
Bounds on Quantum codes

No go – we cannot encode too many logical qubits in too few
physical qubits and hope to correct for many errors. Some simple
consequences are given by the quantum Hamming bound and
Singleton bound.

The good side – can we have good codes with parameter [n, k , d]
s.t. k/n > 0 and d/n > 0? (Nonzero rate of information
transmission and correcting for nonzero fraction of error?) The
answer is given by the quantum Gilbert-Varshamov Bound.

Quantum Hamming Bound

For a non-degenerate code C encoding k qubits in n qubits, the
Quantum Hamming Bound states that 2n ≥ 2k |E| or
n − k ≥ log |E|.

It is essentially a packing argument: C non-degenerate means there
are as many Ei and Fl , and the Fk C’s are mutually orthogonal.
⋃

k Fk C has to fit in the ambient space. The QHB then follows by
putting 2n and 2k for the dims of the ambient space and
codespace.

Example: 7-qubit code, t = 1, n = 7, |E| = 1 +
(

7

1

)

· 3 = 22, so,
k ≤ 7 − log(22) = 2.54. The 7-bit code does not saturate the
QHB.

Example: 5-bit code, t = 1, n = 5, |E| = 1 +
(

5

1

)

· 3 = 16, so,
k ≤ 5 − log(16) = 1, saturating the QHB.

A code saturating the QHB is called perfect :)

Ref:NC 10.3.4.

Quantum Singleton Bound

For an [n, k , d] code, the Quantum Singleton Bound states that
n − k ≥ 2(d − 1).

(Proof: see Gottesman’s lecture notes in CO639, year 2004 or
lecture 5a in Winter 2007.)

An elaborate no cloning argument – if you can recover the encode
information after losing some qubits, the rest has no information
on it.

NB The two bounds hold for general quantum code, binary/not,
linear/not (nonlinear code, replace k by log dim C. Singleton bound
holds also for degenerate codes.

Quantum Gilbert-Varshamov Bound

If n, k , d satisfy
∑d−1

j=0

(

n
j

)

3j ≤ 2n−k , then ∃[n, k , d] stabilizer code.

Asymptotically, codes exist for k/n ≥ 1 − 2H(2t/n) (H is the
binary entropy function here).

Proof: see Gottesman’s lecture notes in CO639, year 2004 or
lecture 5a in Winter 2007.)

It’s obtained by a counting argument (on how many CSS or
stabilizer [n, k , d] codes we have, and how many fail to be good
codes with a relation of n, k , d imposed, and lower bound the
number by 1).

From classical codes to CSS codes to stabilizer codes

Classical codes (or X -error correcting codes): +1 eigenspace of Z

stabilizers (each tensor product of I and Z).

CSS codes: +1 eigenspace of Z and X stabilizers that commute
with one another.

Stabilizer codes: +1 eigenspace of commuting elements Pn.

—————————————————————————–
Pn = Pauli group = all n-qubit tensor products of I ,X ,Y ,Z with
overall phases ±1, i . Let P̃n = Pn/{±1,±i}.

Stabilizer codes

Def: Let S be an abelian subgroup of Pn that does not contain
−I . The simultaneous +1 eigenspace of operators in S is called a
stabilizer code C.

Fact: S is finitely, thus finitely generated (multiplicatively), and
with ≤ n generators (take n − k). Then, C is 2k -dim.

Let G = {Si}n−k
i=1

be the generator.

Terminology:
Detnote generator (set) of S by G .
G = {Si}n−k

i=1
, and Si are called generators of S

S : stabilizer of C (since if p ∈ S , |ψ〉 ∈ C, p|ψ〉 = |ψ〉).

Example – 5-bit code

Let G contain

S1 = XZZXI

S2 = IXZZX

S3 = XIXZZ

S4 = ZXIXZ

.

The stabilizer code C encode 1 qubit in 5.

The normalizer of stabilizer codes

Note:

p ∈ Pn, p commutes with all elements in S iff it commutes with all
elements in G .

S is abelian, so, each p ∈ S commutes with all elements in S .

If k = 0, G is a maximal commuting set.

Else, there are other p ∈ Pn that commute with all elements of S .
Try:

G =

XZZXI

IXZZX

XIXZZ

ZXIXZ

,

Both XXXXX , ZZZZZ commute with all of G , so is their product.

The normalizer group of stabilizer codes

Def:
Centralizer of S in Pn: {p ∈ Pn| pq = qp ∀q ∈ S}.
Normalizer of S in Pn: N(S) = {p ∈ Pn| pSp† = S}.

Facts:

(1) in Pn, centralizer of S coincides with N(S)
⋂Pn.

