If we have two codeblocks each in a stabilizer code (with respective stabilizers S, T, generators S_i, T_j's, and acting on two ambient spaces A1 and A2). Let the first codeblock has k1 qubits encoded in n1 qubits, the second codeblock has k2 qubits encoded in n2 qubits. So, there are n1-k1 S_i's and n2-k2 T_j's.

What is the stabilizer for the two codeblocks together?
If s \in S and t \in T, s lotimes t stabilizes the combined codeblock. Take $s=I$ and T_{-j} \in T (where I is the big identity on $A 1$, and is just the tensor product of $n 1$ qubits) and $s=S _i$ and $t=I$. So, S_i lotimes I and I lotimes T_{-j} stabilize any state in the two codeblocks, and there are [n1-k1 + n2-k2] generators.

Furthermore, together, there are $k 1+k 2$ qubits encoded in $n 1+n 2$ qubits. So, the above already gives the maximum number of generators for the joint stabilizer.

For the 2 blocks of 7 bit code:

IIIXXXX IIIIIII
IXXIIXX IIIIIII
XIXIXIX IIIIIII
IIIZZZZ IIIIIII
IZZIIZZ IIIIIII
ZIZIZIZ IIIIIII

IIIIIII IIIXXXX
IIIIIII IXXIIXX
IIIIIII XIXIXIX
IIIIIII IIIZZZZ
IIIIIII IZZIIZZ
IIIIIII ZIZIZIZ
Call the qubits 1-14, and with an abuse of language, called the above the stabilizers S1-6, T1-6 instead (so, they become 14-qubit Pauli operations, not 7 -qubit Pauli operations).

Perform CNOT from qubit $1->8,2->9, \ldots, 7->14$.
(So, we need to look at qubits 1,8, qubits 2,9, etc,
and combine the change).
The stabilizer generators change as:

IIIXXXX IIIIIII	$->$	IIIXXXX IIIXXXX $=\mathrm{S} 1$	T 1	
IXXIIXX IIIIIII	$->$	IXXIIXX IXXIIXX $=\mathrm{S} 2$	T 2	
XIXIXIX IIIIIII	$->$	XIXIXIX XIXIXIX $=\mathrm{S} 3$	T 3	
IIIZZZZ IIIIIII	$->$	IIIZZZZ IIIIIII $=\mathrm{S} 4$		
IZZIIZZ IIIIIII	$->$	IZZIIZZ IIIIIII $=\mathrm{S} 5$		
ZIZIZIZ IIIIIII	$->$	ZIZIZIZ IIIIIII $=\mathrm{S} 6$		
IIIIIII IIIXXXX	$->$	IIIIIII IIIXXXX $=\mathrm{T} 1$		
IIIIIII IXXIIXX	$->$	IIIIIII IXXIIXX $=\mathrm{T} 2$		
IIIIIII XIXIXIX	$->$	IIIIIII XIXIXIX $=\mathrm{T} 3$		

co781-supp-may26 Mon May 26 13:18:16 $2008 \quad 2$

The S1 T1 means a multiplication of 2 14-qubit Pauli operations, not a tensor product of 27 -qubit Pauli operations.

So, the stabilizer is the same as the one generated by $\mathrm{S} 1-\mathrm{S} 6, \mathrm{~T} 1-\mathrm{T} 6$.

