Classical Information Theory:

Game: given a scale and twelve coins,
one of them is a

counterfeit, so, it
is lighter/heavily,

Find it with min
— # weighings.

Let's count.
One weighing gives 3 possible answers: L B R

How many possibilities are we distinguishing from?

Label the coins by 1, ..., 12.
Answer looks like 5+, 11-, etc. So, 24 possibilites.



Classical Information Theory:

1 weighing: 3 outcomes So, at least 3 weighings.
2 weighings: 3% outcomes

n weighings: 3" outcomes



Classical Information Theory: s A
Solution: 2+ Y
L/ L6
Possibilities: 1+ 5-
1+ 2+ 6-| 125 B /-
2+ 3+ 7-| 346 8- \
44 3+ A
S+ O+ 4+ q
6L 1234 /B 10+ 5.
7+| o678 11+
8+ 12+
9+ R
10+ NB sol'n works
11+ for O/1 counterfeits.
12+




X: random variable e.g. biased coin toss

Q: sample space, say, |Q]= m Q={0,1}
p:prob distribution of X p(0) = 1/3
p:Q — [0,1] p(l) = 2/3

X + prob(x)=p(x)

lid (independent and identically drawn):
Draw from X, say, n times. How many outcomes?

Qns: mn

How much does it take to store/represent the
outcomes? e.qg. in the coin toss, there are 2"
outcomes and we need n bits.

Will see, if we allow a slight risk of mistake,
generally takes a lot less.



X: random variable
Q: sample space, say, |Q|=m
p:prob distribution of X
p:Q — [0,1]
X + prob(x)=p(x)

Def [Shannon Entropy]:
H(X) or H(p) := - 2o P(X) log p(x) [log base 2]

e.g.

For fair coin, H(X) = 1.

For biased coin defined before,

H(X) =-1/31log(1/3) - 2/3 log(2/3)
= [log3]-2/3 = 0.91830.



X: random variable

Q: sample space, say, |Q|=m "g]f?ri?» F;Oilnte_? out that
p:prob distribution of X this is false if a = p(a)
is not injective, but in

p:Q — [0,1]

/ that case, convergence
X — prob(x)=p(x) is even faster.

Asymptotic equipartition th_é:‘orem (AEP)
n iid draws of X, outcome x”= Xy Xy -0 X,
By independence, p(x") = p(xl) .. p(x,) = 2 zilog p(xi)
Let Y = log p(X), Y; Y, Yn lid draws of Y (via X))
vV a, Prob[Y = log p(a)] ='prob(X=a) = p(a)
1/n % log p(x;)) = 1/n 2",

— EY = X, p(a) log(p(a)) = -H(X) as n—oo
Thus p(x") — 2-"HX),




Def[typical sequence]-:
x" g-typical if [-1/n log(p(x")) - H(X)| < ¢
It means 2-"(HO+e) < p(xn) < 2-N(HX)) |

Def[typical set]: T, = {Xx": X" e-typical}
Denote > p(x") by p(T,,.)

X”ETn,g



Consequences of AEP: it means if n large enough,

ve>0,V5>0,3In,s.t.vn>n, +———we can make g, 5 as small

as we want.
1. p(T,,) > 1-5
2. (1-8) 2nHX)-e) < T | < 2n(HX)+e)

Remarks:
e ¢: allowed deviation from average to be called typical

d: prob of non-typical

Interpretations:

"Typical x"'s are ~ equiprobable (by definition)

taking up most of the prob (item 1: prob nontypical < §)
exponentially few (item 2: |T, |/|Q"| ~ 2 ~n(log|QI-H(X)))



Consequences of AEP:
Ve>0,VvV6>0, 3 nys.t. Vin > ng

1. p(T,,) > 1-5

2. (1-8) 2nHX) < [T, | < 2n(H)+2)

Pf of item 1: just making AEP quantitative

——————————————————————————————————————————————————————————————————————————————————————————————————

' Asymptotic equipartition theorem (AEP)

n iid draws of X, outcome X" = X; X, -+ X,

By independence, p(x") = p(Xy) ... p(X,) = 2 Zilog p(xi)

' LetY = log p(X), Y; Y, ... Y, iid draws of Y

EVa, Prob[Y = log p(a)] = prob(X=a) = p(a)

1/n 25 log p(x)) = 1/n X" Y, |
| — EY =3, p(a) log(p(a)) = -H(X) as n—oco

x"e T, o [1/nInY - EY| >¢
Law of large #: Pr(|1/n 2"Y.- EY| > ¢) < (Var Y/n ¢?)
<8 ifn>ny,=VarY/ (g 39)




Consequences of AEP:
Ve>0,Vo>0,3dngs.t.Vvn>ng

1. p(T,,) > 1-5

2. (1-8) 2nHX) < [T, | < 2n(H)+2)

Pf of item 2:

p(T,.) = 2 p(X")

X"GTn,g

| Tl max p(x") >
xneTnlg

= |T,,| 2™ (HOO-2)

| 2-n (H(X)+¢)



Conseqguences of AEP:
Ve>0,VvV56>0, 3 nys.t. Vin > ng

1. p(T,,) > 1-5

2. (1-8) 2nHEO=) < T | < 2n(HOO+e)

Application [Data compression/Shannon's noiseless coding thm]

Idea: foriid Xy, ..., X, represents only typical outcomes
and ignore the rest. Succeeds w.p. > 1-5, and costs only

n(H(X)+¢) bits.

Formally: foriid Xy, ..., X,

vV R>H(X), V6>0, 3 nys.t. vn > ng

3 E,, D, s.t. Pryn [D, 0o E, (X") #X"] <&
(take ¢ = R-H(X), T, . in above.)

Converse: YV R<H(X), no reliable E.,D, (pf see N&C)



Note that data compression gives the Shannon
entropy H(X) an OPERATIONAL meaning -- how
much it takes to represent the data.

It also means how much uncertainty is in the data,
or how much we learn by knowing it.

Will cover properties later.



Quantum analogue:

State: p=2, p(v) |le,)(e,| (spectral decomposition)

von Neumann entropy: S(p) = H(p) = -tr (p log p)

Idea: p ~ a classical rv V with dist" p in its eigenbasis |e,).
Now, p®" is like n iid draws of V.

Let T, . be the typical set of v". Their corresponding
eigenvectors |e ) span typical subspace S with projector:

Pn,a = 2 |evn><evn|

v”eTn,8

(1) dim S < 2nS@+ (2) Tr(p®™P, ) = Zyncr,. P(V) > 1-3.



Def: Let X be a classical rv with distribution q(x).
E={a(x),|wv,)} is called an ensemble of quantum states.

Interpretation: with prob gq(x), quantum state is |v,).
Formally, can think of the "CQ" state

2 A(X) X)X @ |y {wyl

Likewise, can define E®" as ensemble of n states, each
drawn iid according to E.

How much space does it take to store these n states if
we allow some small error?

