
Local noise

Noisy quantum circuit realized as a unitary USB between the 
system S and bath B.  
USB = Πj=1

L USB
j

where USB
j = sys-bath evolution in the j-th location.  

USB
j = (alphaj II + βj Fj) [(US

j)ideal ⊗ VB
j] 

where Fj = Pauli decomposition with nontrivial Pauli on S.  
USB has an expansion with 2L terms (each called a fault path). 
(One of them is ideal). 

For any particular set of r locations Ir, let Γ(Ir) be the subsum in 
the expansion of USB with faults at all r locations in Ir
(unrestricted elsewhere).  

Then, noise is local with strength ε if ∀Ir, || Γ(Ir) ||∞ · εr

(where || . ||∞ is the largest singular value).  

NB Local noise can be nonMarkovian. 



Lemma:

If noise is local with strength ε, circuit size L, and Γr denote 

subsum over fault paths with r or more faults, then 

|| Γr ||∞ · L-choose-r εr e(L-r)ε

Proof: elaborate counting involving inclusion-exclusion principle.  

Γ(Ir) & Γr are both subsums of fault paths. 

Former: r specific locations all faulty 
Latter: any s ≥ r faults 

Special case: stochastic noise (no interference between fault 
paths), and a fault path has prob = amplitude-squared.

Even more special: each location has independent noise wp p. 



Last time:

level 0 circuit: consists of 0-Rec in each location (including I) 

level 1 circuit: replace each 0-Rec in level-0 circuit by 
corresponding 1-Rec.  

level k circuit: obtained from a level k-1 circuit by replacing 
0-Recs with 1-Recs.  

Ideal decoder Corrects errors & decodes state 
producing an unencoded qubit.

s
s-Error filter Projects on states that are within 

s Pauli errors of a valid codeword

(Confusion last class: p13-17, add r+s · t etc in FT conditions.)

Lemma 1: If Ex-Rec good (· t faults), then Rec is correct 



Corollary of lemma 1: if all 1-Ex-Recs are good, the level-1 
simulation realized by the 1-Recs inside can be replaced 
by a level-0 simulation with each 1-Rec → ideal 0-Rec.

Corollary of above: it requires at least t+1 faults in ONE  
particular ex-Rec for the 1-simulation to fail.  

1-Ex-Rec with size C fails with noisy strength 
ε1=(κ C-choose-t) ε0

t given local noise with strength ε0. 



Want to run this recursively : starting from a k-simulation of a 
circuit, replace the 1-Recs by 0-Recs (with stength · ε1) that 
form the corresponding (k-1)-simulation.

Then, we apply the argument to the (k-1)-simulation etc.

2 missing pieces:

Good 1-ex-Recs implies 1-Rec simulates correct 0-Rec. 
What about bad 1-ex-Recs?  Does it simulate a fault with 
properties simulation to the 0-level?  

ex-Recs overlap.  1 fault in the shared EC can make 
2 (multiple) ex-Recs to be bad.  



Does 1-Rec in a bad 1-ex-Recs simulate a 0-fault? 

No .... the fault incurred depends on the syndrome.  

e.g in the 3-bit repetition X error code, having 2 X errors on 
α |000i + β |111i takes it to α |011i + β |100i  and decoding 
gives an error syndrome corr to X erro on qubit-1, and output 
α |111i + β |000i with encoded X error.  Similarly for 3-bit 
Z error code. 

Now, take the 9-bit code, and a supposition of multiple X & Z 
errors (enough to cause a logical X or Z error when decoded).  
The syndrome collapses the error into either many X's or many
Z's and the subsequent logical X or logical Z error depends on 
whether we get the erroneous X syndromes or Z syndromes. 

We don't have a problem if #errors small, since in each case, 
the correct state comes out.  But trouble comes for > t errors. 



Rough idea: redefine IDEAL decoder to (1) retain the 
syndrome, and (2) preserve the coherence -- a measurement 
first unitarily interacts system with ancilla then measures in 
X/Z basis.  Skip the last step.  

In general, with · t errors, the decoded state and the simulated 
0-Rec is independent of syndrome, and with > t errors, it is 
dependent on syndrome.

Ideal decoder is now isometric.  Extend to a unitary D. Then, D†

is an encoder with 2 inputs: the codespace and syndrome space.  

D: D†:

(a) New definition preserves [Good → Correct lemma], 
since syndrome factors out for 1-exRecs. 



(b) For bad ex-Recs, cannot use lemma, but can insert identity: 

bad 
1-exRec

= bad 
1-exRec

D D†

= bad 
0-exRec

syndrome
operation

We still commute 
the ideal decoder 
to the left



The syndrome for different bad exRecs on the same logical 
qubit interact with one another.  But all we want is 0-noise 
remain local ... (OK to be correlated). 



