Classical Information Theory:

Game: given a scale

and twelve coins, one of them is a counterfeit, so, it is lighter/heavily,

Find it with min # weighings.

Let's count.

One weighing gives 3 possible answers: LBR

How many possibilities are we distinguishing from?

Label the coins by 1, ..., 12. Answer looks like 5+, 11-, etc. So, 24 possibilites.

Classical Information Theory:

1 weighing: 3 outcomes

2 weighings: 3² outcomes

. .

n weighings: 3ⁿ outcomes

So, at least 3 weighings.

X: random variable e.g. biased coin toss Ω : sample space, say, $|\Omega|=m$ $\Omega=\{0,1\}$ p:prob distribution of X p(0)=1/3 p(1)=2/3 $x\mapsto prob(x)=p(x)$

iid (independent and identically drawn): Draw from X, say, n times. How many outcomes?

Qns: mⁿ

How much does it take to store/represent the outcomes? e.g. in the coin toss, there are 2ⁿ outcomes and we need n bits.

Will see, if we allow a slight risk of mistake, generally takes a lot less.

```
X: random variable
\Omega: sample space, say, |\Omega| = m
p:prob distribution of X
       p:\Omega \to [0,1]
          x \mapsto prob(x) = p(x)
Def [Shannon Entropy]:
H(X) or H(p) := -\sum_{x \in \Omega} p(x) \log p(x) [log base 2]
e.g.
For fair coin, H(X) = 1.
For biased coin defined before,
H(X) = -1/3 \log(1/3) - 2/3 \log(2/3)
       = [log3]-2/3 = 0.91830.
```

X: random variable Ω : sample space, say, $|\Omega| = m$ p:prob distribution of X $p:\Omega \to [0,1]$

Maris pointed out that this is false if $a \rightarrow p(a)$ is not injective, but in that case, convergence is even faster.

Asymptotic equipartition theorem (AEP)

 $x \mapsto prob(x) = p(x)$

n iid draws of X, outcome $x^n = x_1 x_2 \cdots x_n$ By independence, $p(x^n) = p(x_1) \dots p(x_n) = 2^{\sum_i \log p(x_i)}$ Let Y = log p(X), Y₁ Y₂ ... Y_n iid draws of Y (via X_i) \forall a, Prob[Y = log p(a)] = prob(X=a) = p(a) $1/n \sum_i \log p(x_i) = 1/n \sum_{i=1}^n Y_i$ $\rightarrow EY = \sum_a p(a) \log(p(a)) = -H(X)$ as $n \rightarrow \infty$ Thus $p(x^n) \rightarrow 2^{-nH(X)}$.

Def[typical sequence]:

```
x^n \epsilon-typical if |-1/n \log(p(x^n)) - H(X)| \le \epsilon
It means 2^{-n(H(X)+\epsilon)} \le p(x^n) \le 2^{-n(H(X)-\epsilon)}.
```

Def[typical set]:
$$T_{n,\epsilon} = \{x^n : x^n \epsilon \text{-typical}\}$$

Denote
$$\sum_{x^n \in T_{n,\epsilon}} p(x^n)$$
 by $p(T_{n,\epsilon})$

it means if n large enough, we can make $\epsilon, \, \delta$ as small as we want.

$$\forall \ \epsilon > 0, \ \forall \ \delta > 0, \ \exists \ n_0 \ \text{s.t.} \ \forall \ n \ge n_0$$

- 1. $p(T_{n,\epsilon}) \geq 1-\delta$
- 2. (1- δ) $2^{n(H(X)-\epsilon)} \leq |T_{n,\epsilon}| \leq 2^{n(H(X)+\epsilon)}$

Remarks:

- ε: allowed deviation from average to be called typical
 - δ : prob of non-typical

Interpretations:

"Typical xⁿ's are \approx equiprobable (by definition) taking up most of the prob (item 1: prob nontypical $\leq \delta$) exponentially few (item 2: $|T_{n,\epsilon}|/|\Omega^n| \sim 2^{-n(\log|\Omega|-H(X))}$)

$$\forall \ \varepsilon > 0, \ \forall \ \delta > 0, \ \exists \ n_0 \ \text{s.t.} \ \forall \ n \ge n_0$$

1.
$$p(T_{n,\epsilon}) \geq 1-\delta$$

2. (1-
$$\delta$$
) $2^{n(H(X)-\epsilon)} \leq |T_{n,\epsilon}| \leq 2^{n(H(X)+\epsilon)}$

Pf of item 1: just making AEP quantitative

Asymptotic equipartition theorem (AEP)

```
n iid draws of X, outcome x^n = x_1 x_2 \cdots x_n

By independence, p(x^n) = p(x_1) \dots p(x_n) = 2^{\sum_i \log p(x_i)}

Let Y = log p(X), Y<sub>1</sub> Y<sub>2</sub> ... Y<sub>n</sub> iid draws of Y

\forall a, Prob[Y = log p(a)] = prob(X=a) = p(a)

1/n \sum_i \log p(x_i) = 1/n \sum_{i=1}^n Y_i

\rightarrow EY = \sum_a p(a) \log(p(a)) = -H(X) as n \rightarrow \infty
```

$$\begin{array}{l} x^n \notin T_{n,\epsilon} \Leftrightarrow |1/n \; \sum_i^n Y_i \text{- EY}| \geq \epsilon \\ \text{Law of large $\#$: } \Pr(|1/n \; \sum_i^n Y_i \text{- EY}| \geq \epsilon) \leq (\text{Var Y/n } \epsilon^2) \\ \leq \delta \; \text{ if } n \geq n_0 = \text{Var Y / } (\epsilon^2 \; \delta) \end{array}$$

$$\forall \ \varepsilon > 0, \ \forall \ \delta > 0, \ \exists \ n_0 \ \text{s.t.} \ \forall \ n \ge n_0$$

1.
$$p(T_{n,\epsilon}) \geq 1-\delta$$

2. (1-
$$\delta$$
) $2^{n(H(X)-\epsilon)} \leq |T_{n,\epsilon}| \leq 2^{n(H(X)+\epsilon)}$

Pf of item 2:

$$\begin{aligned} 1 \geq & \geq 1\text{-}\delta \\ p(T_{n,\epsilon}) = \sum_{x^n \in T_{n,\epsilon}} p(x^n) \\ |T_{n,\epsilon}| & \max_{x^n \in T_{n,\epsilon}} p(x^n) \geq \\ & \times^{n \in T_{n,\epsilon}} \end{aligned} \\ & \geq |T_{n,\epsilon}| & \min_{x^n \in T_{n,\epsilon}} p(x^n) \\ & \times^{n \in T_{n,\epsilon}} \end{aligned}$$

$$\forall \ \varepsilon > 0, \ \forall \ \delta > 0, \ \exists \ n_0 \ \text{s.t.} \ \forall \ n \ge n_0$$

1.
$$p(T_{n,\epsilon}) \geq 1-\delta$$

2. (1-
$$\delta$$
) $2^{n(H(X)-\epsilon)} \leq |T_{n,\epsilon}| \leq 2^{n(H(X)+\epsilon)}$

Application [Data compression/Shannon's noiseless coding thm]

Idea: for iid X_1 , ..., X_n , represents only typical outcomes and ignore the rest. Succeeds w.p. $\geq 1-\delta$, and costs only $n(H(X)+\epsilon)$ bits.

Formally: for iid $X_1, ..., X_n$, $\forall R>H(X), \forall \delta>0, \exists n_0 \text{ s.t. } \forall n \geq n_0$ $\exists E_n, D_n \text{ s.t. } Pr_{x^n} [D_n \circ E_n (x^n) \neq x^n] \leq \delta$ (take $\epsilon = R-H(X), T_{n,\epsilon}$ in above.)

Converse: $\forall R < H(X)$, no reliable E_n, D_n (pf see N&C)

Note that data compression gives the Shannon entropy H(X) an OPERATIONAL meaning -- how much it takes to represent the data.

It also means how much uncertainty is in the data, or how much we learn by knowing it.

Will cover properties later.

Quantum analogue:

State: $\rho = \sum_{v} p(v) |e_{v}\rangle\langle e_{v}|$ (spectral decomposition)

von Neumann entropy: S(ρ) = H(p) = -tr (ρ log ρ)

Idea: $\rho \sim a$ classical rv V with distⁿ p *in its eigenbasis* $|e_v\rangle$.

Now, $\rho^{\otimes n}$ is like n iid draws of V.

Let $T_{n,\epsilon}$ be the typical set of v^n . Their corresponding eigenvectors $|e_{v^n}\rangle$ span typical subspace S with projector:

$$P_{n,\epsilon} = \sum_{v^n \in T_{n,\epsilon}} |e_{v^n}\rangle \langle e_{v^n}|$$

(1) dim $S \leq 2^{n[S(\rho)+\epsilon]}$ (2) $Tr(\rho^{\otimes n}P_{n,\epsilon}) = \sum_{v^n \in T_{n,\epsilon}} p(v^n) \geq 1-\delta$.

Def: Let X be a classical rv with distribution q(x). $E=\{q(x), |\psi_x\rangle\}$ is called an *ensemble of quantum states*.

Interpretation: with prob q(x), quantum state is $|\psi_x\rangle$. Formally, can think of the "CQ" state

$$\Sigma_{x} q(x) |x\rangle\langle x| \otimes |\psi_{x}\rangle\langle \psi_{x}|$$

Likewise, can define $E^{\otimes n}$ as ensemble of n states, each drawn iid according to E.

How much space does it take to store these n states if we allow some small error?

Ans: $2^{n[S(\rho)+\epsilon]}$ dimensions

where $\rho = \sum_x q(x) |\psi_x\rangle\langle\psi_x|$ is the average state of E Not $2^{n[H(q)+\epsilon]}$!!

Quantum data compression (Schumacher compression):

Let $E=\{q(x), |\psi_x\rangle\}$ be ensemble with average state ρ .

Then,
$$\forall \delta > 0$$
, $\exists n_0$ s.t. $\forall n \ge n_0$, $\exists E_n$, D_n s.t.

$$\sum_{x^n} \mathbf{q}(\mathbf{x}^n) \ \mathsf{F}(|\psi_{x^n}\rangle\langle\psi_{x^n}|, \ \mathsf{D}_n\circ\mathsf{E}_n \ (|\psi_{x^n}\rangle\langle\psi_{x^n}|)) \geq 1-\delta$$
 & E_n maps to a 2^{nR} dim space with $\mathsf{R}>\mathsf{S}(\rho)$.

ips to a 2^m dim space with R>S(ρ).