Ans: 2nS(p)+e]l dimensions

where p = >, q(Xx) |y, ){(w,| is the average state of E
Not 2nH(a@)+e] 11



Quantum data compression (Schumacher compression):

Let E={q(x),|v,)} be ensemble with average state p.
Then, ¥6>0, 3n, s.t. V. n>n,, 3 E,, D, s.t.

Y0 Q(x") F(lyn) (wenl, DpoEr (L) (wenl)) > 1-8
& E, maps to a 2"R dim space with/R>S(p).

Fidelity Decoder & diff=¢ Allowed
encoder average
error

Thus, von Neumann entropy of the average state
represents the space needed for compression of iid source
of quantum states.




Quantum data compression:

Let E={q(x),|v,)} be ensemble with average state p.
Then, ¥6>0, 3n, s.t. V. n>n,, 3 E,, D, s.t.

2 9(X") FClyyn)(wynl, Doy (lyyn)(wynl)) > 1-8
& E, maps to a 2"R dim space with R>S(p). (¢ = R-S(p))

Proof: Let p=Y,p(v) le)(e,l, Pn.= X leynyen| D2lory
v"eTn”.,3

E.(c) = P,.0 P+ Tr [(1-P, )o(1-P, )] [f){fl

where |f) is an error (failure) symbol.

l.e. E, encodes by projecting onto typical space of p®n
Each input |y,n) = P, lyyn) + (1-P, ) |y,n) (trivial identity)

Corr output = P, |y,n){w,n| Py,
+ Tr[(l'Pn,g) |\|jxn><\|]xn| (1_Pn,g)] |f><f|



NB ¢, 6 are those of p13
Quantum data compression: for typical space of p

Let E={q(x),|v,)} be ensemble with average state p.
Then, ¥6>0, 3n, s.t. V. n>n,, 3 E,, D, s.t.

3,0 A(x") F(Iyyn) (wynl, DpoEn (lwyn)(wynl)) > 1-8
@maps to a 2"R dim space with R>S(p). (¢ = R-S(p))

Corr output = P, |y,n){w,n| P,
+ Tr[(l-Pn,g) |\|an><\|jxn| (1_Pn,g)] |f><f|

FChwyn) (winl, DroEq (lwen) (wenl)) = (win [Py o [wyn)

\, 20 q(x") F(l) = 2N q(Xn)<\|’x”|Pn,5 lwyn)

cyclic - an Cl(Xn) Tr [ |\|fx”><\|’x”|Pn,s ]
prop /7

trace = Tr [ p®n Pn,8 ] > 1-8 by prop(2) p13



Converse:
If R < S(p), no E,, D, will succeed in the compression.

Proof (see N&C).



Back to classical information theory ....

Let X,Y be two rv's, with distribution p(xy).
H(XY) = H(p) as before (treat XY as a composite rv).

Let g, = p(X|Y=y) be the distribution of X given Y=y.

Def: Conditional entropy H(X|Y) = 2, p(y) H(q,).
/ i.e. it is the (average over y [entropy of X-given-y])

ibl
Gefinition oSy toremember ____, pact: H(X|Y) = H(XY)-H(Y).

consequence (not
a definition)

i.e. conditioning removes the uncertainty of the
rv conditioned on from the joint uncertainty.

Proof: exercise.



Back to classical information theory ....

Def [ mutual information]: I(X:Y) = H(X) - H(X]Y)
1 !

uncertainty of X before after
conditioning on Y

i.e. it equals to the information about X contained in Y
= decrease in uncertainty of X due to conditioning on Y.

Due to "fact™: I(X:Y) = H(X) + H(Y) - H(XY) = I(Y:X)

[(X:Y) is MUTUAL (information) between X &Y.



Back to classical information theory ....

One prominent operational meaning of I(X:Y):

d. d. . < dimension of
in out .

X N Y input and output
(often called the
alphabet size)

Channel:

X — Yy with prob p(y|x)

Goal: communicate as many equiprobable messages
as possible per use of N, allowing many (n) uses.

The rate R is called achievable (for iid N) if, encode i
38,6, — 0, s.t. ¥ n, 3 2"(R-9) codewords x".

[each labeled by i with length n] [Xy; X5; .. Xy

s.t. 3 D, with Prob [ D, (N®"(x")) =i ] <e

n
t 4 AN prob of error
decoder error vanishing with n



Back to classical information theory ....

Channel capacity for N
= supremum over all achievable rates

= SUP, iy L(X:Y) = supy,y I(X:N(X))

Amazing ... # uses n disappear, we sup over one
copy of X! Also, how on earth can we prove this?

Poll if we're to see a proof next time.



Properties of H(X), H(X]Y), I(X:Y):

1. H(X) < log |Q| [obvious]
2. H(X]Y) < H(X) [conditional reduces uncertainty]
thus ? want prove
(a) I(X:Y) >0
(b) H(XY) < H(X) + H(Y) [subadditivity]
3. Let X, be a rv for each k, with same Q (diff dist")
H( 2 p(k) X ) > 2 P HOX)

average dist" obtained by first average
drawing k, then draw from X, entropy of X,

i.e. entropy of the average > average entropy
Why? LHS = H(X), RHS = H(X|K). Discarding info
on K can only increase uncertainty.



Properties of H(X), H(X]Y), I(X:Y):

4, H(Z) + H(XYZ) < H(XZ) + H(YZ)
strong subadditivity (add Z to each term in SA)

5. For p(x) and q(x) with [| p - q [[ <,
IH(p) - H(q)| <elog || + H(e)
i.e. H is asymptotically continuous with Lipschitz
constant determined by log |Q].
[Fannes inequality]

6. I(A:BC) < I(A:B) + H(C)

The addition of a system cannot increase MI more than it's size.
Proof: RHS - LHS

= H(A)+H(B)-H(AB)+H(C)-H(A)-H(BC)+H(ABC) =0

= H(B)-H(AB)+H(C)-H(BC)+H(ABC) = |[H(B)+H(C)-H(BC) |+ |H(ABC)-H(AB)




Now the quantum analogues:

Let A,B be two quantum systems, state p (on AB)
S(p) defined as before. S(A) = S(trgp), S(B) = S(tryp).

no quantum analogue

1%
no quantum analogue

Pef—CenditionatentropyHOo =2ty
. y \My/+

easy to remember Fact: H(X|Y) — H(XY)-H(Y)-

consequence (not

a definition
) This fact twisted to become a def.

Def: S(A|B) = S(AB)-S(B)



Quantum analogue:

Def [ mutual information]: I(X:Y) = H(X) - H(X]Y)
1 !

uncertainty of X before after
conditioning on Y

meanings don't hold anymore
nonetheless tweak as quantum def

Def [quantum mutual information]:
S(A:B) = S(A) - S(A|B) = S(A) + S(B) - S(AB).

Do these quantities mean anthing anymore?
Next time.



Unused materials.