2nd issue: ex-Recs overlap.  e.g.:   

EC EC EC

EC EC EC

two independent 
bad ex-Recs

dependent bad
ex-Recs

x
x x x

x xx

EC EC EC two independent 
bad ex-Recs

x
x x

x



Idea: when 2 consecutive ex-Recs are bad, truncate the 
trailing EC from the first ex-Rec, reinsert ideal EC.  
Decide good/bad as defined before

EC
x

EC ECxx

ECEC EC ECx
x x x

EC EC EC
x x

x

both
bad

ECx
both
bad

one
good
one
bad

EC

Then (t+1)r independent faults are needed to create r bad ex-
Recs.  (Proof omitted.)  



Big picture: start with k-sim of a circuit.  
Consider the meas 1-exRecs at the end.  
If bad, replace by an ideal decoder followed by a bad 

measurement (that can depend on the syndrome).  
If good, move the ideal decoder to the left.  
Repeat for all other 1-exRecs until the ideal decoders hit 
the far-left -- the beginning of the k-sim (state preparation).

The 2 issues are now solved to make 1-Rec simulate 0-Rec, 
preserving local noise structure, and modifying the strength 
from ε0 to ε1. 

Finally, run this recursively.



from k-sim to (k-1)-sim: 

ε0 → ε1 = (C-choose-t) ε0
t+1 where C=size of largest 1-ex-Rec

ε1 · ε0 iff  r0 = ε0 / εcrit · 1 where ε
crit

=  ( κ C-choose-t)-1/t

ε0 / εcrit → ε1 / εcrit = (κ C-choose-t) ε0
t+1 / εcrit = ε

crit
-t-1 ε0

t+1 = r0
t+1

εk / εcrit = (((r0
t+1)t+1) ...)t+1 = ... (r0)

(t+1)
k

from k-sim to 0 sim: 

Note, for a size L circuit, to achieve overall prob of error · δ, 
each k-Rec should has error · δ/L, and k = O(log log L/δ). 
Resources scale by a multiplicative factor of O(nk) where n is 
the block size of the underlying code, and O(nk) ∼ log L/δ

1 if stochastic
const ≥ 1 elseequivalently:



Level reduction holds for many other noise models:

Leakage errors 
Qubits drift out of the 2-dim space

Measurement based QC models 



Threshold theorem is proved.

If the gadgets satisfying the FT properties can be obtained, 
we believe that QC can be performed despite some noise in 
the physical implementation. 

Now, next task -- to obtain those gadgets. 

Will not do everything needed in this class, but to show 
some of the ideas etc.  Punge line -- they're all possible, 
with the best provable threshold ≈ 0.1% stochastic local 
noise prob. 



Building the FT gadgets ...

=
(decoded 

ideal)
total total

r s r

Ga FT-1: Faults propagate benignly if r+s · t 

=
r r+s

total per 
code
blockr

total

1-Ga

Ga FT-2: performs the encoded gate ideally if r+s · t

0-Ga

ss

1-Ga

1-Ga

The bitwise X, Z, P, H, CNOT for the 7-bit code works :) 
HW: prove that for H and CNOT.



How to build EC satisfying EC FT 1 and 2? 

EC = EC
sss

EC =
s rr

Back to t=1, 7-bit code.  s=0 easy.  So, consider s=1.

for s · 1:

for s+r · 1:

Consider the 2nd property.  s=1 so r=0.  Incoming state is 
error free.  EC contains syndrome measurement boxes, 
perfect classical computation, and possibly a 1-qubit Pauli 
correction.  If syndrome meas has no faults, 1 fault in the 
correction puts 1 error in the output state.  Remains to see 
what happens in syndrome measurements up to 1 fault.



Fault tolerant measurements:

e.g. measure ZZZZ on 4 specific qubits in the codeblock: 

⎟0000〉 + 
⎟1111〉

the 4 qubits
to be 
measured:

Z

Z

Z
Z

X meas

take product → y1

1. M

|+i |±i if input
± e-vec of M

2. |0000i ± |1111i = 
± 1 eig-vec of XXXX. 
Measure all 4 X's and 
multiply to get the ans

So, repeat 3 times, take 
majority of y1, y2, y3

3. If 4-cat state is perfect, one 
faulty c-Z affects one data qubit.  
After c-Z, 1 storage/meas error 
in ancilla at worst flips y1, but 
data block unharmed. 

