
Last time - interpreting classical error correction

◦• Classical EC: store logical information in a code(sub)set C. E is
called a correctible set of errors, if EiC and EjC are disjoint for
all distinct Ei ,Ej ∈ E. In principle, the error can be identified (and
be reverted).

• Special case: C is a classical [n, k , d ] binary linear code if C is
2k -dim subspace of Z

⊗n
2 , and c ∈ C, c 6= 0 ⇒ wt(c) ≥ d . d :

distance of the code.

We saw that E consists of all bit-flip errors with wt
≤ t = b(d − 1)/2c. C is called t-error correcting.

How it works: each e ∈ E displaces any message m ∈ C to
y = m ⊕ e (bitwise xor). Define the syndrome of e as
f : = Hy = He. y determines a unique f that determines e.

• The trivial error e = 0 is often in E.



Quantum X -error correcting codes

Classical syndrome extraction: the rth row of H is the index set
of a subset Sr ⊂ [1, · · · , n] whose parity is to be measured on y .

Transitioning to quantum: we measure Mr =
⊗

i∈Sr
Zi (where Zi

is Z acting on the ith bit). The (even/odd) parity translates to
+/− 1 eigenvalue of Mr . C is the +1 eigenspace of Mr

∀r = 1, · · · , n−k.

• Let Cq be the simultaneous +1 eigenspace of Mr =
⊗

i∈Sr
Zi ∀r .

Cq is a quantum code, a 2k -dim subspace of C
2⊗n, with basis

labeled by codewords of C, and is “t X -error correcting.”

• For each correctible Ei , let fi = HEi be its (n−k)-bit syndrome in
C. Then, ∀|ψ〉 ∈ Cq, MrEi |ψ〉 = (−1)fi (r))Ei |ψ〉. NB fi 6= fj if
Ei 6= Ej .



Quantum Z -error correcting codes

• Define C+
q as the simultaneous +1 eigenspace of M+

r =
⊗

i∈Sr
Xi

∀r . (C+
q has basis labeled by codewords of C, with |0/1〉 → |±〉.)

Claim: C+
q corrects up to t phase (Z ) errors.

Proof: Let U = h
⊗n where h is the Hadamard matrix.

(hXh=Z , hZh=X , and hh= I .)

Let E+
i be a phase error of wt ≤ t and Ei = UE+

i U be the
corresponding bit-flip error.

Then, ∀|ψ+〉 ∈ C+
q , M+

r E+
i |ψ+〉 = UUM+

r UUE+
i UU|ψ+〉

= UMrEi (U|ψ+〉) = U(−1)fi (r)Ei(U|ψ+〉) = (−1)fi (r)E+
i |ψ+〉.

where we’ve used U|ψ+〉 ∈ Cq.

Thus, each phase error E+
i of wt ≤ t has a unique syndrome.

We now combine the bit and phase error correction to handle both.



Quantum CSS (Calderbank-Shor-Steane) codes

Consider 2 classical linear codes, CB and CP with parameters
[n, kB , dB ] and [n, kP , dP ].

Let HB and HP be their respective parity check matrices.

For the r -th row in HB , define MZr =
⊗

Z
HB,r,i

i .

For the s-th row in HP , define MXs =
⊗

X
HP,r,i

i .

where Hr ,i is the (r , i)-entry of H, or the ith entry of the r th row
of H.



Quantum CSS (Calderbank-Shor-Steane) codes

e.g. take CB = CP = [7, 4, 3] Hamming code.

HB = HP =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



.

HB → MZ =





MZ1 = I I I Z Z Z Z

MZ2 = I Z Z I I Z Z

MZ3 = Z I Z I Z I Z



.

HP → MX =





MX1 = I I I X X X X

MX2 = I X X I I X X

MX3 = X I X I X I X



.

where the ⊗’s are omitted.



Quantum CSS (Calderbank-Shor-Steane) codes

Consider 2 classical linear codes, CB and CP with parameters
[n, kB , dB ] and [n, kP , dP ].

Let HB and HP be their respective parity check matrices.

For the r -th row in HB , define MZr =
⊗

Z
HB,r,i

i .

For the s-th row in HP , define MXs =
⊗

X
HP,r,i

i .
——————————————————————————–
Question: under what condition is there a +1 eigenspace C of all
of MZr (r = 1, · · · , n−kB) and MXs (s = 1, · · · , n−kP)?

Answer: MZr commutes with MXs iff the r -th row in HB and the
s-th row in HP has 0 inner product mod 2 (elaborate). So, we
want HBHT

P = 0 (⇔ HPHT
B = 0, ⇔ C⊥

P ⊂ CB ⇔ C⊥
B ⊂ CP).

Correction in NC: CP ⊂ CB condition should not be there.



Quantum CSS (Calderbank-Shor-Steane) codes

Define a quantum CSS code C as the +1 eigenspace C of the
MZr (r = 1, · · · , n−kB) and MXs (s = 1, · · · , n−kP ) from CB and
CP s.t. HBHT

P = 0, It encodes n − kB − kP qubits in n. (Why?)