Recall definitions, meansing, & properties of the following:
H(X) or H(p) := - X, py log p,

H(X]Y) = 2, py, H(X[Y=y) = H(XY)-H(Y)

I(X:Y) := H(X) - H(X|Y) = H(X) + H(Y) - H(XY)

Add one more, the relative entropy
(aka Kullback-Leibler divergence, information divergence):

H(pllq) := 2, P, log (p,/ay) NB. H(p|1q) = H(al|p)
Then [proof as exercise]: In general
1. H(X) = log |Q] - H(p]||u) where u = uniform dist"
2. I(X:Y) := HXY||X®Y) or Hw||p®q)
where w = distribution of xy, p and g are the marginals,
® connects independent RV.



Second lecture



Recall definitions, meanings, & properties of the following:

H(X) or H(p) .= Zx Px |Og Px
H(XTY) 1= 2, p, H(X]Y=y) = H(XY)-H(Y)
I(X:Y) 1= H(X) - H(X]Y) = H(X) + H(Y) - H(XY)

1. H(X) < log |Q2]
2. H(X|Y) < H(X)
thus (a) I(X:Y) >0
(b) H(XY) < H(X)+H(Y)

2.1 H(XY)=H(Y)+H(X]Y)  Qn: H(XY|Z)?= H(Y|Z)+H(X|YZ)
2.2 (a) H(X]Y) = 0 Ans: Yes. Proof:

(b) H(XY) > H(Y) H(XY|Z) = H(XYZ)-H(Z)
2.3 H(XY|2) = H(YZ) + H(X|YZ) - H(Z)

= H(Y|Z)+H(X|YZ) = H(Y|Z) + H(X|YZ).



Recall definitions, meanings, & properties of the following:

3. Let X, be a rv for each k, with same Q (diff dist")
H( 2 p(k) X ) > 2, p(k) H(X,)

4. H(Z) + H(XYZ) < H(XZ) + H(YZ)

5. For p(x) and q(x) with || p-qg || < s,
IH(p) - H(g)| <elog [Q] + H(e)



6. Def: we write X—=Y—=Z if p(X,y,z) = p(x) p(y|x) p(z|y)
It is called a Markov Chain. e.g. Z=f(Y).

In general, p(x,y,z) = p(xy) p(z|xy) = p(x) p(y|x) p(z|xy)
Thus Markov condition states that Z conditionally depends
only on Y but not X.

Facts:
(@) X=Y=Z < p(x,z|y) = p(x|y) p(zly) [from def]
(b) X=Y—=Z & Z—-Y—X [follows from (a)]
(c) Data processing inequality:
If X=>Y—=Z, then I(X:Y) > I(X:Z). [see Cover&Thomas]
(d) If X—Y—Z, then I(X:Y|Z)@I(X:Y). [p32-33]



7. We want to estimate rv X (sample space Q), via
another rv Y, from which we output Z. Let P,=Pr{X=Z}.
Thm [Fanos ineq]:

H(P.) + P. log(|Q[|-1) > H(X]Y)
NB:
- If P, small, so must H(X]Y). In fact, P,=0 = H(X]|Y)=0.
- P, > [H(X]Y)-1]/ [Q], so, if H(X]Y) is large, so must P..

Proof: Define new rv E, E=0 if X=Z, 1 otherwise.

By property 2.3: H(EX]|Y) = H(X]|Y) + H(EtXY)
H(EX|Y) = H(E|Y) + H(X]|EY)

So, H(X|Y) = H(E]Y) + H(X]|EY)

(2.2) < H(E) + 2, p(y) [P H(X|E=1 Y=y) +
(1-P.) H(X|E=0 Y=y)]

H(P.)+ P, log(|Q[-1)

IA



8. Jensen's inequality:

If f convex function [i.e. f(py+(1-p)z) < pf(y)+(1-p)f(z)],
& X rv, then, f(E[X]) < E[f(X)]. pel0,1]

9. Let p(x), q(x) be 2 distributions on Q.

Information divergence, Kullback Leibler divergence,
or relative entropy between p and q:

D(p|[g) = 2o P(X) log[p(x)/q(x)].

Note: D D in aeneral. These prove much of
(plla) (allp) J the earlier properties.

Simple facts:
(a) H(p) = log|Q| - D(p||u) (u = uniform dist" on Q)
(b) I(X:Y) = D(p(xy)||p(x)p(Yy))

Thm: D(p||q)>0, with "=" iff p=q. [Cover&Thomas p26]



Recall definitions, meanings, & properties of the following:
Forp=2,p(v) |e,{e,| on sys A:

S(A), or S(p) :=-trplog p = H(p)

For p on sys AB:

S(A|B) := S(AB)-S(B) [no analogue to classical interpretation]
I(A:B) := S(A) - S(A|B) = S(A) + S(B) - S(AB)



Like classical

Properties in the quantum setting: analogue?
1. S(A) < log (dim A) Y
2. S(AB) < S(A) + S(B) [subadditivity] Y

= iff AB in product state.
Thus (a) I(A:B) > 0
(b) S(A|B) < 5(A)

2.1 S(AB) = S(B)+S(A|B) Y
2.2 (a) S(A|B) > 0 or < 0 N
(b) S(AB) > or < S(B)
2.3 S(AB|C) Y
[ [ = S(B|C)+S(A|BC)

still holds for €.9. pag o< projector
classical rv's onto [00)+]11)



Like classical
Properties in the quantum setting: analogue?

3. Let p, be a state for each k (on the same system)
S( 2 P(K) p ) = 2 P S(py) Y

4. Strong subadditivity
S(C) + S(ABC) < S(AC) + S(BC) Y

5. For p, o € B(CY), with || p - || <, Y
|S(p) - S(c)| <elogd + H(e)
Fannes' Inequality '73

6. For p, o € B(C% @ CB), with || p - o || <&, NA
IS(BJA), - S(B|A),| <e4log dg + 2 H(e)
independent of d,, Alicki-Fannes '04



9. Let p, o be d-dim quantum states.

Quantum relative entropy between p and c:

S(plle) = Trlp log p] - Tr[p log o]
Once again, S(p||o) # S(c]||p) in general.

Simple facts:

(@) S(p) = log d - S(p||1/d)
(b) I(A:B) = S(pasl|pa®ps)
(c) S(pllo) = S(UpUT || UsUT)

Thm: Klein's inequality
S(p||oc)>0, with "=" iff p=o.

Thm: S(p|]|o) jointly convex

.e. S pipi || 2 Py o) < 2 Py S(pil loy)

Proofs: see Nielsen & Chuang.

Like classical
analogue?

Y
for all



10. Lindblad-Ulhmann monotonicity
For all TCP maps A, S(p||lo) > S(A(p)||A(o)).

Proof: [outline only]

(1) log (n®E) = (logn) ® I + I ® (log &)
Proof: elementary.

(2) S(p&E [| n®g) = S(u|[n)
Proof: use (a), the rest elementary.
Interpretation: attaching or removing an
uncorrelated system does not afftect rel entropy.