Proof: ∀q ∈ S , q2 = I (other phases contradict −I 6∈ S). For
Pauli’s p, q, pqp† = ±q. By definition of normalizer, p ∈ N(S) ⇒
pqp† ∈ S and if pqp† = −q, −I = pqp†p ∈ S a contradiction. So,
∀q pqp† = +q and p is in centralizer.

(2) N(S) is a group, so is N(S)/S .

Fact: N(S)/S finitely generated by 2k elements in P̃n. They have
commutation relation like logical Pauli’s XLi ,ZLi for i = 1, · · · , k
and can be used as such.

The normalizer group of stabilizer codes

Proof: Elements in N(S) either commute or anticommute. We will
pick these 2k generators. Let O1, · · · ,Ok complete G to n

commuting generators. Any Õ1 not generated by these n operators
anticommutes with at least one of them, say, O1, and if
{Oj , Õ1} = 0 for j = 2, · · · , k , replace Õ1 by Õ1Oj . Since the Oi ’s
commute with one another, this replacement will not affect the
commutation relation between Õ1 and other Oj>1. Pick Õ2 not
generated by the rest. By multiplying Õ1 to it if necessary, Õ2

commutes with Õ1. Then, by multiply O1 if needed, Õ2 commutes
with it. At this point, Õ2 anticommutes with at least one other
Oj>1, say, O2. Now, Õ2 can be made to commute with other Oj>2

by the same method for Õ1. Repeating until we get k Õ’s.

e.g. XXXXX and ZZZZZ generate N(S)/S for 5-bit code, and can
be taken as XL,ZL.

The stabilizer formalism

(1) Representation by G : replacing Si by SiSj does not change S .

(2) Effect on C by unitary transformation:

∀U ∈ U(2n), |ψ〉 ∈ C, Si ∈ S , U|ψ〉 = USi |ψ〉 = (USiU
†)U|ψ〉.

ie. U|ψ〉 is stabilized by USiU
†. UC has stabilizer USU†.

(3) Measuring p ∈ Pn:

• If p ∈ S , we always get +1 and state/stabilizer unchanged.

• If p ∈ N(S)/S , we measure a logical Pauli. We add p as a
generator, keeping the rest. k decreases by 1.

• If p 6∈ N(S), ∃Si ∈ G s.t. {p,Si} = 0. Obtain another generator
G ′ (still for S) by Sj → SjSi if Sj 6=i ∈ G anticommutes with p. G ′

has only one element Si that anticommutes with p.
Measuring p puts q = ±p in S and removes Si . Other generators
in G ′ commute with p and stay in S . Thus G ′ → G ′

⋃{q} − {Si}
giving a different stabilizer.

The stabilizer formalism

(4) ∀p ∈ Pn, either

(a) p ∈ S and p acts trivially on C, or

(b) p 6∈ N(S), so that pSi = −Sip for some Si ∈ G and pC is in
the −1 eigenspace of Si making p is detectible, or

(c) p ∈ N(S) − S (p ∼ p′ ∈ N(S)/S), then, pSp† = S and p

preserves C as a subspace but NOT its individual vectors. Thus p

is a logical operation on C.
e.g. 2k generators for N(S)/S are like logical Pauli’s on C.

(5) The projector onto C is given by

P = ΠSi∈G (I + Si)/2
n−k =

∑

p∈S p/2n−k .

NB ∀p ∈ S , pP = Pp = P .

Error correction by stabilizer codes

Idea: collect information on the error by choosing the eigenvalues
of Si ∈ G as the syndrome. If E occurs, the ith bit of syndrome is
±1 if ESi = ±SiE .

It corrects for E = {Ei} if ∀Ei 6= Ej either (a) have distinct
syndrome or (b) act identically on C.

Taking the adjoint of a Pauli at most change a phase, and does
not affect commutation relation. Ignor † for now.

(a) iff E
†
i Ej 6∈ N(S). To see this, Ei , Ej have same syndromes iff

∀k , both E commute with Sk or both anticommute with it. So,
[EiEj ,Sk] ∀k if they have same syndrome. Converse, if they have
different syndromes, ∃Sk which commutes with one Ei and not Ej .

(b) ⇒ E
†
i Ej ∈ S .

Thus, C corrects for E if all E
†
i Ej ∈ S

⋃

N(S)c .

Error correction by stabilizer codes

Thm: Consider E = {Ei} ⊂ Pn.

(a) If ∀i , j E
†
i Ej ∈ S

⋃

N(S)c then, QECC condition (1) holds.

(b) C degenerate iff ∃i 6= j s.t. E
†
i Ej ∈ S .

Cor of (a): C is an [n, k , d] quantum code for d = min wt of
p ∈ N(S)/S (or ∈ N(S) − S).

Pf (a) let p = E
†
i Ej .

If p ∈ S , then PpP = P by property (5).

