis are simplified since we don't need to maintain a uniform distribution

Overall algorithm

Write $A = \mathbb{Z}_{N_1} \times \cdots \times \mathbb{Z}_{N_t}$ where each N_i is either odd or a power of 2

To determine s_i :

For each j, make the state $|\psi_{2^j}\rangle$ as follows:

Sieve away components other than the ith

If N_i is odd

Under the automorphism $x \mapsto 2^{-j}x$, sieve toward smaller labels, making a state with label 1

If N_i is a power of 2

Sieve away the j-1 lowest-order bits, then sieve toward smaller labels

Theorem: With carefully chosen parameters, this algorithm has running time $L(\frac{1}{2},\sqrt{2})$.

Open problems

- Breaking isogeny-based cryptography in polynomial time?
- Quantum algorithms for properties of a single curve:
 - computing the ideal class group
 - computing the endomorphism ring
- Generalizations:
 - evaluating/constructing isogenies between curves of different endomorphism ring
 - constructing isogenies between supersingular curves