(3) 4 p;,U; s.t. V dxd matrix M, s.t.
R(M) :=2 p, U MUT = (tr M) I/d for all M.
I ® R (Mpg) = (trg Myg) ® I/d

Proof: take p,=1/d?, and U, = generalized Pauli's.



10. Lindblad-Ulhmann monotonicity
For all TCP maps A, S(p||lo) > S(A(p)||A(o)).

(1) log (n®E) = (logn) ® I + I ® (log &)

(2) S(ueg || n®g) = S(ulIn)
(3) 3p;,Uis.t. T ® R (Mypg) = (trg Mpg) ® 1/dg

(4) S(paglloag) = S(palloy) [ie. for A = trg]
Proof: LHS apply simple
fact (c) to
> S( I®R(pag) || I®R(opg) ) joint convexity
“L S(pp@ 1/d || opx 1/d )
“L RHs

(5) any A consists of attaching |0)(0|, a unitary, and
partial tracing.



11. Monotonicity of QMI under local operations
I(A:B)PAB = I(A:B) A®I(paB)

Proof: I(A:B),,, = S(pagllpa ® pg)

> S(A @ I (pap) || Alpa) ® pg)

_ property 10
= I(A:B) A®I(paB)

NB same for I ® A and Ay ® Ag.



Coherent information:
I(A)B) = S(B) - S(AB) = -S(BJ|A)

S(B) S(AB
/. Quantum data processing inequality (B) >(AB)
I(A)B) OAR > I(A) B)A®I(PAB S(AB)
Proof: [worship in the Church of larger Hilbert space]
. (purification/ref
————— R ‘_\}(purl |cat|0|?/re erence) I(A) B) - I(A) B)A®I(pAB)
| AL 5‘ = [S(BE)-S(R)],,, ,
pAé\ B _______ _________________ ___________ _ [S(B)_S(RE)]lwout>
""" Tl Ufre T ISEERISRIL,,
B et B - IS(B)-S(RE),,.
v unitary on =S(BE)-S(ABE)

| Win) [ Wout) BE, inv on R -S(B)+S(AB) > 0



Now study capacities.

1. classical capacity of classical channels
2. classical capacity of quantum channels
3. other capacities of quantum channels



Recall from last time ...



Back to classical information theory ....

One prominent operational meaning of I(X:Y):

d. d. . < dimension of
in out .

X N Y input and output
(often called the
alphabet size)

Channel:

X — Yy with prob p(y|x)

Goal: communicate as many equiprobable messages
as possible per use of N, allowing many (n) uses.

The rate R is called achievable (for iid N) if, encode i
38,6, — 0, s.t. ¥ n, 3 2"(R-9) codewords x".

[each labeled by i with length n] [Xy; X5; .. Xy

s.t. 3 D, with Prob [ D, (N®"(x")) =i ] <e

n
t 4 AN prob of error
decoder error vanishing with n



Back to classical information theory ....

Channel capacity for N
= supremum over all achievable rates

= SUP, iy L(X:Y) = supy,y I(X:N(X))

Amazing ... # uses n disappear, we sup over one
copy of X! Also, how on earth can we prove this?

1. Show that the above is an achievable rate by finding
coding schemes that achieves it. This step is called
"direct coding."

1'. This is not easy. Instead, analyze a code drawn at
random, and show Prob(it works) > 0. This is called an
existential proof.

2. Show one cannot beat the above rate -- this is called a
"converse."



Recall:
Def[typical sequence]-:
x" g-typical if [-1/n log(p(x")) - H(X)| < ¢
It means 2-"(HX)+) < p(xn) < 2-N(HX)-)

Def[Jointly typical sequence]:
x"y" g-jointly-typical if
(@) [-1/nlog(p(x")) - H(X)| <«
(b) [-1/nlog(p(y")) - H(Y)| <
(c) [-1/nlog(p(x"y")) - H(XY)| < ¢
where p(x"y") = IT;_;" p(X; Y;)-

[The strong typicality equivalence of (c) implies those of (a,b).]

Def[Jointly-typical set]: A, ., = {Xx"y" e-jointly typical}



Joint asymptotic equipartition (Joint AEP) theorem:

Let (X",Y") be sequences of length n
drawn iid according to p(x" y") = IT._;" p(X; V).
Then:
1.v3>0, 3 ngs.t. Vv.n>ny, Pr(X"Y" € A, ) >1-5
2. (1-8) 2n [HXY)-] < A, < 2 [H(XY)+e]

3. Let Wn,Z" be rv's (same sample space as X",Y") w/ dist"
q(x"y") = p(x") p(y").
i.e. g is a dist" that has the same marginal as p,
but X" and y" are independent.
Then, Prq (Wn Zn e An,s) < 2-nlI(X:Y)-3e]
Also, for large n,
(1-5) 2-nLX:Y)+3e] < Pro (WM ZM e A, )



Joint asymptotic equipartition (Joint AEP) theorem:

Proof:
[1] Given ¢, §, we can apply AEP on X", Y", and (XY)".
thus, In, s.t. V n>n,,
the e-typical sets TX ., T, ., T,
all have prob > 1-8/3.
An,s = TXn,s ﬂ TYn,s ﬂ TXYn,a
An,sc — Tangc U TYn,sC U TXYn,sC

By the union bound,

Pr(X"Y" € A, ©) < Pr(X"Y" € TX, €) + Pr(XnY" € TX, ©)
+ Pr(XnYn e TX, ©) <8

Pr(X"Y" € A, . ) > 1-5.



Joint asymptotic equipartition (Joint AEP) theorem:

Proof:

[2] Using the same proof as in AEP, condition (c) implies
VXN e A, .,
(1_5) 2-n(H(XY)+s) < p(Xnyn) < 2-n(H(XY)-s)



Joint asymptotic equipartition (Joint AEP) theorem:

Proof:
[3] Let W, Z" be rv's (same sample space as X",Y") w/ dist"
q(x"y") = p(x") p(y").

lower bound on |A, .| lower bounds on p(x") and p(y")

' '
(1-8) 2nIHXY)-¢] 5 2-n[H(X)+e] 5 D-n[H(Y)+e] = D-nlI(X:Y)+38] <

Pro (X"y" e A, ) =
2N yne Ans P(XM)P(Y")

< 2NH(XY)+e] o 2-n[H(X)-e] » 2-n[H(Y)-e] = 2-n[I(X:Y)+3¢]

N

upper bound on [A | upper bounds on p(x") and p(y")



p(xny"

Xn(l)
Xn(2)

xNn(,)
7

What's going on?

We're comparing 2 distributions, p and g, on x"y",
We can list x"'s along a column, y"'s along a row.
For all purpose, only consider x"'s and y"'s typical

wrt the common marginal distributions. Put p(x"y")
& q(x"y") in each box.

2n(H(Y)+e)
) yn() yn() aceyn) yn() yn()
Xn(l)
xN(2)
xn( )

2n(H(X)+e)



What's going on?