Fidelity Decoder & diff=ε encoder

Allowed average

error

Thus, von Neumann entropy of the average state represents the space needed for compression of iid source of quantum states.

Quantum data compression:

Let $E=\{q(x), |\psi_x\rangle\}$ be ensemble with average state ρ .

Then, $\forall \delta > 0$, $\exists n_0$ s.t. $\forall n \ge n_0$, $\exists E_n$, D_n s.t.

$$\sum_{x^n} \mathbf{q}(x^n) \ \mathsf{F}(|\psi_{x^n}\rangle\langle\psi_{x^n}|, \ \mathsf{D}_n \circ \mathsf{E}_n \ (|\psi_{x^n}\rangle\langle\psi_{x^n}|)) \ge 1-\delta$$

& E_n maps to a 2^{nR} dim space with $R>S(\rho)$. ($\epsilon=R-S(\rho)$)

Proof: Let
$$\rho = \sum_{v} p(v) |e_{v}\rangle\langle e_{v}|$$
, $P_{n,\epsilon} = \sum_{v} |e_{v}^{n}\rangle\langle e_{v}^{n}|$ $P_{n,\epsilon} = \sum_{v} |e_{v}^{n}\rangle\langle e_{v}^{n}|$

$$E_{n}(\sigma) = P_{n,\epsilon} \sigma P_{n,\epsilon} + Tr [(1-P_{n,\epsilon})\sigma(1-P_{n,\epsilon})] |f\rangle\langle f|$$

where $|f\rangle$ is an error (failure) symbol.

i.e. E_n encodes by projecting onto typical space of $\rho^{\otimes n}$

Each input
$$|\psi_{x^n}\rangle = P_{n,\epsilon} |\psi_{x^n}\rangle + (1-P_{n,\epsilon}) |\psi_{x^n}\rangle$$
 (trivial identity)

$$\begin{aligned} \text{Corr output} &= P_{n,\epsilon} \; |\psi_{x^n}\rangle \langle \psi_{x^n}| \; P_{n,\epsilon} \\ &+ \; \text{Tr}[(1\text{-}P_{n,\epsilon}) \; |\psi_{x^n}\rangle \langle \psi_{x^n}| \; (1\text{-}P_{n,\epsilon})] \; |f\rangle \langle f| \end{aligned}$$

Quantum data compression:

NB ϵ , δ are those of p13 for typical space of ρ

Let $E=\{q(x), |\psi_x\rangle\}$ be ensemble with average state ρ .

Then, $\forall \delta > 0$, $\exists n_0$ s.t. $\forall n \ge n_0$, $\exists E_n$, D_n s.t.

$$\sum_{x^n} q(x^n) F(|\psi_{x^n}\rangle\langle\psi_{x^n}|, D_n \circ E_n (|\psi_{x^n}\rangle\langle\psi_{x^n}|)) \ge 1-\delta$$

& E_n maps to a 2^{nR} dim space with $R>S(\rho)$. ($\epsilon=R-S(\rho)$)

$$\begin{aligned} \text{Corr output} &= P_{n,\epsilon} \; |\psi_{x^n}\rangle\langle\psi_{x^n}| \; P_{n,\epsilon} \\ &+ \; \text{Tr}[(1\text{-}P_{n,\epsilon}) \; |\psi_{x^n}\rangle\langle\psi_{x^n}| \; (1\text{-}P_{n,\epsilon})] \; |f\rangle\langle f| \end{aligned}$$

$$F(|\psi_{x^n}\rangle\langle\psi_{x^n}|, D_n\circ E_n (|\psi_{x^n}\rangle\langle\psi_{x^n}|)) = \langle\psi_{x^n}|P_{n,\epsilon}|\psi_{x^n}\rangle$$

$$\Sigma_{x^n} \mathbf{q}(\mathbf{x}^n) F(\dots) = \Sigma_{x^n} \mathbf{q}(\mathbf{x}^n)\langle\psi_{x^n}|P_{n,\epsilon}|\psi_{x^n}\rangle$$

$$\operatorname{cyclic}_{prop} = \Sigma_{x^n} \mathbf{q}(\mathbf{x}^n) \operatorname{Tr} \left[|\psi_{x^n}\rangle\langle\psi_{x^n}|P_{n,\epsilon} \right]$$

$$\operatorname{trace} = \operatorname{Tr} \left[\rho^{\otimes n} P_{n,\epsilon} \right] \geq 1-\delta \quad \text{by prop(2) p13}$$

Converse:

If $R < S(\rho)$, no E_n , D_n will succeed in the compression.

Proof (see N&C).

Let X,Y be two rv's, with distribution p(xy). H(XY) = H(p) as before (treat XY as a composite rv).

Let $q_y = p(X|Y=y)$ be the distribution of X given Y=y.

Def: Conditional entropy $H(X|Y) = \sum_{y} p(y) H(q_y)$.

i.e. it is the (average over y [entropy of X-given-y])

sensible definition

easy to remember consequence (not a definition) Fact: H(X|Y) = H(XY)-H(Y).

i.e. conditioning removes the uncertainty of the rv conditioned on from the joint uncertainty.

Proof: exercise.

Def [mutual information]:
$$I(X:Y) = H(X) - H(X|Y)$$
 \uparrow
 \uparrow

uncertainty of X before after conditioning on Y

i.e. it equals to the information about X contained in Y = decrease in uncertainty of X due to conditioning on Y.

Due to "fact":
$$I(X:Y) = H(X) + H(Y) - H(XY) = I(Y:X)$$

I(X:Y) is MUTUAL (information) between X & Y.

One prominent operational meaning of I(X:Y):

 $x \rightarrow y$ with prob p(y|x)

Goal: communicate as many equiprobable messages as possible per use of N, allowing many (n) uses.

The rate R is called achievable (for iid N) if,
$$\exists \delta_n, \epsilon_n \to 0$$
, s.t. $\forall n, \exists 2^{n(R-\delta_n)}$ codewords x^n_i [each labeled by i with length n] $[x_{1i} \ x_{2i} \ \dots \ x_{ni}]$ s.t. $\exists D_n$ with Prob $[D_n(N^{\otimes n}(x^n_i)) \neq i] \leq \epsilon_n$ prob of error decoder error vanishing with n

Channel capacity for N = supremum over all achievable rates

=
$$\sup_{p(x)} I(X:Y) = \sup_{p(x)} I(X:N(X))$$

Amazing ... # uses n disappear, we sup over one copy of X! Also, how on earth can we prove this?

Poll if we're to see a proof next time.

Properties of H(X), H(X|Y), I(X:Y):

- 1. $H(X) \leq \log |\Omega|$ [obvious]
- 2. $H(X|Y) \le H(X)$ [conditional reduces uncertainty] thus ? want prove
 - (a) $I(X:Y) \ge 0$
 - (b) $H(XY) \leq H(X) + H(Y)$ [subadditivity]
- 3. Let X_k be a rv for each k, with same Ω (diff distⁿ) H($\sum_k p(k) X_k$) $\geq \sum_k p_k H(X_k)$

average distⁿ obtained by first average drawing k, then draw from X_k entropy of X_k

i.e. entropy of the average \geq average entropy Why? LHS = H(X), RHS = H(X|K). Discarding info on K can only increase uncertainty.

Properties of H(X), H(X|Y), I(X:Y):

- 4. $H(Z) + H(XYZ) \le H(XZ) + H(YZ)$ strong subadditivity (add Z to each term in SA)
- 5. For p(x) and q(x) with $|| p q ||_{tr} \le \epsilon$, $|H(p) H(q)| \le \epsilon \log |\Omega| + H(\epsilon)$ i.e. H is asymptotically continuous with Lipschitz constant determined by $\log |\Omega|$. [Fannes inequality]
- 6. $I(A:BC) \le I(A:B) + H(C)$ The addition of a system cannot increase MI more than it's size. Proof: RHS - LHS = H(A)+H(B)-H(AB)+H(C)-H(A)-H(BC)+H(ABC) ≥ 0
 - = H(B)-H(AB)+H(C)-H(BC)+H(ABC) = H(B)+H(C)-H(BC) + H(ABC)-H(AB)

Now the quantum analogues:

Let A,B be two quantum systems, state ρ (on AB) $S(\rho)$ defined as before. $S(A) = S(tr_B\rho)$, $S(B) = S(tr_A\rho)$.

no quantum analogue

Let $q_y = p(X|Y-y)$ be the distribution of X given Y-y. no quantum analogue

Def: Conditional entropy $H(X|Y) = \sum_{y} p(y) H(q_y)$.

easy to remember consequence (not a definition)

Fact: H(X|Y) = H(XY)-H(Y).

This fact twisted to become a def.

Def: S(A|B) = S(AB)-S(B)

Quantum analogue:

Def [mutual information]:
$$I(X:Y) = H(X) - H(X|Y)$$
 \uparrow

uncertainty of X before after conditioning on Y

meanings don't hold anymore nonetheless tweak as quantum def

Def [quantum mutual information]:
$$S(A:B) = S(A) - S(A|B) = S(A) + S(B) - S(AB)$$
.

Do these quantities mean anthing anymore? Next time.

Unused materials.

Recall definitions, meansing, & properties of the following:

$$H(X)$$
 or $H(p) := -\sum_{x} p_{x} \log p_{x}$
 $H(X|Y) := \sum_{y} p_{y} H(X|Y=y) = H(XY)-H(Y)$
 $I(X:Y) := H(X) - H(X|Y) = H(X) + H(Y) - H(XY)$

Add one more, the relative entropy

(aka Kullback-Leibler divergence, information divergence):

$$H(p||q) := \sum_{x} p_{x} \log (p_{x}/q_{x})$$
 NB. $H(p||q) \neq H(q||p)$ in general

Then [proof as exercise]:

- 1. $H(X) = \log |\Omega| H(p||u)$ where $u = uniform dist^n$
- 2. $I(X:Y) := H(XY||X\otimes Y)$ or $H(w||p\otimes q)$

where w = distribution of xy, p and q are the marginals,

⊗ connects independent RV.