Only worry about s = 1



Fault tolerant measurements:

e.g. measure ZZZZ on 4 specific qubits in the codeblock: 

⎟0000〉 + 
⎟1111〉

the 4 qubits
to be 
measured:

Z

Z

Z
Z

X meas

take product → y1

1. M

|+i |±i if input
± e-vec of M

2. |0000i ± |1111i = 
± 1 eig-vec of XXXX. 
Measure all 4 X's and 
multiply to get the ans

4. Errors in 4-cat 
state occurs BEFORE
c-Z.  1 Z error negates the ±1
eig-value of XXXX and flips the
outcome y1, but data block is unharmed.  1 X error propagates 
to 1 Z error to the data block but does not affect measurement.
OK if there's only 1 X or Z error in all 3 ancillas.



Fault tolerant measurements:

e.g. measure ZZZZ on 4 specific qubits in the codeblock: 

⎟0000〉
+

⎟1111〉

the 4 qubits
to be 
measured:

Z

Z

Z
Z

X meas

take product → y1

1. M

|+i |±i if input
± e-vec of M

2. |0000i ± |1111i = 
± 1 eig-vec of XXXX. 
Measure all 4 X's and 
multiply give the ans

accept only if outcome =1
claim: at most 1 X or 1 Z error.



1. If noiseless, this prepares |0000i + |1111i
2. Output cannot have more than 2 X errors or 1 Z error.  
3. 1 fault cannot result in 2 X errors:

Each of above has no effect. 

z

z

z

z

x

x

x

x

x

z

Each of above commutes 
pass CNOT.  So, equvialent 
to 1 fault in 2nd step.

1 fault at time step 1:

USE s=1, that if there is a fault we 
analyze, no other faults are around.

Y ∼ an X and a Z, same 
as an error in the RHS

All case then covered in consideration for step 2.



1. If noiseless, this prepares |0000i + |1111i
2. Output cannot have more than 2 X errors or 1 Z error.  
3. 1 fault cannot result in 2 X errors:

Each Z stays and affect the final state, but that's OK. 

z

z

z

z

x

x

x

x

x

z

1 fault at time step 2:

Right before the verification (last two CNOT's) X2 → X1 X2.  
X3 → X3 X4.  Any of X1,2,3,4 will result in meas=-1 & we reject.
Same for the X in the verification step.  Same for 1 Y.

1 fault in all subsequent steps  
results in 1 error.  Thus [3] holds.



How to build EC satisfying EC FT 1 and 2? 

EC = EC
sss

EC =
s rr

Consider s=1.

for s · 1:

for s+r · 1:

Consider the 2nd property.  s=1 so r=0.  Incoming state is 
error free.  EC contains syndrome measurement boxes, 
perfect classical computation, and possibly a 1-qubit Pauli 
correction.  If meas has no faults, 1 fault in the correction 
puts 1 error in the output state.  Remains to see what 
happens in measurements up to 1 fault.

So, 2nd property proved.  Omit discussion of 1st property.



Same method works for all product observables 
O1 ⊗ O2 ⊗ L ⊗ Onwith eigenvalues ±1.

the n qubits
to be 
measured:

On

O2

O1

Now |0i⊗ n + |1i⊗ n

Much more complicated preparation
and verification.  NB low wt 
measurements give higher threshold 



Encoded non Clifford gate on the 7-bit code: 

If θ = π/8, U = eiZπ/8 , then U X U† = eiZπ/4 X ∈ C2

d

U|+i

|ψi

(UXU†)d U†|ψi

Circuit still holds if everything is in the encoded form !

encoded 
input

bitwise 
cnot measure ZL (wait until FT)

Circuit performs encoded U†

Clifford -- we 
know how to

state with stabilizer 
UXU† (property (5))
will measure this 
stabilizer (wait until FT)

THIS IS NOW DONE.

NOW THIS PART.  Note UXU†

refers to the encoded version.



Preparing encoded U|+i:

Need to measure stabilizers of the code and 
the [encoded UXU†] = [encoded eiZπ/4 X] = (eiZπ/4 X)⊗7 = (UXU†)⊗7

unencoded

Each Oi = U X U†

On

O2

O1

=

X

X
X U

U

U

U†

U†

U†

Still has to 
apply U but 
unencoded 

Note also 
things are
transversal

One view:
Prepare level k
U|+i needs 
level k-1 U, 
in turns needs 
level k-1 U|+i

Another view:
Only cares 
0-Rec → 1-Rec
The rest 
recursive 

U X U† = eiZπ/4 X 



Requirements for FT (or assumptions behind existence of a 
threshold):

1. Subthreshold error rates

2. Benign error scaling

3. Massively parallel operations

4. Method to remain in or return to codespace

5. Ability to bring in fresh ancillas DURING computation

6. Ability to measurement DURING computation

Nice to have, but surprisingly not necesary:

1. Non-nearest-neighnor coupling

2. Same code at each level

3. Fast measurement

4. Reliable and fast classical computation