1.Mostly ~ 0's except for 2nHXY)+e] (~ equiprobable) entries.
2.Fix a y" (column). ~=2nlHXIV)+2e] "nonzero" (~equiprobable)

entries [see next page]. Now, a random x" (row) will have
prob ~ 2n[H(X|Y)iZa] / 2n[H(X)+s] — 2n[I(X:Y)i38] to be nonzero.
Similarly for fix x" (row). So, LHS ~x 0/1 matrix with ~ equal
row & column sums. AEP[3] holds row/column-wise.

2n(H(Y)+e)
p(x"y") yn(1) yn() akayn) yn() yn(")
xN(1) xn(1)
xN(2) xN(2)
Xn(T) xn( ) /T
|
2n(H(X)+e)

basically uniform @ entry ~2-nHC)+H)+2e]



3rd lecture



Recall:
Def[typical sequence]-:
x" g-typical if [-1/n log(p(x")) - H(X)| < ¢
It means 2-"(HX)+) < p(xn) < 2-N(HX)-)

Def[Jointly typical sequence]:
x"y" g-jointly-typical if
(@) [-1/nlog(p(x")) - H(X)| <«
(b) [-1/nlog(p(y")) - H(Y)| <
(c) [-1/nlog(p(x"y")) - H(XY)| < ¢
where p(x"y") = IT;_;" p(X; Y;)-

[The strong typicality equivalence of (c) implies those of (a,b).]

Def[Jointly-typical set]: A, ., = {Xx"y" e-jointly typical}



Joint asymptotic equipartition (Joint AEP) theorem:

Let (X",Y") be sequences of length n
drawn iid according to p(x" y") = IT._;" p(X; V).
Then:
1.v3>0, 3 ngs.t. Vv.n>ny, Pr(X"Y" € A, ) >1-5
2. (1-8) 2n [HXY)-] < A, < 2 [H(XY)+e]

3. Let Wn,Z" be rv's (same sample space as X",Y") w/ dist"
q(x"y") = p(x") p(y").
i.e. g is a dist" that has the same marginal as p,
but outcomes x", y" are independent.
Then, Prq (Wn Zn e An,s) < 2-nlI(X:Y)-3e]
Also, for large n,
(1-5) 2-nLX:Y)+3e] < Pro (WM ZM e A, )



Joint asymptotic equipartition (Joint AEP) theorem:

Proof:
[1] Given ¢, §, we can apply AEP on X", Y", and (XY)".
thus, In, s.t. V n>n,,
the e-typical sets TX ., T, ., T,
all have prob > 1-8/3.
An,s = TXn,s ﬂ TYn,s ﬂ TXYn,a
An,sc — Tangc U TYn,sC U TXYn,sC

By the union bound,

Pr(X"Y" € A, ©) < Pr(X"Y" € TX, €) + Pr(XnY" € TX, ©)
+ Pr(XnYn e TX, ©) <8

Pr(X"Y" € A, . ) > 1-5.



Joint asymptotic equipartition (Joint AEP) theorem:

Proof:

[2] Using the same proof as in AEP, condition (c) implies
VXN e A, .,
(1_5) 2-n(H(XY)+s) < p(Xnyn) < 2-n(H(XY)-s)



Joint asymptotic equipartition (Joint AEP) theorem:

Proof:
[3] Let W, Z" be rv's (same sample space as X",Y") w/ dist"
q(x"y") = p(x") p(y").

lower bound on |A, .| lower bounds on p(x") and p(y")

' '
(1-8) 2nIHXY)-¢] 5 2-n[H(X)+e] 5 D-n[H(Y)+e] = D-nlI(X:Y)+38] <

Pro (X"y" e A, ) =
2N yne Ans P(XM)P(Y")

< 2NIH(XY)+e] ¢ D-n[H(X)-e] » D-n[H(Y)-e] = 2-n[I(X:Y)-3¢]

N

upper bound on [A | upper bounds on p(x") and p(y")



More observations:

Given y" € TY ., how many x" € TX, iss.t. x"y" € A . -

Call this set Sn

p(x"y™) = p(x"y") / p(y") ~ 2-nHXY)-HY)] = 2-nH(X]Y)]
T since x"y" € A, .,

1 = Yencs POXIYT) & |Syn| 27HOIV]
Hence, |S,n| ~ 2"XIY). Fraction of such x" ~ 2-M(X:Y)

Similarly, given x" € TX _, =~ 2"H{IX) yn's are jointly
typical with it, and the fraction of such y" s 27nIXEY),



p(xny"

Xn(l)
Xn(2)

xNn(,)
7

What's going on?

We're comparing 2 distributions, p and g, on x"y",
We can list x"'s along a column, y"'s along a row.
Can focus only on x"'s , y"'s typical wrt to the

common marginal dist"'s. Put p(x"y"),q(x"y")
in each box.

2n(H(Y)+e)
) yn() yn() aceyn) yn() yn()
Xn(l)
xN(2)
xn( )

2n(H(X)+e)



What's going on?

1.Mostly ~ 0's except for 2nHXY)+e] (~ equiprobable) entries.

2.Fix a y" (column). ~=2nlHXIV)+2e] "nonzero" (~equiprobable)
entries. A random entry (row) x"y" is nonzero with prob
~ 2nHXIN)E2e] /7 2nlHO+e] = 2nlIXY)£3:] Similarly for fix x" (row).
So, LHS «x 0/1 matrix with =~ equal row & column sums.

AEP[ 3] holds row/column-wise. Nn(H(Y)+e)
|
POy yn(1) . / yn() alxy") ynd) yn(")
5N(1) / (1)
xN(2) / »N(2)
v
Xn(T) xn( ) /T
|

2n(HX)+e) basically uniform @ entry ~2-nHX)+H(Y)+2¢]



Now ready for Shannon's noisy coding theorem.

input/output dims

d-i\do . Nix—y with
N u
X N sy prob p(y[X)

The rate R is called achievable if, V n,
in,, ¢, — 0, E,, D, encoder & decoder s.t.
maxy Pr(D,o E,(M) #M) < ¢, , M e {1,--- k=2"Rmp)},

E.(M) = Xy (labeled by M with length n) = [Xy; Xpo «+- Xy ]
D, takes y" to some W.

Channel capacity for N := sup over all achievable rates
= SUP, I(X:Y) = sup,,, I(X:N(X))



Proof structure:

1. Direct coding theorem:

a. Show V p(X), I(X:Y) is an achievable rate by

analyzing the prob of failure of a random code and
random message. That it vanishes = 3 at least one

code with vanishing average prob of error.

b. Choose a subset of better codewords that gives
vanishing worse case prob of error.

2. Converse: At any higher rate, prob of error - 0.



Need E_ ,D, with
prob error < ¢,

Part 1a. Let R=I(X:Y)-n (will find n).

* Fix any p(x).
* Write down A_ | for XY with pr(Y=y|[X=Xx) given by N.

