
RATIONAL HOMOTOPY THEORY IN GEOMETRY – ASSIGNMENT 1

(1) Compute directly the simplicial homology of a figure 8, and give a cellular decomposition for this space.

(2) Show that Sn ⊂ Rn+1 is a deformation retract of Rn+1 − {0}.

(3) Consider the simplicial degree 2 map S1 → S1 we discussed in class. Calculate its induced map on homology and on homotopy
groups.

(4) (a) Consider the inclusion Sn i−→ Dn+1 of the n-sphere as the boundary of the (n + 1)-disk Dn+1 = {x ∈ Rn+1, |x| ≤ 1}. Prove
that the disk does not retract onto the sphere, i.e. that there is no (continuous) map Dn+1 → Sn such that the composition
ri equals the identity map Sn → Sn.

(b) Prove the Brouwer fixed theorem for disks: Every continuous map Dn f−→ Dn has a fixed point, i.e. a point x ∈ Dn such that
f(x) = x. Hint: suppose there is no fixed point, then x and f(x) are always distinct and so determine a line. Using this build
a retract to the boundary. You do not have to carefully argue that your constructed map is continuous.

(c) Prove that the Brouwer fixed point theorem holds for any space homeomorphic to a disk Dn.
(d) Show that the Brouwer fixed point theorem need not hold on a space that is only homotopy equivalent to a disk. That is, find

an example of a space X homotopy equivalent to a disk, together with a continuous map X
f−→ X, which has no fixed points.

Moral of the story: homeomorphism type knows about the individual points in a space, while the homotopy type does not.

The Brouwer fixed point theorem can be used to recover many disparate results: the fundamental theorem of algebra, the
Nash equilibrium theorem, and more.

(e) Here is another basic application: prove that a matrix with non-negative real entries has at least one non-negative eigenvalue.
Hint: if zero is an eigenvalue, then we’re done; otherwise every non-zero vector with non-negative entries is sent to a non-zero
vector with non-negative entries. You can take for granted that the intersection of the unit sphere in Rn with the set of
vectors with non-negative entries is homeomorphic to a disk. (E.g. in R2 this intersection is a quarter of a circle, from 0 to
π
2
.)

(5) Consider a finite chain complex of finite-dimensional vector spaces Ci,

0 Ck Ck−1 · · · C0 0∂ ∂ ∂ ∂ ∂

(A finite chain complex is a chain complex with finitely many non-zero terms.) Define its Euler characteristic to be the
alternating sum of dimensions of homology

dimH0 − dimH1 + dimH2 − · · ·+ (−1)k dimHk.

Now consider another chain complex, with the same vector spaces but another differential ∂′:

0 Ck Ck−1 · · · C0 0∂′ ∂′ ∂′ ∂′ ∂′

• Prove that the Euler characteristics of both chain complexes coincide.

That is, the Euler characteristic depends only on the vector spaces in the chain complex and not on the differential. In particular,
taking the trivial differential ∂′′ = 0, we conclude that the Euler characteristic is equal to the alternating sum

dimC0 − dimC1 + dimC2 − · · ·+ (−1)k dimCk.

We can take Ci to be the simplicial or cellular chains of some finite simplicial complex or finite CW complex. Since simplicial
and cellular homology are isomorphic, the Euler characteristics of the resulting complexes are equal; furthermore, by the above,
we can compute the Euler characteristic by taking the alternating sum of the number of i-simplices or i-cells. We denote the Euler
characteristic of a topological space X (computed in any of these equivalent ways) by χ(X).

• Calculate the Euler characteristic of S2.
• Calculate the Euler characteristic of Sn, for n a non-negative integer.
• Calculate the Euler characteristic of Sn × Sn.
• Extra credit: Make a guess for a general formula for the Euler characteristic of a product χ(X×Y ). Use the Künneth theorem

to prove it.

(6) Prove that the Hopf fiber bundle S1 → S3 p−→ S2 does not have a section, i.e. there is no map S2 s−→ S3 such that the composition
ps is the identity map S2 → S2.

(7) Show that H2(RP2 × S3;Z) = 0.
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