If p 6∈ N(S), then, ∃Sk ∈ S s.t. pSk = −Skp.
PpP = PpSkP = −PSkpP = −PpP = 0.

Hence, PE
†
i EjP = cijP with

cij = 1 if E
†
i Ej ∈ S , and

cij = 0 if E
†
i Ej 6∈ N(S).

Error correction by stabilizer codes

Furthermore, if E
†
i Ej ,E

†
j Ek ∈ S , E

†
i Ek ∈ S (S group)2.

Thus c ≥ 0 (because relabelling the basis for c , it is block diagonal
with blocks of all 1’s). �.

The above expression for c also proves (b).

Cor to (a) follows by definition of distance for Pauli error basis.

————————————————————————-

2 Trivially, if the pair Ei , Ej act identically on C,

5-bit code

In fact, the 5-bit code given by

S1 = XZZXI

S2 = IXZZX

S3 = XIXZZ

S4 = ZXIXZ

is a nondegenerate [5, 1, 3] code correcting for 1-qubit errors.

Check: all wt 2 Pauli’s anticommute with at least 1 Si .

The 4-bit outcome precisely identifies which of 1 + 3 × 5 1-qubit
Pauli has occurred. It saturates the Hamming bound.

This is the smallest distance 3 code for k = 1 (due to the Singleton
bound n − k ≥ 2(d − 1) which applies to nondegenerate codes).

Encoded operation

For many purposes, we want to directly evolve encoded
information without decoding and reencoding.

For fault tolerance (when the gates are noisy), we further want
encoded operations that do not take 1 error to multiple ones.

The stabilizer formalism vastly simplifies the understanding of state
evolution and helps in constructing such operations. Similarly for
the Clifford group.

Clifford group

Def: The n-qubit Clifford group is the normalizer of Pn.

Let’s call it Cn (though we use C for codespace).

Gates in Pn are called C1 gates.
Gates in Cn conjugate Pn to Pn and are called C2 gates (confusing
...). Note, n is omitted.
Ck gates conjugate Ck−1 to Pn. Ck≥3 are not groups.

Facts:

(1) U ∈ Cn is specified by its action on the generator set for Pn.
i.e. by UXiU

† and UZiU
† for 1 = 1, · · · , n. We called UPU† the

image of P . (Pf: the action on Pn and thus B(C2
n
) are then

specified.)

(2) Rules for UXiU
†, UZiU

†: commute with UXj<iU
†, UZj<iU

†

but not generated by them, and anticommute with one another.

Clifford group

Facts (ctd):

(3) Cn generated by h, p =
√

Z on each qubit, and c-Z on every
pair. (Pf: makes a good HW problem ... try seeing that these
primitives allow any set of 2n images to be obtained.)

(4) other famous members of Cn: cnot, swap (ADD CIRCUIT).
cnot and c-Z are used interexchangeably given h.

(5)
h: X ↔ Z ,
p: X → Y = iXZ , Z → Z ,
c-Z : XI → XZ , ZI → ZI

(acts symmetrically) so IX → ZX , IZ → IZ

cnot: XI → XX , ZI → ZI , IX → IX , IZ → ZZ .

(6) Clifford group + any other gate universal.

Encoded operations for 7-bit code

Stabilizer generators:

I I I Z Z Z Z

I Z Z I I Z Z

Z I Z I Z I Z

I I I X X X X

I X X I I X X

X I X I X I X

Can take XL = X⊗7, ZL = Z⊗7 which are in N(S)/S and
anticommute with one another. Furthermore:

h
⊗7: XL ↔ ZL,

p
⊗7: XL → iXLZL, ZL → ZL,

cnot
⊗7:

XLIL → XLXL, ZLIL → ZLIL,
ILXL → ILXL, ILZL → ZLZL.

Needed: they’re in normal-
izer of S in U(2n)! (Wts of
stabilizers have to be divisible
by 2 for the bitwise X , Z to be
in N(S), and divisible by 4 for
(p) to normalize S.

Thus, bit-wise Clifford gates implement the encoded ones.

Ex: perform similar analysis for the 9-bit code.
HW: perform similar analysis for the 5-bit code.

	Bounds on Quantum codes
	Quantum Hamming Bound
	Quantum Singleton Bound
	Quantum Gilbert-Varshamov Bound
	From classical codes to CSS codes to stabilizer codes
	Stabilizer codes
	Example -- 5-bit code
	The normalizer of stabilizer codes
	The normalizer group of stabilizer codes
	The normalizer group of stabilizer codes
	The stabilizer formalism
	Error correction by stabilizer codes
	Error correction by stabilizer codes
	5-bit code
	Encoded operation
	Clifford group
	Clifford group
	Encoded operations for 7-bit code