* vV n (fixed from now on) let k=2"®R=n), (Will find n,,.)

E.: Pick k codewords (each Xxy; chosen iid ~ p(x)).
Call it ¢,. Fixed & known to Alice & Bob once choosen.

X1 = Xa1r X127 -0 Xy

_ Everything refers to this
X = Xo15 X324 -++y Xyp y J

particular code ¢, from
now on.

X
X
I

= Xi1r Xk2r =01 Xyn



Need E_ ,D, with
prob error < ¢,

Part 1a. Let R=I(X:Y)-n (will find n).
* Fix any p(x).

* Write down A_ | for XY with pr(Y=y[X=Xx) given by N.
* vV n (fixed from now on) let k=2"®R=n), (Will find n,,.)

E.: Pick k codewords (each Xxy; chosen iid ~ p(x)).
Call it ¢,. Fixed & known to Alice & Bob once choosen.

X1 = Xa1r X127 -0 Xy
Xy = Xoqr Xppy ovvy Xpp Say,M=2.

E.(2)=X,=X51 X5, «v X3y

N Lety" =vy, Yy, ... Yy, be received.
] priy"xv) = Ii-;" pry;[Xw)
Y




D, : typical set decoding

Given y", let Sn = {x" | x"y" € A, }.
If there is a unique x" € S,, output W s.t. E (W)=x".
Else, output W=k+1 (representing an error).

In what ways will this fail?
Either - no such x" Err,
- or IM'=M with E,(M")y" € A, Erry
Prob of error for a given message M for code (,:
(G,) = Pr(W=M|M¢,) = Pr(Erry Uy.m Erry IMG,)

Worse case prob of error: P.max (¢.) = maxy Ay (C,)
Ave (arithmetic) prob of error: P_2ve (¢,) = 1/Kk Xy Ay (C,)



Now, upper bound, for this n:
Pr. [ P (G,) ]

! S~
* just many iid wrt a particular ¢,
draws to X~p(x) but averaged over M.

Pr. [ 1/k 2y Ay (Gy) ] o
4 each M chosen similarly

thus A, independent of M
= Pr. Ay (G)

| = Pr. (W=1|M=1) = PrCn(Err0 Umr.q Erry |[M=1)
union
bdd ¢ < Pry (Errg|M=1) + (k-1) Pr; (Erry,;|[M=1)



Bounding PrCn (Errg|M=1) :

By joint AEP [1], Vv 6>0, 3 ny s.t. V. n>n,,

Pr(XnYn e A, ) >1-3
Given n, 38, ¢, for which Pr(X"Y" € A, . ) >1-5,.
[And §,,,&e, — 0.]

Here:
Xm=1 = Xq1 -+ Xy, drawn iid ~ p(x), and
Y" =VY1 .- Yo drawn ~ p(y|xy)
Thus, xyy; iid ~ p(xy) and Pr(xy-; y" € A, ) > 1-3,.
Pr. (Errg|M=1) <§,.

BACK 1 SLIDE.



for 1 M' o NEx)

Bounding PrCn (Erry.,|M=1) = PrCn (X y" € An,an) :

By joint AEP [3], V 6>0, 3 ny s.t. V. n>n,,

Wn,ZMN ~ q(x" y") = p(x") p(y").
(1-8) 2-n[I(X:Y)+38] < prq (ann c An 8) < 2'ﬂ[I(XZY)'38]

Given n, 3 §,,, ¢, for which
(1_8n) 2—n[I(X:Y)+3en] < prq (ann c An,en) < 2—n[I(X:Y)—38n]
[And &,,¢, — 0.]

Here:
Xmr = Xpmrp --» Xmn drawn independent of x; and

y' =y, ...y, iid~ p(y|Xy;), independent of x .

A
wn zn Thus, PI"Cn (ErrM'_—,z'_-llM:l) < 2-nlI(X:Y)-3en] |



Now, upper bound, for this n:
Pr. [ P2 (G,) ]

< Pr. (Errg|M=1) + (k-1) Pr. (Erry..;|M=1)

< 3§, + (k-1) 2-n[I(X:Y)-3en]
but k=2"R"1n), R=I(X:Y)-n
<o, + 2n[I(X:Y)-n-nuq] 2-n[I(X:Y)-3en]

< Sn 4+ 2n[-n-mp+3epn]

choose n = small constant

<5 4 2= cave n.= 3¢, .

Thus, 3 ¢, (En,D,) with P_22v¢ (¢C,) < gave,



Part 1b.

Worse case prob of error: P.max (¢.) = maxy Ay (C,)
Ave (arithmetic) prob of error: P2e (¢,) = 1/k Xy Ay (C,)

For the code ¢, obtained in 1a, order M in ascending order
of Av(C,). Keep the first half. Call this new code (',

replacing large half of
Peave (Cn) = 1/k ZM My (Cn) Ay (C,) by the median

> /KL Sy, o P (Ch) + S o g (G) ]

> 1/2 P ,max (C4).
Thus, ', has worse case error prob < ¢ 3¢/2 =: ¢, — 0.
[rate for ¢', = rate for ¢, - 1/n.]

Thus R=I(X:Y)-n achievable on ¢ ', for any n>0.

"Sup over R" gives capacity > max,, I(X:Y) .

p(x



Part 2: Converse [If P_.2¥¢—0, then achievable rate R < C.]

Lemma: Let YN = N@"(X™), and C be the capacity of N.
Then, I(X":Y") < nC.
Pf: I(X":Y") = H(Y") - H(Y"|X")
= H(Y") - 221" H(Y;|Y, ...Y,.1X") Chain rule
= H(Y") - 2" H(Y;[ X)) Y, only depends on X,
< i1" H(Y) - 22" H(Y X)) Subadditivity
< X" I(X:Y;) = nC.



Part 2: Converse [If P_.2¥¢—0, then achievable rate R < C.]

Lemma: Let YN = N@"(X™), and C be the capacity of N.
Then, I(X":Y") < nC.

Thm [Fanos ineq]:
H(P.) + P, log(]Q|-1) > H(X]Y)

H(MY)-H(Y")
Proof of converse: / -H(MY")+H(Y")+H(M)
nR = H(M) = H(M|Y") + I(M:Y") /

< H(M[Y") + I(E,(M):Y")  data processing ineq

< 1+P_nR + nC

\ \
Fanos ineq Lemma
M+ X
YN 'Y
2R ¢ |Q



Lecture 4 --

Obtaining classical information from quantum states
and quantum channels



Concepts and definitions
e Ensemble £ = {p,,, pmt

e Classical-Quantum state tyq = 2, P, [M)(M| ® pp,
e Holevo information for ensemble &

x(E) := S(Zm Pm Pm) = Zm Pm S(pm) = I(M:Q),
e Generalizes classical mutual information

Add additivity conjecture later.