Second lecture

Recall definitions, meanings, & properties of the following:

$$\begin{array}{l} H(X) \text{ or } H(p) := -\sum_{x} p_{x} \log p_{x} \\ H(X|Y) := \sum_{y} p_{y} \ H(X|Y=y) = H(XY) - H(Y) \\ I(X:Y) := H(X) - H(X|Y) = H(X) + H(Y) - H(XY) \\ 1. \ H(X) \leq \log |\Omega| \\ 2. \ H(X|Y) \leq H(X) \\ \text{ thus } (a) \ I(X:Y) \geq 0 \\ (b) \ H(XY) \leq H(X) + H(Y) \\ 2.1 \ H(XY) = H(Y) + H(X|Y) \qquad Qn: \ H(XY|Z)^{?} = H(Y|Z) + H(X|YZ) \\ 2.2 \ (a) \ H(X|Y) \geq 0 \qquad \qquad Ans: \ Yes. \ Proof: \\ (b) \ H(XY) \geq H(Y) \qquad H(XY|Z) = H(XYZ) - H(Z) \\ 2.3 \ H(XY|Z) \qquad = H(Y|Z) + H(X|YZ). \end{array}$$

Recall definitions, meanings, & properties of the following:

- 3. Let X_k be a rv for each k, with same Ω (diff distⁿ) H($\sum_k p(k) X_k$) $\geq \sum_k p(k) H(X_k)$
- $4. \ H(Z) + H(XYZ) \leq H(XZ) + H(YZ)$
- 5. For p(x) and q(x) with $|| p q ||_{tr} \le \epsilon$, $|H(p) H(q)| \le \epsilon \log |\Omega| + H(\epsilon)$

6. Def: we write $X \rightarrow Y \rightarrow Z$ if p(x,y,z) = p(x) p(y|x) p(z|y)It is called a Markov Chain. e.g. Z = f(Y).

In general, p(x,y,z) = p(xy) p(z|xy) = p(x) p(y|x) p(z|xy)Thus Markov condition states that Z conditionally depends only on Y but not X.

Facts:

- (a) $X \rightarrow Y \rightarrow Z \Leftrightarrow p(x,z|y) = p(x|y) p(z|y)$ [from def]
- (b) $X \rightarrow Y \rightarrow Z \Leftrightarrow Z \rightarrow Y \rightarrow X$ [follows from (a)]
- (c) Data processing inequality:

If
$$X \rightarrow Y \rightarrow Z$$
, then $I(X:Y) \ge I(X:Z)$. [see Cover&Thomas]

(d) If
$$X \rightarrow Y \rightarrow Z$$
, then $I(X:Y|Z) \le I(X:Y)$. [p32-33]

7. We want to estimate rv X (sample space Ω), via another rv Y, from which we output Z. Let $P_e = Pr\{X \neq Z\}$.

Thm [Fanos ineq]:

$$H(P_e) + P_e \log(|\Omega|-1) \ge H(X|Y)$$

NB:

- If P_e small, so must H(X|Y). In fact, $P_e=0 \Rightarrow H(X|Y)=0$.
- $P_e \ge [H(X|Y)-1] / |\Omega|$, so, if H(X|Y) is large, so must P_e .

Proof: Define new rv E, E=0 if X=Z, 1 otherwise.

By property 2.3:
$$H(EX|Y) = H(X|Y) + H(E|XY)$$

 $H(EX|Y) = H(E|Y) + H(X|EY)$

So,
$$H(X|Y) = H(E|Y) + H(X|EY)$$

 $(2.2) \le H(E) + \sum_{y} p(y) [P_e H(X|E=1 Y=y) + (1-P_e) H(X|E=0 Y=y)]$
 $\le H(P_e) + P_e \log(|\Omega|-1)$

8. Jensen's inequality:

If f convex function [i.e. $f(py+(1-p)z) \le pf(y)+(1-p)f(z)$], & X rv, then, $f(E[X]) \le E[f(X)]$.

9. Let p(x), q(x) be 2 distributions on Ω .

Information divergence, Kullback Leibler divergence, or relative entropy between p and q:

$$D(p||q) = \sum_{x \in \Omega} p(x) \log[p(x)/q(x)].$$

Note: $D(p||q) \neq D(q||p)$ in general. These prove much of the earlier properties.

Simple facts:

- (a) $H(p) = log|\Omega| D(p||u)$ (u = uniform distⁿ on Ω)
- (b) I(X:Y) = D(p(xy)||p(x)p(y))

Thm: $D(p||q)\geq 0$, with "=" iff p=q. [Cover&Thomas p26]

Recall definitions, meanings, & properties of the following:

For $\rho = \sum_{v} p(v) |e_{v}\rangle\langle e_{v}|$ on sys A:

$$S(A)_{\rho}$$
 or $S(\rho) := - \operatorname{tr} \rho \log \rho = H(p)$

For ρ on sys AB:

$$S(A|B) := S(AB)-S(B)$$
 [no analogue to classical interpretation]

$$I(A:B) := S(A) - S(A|B) = S(A) + S(B) - S(AB)$$

Like classical analogue? Properties in the quantum setting:

1.
$$S(A) \leq log (dim A)$$

2.
$$S(AB) \le S(A) + S(B)$$
 [subadditivity]

= iff AB in product state.

Thus (a)
$$I(A:B) \ge 0$$

(b)
$$S(A|B) \leq S(A)$$

$$2.1 S(AB) = S(B) + S(A|B)$$

2.2 (a)
$$S(A|B) \ge 0$$
 or ≤ 0

N

(b)
$$S(AB) \ge or \le S(B)$$

$$2.3 S(AB|C) Y$$

= $S(B|C)+S(A|BC)$

classical rv's

still holds for e.g.
$$\rho_{AB} \propto \text{projector}$$
 classical rv's onto $|00\rangle + |11\rangle$

Properties in the quantum setting:

- 3. Let ρ_k be a state for each k (on the same system) S($\sum_k p(k) \rho_k$) $\geq \sum_k p_k S(\rho_k)$
- 4. Strong subadditivity $S(C) + S(ABC) \le S(AC) + S(BC)$
- 5. For ρ , $\sigma \in B(C^d)$, with $|| \rho \sigma ||_{tr} \le \epsilon$, $Y |S(\rho) S(\sigma)| \le \epsilon \log d + H(\epsilon)$ Fannes' Inequality '73
- 6. For ρ , $\sigma \in B(C^{dA} \otimes C^{dB})$, with $|| \rho \sigma ||_{tr} \le \epsilon$, NA $|S(B|A)_{\rho} S(B|A)_{\sigma}| \le \epsilon 4 \log d_B + 2 H(\epsilon)$ independent of d_{Δ} , Alicki-Fannes '04

Like classical analogue?

9. Let ρ , σ be d-dim quantum states.

Quantum relative entropy between ρ and σ :

$$S(\rho||\sigma) = Tr[\rho \log \rho] - Tr[\rho \log \sigma]$$

for all

Once again, $S(\rho||\sigma) \neq S(\sigma||\rho)$ in general.

Simple facts:

(a)
$$S(\rho) = \log d - S(\rho||I/d)$$

(b)
$$I(A:B) = S(\rho_{AB}||\rho_A \otimes \rho_B)$$

(c)
$$S(\rho||\sigma) = S(U\rho U^{\dagger}||U\sigma U^{\dagger})$$

Thm: Klein's inequality $S(\rho||\sigma)\geq 0$, with "=" iff $\rho=\sigma$.

Thm:
$$S(\rho||\sigma)$$
 jointly convex i.e. $S(\sum_i p_i \rho_i || \sum_i p_i \sigma_i) \leq \sum_i p_i S(\rho_i || \sigma_i)$

Proofs: see Nielsen & Chuang.

10. Lindblad-Ulhmann monotonicity For all TCP maps Λ , $S(\rho||\sigma) \geq S(\Lambda(\rho)||\Lambda(\sigma))$.

Proof: [outline only]

- (1) $\log (\eta \otimes \xi) = (\log \eta) \otimes I + I \otimes (\log \xi)$ Proof: elementary.
- (2) $S(\mu \otimes \xi \mid \mid \eta \otimes \xi) = S(\mu \mid \mid \eta)$ Proof: use (a), the rest elementary. Interpretation: attaching or removing an uncorrelated system does not afftect rel entropy.
- (3) \exists p_i , U_i s.t. \forall $d \times d$ matrix M, s.t. $R(M) := \sum_i p_i U_i M U_i^{\dagger} = (tr M) I/d$ for all M. $I \otimes R (M_{AB}) = (tr_B M_{AB}) \otimes I/d$

Proof: take $p_i = 1/d^2$, and $U_i = generalized Pauli's$.

10. Lindblad-Ulhmann monotonicity For all TCP maps Λ , $S(\rho||\sigma) \geq S(\Lambda(\rho)||\Lambda(\sigma))$.

(1)
$$\log (\eta \otimes \xi) = (\log \eta) \otimes I + I \otimes (\log \xi)$$

(2)
$$S(\mu \otimes \xi \mid \mid \eta \otimes \xi) = S(\mu \mid \mid \eta)$$

(3)
$$\exists p_i, U_i \text{ s.t. } I \otimes R (M_{AB}) = (tr_B M_{AB}) \otimes I/d_B$$

(4) $S(\rho_{AB}||\sigma_{AB}) \ge S(\rho_{A}||\sigma_{A})$ [i.e. for $\Lambda = tr_{B}$]

Proof: LHS

 $= \sum_{i} p_{i} S(I \otimes U_{i} \rho_{AB} I \otimes U_{i}^{\dagger} || I \otimes U_{i} \sigma_{AB} I \otimes U_{i}^{\dagger})$

 \geq S($I\otimes R(
ho_{AB})$ || $I\otimes R(\sigma_{AB})$) joint convexity

apply simple

fact (c) to

every term

$$\stackrel{(3)}{=} S(\rho_A \otimes I/d || \sigma_A \otimes I/d)$$

(2) = RHS

(5) any Λ consists of attaching $|0\rangle\langle 0|$, a unitary, and partial tracing.