Claim: C corrects up to tB ≤ b(dB − 1)/2c bit (X ) errors AND
tP ≤ b(dP − 1)/2c phase (Z ) errors.

The MZr and MXs generate an abelian stabilizer group (define)
for the code. I some times called them the Z and X stabilizers.

Proof: The syndrome has 2 parts: an (n − kB)-bit f and an
(n − kP )-bit g from the Z and X stabilizers respectively. Bit errors
contribute only to f and phase errors to g , thus each error stated
in the claim has a unique joint syndrome (f , g). �

A CSS code that can correct for t X errors and t Z errors can
correct for any t-qubit Pauli error. Will see that it can correct for
any t-qubit error (and more).



CSS code example 1: the 7-bit Steane code

Take CB = CP = [7, 4, 3] Hamming code.

HB = HP =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



. HBHT
P = 0.

HB → MZ =





MZ1 = I I I Z Z Z Z

MZ2 = I Z Z I I Z Z

MZ3 = Z I Z I Z I Z



.

HP → MX =





MX1 = I I I X X X X

MX2 = I X X I I X X

MX3 = X I X I X I X



.

where the ⊗’s are omitted.

This code corrects for any 1-qubit error (try it!).



Discretization of errors

Claim: C quantum code. If a set of Pauli errors {Ei} is correctible
by C, each with a unique syndrome, then any E ∈ span({Ei}) is
correctible.
———————————————————————————
e.g. E = e−iθX ⊗ I ⊗ I = cos θIII − i sin θXII is correctible by the
3-bit repetition code since both III and XII are correctible.

Detail: If the encoded qubit is α|000〉 + β|111〉, the erroneous
state is cos θ(α|000〉 + β|111〉) − i sin θ(α|100〉 + β|011〉).

We measure ZZI and IZZ , and measuring ZZI project onto either
the cos or the sin term with probabilities cos2 θ and sin3 θ,
WITHOUT affecting the superposition between the α and β terms.

The magic – the error BECOMES what your syndrome
measurement outcome states – other terms not corresponding to it
are projected away. Thus reverting the error according to the
outcome works perfectly.



Discretization of errors

Claim: C quantum code. If a set of Pauli errors {Ei} is correctible
by C, each with a unique syndrome, then any E ∈ span({Ei}) is
correctible.
———————————————————————————
Proof: Apply to the erroneous state the syndrome measurement
and the postprocessing to deduce which Ei . ∀|ψ〉 ∈ C,
E =

∑

i αiEi , the erroneous state is
∑

i αiEi |ψ〉, which is projected

to Ei |ψ〉|i〉 if syndrome measurement outcome is i . Applying E
†
i

recovers |ψ〉 deterministically.

Note we can correct for a continuous set of errors (infinitely
many) by dealing only with a discrete, finite, error basis.

We’re now ready for the most general statement.



Quantum error correction criterion

Necessary and sufficient condition for QECC

Let P be the projector onto the codespace C ⊂ A (the ambient
space), E = {Ei} in B(A). The following are equivalent:

(1) ∀ij PE
†
i EjP = cijP

where cij is the (i , j)-entry for some matrix c ≥ 0.

(2) Any CP map E(M) =
∑

k AkMA
†
k

with Ak ∈ span(E) can be reversed on C
i.e. ∃R s.t. ∀ρ with PρP = ρ, R ◦ E(ρ) = (trE(ρ)/trρ) ρ.

Note that in (2), E may not be TP, but R is.

Both conditions capture what errors C can correct.
(2) is an operational definition of C corrects for E .
(1) is an algebraic characterization of (2) due to the equivalence.

Corollary: the set of correctible errors forms a linear space span(E).



Proof of QEC criterion: [(1) ⇒ (2)]

c = vdv † for d diagonal with nonnegative entries and v unitary.
(Spectral decomposition for c ≥ 0.)

Let Fk =
∑

j vjkEj . (Double subscript labels a matrix entry)

Then PF
†
l FkP =

∑

ij

(v∗
il )(vjk)PE

†
i EjP (by substitution)

=
∑

ij

(v∗
il )(vjk)(cijP) (condition (1))

= [v †cv ]lkP

= dkkδklP (by spec decomp of c)

It means that the set of errors Fk are distinguishing on P .

This is called the orthogonality condition.



Proof of QEC criterion: [(1) ⇒ (2)]

From last page: PF
†
l FkP = dkkδklP

————————————————————————————
Applying Polar Decomposition

FkP = Uk

√

PF
†
k FkP = Uk

√
dkk P = Uk

√
dkk P .

Thus Fk acts unitarily (like Uk) (only) on the codespace.

This is called the nondeforming condition.

ADD DIAGRAM

To show (2), we need to find R.

Idea: first, identify which Fk , then revert it by applying U
†
k .