Holevo bound (73)
For the classical-quantum state tyq = 2, P, |M)(M| ® ppy,
let @ measurement a be applied to Q, giving a classical

outcome in register Y. Then: I(M:Y) < I(M:Q). .

Proof: the measurement attaches Y originally in state |0).

—————————————————————————

measurement w

I(M:Q), = I(M:QY). 200 P38,39
p41, LO mono
> IM:QY) sy eroyony = LMY ) Goan sio)on)



Noisy quantum channel

Send m € M:
input/output dims An: Bn:
da 98 N:TCP  m=—{E — INon | D. —w
— N [—=— M n| : | . n W
e T AN BN
The rate R is called achievable if, V n, P'm  O'm

in,, ¢, — 0, E,, D, encoder & decoder s.t.
maxy Pr(D,o E,(m)=m) <¢(,, Me {1,---,k=2"Rmn)},

With rules still TBD:
E.(m)=p", (labeled by m & lives in A; ® ... ® A,)
Nen(pn,)=c", (livesin B; ® ... ® B,). D, takes ", to some W.

C(N) = classical capacity of N := sup over all achievable rates
lim, , 1/t max_ I(X:Bt). where
> Py [X){X] @ N®Y(pt) (can choose p, , pt,)

T



HSW Theorem:
C(N) = lim, , _ 1/t max_ I(X:B!). where
T = 2, Py XX @ N¥H(pty)

Will prove direct coding theorem for t=1. The achievability
of the above follows by "double-blocking" -- replacing N
with N®t ,



Part 1a. Let R=max_I(X:B)_- n (will find n).

_ Need E, ,D,, with
* Fix any p(x), py. [Then o,=N(p,).] prob error < ¢, .

* vV n (fixed from now on) let k=2"®R=n), (Will find n,,.)

E,: Pick k codewords teaeh>greResentea—pa97.

Each x", randomly drawn from

X1 = Xy1r X127 o201 Xyqp i
the strongly typical set T, .

X2 = X217 X227 +++s X

m={' ' An outcome of n iid draws of X,
' x", is "strongly typical" (or freq
Xk = Kiar Xkar =+or Xin typical) if each symbol a € O
m={' _, occurs roughly np(a) times in x".
e Px21| Px22 Pxan =P ' m=2
E.(m=2)|N| N N Let g = empirical dist" as in x".
Oy21 Ox22 Oxan|| Strongly typical if ||p-g||; <e,.
v v v =G m=2

Example -- 2 slides down



D,.: distinguishing 6", = oyn =0, . ® Gy ... Gy _

Recall each x", randomly drawn from the strongly
typical set T5 ..

How does o", look like?

Let Q = {ay, a,, ... }.
Fori=1,...,|Q|, ", has np(a;)+e, copies of _;in some

order that is known given m. Example -- 2 slides down

Q| is constant but n is asymptotically large.
Knowing m, for each i, can compress the np(a;)+en SYys
in state o, "(P@)+n)] to n(p(a;)+e,)S(o,) qubits.

on the specific X",
So, the entire ¢",, can be compressed to a "conditional typical

subspace” w/ < 2, n(p(a;)+e,)S(0,) < n [2; p(a;)S(c,)+n,] qubits,.

Note, this is due to strong typicality, and it holds vYm.



e.g.

Let Q = {1,2,3,4}, with p(a) = a/10.
Draw X ~ p(a) iid n=20 times.

Get the following outcome:
33344 21322 24343 42443

The empirical distribution:

q(l) = 1/20
q(2) = 5/20
q(3) = 7/20
q(4) = 7/20

|lp-q|l; = 0.2. So, our sequence is 0.2-strongly typical.



e.g.

Let Q = {1,2,3,4}, with p(a) = a/10.
Draw X ~ p(a) iid n=20 times.

Get the following outcome:
33344 21322 24343 42443

Now, we have
Oyn = O3 ® 03 ¥ 0300404 ®O; WO QO03K0, KO0,
® 05 ¥ 04 ® O3 Q04 W03 ®OyK 0, W0, KO0, 03

Tensor together the typical subspaces
for o5, n; = 7 on systems 1,2,3,8,13,15,20
for 4, N, = 7 on systems 4,5,12,14,16,18,19
for ,, n, = 5 on systems 6,9,10,11,17
for ¢,, n; = 1 on system 6

gives the conditional typical subspace for the above outcome.



We make a general statement (disregard how the state
arises & omitting m).

Lemma:

Let {c,} and p(x) be fixed.

«, ¢ Xidrawn iid, x" = X;---X, .

Let I[1,n = projection onto the conditional typical subspace.

Let o;n = 0,, ® 6y, ... ©

vn, Je. ,5, — 0s.t.: Proof ideas -- just follow the
e procedure outlined earlier &
1. Trlo.n ] > 1-6, control the |Q2] small terms.

N[, p(x)H(oy)+epn]
2. Tr[HXn] S 2 X X x/Ten / homework

3. Trlo.n I1] > 1-8,, if X" strongly typical, and I1 projector
onto typical subspace of =2, p(X)o,
4, [T o®" IT] < 27Nl T« from quantum
data compression



Back to direct coding for HSW: Want to find D, that
distinguishes ¢" , = o,n_ =06, ® 06, ... O

xMm Xm1 Xm2 Xmn

Lemma:

Let {c,} and p(x) be fixed.

Let oyn = 0,, ® 0y, ... 0, X; drawn iid, x" = X;---X, .

Let I[1,n = projection onto the conditional typical subspace.

VN, de,, 0, = S.t: These mean that a typical

1. Tr{o,n 0] > 1'5n‘7 message o,n received by
Bob occupies ~ nY, p(x)H(o,)

2. TrI1n] < 2NExPCOH(o)+en] qubit of space.

& they all
3. Tr[o,n I1] > 1-5,, if x" strongly typical -~ live in the

typical
Thus can have at most ~ 2nH(e)-2xp(x)H(ay)] space of o,
distinguishable messages. To achieve it, size 2nH(o)

need to "pack" the messages well :)



Def: Let S={{,} be a set of quantum states.
The distinguishability error of S is defined as:

Packing lemma: Notations as above. Let p(m) be a
distribution and ¢ = >, p(m) &,. Suppose 3 I, IT s.t.
(1) Tr(¢, 1) > 1-¢

(2) Tr(&,, 1) > 1-¢ Let X, ..., X, be iid ~ p(m).

(3) Tr(I1,,) < d, S' = {&) - (IS'[=k.)
(4) I ¢TI < I1/d, . k = [(dg/dy)y] for O<y<1.
Then,

E de(S') < 2[e+V(8¢)]+4y.
(E=expection)



Given: £ = X2_ p(m) ...
(1) Tr(&J1)>1-¢, (2) Tr(EI1,,)>1-¢, (3) Tr(I1,,)<d,, (4) IICII<I1/d, .

Xir oo X did ~ p(m), S' = {{}, k = [(do/dy)y] , O<y<1.
Claim: E de(S') < 2[e+V/(8¢)]+4y.