11. Monotonicity of QMI under local operations

$$I(A:B)_{\rho_{AB}} \geq I(A:B)_{\Lambda \otimes I(\rho_{AB})}$$

Proof:
$$I(A:B)_{\rho_{AB}} = S(\rho_{AB}||\rho_A \otimes \rho_B)$$

$$\geq S(\Lambda \otimes I(\rho_{AB})||\Lambda(\rho_A) \otimes \rho_B)$$

$$= I(A:B)_{\Lambda \otimes I(\rho_{AB})}$$
property 10

NB same for I \otimes Λ and $\Lambda_{\mathsf{A}} \otimes \Lambda_{\mathsf{B}}$.

Coherent information:

$$I(A|B) = S(B) - S(AB) = -S(B|A)$$

$$I(A\rangle B)_{\rho_{AB}} \geq I(A\rangle B)_{\Lambda\otimes I(\rho_{AB})}$$

Proof: [worship in the Church of larger Hilbert space]

$$I(A \rangle B)_{\rho A B} - I(A \rangle B)_{\Lambda \otimes I(\rho_{AB})}$$

$$= [S(BE)-S(R)]_{|\psi_{in}\rangle}$$

$$- [S(B)-S(RE)]_{|\psi_{out}\rangle}$$

S(B) S(AB)

S(AB)

$$= [S(BE)-S(R)]_{|\psi_{out}\rangle}$$

$$- [S(B)-S(RE)]_{|\psi_{out}\rangle}$$
Stary on $-S(RE)$ $S(ARE)$

unitary on
$$=S(BE)-S(ABE)$$

BE, inv on R $-S(B)+S(AB) \ge 0$

Now study capacities.

- 1. classical capacity of classical channels
- 2. classical capacity of quantum channels
- 3. other capacities of quantum channels

Recall from last time ...

Back to classical information theory

One prominent operational meaning of I(X:Y):

Channel: $x \rightarrow y$ with prob p(y|x)

Goal: communicate as many equiprobable messages as possible per use of N, allowing many (n) uses.

The rate R is called achievable (for iid N) if,
$$\exists \ \delta_n, \epsilon_n \to 0$$
, s.t. $\forall \ n, \ \exists \ 2^{n(R-\delta_n)}$ codewords x^n_i [each labeled by i with length n] $[x_{1i} \ x_{2i} \ \dots \ x_{ni}]$ s.t. $\exists \ D_n$ with Prob $[\ D_n(N^{\otimes n}(x^n_i)) \neq i \] \leq \epsilon_n$ prob of error decoder error vanishing with n

Back to classical information theory

Channel capacity for N = supremum over all achievable rates

=
$$\sup_{p(x)} I(X:Y) = \sup_{p(x)} I(X:N(X))$$

Amazing ... # uses n disappear, we sup over one copy of X! Also, how on earth can we prove this?

- 1. Show that the above is an achievable rate by finding coding schemes that achieves it. This step is called "direct coding."
- 1'. This is not easy. Instead, analyze a code drawn at random, and show Prob(it works) > 0. This is called an existential proof.
- 2. Show one cannot beat the above rate -- this is called a "converse."

Recall:

Def[typical sequence]:

```
x^n \epsilon-typical if |-1/n \log(p(x^n)) - H(X)| \le \epsilon
It means 2^{-n(H(X)+\epsilon)} \le p(x^n) \le 2^{-n(H(X)-\epsilon)}.
```

Def[Jointly typical sequence]:

```
x^ny^n \epsilon-jointly-typical if
```

- (a) $|-1/n \log(p(x^n)) H(X)| \le \varepsilon$
- (b) $|-1/n \log(p(y^n)) H(Y)| \le \varepsilon$
- (c) $\left|-1/n \log(p(x^ny^n)) H(XY)\right| \le \varepsilon$

where $p(x^n y^n) = \prod_{i=1}^n p(x_i y_i)$.

[The strong typicality equivalence of (c) implies those of (a,b).]

Def[Jointly-typical set]: $A_{n,\epsilon} = \{x^n y^n \ \epsilon\text{-jointly typical}\}\$

Let (X^n, Y^n) be sequences of length n drawn iid according to $p(x^n y^n) = \prod_{i=1}^n p(x_i y_i)$.

Then:

- 1. $\forall \delta > 0$, $\exists n_0$ s.t. $\forall n \ge n_0$, $\Pr(X^nY^n \in A_{n,\epsilon}) > 1-\delta$
- 2. (1- δ) $2^{n [H(XY)-\epsilon]} \leq |A_{n,\epsilon}| \leq 2^{n [H(XY)+\epsilon]}$
- 3. Let W^n, Z^n be rv's (same sample space as X^n, Y^n) w/ distⁿ $q(x^n y^n) = p(x^n) p(y^n)$.
 - i.e. q is a distⁿ that has the same marginal as p, but xⁿ and yⁿ are independent.

Then,
$$Pr_q$$
 (Wⁿ Zⁿ $\in A_{n,\epsilon}$) $\leq 2^{-n[I(X:Y)-3\epsilon]}$

Also, for large n,

(1-
$$\delta$$
) $2^{-n[I(X:Y)+3\epsilon]} \leq Pr_q (W^n Z^n \in A_{n,\epsilon})$

Proof:

[1] Given ε , δ , we can apply AEP on Xⁿ, Yⁿ, and (XY)ⁿ.

thus, $\exists n_0 \text{ s.t. } \forall n \geq n_0$,

the ε -typical sets $T_{n,\varepsilon}^{X}$, $T_{n,\varepsilon}^{Y}$, $T_{n,\varepsilon}^{XY}$

all have prob $\geq 1-\delta/3$.

$$\begin{array}{l} A_{n,\epsilon} = T^X_{n,\epsilon} \cap T^Y_{n,\epsilon} \cap T^{XY}_{n,\epsilon} \\ A_{n,\epsilon}{}^c = T^X_{n,\epsilon}{}^c \cup T^Y_{n,\epsilon}{}^c \cup T^{XY}_{n,\epsilon}{}^c \end{array}$$

By the union bound,

$$\begin{aligned} \text{Pr}(\textbf{X}^{\textbf{n}}\textbf{Y}^{\textbf{n}} \in \textbf{A}_{\textbf{n},\epsilon}^{\textbf{c}}) &\leq \text{Pr}(\textbf{X}^{\textbf{n}}\textbf{Y}^{\textbf{n}} \in \textbf{T}_{\textbf{n},\epsilon}^{\textbf{x}}^{\textbf{c}}) + \text{Pr}(\textbf{X}^{\textbf{n}}\textbf{Y}^{\textbf{n}} \in \textbf{T}_{\textbf{n},\epsilon}^{\textbf{x}}^{\textbf{c}}) \\ &+ \text{Pr}(\textbf{X}^{\textbf{n}}\textbf{Y}^{\textbf{n}} \in \textbf{T}_{\textbf{n},\epsilon}^{\textbf{X}}^{\textbf{c}}) \leq \delta \end{aligned}$$

$$Pr(X^nY^n \in A_{n,\epsilon}) \geq 1-\delta.$$

Proof:

[2] Using the same proof as in AEP, condition (c) implies

$$\forall \ x^n y^n \in A_{n,\epsilon},$$

$$(1-\delta) \ 2^{-n(H(XY)+\epsilon)} \le p(x^n y^n) \le 2^{-n(H(XY)-\epsilon)}$$

Proof:

[3] Let Wⁿ,Zⁿ be rv's (same sample space as Xⁿ,Yⁿ) w/ distⁿ $q(x^n y^n) = p(x^n) p(y^n)$.

$$\leq 2^{n[H(XY)+\epsilon]} \times 2^{-n[H(X)-\epsilon]} \times 2^{-n[H(Y)-\epsilon]} = 2^{-n[I(X:Y)+3\epsilon]}$$

upper bound on $|A_{n,\epsilon}|$ upper bounds on $p(x^n)$ and $p(y^n)$

What's going on?

We're comparing 2 distributions, p and q, on x^ny^n . We can list x^n 's along a column, y^n 's along a row. For all purpose, only consider x^n 's and y^n 's typical wrt the common marginal distributions. Put $p(x^ny^n)$ & $q(x^ny^n)$ in each box.

What's going on?

- 1.Mostly \approx 0's except for $2^{n[H(XY)+\epsilon]}$ (\approx equiprobable) entries.
- 2.Fix a yⁿ (column). $\approx 2^{n[H(X|Y)\pm 2\epsilon]}$ "nonzero" (\approx equiprobable) entries [see next page]. Now, a random xⁿ (row) will have prob $\approx 2^{n[H(X|Y)\pm 2\epsilon]}$ / $2^{n[H(X)+\epsilon]} = 2^{n[I(X:Y)\pm 3\epsilon]}$ to be nonzero. Similarly for fix xⁿ (row). So, LHS $\approx \infty$ 0/1 matrix with \approx equal row & column sums. AEP[3] holds row/column-wise. $2^{n(H(Y)+\epsilon)}$

3rd lecture

Recall:

Def[typical sequence]:

```
x^n \epsilon-typical if |-1/n \log(p(x^n)) - H(X)| \le \epsilon
It means 2^{-n(H(X)+\epsilon)} \le p(x^n) \le 2^{-n(H(X)-\epsilon)}.
```

Def[Jointly typical sequence]:

```
x^ny^n \epsilon-jointly-typical if
```

- (a) $|-1/n \log(p(x^n)) H(X)| \le \varepsilon$
- (b) $|-1/n \log(p(y^n)) H(Y)| \le \varepsilon$
- (c) $\left|-1/n \log(p(x^ny^n)) H(XY)\right| \leq \varepsilon$

where $p(x^n y^n) = \prod_{i=1}^n p(x_i y_i)$.

[The strong typicality equivalence of (c) implies those of (a,b).]

Def[Jointly-typical set]: $A_{n,\epsilon} = \{x^n y^n \ \epsilon\text{-jointly typical}\}\$

Let (X^n, Y^n) be sequences of length n drawn iid according to $p(x^n y^n) = \prod_{i=1}^n p(x_i y_i)$.

Then:

- 1. $\forall \delta > 0$, $\exists n_0$ s.t. $\forall n \ge n_0$, $\Pr(X^nY^n \in A_{n,\epsilon}) > 1-\delta$
- 2. (1- δ) $2^{n [H(XY)-\epsilon]} \le |A_{n,\epsilon}| \le 2^{n [H(XY)+\epsilon]}$
- 3. Let W^n, Z^n be rv's (same sample space as X^n, Y^n) w/ distⁿ $q(x^n y^n) = p(x^n) p(y^n)$.
 - i.e. q is a distⁿ that has the same marginal as p, but outcomes xⁿ, yⁿ are independent.