Proof of QEC criterion: [(1) ⇒ (2)]

Idea for R: first, identify which Fk , then revert it by applying U
†
k .

————————————————————————————
Let Pk = UkPU

†
k .

Each Pk is a projector, and trPkPl ∝ δkl .

Take R(M): =
∑

k U
†
kPkMPkUk

=
∑

k U
†
k(UkPU

†
k)M(UkPU

†
k)Uk =

∑

k PU
†
kMUkP

Now, we check that R reverses E .

Recall Fk =
∑

j vjkEj .
Al ∈ span(E) = span({Fm}).
AlP =

∑

m blmFmP =
∑

m blm(
√

dmmUmP).



Proof of QEC criterion: [(1) ⇒ (2)]

Last page: R(M) =
∑

k PU
†
kMUkP

AlP =
∑

m blm(
√

dmmUmP).
————————————————————————————
∀ρ s.t. PρP = ρ (ρ supported on C):

R ◦ E(ρ)

=
∑

kl PU
†
k Al PρP A

†
l UkP

=
∑

kl PU
†
k

∑

m blm

√
dmmUmP ρ P

∑

m′ b∗
lm′

√
dmm′U

†
m′ UkP

=
∑

klmm′ blm

√
dmm δkm P ρ P b∗

lm′

√
dmm′ δm′k (ortho cond)

=
∑

kl blk ρ b∗
lk dkk (cleaning up) = (trE(ρ)/trρ) ρ.

Because tr(E(ρ)) = tr

(

∑

l AlPρPA
†
l

)

=
∑

l tr[(PA
†
l AlP)ρ]

=
∑

l tr[(
∑

m′ b∗
lm′

√
dm′m′PU

†
m′)(

∑

m blm

√
dmmUmP)ρ]

=
∑

lmm′ b∗
lm′blm

√
dm′m′

√
dmmδmm′ tr(PPρ)

=
∑

lm b∗
lmblmdmm tr(PρP) = tr(ρ)

∑

lm b∗
lmblmdmm



Proof of QEC criterion: [(2) ⇒ (1)]

Choose Ak = Ek and E(ρ) =
∑

k EkρE
†
k in the statement of (2).

(E CP but not necessarily TP).

(2) ⇒ ∃R s.t. ∀ρ with PρP = ρ, R ◦ E(ρ) = (trE)(ρ)/trρ)ρ.

Take ρ = PσP = :P(σ) where σ ∈ B(A) is arbitrary.

Then, R ◦ E ◦ P(σ) = [trE ◦ P(σ)/trP(σ)] P(σ). (*)

But R has a Kraus representation, say, R(M) =
∑

l BlMB
†
l .

So, (*) implies
∑

lk BlEkPσPE
†
kB

†
l ∝ PσP .

That its holds ∀σ ∈ B(A) gives two different Kraus representations
for the same quantum operation.

The relation between the Kraus operators in two Kraus reps for the
same quantum operation is given in Theorem 8.2, p372 in NC:

If
∑

kGkMG
†
k =

∑

lG
′
l MG ′

l , then, Gk =
∑

l wklG
′
l (with w unitary).



Proof of QEC criterion: [(2) ⇒ (1)]

Choose Ak = Ek and E(ρ) =
∑

k EkρE
†
k in the statement of (2).

(E CP but not necessarily TP).

(2) ⇒ ∃R s.t. ∀ρ with PρP = ρ, R ◦ E(ρ) = (trE)(ρ)/trρ)ρ.

Take ρ = PσP = :P(σ) where σ ∈ B(A) is arbitrary.

Then, R ◦ E ◦ P(σ) = [trE ◦ P(σ)/trP(σ)] P(σ). (*)

But R has a Kraus representation, say, R(M) =
∑

l BlMB
†
l .

So, (*) implies
∑

lk BlEkPσPE
†
kB

†
l ∝ PσP .

That its holds ∀σ ∈ B(A) gives two different Kraus representations
for the same quantum operation. Using Theorem 8.2, p372 in NC,
∀l ,k BlEkP = γlkP (for γlk scalars), and PE

†
k′B

†
l BlEkP = γ∗lk′γlkP .

Summing over l (and use R is TP),

PE
†
k′EkP =

(
∑

l γ
∗
lk′γlk

)

P = ck′kP (for scalars ck′k).
Finally, ck′k is the k ′k entry of γ†g so c ≥ 0.



Plan (before fault tolerance)

Nondegenerate vs degenerate quantum codes.

Stabilizer codes.

Bound on quantum codes.


	QECC
	Last time - interpreting classical error correction
	Quantum X-error correcting codes
	Quantum Z-error correcting codes
	Quantum CSS (Calderbank-Shor-Steane) codes
	CSS code example 1: the 7-bit Steane code
	Discretization of errors
	Quantum error correction criterion
	Proof of QEC criterion: [(1)  (2)]
	Proof of QEC criterion: [(2)  (1)]
	Plan (before fault tolerance)


