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Encryption

These are supplementary notes on encryption schemes.

Private key encryption

Here, we see a private key encryption scheme that is completely secure, as long as the key used is kept
secret.

The messages are represented by integers M, with 0 < M < n, for some positive integer n. The key & is an
arbitrary integer k such that 0 < k < n, chosen jointly by the sender and the receiver, and is known only to
them.

Ecryption: The sender computes C = M + k (mod n), with 0 < C' < n, i.e., it is the remainder when M + k
is divided by n. She then sends the ciphertext C' to the receiver.

Decryption: The receiver computes D = C — k (mod n), with 0 < D < n.

Since both D, M lie in the interval [0,n),and D = C —k = M + k — k = (mod n), we have D = M. In
other words, the receiver correctly decrypts the ciphertext.

As long as she does not know the key, any eavesdropper who intercepts the ciphertext C' will not get
any information about the message M. The ciphertext C' is consistent with every possible value for the
message in the range [0, n): for every value M’ € {0,1,...,n — 1}, there is a possible value £’ for the key so
that M’ + k' = C (mod n).

This kind of a scheme is said to be information-theoretically secure. A major disadvantage of such schemes
is the need for the sender and the receiver to agree upon a secret key before communicating sensitive
data to each other. If a million customers wish to look up their bank balances online, they would each
have to establish a separate key with the bank. With current technology, this requires the two parties to
physically meet to establish the key. Moreover, the key may only be used to send one message. Reusing a
key compromises its secrecy. Public key cryptography overcomes several of these disadvantages.

RSA encryption

In this section, we review two aspects of the RSA encryption scheme. First, we prove that the receiver
decrypts the ciphertext correctly. This is an alternative proof of Theorem 5.2.1 in the text book, using only
the number theory we have learnt in class.

Recall the following property of divisibility.
Theorem 1 If a|c, b|c, and ged(a,b) = 1, then (ab)|c.

In an RSA encryption scheme, we have n = pg, where p, ¢ are distinct primes. The public key is (e, n),
where ged(e, ¢p(n)) =1, with ¢(n) = (p—1)(¢ — 1) and 0 < e < ¢(n). The private key is (d, n), where ed = 1
(mod ¢(n)), and 0 < d < ¢(n). The ciphertext C' corresponding to a message M in the range [0, 7) is such
that C = M® (mod n), with 0 < C' < n. The receiver decrypts this as D = C? (mod n), with 0 < D < n.

Theorem?2 D = M.

Proof : It suffices to show that D = M (mod n), since both the numbers lie in the range [0, n).

Since n = pg, and p, ¢ are distinct primes (meaning gcd(p,q) = 1), by Theorem 1, it suffices to show
that p|(D — M), and ¢|(D — M).

We only show that p|(D — M), as the proof for divisibility by ¢ is similar.



We have D = C¢ = M*? (mod pq), ie., (pqg)|(D — M¢?). This implies that p|(D — M¢?), ie., D = M
(mod p).

If p|M,then D =0= M (mod p).
If p /M, then by the Fermat Little Theorem, M?~! = 1 (mod p). Since ed = 1 (mod (p — 1)(qg — 1)), we
have ed = k(p — 1)(q — 1) + 1, for some integer k. So M°? = M x M*®P=1@=1) = M (mod p).

In either case, we have D = M (mod p). Similarly we have ¢|(D — M), and as mentioned above, this implies
that D = M. u

Second, we review how the sender and the receiver encrypt and decrypt. Both these operations involve
exponentiation modulo n. To do this efficiently, we use the recursive exponentiation algorithm we learnt in
class. The only difference is that we reduce all the intermediate results modulo n so that the numbers with
which we compute do not blow up in size.

Example 1 Encrypt M = 2 with the public key (35, 323).

Solution : The following table summarizes our calculations. Let a = 2, and b denote the value returned by
the recursive call to POWER in one step, modulo 323.

Step | n| b | calculation (mod 323) | value (mod 323)
1 [35]al” 2 x (257)2 =2 x 157 314
2 |17 a® 2 x (256)% = 2 x 290 257
3 8 | a* (16)* 256
4 4| a? 42 16
4 2| a 22 4
4 1 2
The ciphertext is 314. ]