Then,
$$\operatorname{Pr}_q (W^n Z^n \in A_{n,\epsilon}) \leq 2^{-n[I(X:Y)-3\epsilon]}$$

Also, for large n,

(1-
$$\delta$$
) $2^{-n[I(X:Y)+3\epsilon]} \leq Pr_q (W^n Z^n \in A_{n,\epsilon})$

Proof:

[1] Given ε , δ , we can apply AEP on Xⁿ, Yⁿ, and (XY)ⁿ.

thus, $\exists n_0 \text{ s.t. } \forall n \geq n_0$,

the ε -typical sets $T_{n,\varepsilon}^{X}$, $T_{n,\varepsilon}^{Y}$, $T_{n,\varepsilon}^{XY}$

all have prob $\geq 1-\delta/3$.

$$\begin{array}{l} A_{n,\epsilon} = T^{X}_{n,\epsilon} \cap T^{Y}_{n,\epsilon} \cap T^{XY}_{n,\epsilon} \\ A_{n,\epsilon}{}^{c} = T^{X}_{n,\epsilon}{}^{c} \cup T^{Y}_{n,\epsilon}{}^{c} \cup T^{XY}_{n,\epsilon}{}^{c} \end{array}$$

By the union bound,

$$\begin{aligned} \text{Pr}(\textbf{X}^{\textbf{n}}\textbf{Y}^{\textbf{n}} \in \textbf{A}_{\textbf{n},\epsilon}^{\textbf{c}}) &\leq \text{Pr}(\textbf{X}^{\textbf{n}}\textbf{Y}^{\textbf{n}} \in \textbf{T}_{\textbf{n},\epsilon}^{\textbf{x}}^{\textbf{c}}) + \text{Pr}(\textbf{X}^{\textbf{n}}\textbf{Y}^{\textbf{n}} \in \textbf{T}_{\textbf{n},\epsilon}^{\textbf{x}}^{\textbf{c}}) \\ &+ \text{Pr}(\textbf{X}^{\textbf{n}}\textbf{Y}^{\textbf{n}} \in \textbf{T}_{\textbf{n},\epsilon}^{\textbf{X}}^{\textbf{c}}) \leq \delta \end{aligned}$$

$$Pr(X^nY^n \in A_{n,\epsilon}) \geq 1-\delta.$$

Proof:

[2] Using the same proof as in AEP, condition (c) implies

$$\forall \ x^n y^n \in A_{n,\epsilon},$$

$$(1-\delta) \ 2^{-n(H(XY)+\epsilon)} \le p(x^n y^n) \le 2^{-n(H(XY)-\epsilon)}$$

Proof:

[3] Let Wⁿ,Zⁿ be rv's (same sample space as Xⁿ,Yⁿ) w/ distⁿ $q(x^n y^n) = p(x^n) p(y^n)$.

$$\leq 2^{n[H(XY)+\epsilon]} \times 2^{-n[H(X)-\epsilon]} \times 2^{-n[H(Y)-\epsilon]} = 2^{-n[I(X:Y)-3\epsilon]}$$

upper bound on $|A_{n,\epsilon}|$ upper bounds on $p(x^n)$ and $p(y^n)$

More observations:

Given $y^n\in T^Y_{n,\epsilon}$, how many $x^n\in T^X_{n,\epsilon}$ is s.t. $x^n\,y^n\in A_{n,\epsilon}$? Call this set S_{y^n} .

$$\begin{aligned} p(x^n|y^n) &= p(x^ny^n) \ / \ p(y^n) \approx 2^{-n[H(XY)-H(Y)]} = 2^{-n[H(X|Y)]} \\ &\uparrow \text{ since } x^ny^n \in A_{n,\epsilon} \text{,} \end{aligned}$$

$$1 = \sum_{x^n \in S} p(x^n | y^n) \approx |S_{y^n}| 2^{-n[H(X|Y)]}$$

Hence, $|S_{y}^{n}| \approx 2^{nH(X|Y)}$. Fraction of such $x^{n} \approx 2^{-nI(X:Y)}$.

Similarly, given $x^n \in T^X_{n,\epsilon}$, $\approx 2^{nH(Y|X)}$ y^n 's are jointly typical with it, and the fraction of such $y^n \approx 2^{-nI(X:Y)}$.

What's going on?

We're comparing 2 distributions, p and q, on x^ny^n . We can list x^n 's along a column, y^n 's along a row. Can focus only on x^n 's , y^n 's typical wrt to the common marginal distⁿ's. Put $p(x^ny^n), q(x^ny^n)$ in each box.

What's going on?

1.Mostly pprox 0's except for $2^{n[H(XY)+\epsilon]}$ (pprox equiprobable) entries.

2.Fix a yⁿ (column). $\approx 2^{n[H(X|Y)\pm 2\epsilon]}$ "nonzero" (\approx equiprobable) entries. A random entry (row) xⁿyⁿ is nonzero with prob $\approx 2^{n[H(X|Y)\pm 2\epsilon]} / 2^{n[H(X)+\epsilon]} = 2^{n[I(X:Y)\pm 3\epsilon]}$. Similarly for fix xⁿ (row). So, LHS \propto 0/1 matrix with \approx equal row & column sums. AEP[3] holds row/column-wise. $2^{n(H(Y)+\epsilon)}$

Now ready for Shannon's noisy coding theorem.

input/output dims

The rate R is called achievable if, \forall n,

 $\exists \eta_n$, $\zeta_n \rightarrow 0$, E_n , D_n encoder & decoder s.t.

$$\max_{M} Pr(D_n \circ E_n(M) \neq M) \leq \zeta_n$$
, $M \in \{1, \dots, k=2^{n(R-\eta_n)}\}$.

With rules still TBD: Note notation recycling.

 $E_n(M) = \hat{x_M}$ (labeled by M with length n) = $[x_{M1} x_{M2} ... x_{Mn}]$ D_n takes y^n to some W.

Channel capacity for $N := \sup_{p(x)} \operatorname{over} all$ achievable rates $= \sup_{p(x)} I(X:Y) = \sup_{p(x)} I(X:N(X))$

Proof structure:

- 1. Direct coding theorem:
- a. Show \forall p(X), I(X:Y) is an achievable rate by analyzing the prob of failure of a random code and random message. That it vanishes $\Rightarrow \exists$ at least one code with vanishing average prob of error.
- b. Choose a subset of better codewords that gives vanishing worse case prob of error.
- 2. Converse: At any higher rate, prob of error \rightarrow 0.

Part 1a. Let $R=I(X:Y)-\eta$ (will find η). Need E_n , D_n with prob error $\leq \zeta_n$

- * Fix any p(x).
- * Write down $A_{\epsilon,n}$ for XY with pr(Y=y|X=x) given by N.
- * \forall n (fixed from now on) let $k=2^{n(R-\eta_n)}$. (Will find η_n .)

 E_n : Pick k codewords (each x_{Mj} chosen iid $\sim p(x)$). Call it C_n . Fixed & known to Alice & Bob once choosen.

$$X_1 = X_{11}, X_{12}, ..., X_{1n}$$
 $X_2 = X_{21}, X_{22}, ..., X_{2n}$
 $X_{11}, X_{22}, ..., X_{2n}$
 $X_{21}, X_{22}, ..., X_{2n}$

Everything refers to this particular code C_n from now on.

Part 1a. Let $R=I(X:Y)-\eta$ (will find η). Need E_n , D_n with prob error $\leq \zeta_n$

- * Fix any p(x).
- * Write down $A_{\varepsilon,n}$ for XY with pr(Y=y|X=x) given by N.
- * \forall n (fixed from now on) let $k=2^{n(R-\eta_n)}$. (Will find η_n .)

 E_n : Pick k codewords (each x_{Mj} chosen iid $\sim p(x)$). Call it C_n . Fixed & known to Alice & Bob once choosen.

D_n: typical set decoding

Given y^n , let $S_{y^n} = \{x^n \mid x^n y^n \in A_{\epsilon,n}\}$. If there is a unique $x^n \in S_{y}$, output W s.t. $E_n(W) = x^n$. Else, output W = k+1 (representing an error).

In what ways will this fail?

- or $\exists M' \neq M$ with $E_n(M')y^n \in A_{\epsilon,n}$ Err_{M'}

Prob of error for a given message M for code C_n :

$$\lambda_{M}(C_{n}) = Pr(W \neq M | MC_{n}) = Pr(Err_{0} \bigcup_{M' \neq M} Err_{M'} | MC_{n})$$

Worse case prob of error: $P_e^{max}(C_n) = max_M \lambda_M(C_n)$

Ave (arithmetic) prob of error: $P_e^{\text{ave}}(C_n) = 1/k \sum_M \lambda_M(C_n)$

Now, upper bound, for this n:

$$\begin{array}{c} \Pr_{\mathcal{C}_{n}}\left[\begin{array}{ccc} P_{e}^{\text{ave}}\left(\mathcal{C}_{n}\right) \end{array}\right] \\ \uparrow \\ \text{* just many iid} & \text{wrt a particular } \mathcal{C}_{n} \\ \text{draws to } X{\sim}p(x) & \text{but averaged over M.} \end{array}$$

$$= \Pr_{\mathcal{C}_{n}}\left[\begin{array}{ccc} 1/k \sum_{M} \lambda_{M}\left(\mathcal{C}_{n}\right) \end{array}\right] \\ \text{each M chosen similarly thus } \lambda_{M} & \text{independent of M} \end{array}$$

$$= \Pr_{\mathcal{C}_{n}} \lambda_{1}\left(\mathcal{C}_{n}\right) \\ = \Pr_{\mathcal{C}_{n}}\left(W{\neq}1|M{=}1\right) = \Pr_{\mathcal{C}_{n}}\left(\text{Err}_{0} \bigcup_{M'\neq 1} \text{Err}_{M'} \mid M{=}1\right)$$

$$\text{union} \\ \text{bdd} \qquad \leq \Pr_{\mathcal{C}_{n}}\left(\text{Err}_{0} \mid M{=}1\right) + (k{-}1) \Pr_{\mathcal{C}_{n}}\left(\text{Err}_{M'\neq 1} \mid M{=}1\right) \end{array}$$

Bounding $Pr_{C_n}(Err_0|M=1)$:

By joint AEP [1],
$$\forall \ \delta {>} 0$$
, $\exists \ n_0 \ s.t. \ \forall \ n {\geq} n_0$,
$$Pr(X^nY^n \in A_{n,\epsilon}) > 1 {-} \delta$$
 Given $n, \ \exists \ \delta_n, \ \epsilon_n \ \text{for which } Pr(X^nY^n \in A_{n,\epsilon_n}) > 1 {-} \delta_n$. [And $\delta_n, \epsilon_n \to 0$.]