Proof: Let A, =TIT1, 11, Z = X._K A,
Take F, = 212 A, Z"V/? for the POVM elements (PGM).

Zi=1k Fi = 7-1/2 Zi=1k A 7-1/2 = 7-1/2 7 7-1/2 = Isupp(Z) < I.

Can add F,,,. = I-I 7 to complete the POVM.

de(S') < 1-1/k . Tr(gxiFi) = 1/k X Tr[gxi(I—Fi)]
Aside: useful operator ineq %o/r'this
I - (X4+Y) 12X (X+Y)1/2 < 2(I-X) + 4Y.
Write Z = Ay + 25, Ay -

j# i

[ - Z7V2 A ZY2 < 2(1-Ay) + 4 55,5 Ay



Given: £ = X2_ p(m) ...
(1) Tr(&J1)>1-¢, (2) Tr(EI1,,)>1-¢, (3) Tr(I1,,)<d,, (4) IICII<I1/d, .

Xir oo X did ~ p(m), S' = {{}, k = [(do/dy)y] , O<y<1.
Claim: E de(S') < 2[e+V/(8¢)]+4y.

Proof: Let A, =TIT1, 11, Z = X._K A,
Take F, = 212 A, Z°1/? for the POVM elements.
Sk F= 22 Y kA, ZV2 =727 702 =T o) < L
Can add F,,,. = I-I 7 to complete the POVM.
de(S") < 1-1/k 25 Tr(€ _F;) = 1/k X Tr[C (I-F))]
< 1/ TrlC  (2(1-Ayg)+4 2. Ay)]
Ede(S") < ETrC | (2(I-Ay)+4 2ios Ay)] symmetry

due to E
< 2[1-E Tr(Cxle1)]+4 2i>2 E Tr[cxlAXJ']



Given: £ = X2_ p(m) ...
(1) Tr(&J1)>1-¢, (2) Tr(EI1,,)>1-¢, (3) Tr(I1,,)<d,, (4) IICII<I1/d, .

Xy, .oy X iid ~ p(m), S' = .}, k = [(do/d,)y] , 0<y<1.

Claim: E de(S') < 2[e+V/(8¢)]+4y. A = IITIII
Proof:
E de(S") < 2 [1-ETr(C Ay)] +4 Xpp ETrIC Ayl
1st term 2nd term

For the 1st term:

Gentle measurement lemma [Winter]: Let 6>0, tr(c)<1, 0<YTYI.
If Tr(c YY) > 1-¢, then || YooYt - 6 ||, < V(8¢).

By (1) Tr(,, IT) > 1-¢g, thus || T ¢, IT - ¢, |1 < V(8e).
Thus, V O<P<I, | Tr[ P (1T IT - £.)] | < V(8¢).

Taking P=IT., - Tr[ IT TIC I1] + Tr[IT. ] | < V(8e).
- TriA&] < - Trl &1 + V(8e) < -14+&+V(8e) from (2)




Given: £ = X2_ p(m) ...

(1) Tr(&J1)>1-¢, (2) Tr(EI1,,)>1-¢, (3) Tr(I1,,)<d,, (4) IICII<I1/d, .
Xy o X did ~ p(m), S" = {¢}, kK = |(dy/d,)y| , O<y<L1.

Claim: E de(S") < 2[e+V/(8¢g)]+4y. A =TT

Proof:
E de(S") < 2 [1-ETr(C Ay)] +4 Xpp ETrIC Ayl

1st term 2nd term
For the 2nd term:

ETrlC Ayl = ETr[C ITIL; ]
= Tr[ (EC ,) ITI(EIL,) IT] j#l=independence
=Tr[ ¢ TI(ETL) IT]
= Tr[ TICT (E I1,)]
< Tr[ II/dy (E )] by (4)
= E Tr[ IT I, IT]/dy < d4/d,. by (3)




Given: £ = X2_ p(m) ...
(1) Tr(&J1)>1-¢, (2) Tr(EI1,,)>1-¢, (3) Tr(I1,,)<d,, (4) IICII<I1/d, .

Xy, .oy X iid ~ p(m), S' = .}, k = [(do/d,)y] , 0<y<1.

Claim: E de(S'") < 2[e+V(8¢)]+4y. Ay, =TT, T
Proof:
E de(S") < 2 [1-ETr(C Ay)] +4 Xpp ETrIC Ayl
1st term 2nd term

For the 1st term: - Tr[AC,] < -1+&e+V/(8¢)
For the 2nd term: E Tr[C Al < dy/d,.

E de(S') < 2 [e+V(8¢)] + 4 (k-1) d,/d,
<2 [e+V(8e)] + 4y




Back to direct coding for HSW: Want to find D, that
distinguishes 6", = o,n, = 0, ® G, _ ... Oy _

Take S = {{,,=c",} in the packing lemma.

We saw earlier: condition # in
vn,3e,, 5, — 0s.t.: packing lemma
"% (2)
1. Tr[GXn Hxn] > 1—6n /776 S :>>8
$Cé n
— (3
2. Tr[In] < 2naxPCOR(o*en] INLEP(H (o) +en] s C(|1)
3. Trlo,n I1] > 1-5, if X" strongly typical N :gl)
n
4. [IT o®" II] < 27ROl T] — (4)

2n[H(o)-en] — d

(1) Tr(C 1)>1-¢, (2) Tr(EI1,,)>1-¢, (3) Tr(I1,,)<d,, (4) ICII<I1/d, .



Back to direct coding for HSW: Want to find D, that
distinguishes ¢",, = oy,n_ =0,  , ® Oy, _ ... O

Xm1

Xm?2 Xmn

Take S = {{,,=c",} in the packing lemma.

By the packing lemma, take
k = ydg/dy= y 2nIB) - 2eq)
randomly drawn states, and
average distinguishability
error < 2 [5,+V(85,)] +\4 .

Take y = 2™, Then, 3 code
with average error — 0O

Rate deficit = n+2¢, — 0.
Remove worst half of the

codewords to make worse
case error — 0.

condition # in
packing lemma

—(2)
O, — €

— (3)
2n[EP(OH(ox)+en] —5 d

— (1)
O,— €
— (4)
2n[H(G)-8n] — dO

N T =2, P(X) | X)(X|®oy
I(X:B).=H(c)-2,p(x)H(s,)




Part 2: Converse [If P_.2¥¢—0, then achievable rate R < C.]

Lemma: Let Y" = N®"(X"), and C b
< nC. not for quantum channels
due to additivity issue

Thm [Fanos ineq]:
H(P.) + P, log(|Q]-1) > H(X]Y)

H(MY)-H(Y)

Proof of converse: / -H(MY)+H(Y)+H(M)

NR = H(M) = H(M[Y) + I(M:Y)
< H(M[Y) + I(E (M):Y) data processing ineg

/

< 1+P,nR + nC no need
\ \
Fanos ineq by Holevo's bound
M e X & definition of C(N).

2"R 5 |Q|