Here:

$$\begin{split} x_{M=1} &= x_{11} \, \dots \, x_{1n} \text{ drawn iid } \sim p(x), \text{ and} \\ y^n &= y_1 \, \dots \, y_n \quad \text{drawn } \sim p(y|x_{1i}) \\ \text{Thus, } x_{1i}y_i \text{ iid } \sim p(xy) \text{ and } \text{Pr}(x_{M=1} \, y^n \in A_{n,\epsilon_n}) > 1\text{-}\delta_n \, . \\ \text{Pr}_{\mathcal{C}_D}\left(\text{Err}_0 \middle| M=1\right) &\leq \delta_n \, . \end{split}$$

BACK 1 SLIDE.

By joint AEP [3],
$$\forall \delta > 0$$
, $\exists n_0$ s.t. $\forall n \ge n_0$,
$$W^n, Z^n \sim q(x^n \ y^n) = p(x^n) \ p(y^n).$$

$$(1-\delta) \ 2^{-n[I(X:Y)+3\epsilon]} \le Pr_q \ (W^n Z^n \in A_{n,\epsilon}) \le 2^{-n[I(X:Y)-3\epsilon]}$$
 Given n , $\exists \delta_n$, ϵ_n for which
$$(1-\delta_n) \ 2^{-n[I(X:Y)+3\epsilon_n]} \le Pr_q \ (W^n Z^n \in A_{n,\epsilon_n}) \le 2^{-n[I(X:Y)-3\epsilon_n]}$$
 [And δ_n , $\epsilon_n \to 0$.]

Here:

$$x_{M'}=x_{M'1}\dots x_{M'n}$$
 drawn independent of x_1 and $y^n=y_1\dots y_n$ iid $\sim p(y|x_{1i})$, independent of $x_{M'}$. y^n, Z^n Thus, $Pr_{\mathcal{C}_n}\left(Err_{M'\neq 1}|M=1\right) \leq 2^{-n[I(X:Y)-3\epsilon_n]}$.

Now, upper bound, for this n:

Thus, $\exists C_n (E_n, D_n)$ with $P_e^{ave}(C_n) \leq \zeta^{ave}_{n}$.

Part 1b.

Worse case prob of error: $P_e^{\text{max}}(C_n) = \max_M \lambda_M(C_n)$

Ave (arithmetic) prob of error: $P_e^{\text{ave}}(C_n) = 1/k \sum_M \lambda_M(C_n)$

For the code C_n obtained in 1a, order M in ascending order of $\lambda_M(C_n)$. Keep the first half. Call this new code C'_{n} .

$$P_e^{\text{ave}}(C_n) = 1/k \sum_M \lambda_M(C_n)$$
 replacing large half of $\lambda_M(C_n)$ by the median $\geq 1/k \left[\sum_{M \notin C_n} P_e^{\text{max}}(C'_n) + \sum_{M \in C'_n} \lambda_M(C_n) \right] \geq 1/2 P_e^{\text{max}}(C'_n).$

Thus, C'_n has worse case error prob $\leq \zeta_n^{\text{ave}}/2 =: \zeta_n \to 0$. [rate for C'_n = rate for $C_n - 1/n$.]

Thus $R=I(X:Y)-\eta$ achievable on C'_n for any $\eta>0$.

"Sup over R" gives capacity $\geq \max_{p(x)} I(X:Y)$.

Part 2: Converse [If $P_e^{ave} \rightarrow 0$, then achievable rate $R \leq C$.]

Lemma: Let $Y^n = N^{\otimes n}(X^n)$, and C be the capacity of N. Then, $I(X^n:Y^n) \leq nC$.

Pf:
$$I(X^n:Y^n) = H(Y^n) - H(Y^n|X^n)$$

 $= H(Y^n) - \sum_{i=1}^n H(Y_i|Y_1 \dots Y_{i-1}X^n)$ Chain rule
 $= H(Y^n) - \sum_{i=1}^n H(Y_i|X_i)$ Y_i only depends on X_i
 $\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i)$ Subadditivity
 $\leq \sum_{i=1}^n I(X_i:Y_i) = nC$.

Part 2: Converse [If $P_e^{ave} \rightarrow 0$, then achievable rate $R \leq C$.]

Lemma: Let $Y^n = N^{\otimes n}(X^n)$, and C be the capacity of N. Then, $I(X^n : Y^n) \le nC$.

Thm [Fanos ineq]:

$$H(P_e) + P_e \log(|\Omega|-1) \ge H(X|Y)$$

Proof of converse:
$$H(MY^n)-H(Y^n)$$

$$PR = H(M) = H(M|Y^n) + I(M:Y^n)$$

$$\leq H(M|Y^n) + I(E_n(M):Y^n) \quad \text{data processing ineq}$$

$$\leq 1+P_e \quad nR + nC$$

$$\uparrow \quad \uparrow$$

$$Fanos \quad ineq \quad Lemma$$

$$M \leftrightarrow X$$

$$Y^n \leftrightarrow Y$$

$$2^{nR} \leftrightarrow |\Omega|$$

Lecture 4 ---

Obtaining classical information from quantum states and quantum channels

Concepts and definitions

- Ensemble $\mathcal{E} = \{p_m, \rho_m\}$
- Classical-Quantum state $\tau_{MQ} = \sum_{m} p_{m} |m\rangle\langle m| \otimes \rho_{m}$
- Holevo information for ensemble £

$$\chi(E) := S(\sum_{m} p_{m} \rho_{m}) - \sum_{m} p_{m} S(\rho_{m}) = I(M:Q)_{\tau}$$

Generalizes classical mutual information

Add additivity conjecture later.

Holevo bound (73)

For the classical-quantum state $\tau_{MQ} = \sum_m p_m \mid m \rangle \langle m \mid \otimes \rho_m$, let a measurement $\mathcal M$ be applied to Q, giving a classical outcome in register Y. Then: $I(M:Y) \leq I(M:Q)_{\tau}$.

Proof: the measurement attaches Y originally in state $|0\rangle$.

$$\begin{split} I(\mathsf{M}:\mathsf{Q})_{\tau} &= I(\mathsf{M}:\mathsf{QY})_{\tau \otimes |0\rangle\langle 0|} \ \mathsf{p38,39} \\ & \mathsf{p41, LO mono} \\ &\geq I(\mathsf{M}:\mathsf{QY})_{(I \otimes \mathcal{M})(\tau \otimes |0\rangle\langle 0|)} \geq I(\mathsf{M}:\mathsf{Y})_{(I \otimes \mathcal{M})(\tau \otimes |0\rangle\langle 0|)} \end{split}$$

Noisy quantum channel

Send $m \in M$:

input/output dims

 A^n : B^n :

The rate R is called achievable if, \forall n,

 $\exists \eta_n$, $\zeta_n \to 0$, E_n , D_n encoder & decoder s.t.

$$max_M \ Pr(D_n \circ E_n(m) \neq m) \leq \zeta_n \ , \ M \in \{1, \cdots, k = 2^{n(R - \eta_n)}\}.$$

With rules still TBD:

 $E_n(m) = \rho^n_m$ (labeled by m & lives in $A_1 \otimes ... \otimes A_n$) $N^{\otimes n}(\rho^n_m) = \sigma^n_m$ (lives in $B_1 \otimes ... \otimes B_n$). D_n takes σ^n_m to some W.

C(N) = classical capacity of N := sup over all achievable rates $= <math>\lim_{t \to \infty} 1/t \max_{\tau} I(X:B^t)_{\tau}$ where $\tau = \sum_{x} p_{x} |x\rangle\langle x| \otimes N^{\otimes t}(\rho^t_{x})$ (can choose p_{x} , ρ^t_{x})

HSW Theorem:

$$C(N) = \lim_{t \to \infty} 1/t \max_{\tau} I(X:B^{t})_{\tau} \qquad \text{where}$$
$$\tau = \sum_{x} p_{x} |x\rangle\langle x| \otimes N^{\otimes t}(\rho^{t}_{x})$$

Will prove direct coding theorem for t=1. The achievability of the above follows by "double-blocking" -- replacing N with $N^{\otimes t}$.

Part 1a. Let $R=\max_{\tau} I(X:B)_{\tau} - \eta$ (will find η).

- * Fix any p(x), ρ_x . [Then $\sigma_x = N(\rho_x)$.] prob error $\leq \zeta_n$.
- Need E_n , D_n with
- * \forall n (fixed from now on) let $k=2^{n(R-\eta_n)}$. (Will find η_n .)

E_n : Pick k codewords (each x_{Mi} chosen iid $\sim p(x)$).

Each xⁿ_m randomly drawn from the strongly typical set Ts_{n.ɛn}

Let $q = empirical dist^n$ as in x^n . Strongly typical if $||p-q||_1 \le \varepsilon_n$.

Example -- 2 slides down

D_n : distinguishing $\sigma^n_m = \sigma_{x^n_m} = \sigma_{x_{m1}} \otimes \sigma_{x_{m2}} \dots \sigma_{x_{mn}}$

Recall each x_{m}^{n} randomly drawn from the strongly typical set $T_{n,\epsilon}^{s}$.

How does σ^{n}_{m} look like?

Let $\Omega = \{a_1, a_2, ... \}$.

For $i = 1,..., |\Omega|$, σ_m^n has $np(a_i) \pm \varepsilon_n$ copies of σ_{ai} in some order that is known given m. Example -- 2 slides down

 $|\Omega|$ is constant but n is asymptotically large. Knowing m, for each i, can compress the np(a_i)±ε_n sys [in state $\sigma_{ai}^{n(p(a_i)\pm\epsilon_n)}$] to n(p(a_i)±ε_n)S(σ_{ai}) qubits.

So, the entire σ^n_m can be compressed to a "conditional typical subspace" w/ $\leq \sum_i n(p(a_i) \pm \epsilon_n) S(\sigma_{ai}) \leq n \left[\sum_i p(a_i) S(\sigma_{ai}) + \eta_n \right]$ qubits.

Note, this is due to strong typicality, and it holds ∀m.

e.g.

Let
$$\Omega = \{1,2,3,4\}$$
, with $p(a) = a/10$.
Draw $X \sim p(a)$ iid $n=20$ times.

Get the following outcome:

The empirical distribution:

$$q(1) = 1/20$$

$$q(2) = 5/20$$

$$q(3) = 7/20$$

$$q(4) = 7/20$$

 $||p-q||_1 = 0.2$. So, our sequence is 0.2-strongly typical.

e.g.

Let
$$\Omega = \{1,2,3,4\}$$
, with p(a) = a/10.
Draw X ~ p(a) iid n=20 times.

Get the following outcome:

3 3 3 4 4 2 1 3 2 2 2 4 3 4 3 4 2 4 4 3

Now, we have

$$\sigma_{x^{n}} = \sigma_{3} \otimes \sigma_{3} \otimes \sigma_{3} \otimes \sigma_{4} \otimes \sigma_{4} \otimes \sigma_{2} \otimes \sigma_{1} \otimes \sigma_{3} \otimes \sigma_{2} \otimes \sigma_{2} \otimes \sigma_{2} \otimes \sigma_{3} \otimes \sigma_{4} \otimes \sigma_{3} \otimes \sigma_{4} \otimes \sigma_{3} \otimes \sigma_{4} \otimes \sigma_{4} \otimes \sigma_{2} \otimes \sigma_{4} \otimes \sigma_{4} \otimes \sigma_{3} \otimes \sigma_{4} \otimes \sigma_{3} \otimes \sigma_{4} \otimes \sigma_{4} \otimes \sigma_{5} \otimes \sigma_{4} \otimes \sigma_{5} \otimes$$

Tensor together the typical subspaces

for σ_3 , $n_3 = 7$ on systems 1,2,3,8,13,15,20 for σ_4 , $n_4 = 7$ on systems 4,5,12,14,16,18,19 for σ_2 , $n_2 = 5$ on systems 6,9,10,11,17 for σ_1 , $n_1 = 1$ on system 6

gives the conditional typical subspace for the above outcome.

We make a general statement (disregard how the state arises & omitting m).

Lemma:

Let $\{\sigma_x\}$ and p(x) be fixed.

Let $\sigma_{x^n}=\sigma_{x_1}\otimes\sigma_{x_2}\dots\sigma_{x_n}$, x_i drawn iid, $x^n=x_1\cdots x_n$. Let $\Pi_{x^n}=$ projection onto the conditional typical subspace.

$$\forall~n,~\exists~\epsilon_n~,~\delta_n\rightarrow 0~\text{s.t.:}$$

1. $Tr[\sigma_{x^n} \Pi_{x^n}] \ge 1-\delta_n$

Proof ideas -- just follow the procedure outlined earlier & control the $|\Omega|$ small terms.

2.
$$Tr[\Pi_{x^n}] \leq 2^{n[\sum_{x} p(x)H(\sigma_x) + \epsilon_n]}$$
 homework

- 3. $\text{Tr}[\sigma_{x^n} \Pi] \geq 1-\delta_n$ if x^n strongly typical, and Π projector onto typical subspace of $\sigma = \sum_x p(x)\sigma_x$
- 4. $[\Pi \sigma^{\otimes n} \Pi] \le 2^{-n[H(\sigma)-\epsilon_n]} \Pi$ from quantum data compression

Back to direct coding for HSW: Want to find D_n that distinguishes $\sigma^n_m = \sigma_{x^n_m} = \sigma_{x_{m1}} \otimes \sigma_{x_{m2}} \dots \sigma_{x_{mn}}$

Lemma:

Let $\{\sigma_x\}$ and p(x) be fixed.

Let $\sigma_{x^n}=\sigma_{x_1}\otimes\sigma_{x_2}\dots\sigma_{x_n}$, x_i drawn iid, $x^n=x_1\cdots x_n$. Let $\Pi_{x^n}=$ projection onto the conditional typical subspace.

$$\forall$$
 n, \exists ϵ_n , $\delta_n \rightarrow$ s.t.:

1.
$$Tr[\sigma_{x^n} \Pi_{x^n}] \ge 1-\delta_n$$

2.
$$Tr[\Pi_{x^n}] \le 2^{n[\Sigma_x p(x)H(\sigma_x) + \epsilon_n]}$$
 qubit of space.

These mean that a typical message σ_{x^n} received by Bob occupies $\approx n\sum_x p(x)H(\sigma_x)$ qubit of space.

3. $\text{Tr}[\sigma_{x^n} \Pi] \ge 1 - \delta_n$ if x^n strongly typical

Thus can have at most $\approx 2^{n[H(\sigma)-\sum_{x}p(x)H(\sigma_{x})]}$ distinguishable messages. To achieve it, need to "pack" the messages well :)

& they all live in the typical space of σ , size $2^{nH(\sigma)}$

<u>Def:</u> Let $S = \{\zeta_m\}$ be a set of quantum states.

The distinguishability error of S is defined as:

$$de(S) = 1 - max_{\{F_m\} POVM} 1/|S| \sum_m Tr(F_m \zeta_m)$$

<u>Packing lemma:</u> Notations as above. Let p(m) be a distribution and $\zeta = \sum_{p} p(m) \zeta_{m}$. Suppose $\exists \Pi_{m}$, Π s.t.

(1)
$$Tr(\zeta_m \Pi) \geq 1-\epsilon$$

(2)
$$Tr(\zeta_m \Pi_m) \geq 1-\epsilon$$

(3) Tr(
$$\Pi_{\rm m}$$
) $\leq d_1$

(4)
$$\Pi \zeta \Pi \leq \Pi/d_0$$
.

Let
$$X_1, ..., X_n$$
 be iid $\sim p(m)$.

$$S' = \{\zeta_{xi}\} \cdot (|S'| = k.)$$

$$k = \lfloor (d_0/d_1)\gamma \rfloor$$
 for $0 < \gamma < 1$.

Then,

E de(S')
$$\leq 2[\varepsilon + \sqrt{(8\varepsilon)}] + 4\gamma$$
.

(1)
$$\text{Tr}(\zeta_m\Pi) \ge 1 - \epsilon$$
, (2) $\text{Tr}(\zeta_m\Pi_m) \ge 1 - \epsilon$, (3) $\text{Tr}(\Pi_m) \le d_1$, (4) $\Pi \zeta \Pi \le \Pi/d_0$.

$$X_1, ..., X_k \text{ iid } \sim p(m), S' = \{\zeta_{xi}\}, k = \lfloor (d_0/d_1)\gamma \rfloor, 0 < \gamma < 1.$$

Claim: E de(S') $\leq 2[\varepsilon + \sqrt{(8\varepsilon)}] + 4\gamma$.

Proof: Let $\Lambda_{\rm m}=\Pi$ $\Pi_{\rm m}$ Π , $Z=\sum_{\rm i=1}^{\rm k}\Lambda_{\rm xi}$ Take $F_{\rm i}=Z^{-1/2}$ $\Lambda_{\rm xi}$ $Z^{-1/2}$ for the POVM elements (PGM).

$$\sum_{i=1}^k F_i = Z^{\text{-1/2}} \sum_{i=1}^k \Lambda_{xi} \ Z^{\text{-1/2}} = Z^{\text{-1/2}} \ Z \ Z^{\text{-1/2}} = I_{\text{supp}(Z)} \leq I$$
 .

for this

Can add $F_{err} = I - I_{supp(Z)}$ to complete the POVM.

$$de(S') \leq 1-1/k \sum_{i} Tr(\zeta_{xi}F_{i}) = 1/k \sum_{i} Tr[\zeta_{xi}(I-F_{i})]$$

Aside: useful operator ineq

I -
$$(X+Y)^{-1/2} X (X+Y)^{-1/2} \le 2(I-X) + 4Y$$
.

Write Z =
$$\Lambda_{xi}$$
 + $\sum_{j \neq i} \Lambda_{xj}$.
I - Z^{-1/2} Λ_{xi} Z^{-1/2} \leq 2(I- Λ_{xi}) + 4 $\sum_{j \neq i} \Lambda_{xj}$

(1) $Tr(\zeta_m\Pi) \ge 1-\epsilon$, (2) $Tr(\zeta_m\Pi_m) \ge 1-\epsilon$, (3) $Tr(\Pi_m) \le d_1$, (4) $\Pi \zeta \Pi \le \Pi/d_0$.

 $X_1, ..., X_k \text{ iid } \sim p(m), S' = \{\zeta_{xi}\}, k = \lfloor (d_0/d_1)\gamma \rfloor, 0 < \gamma < 1.$

Claim: E de(S') $\leq 2[\varepsilon + \sqrt{(8\varepsilon)}] + 4\gamma$.

Proof: Let $\Lambda_{m} = \Pi \Pi_{m} \Pi$, $Z = \sum_{i=1}^{k} \Lambda_{xi}$ Take $F_i = Z^{-1/2} \Lambda_{xi} Z^{-1/2}$ for the POVM elements. $\sum_{i=1}^{k} F_i = Z^{-1/2} \sum_{i=1}^{k} \Lambda_{xi} Z^{-1/2} = Z^{-1/2} Z Z^{-1/2} = I_{supp(Z)} \leq I$. Can add $F_{err} = I - I_{supp(Z)}$ to complete the POVM. $de(S') \leq 1-1/k \sum_{i} Tr(\zeta_{\downarrow i}F_{i}) = 1/k \sum_{i} Tr[\zeta_{\downarrow i}(I-F_{i})]$ $\leq 1/k \sum_{i} Tr[\zeta_{xi} (2(I-\Lambda_{xi})+4 \sum_{j \neq i} \Lambda_{xj})]$ $\mathsf{E} \ \mathsf{de}(\mathsf{S'}) \leq \mathsf{E} \ \mathsf{Tr}[\zeta_{\mathsf{x}1} \ (2(\mathsf{I}-\Lambda_{\mathsf{x}1})+4 \ \Sigma_{\mathsf{j}\geq 2} \ \Lambda_{\mathsf{x}\mathsf{j}})] \quad \mathsf{symmetry} \quad \mathsf{due} \ \mathsf{to} \ \mathsf{E}$

 \leq 2 [1-E Tr($\zeta_{\downarrow 1}\Lambda_{\chi 1}$)]+4 $\Sigma_{i\geq 2}$ E Tr[$\zeta_{\downarrow 1}\Lambda_{\chi i}$]

(1)
$$Tr(\zeta_m\Pi) \ge 1-\epsilon$$
, (2) $Tr(\zeta_m\Pi_m) \ge 1-\epsilon$, (3) $Tr(\Pi_m) \le d_1$, (4) $\Pi \zeta \Pi \le \Pi/d_0$.

$$X_1, ..., X_k \text{ iid } \sim p(m), S' = \{\zeta_{xi}\}, k = \lfloor (d_0/d_1)\gamma \rfloor, 0 < \gamma < 1.$$

Claim: E de(S')
$$\leq 2[\varepsilon + \sqrt{(8\varepsilon)}] + 4\gamma$$
.

$$\Lambda_{\rm m} = \Pi \Pi_{\rm m} \Pi$$

Proof:

For the 1st term:

Gentle measurement lemma [Winter]: Let $\sigma \ge 0$, $tr(\sigma) \le 1$, $0 \le Y^{\dagger}Y \le I$. If $Tr(\sigma Y^{\dagger}Y) \ge 1-\epsilon$, then $||Y\sigma Y^{\dagger} - \sigma||_1 \le \sqrt{(8\epsilon)}$.

By (1) Tr(
$$\zeta_{\rm m}$$
 Π) \geq 1- ϵ , thus $||\Pi \zeta_{\rm m} \Pi - \zeta_{\rm m}||_1 \leq \sqrt{(8\epsilon)}$.

Thus,
$$\forall \ 0 \leq P \leq I$$
, $| \text{Tr}[P (\Pi \zeta_m \Pi - \zeta_m)] | \leq \sqrt{(8\epsilon)}$.

Taking
$$P=\Pi_m$$
, - $Tr[\Pi_m\Pi\zeta_m\Pi] + Tr[\Pi_m\zeta_m] \mid \leq \sqrt{(8\epsilon)}$.

-
$$\text{Tr}[\Lambda_{m}\zeta_{m}] \leq -\text{Tr}[\Pi_{m}\zeta_{m}] + \sqrt{(8\epsilon)} \leq -1 + \epsilon + \sqrt{(8\epsilon)}$$
 from (2)

(1)
$$\text{Tr}(\zeta_m\Pi) \ge 1 - \epsilon$$
, (2) $\text{Tr}(\zeta_m\Pi_m) \ge 1 - \epsilon$, (3) $\text{Tr}(\Pi_m) \le d_1$, (4) $\Pi \zeta \Pi \le \Pi/d_0$.

$$X_1, ..., X_k \text{ iid } \sim p(m), S' = \{\zeta_{xi}\}, k = \lfloor (d_0/d_1)\gamma \rfloor, 0 < \gamma < 1.$$

Claim: E de(S')
$$\leq 2[\varepsilon + \sqrt{(8\varepsilon)}] + 4\gamma$$
.

$$\Lambda_{\rm m} = \Pi \Pi_{\rm m} \Pi$$

Proof:

For the 2nd term:

$$\begin{split} \mathsf{E} \, \mathsf{Tr}[\zeta_{\mathsf{x}1} \Lambda_{\mathsf{x}j}] &= \mathsf{E} \, \mathsf{Tr}[\zeta_{\mathsf{x}1} \Pi \, \Pi_{\mathsf{x}j} \, \Pi] \\ &= \mathsf{Tr}[\, \left(\mathsf{E} \zeta_{\mathsf{x}1} \right) \, \Pi \, \left(\mathsf{E} \, \Pi_{\mathsf{x}j} \right) \, \Pi] \quad \mathsf{j} \neq 1 \Rightarrow \mathsf{independence} \\ &= \mathsf{Tr}[\quad \zeta \quad \Pi \, \left(\mathsf{E} \, \Pi_{\mathsf{x}j} \right) \, \Pi] \\ &= \mathsf{Tr}[\quad \Pi \zeta \Pi \quad \left(\mathsf{E} \, \Pi_{\mathsf{x}j} \right)] \\ &\leq \mathsf{Tr}[\quad \Pi / \mathsf{d}_0 \quad \left(\mathsf{E} \, \Pi_{\mathsf{x}j} \right)] \qquad \qquad \mathsf{by} \, (4) \\ &= \mathsf{E} \, \mathsf{Tr}[\quad \Pi \, \Pi_{\mathsf{x}i} \, \Pi] / \mathsf{d}_0 \leq \mathsf{d}_1 / \mathsf{d}_0. \qquad \mathsf{by} \, (3) \end{split}$$

(1)
$$Tr(\zeta_m\Pi) \ge 1-\epsilon$$
, (2) $Tr(\zeta_m\Pi_m) \ge 1-\epsilon$, (3) $Tr(\Pi_m) \le d_1$, (4) $\Pi \zeta \Pi \le \Pi/d_0$.

$$X_1, ..., X_k \text{ iid } \sim p(m), S' = \{\zeta_{xi}\}, k = \lfloor (d_0/d_1)\gamma \rfloor, 0 < \gamma < 1.$$

Claim: E de(S')
$$\leq 2[\epsilon + \sqrt{(8\epsilon)}] + 4\gamma$$
.

$$\Lambda_{\rm m} = \Pi \Pi_{\rm m} \Pi$$

Proof:

For the 1st term: -
$$Tr[\Lambda_m \zeta_m] \leq -1 + \varepsilon + \sqrt{(8\varepsilon)}$$

For the 2nd term:
$$\operatorname{ETr}[\zeta_{x_1}\Lambda_{x_j}] \leq d_1/d_0$$
.

E de(S')
$$\leq$$
 2 [ε+ $\sqrt{(8ε)}$] + 4 (k-1) d₁/d₀
 \leq 2 [ε+ $\sqrt{(8ε)}$] + 4 γ

Back to direct coding for HSW: Want to find D_n that distinguishes $\sigma_{m}^{n} = \sigma_{x_{m_{1}}}^{n} = \sigma_{x_{m_{1}}} \otimes \sigma_{x_{m_{2}}} \dots \sigma_{x_{m_{n}}}^{n}$

Take $S = \{\zeta_m = \sigma^n_m\}$ in the packing lemma.

We saw earlier:

 $\forall~n,~\exists~\epsilon_n$, $\delta_n \rightarrow 0$ s.t.:

$$\forall$$
 II, $\exists \ \varepsilon_{n}$, $\sigma_{n} \rightarrow 0$ S.L.

1.
$$\text{Tr}[\sigma_{x^n} \Pi_{x^n}] \geq 1 - \delta_n$$

2.
$$Tr[\Pi_{x^n}] \leq 2^{n[\sum_X p(x)H(\sigma_X) + \epsilon_n]}$$

3.
$$\text{Tr}[\sigma_{x^n} \Pi] \geq 1 - \delta_n$$
 if x^n strongly typical $\delta_n \to \epsilon$

4.
$$[\Pi \ \sigma^{\otimes n} \ \Pi] \leq 2^{-n[H(\sigma) - \epsilon_n]} \ \Pi$$

condition # in packing lemma

$$\delta_{\rm p} \rightarrow \epsilon$$

al
$$\delta_n o \epsilon$$

(1)
$$\text{Tr}(\zeta_m\Pi) \ge 1-\epsilon$$
, (2) $\text{Tr}(\zeta_m\Pi_m) \ge 1-\epsilon$, (3) $\text{Tr}(\Pi_m) \le d_1$, (4) $\Pi \zeta \Pi \le \Pi/d_0$.

Back to direct coding for HSW: Want to find D_n that distinguishes $\sigma^n_m = \sigma_{x^n_m} = \sigma_{x_{m_1}} \otimes \sigma_{x_{m_2}} \dots \sigma_{x_{m_n}}$

Take $S = \{\zeta_m = \sigma^n_m\}$ in the packing lemma.

By the packing lemma, take $k = \gamma \, d_0/d_1 = \gamma \, 2^{n[I(X:B)_\tau - 2\epsilon_n]}$ randomly drawn states, and average distinguishability error $\leq 2 \, \left[\delta_n + \sqrt{(8\delta_n)} \right] + 4 \, \gamma$.

Take $\gamma=2^{-n\eta}$. Then, \exists code with average error $\to 0$ Rate deficit = $\eta+2\epsilon_n \to 0$. Remove worst half of the codewords to make worse case error $\to 0$. condition # in packing lemma

$$\begin{array}{c} \rightarrow (2) \\ \delta_{n} \rightarrow \epsilon \\ \\ \rightarrow (3) \\ 2^{n[\sum_{x} p(x)H(\sigma_{x})+\epsilon_{n}]} \rightarrow d_{1} \\ \qquad \rightarrow (1) \\ \delta_{n} \rightarrow \epsilon \\ \\ \rightarrow (4) \\ 2^{n[H(\sigma)-\epsilon_{n}]} \rightarrow d_{0} \\ \rightarrow \tau = \sum_{x} p(x)|x\rangle\langle x| \otimes \sigma_{x} \\ I(X:B)_{\tau} = H(\sigma)-\sum_{x} p(x)H(\sigma_{x}) \end{array}$$

Part 2: Converse [If $P_e^{ave} \rightarrow 0$, then achievable rate $R \leq C$.]

Lemma: Let $Y^n = N^{\otimes n}(X^n)$, and C be the capacity of N. Then, $I(X^n:Y^n) \leq nC$. not for quantum channels due to additivity issue

Thm [Fanos ineq]:

$$H(P_e) + P_e \log(|\Omega|-1) \ge H(X|Y)$$

Proof of converse:
$$\begin{array}{c} & H(MY)\text{-}H(Y) \\ & -H(MY)\text{+}H(Y)\text{+}H(M) \\ & nR = H(M) = H(M|Y) + I(M:Y) \\ & \leq H(M|Y) + I(E_n(M):Y) & data processing ineq \\ & \leq 1 + P_e \ nR + nC & no \ need \\ & \uparrow & \uparrow \\ & Fanos \ ineq & by \ Holevo's \ bound \\ & M \leftrightarrow X \\ & 2^{nR} \leftrightarrow |\Omega| & \& \ definition \ of \ C(N). \end{array}$$