Common hypercyclic vectors for paths of hypercyclic operators

Kit Chan & Rebecca Sanders

Bowling Green State University & Marquette University

August 1, 2011

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

- X = a separable, ∞ -dimensional Banach space over \mathbb{C}
- B(X) = the set of all bounded linear operators $T: X \longrightarrow X$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Ξ.

- X = a separable, ∞ -dimensional Banach space over $\mathbb C$
- B(X) = the set of all bounded linear operators $T: X \longrightarrow X$

Definition

An operator $T \in B(X)$ is *hypercyclic* if there is a vector $x \in X$ for which its orbit $Orb(T, x) = \{x, Tx, T^2x, T^3x, \dots, T^nx, \dots\}$ is dense in X.

Such a vector x is called a *hypercyclic vector* for T.

(日)

- X = a separable, ∞ -dimensional Banach space over $\mathbb C$
- B(X) = the set of all bounded linear operators $T: X \longrightarrow X$

An operator $T \in B(X)$ is *hypercyclic* if there is a vector $x \in X$ for which its orbit $Orb(T, x) = \{x, Tx, T^2x, T^3x, \dots, T^nx, \dots\}$ is dense in X.

Such a vector x is called a *hypercyclic vector* for T.

x is a hypercyclic vector $\implies T^n x$ is a hypercyclic vector.

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

- X = a separable, ∞ -dimensional Banach space over $\mathbb C$
- B(X) = the set of all bounded linear operators $T: X \longrightarrow X$

An operator $T \in B(X)$ is *hypercyclic* if there is a vector $x \in X$ for which its orbit $Orb(T, x) = \{x, Tx, T^2x, T^3x, \dots, T^nx, \dots\}$ is dense in X.

Such a vector x is called a *hypercyclic vector* for T.

x is a hypercyclic vector $\implies T^n x$ is a hypercyclic vector.

 $\mathcal{HC}(T)$ = the set of all hypercyclic vectors for T, which is dense.

・ロト ・四ト ・ヨト ・ヨト

A bounded linear operator $T: \ell^2 \to \ell^2$ is a *unilateral weighted* backward shift if there is a bounded positive weight sequence $\{w_1, w_2, w_3, \ldots\}$ such that

$$T(a_0, a_1, a_2, a_3, \ldots) = (w_1 a_1, w_2 a_2, w_3 a_3, \ldots).$$

If all weights $w_j \equiv 1$, then *T* is called the *unilateral backward shift*, and denoted by *B*.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

э

A bounded linear operator $T: \ell^2 \to \ell^2$ is a *unilateral weighted* backward shift if there is a bounded positive weight sequence $\{w_1, w_2, w_3, \ldots\}$ such that

$$T(a_0, a_1, a_2, a_3, \ldots) = (w_1 a_1, w_2 a_2, w_3 a_3, \ldots).$$

If all weights $w_j \equiv 1$, then *T* is called the *unilateral backward shift*, and denoted by *B*.

Theorem (Rolewicz, 1969)

If t > 1, then the unilateral weighted backward shift tB is hypercyclic.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

If $\{x_1, x_2, x_3, \ldots\}$ is a countable dense subset of X, then

Kit Chan & Rebecca Sanders Common hypercyclic vectors

If $\{x_1, x_2, x_3, \ldots\}$ is a countable dense subset of X, then

$$\mathcal{HC}(T) = \left\{ x \in X : \forall i \ge 1, \forall k \ge 1, \exists n \text{ s. t. } T^n x \in B(x_i, \frac{1}{k}) \right\}$$

If $\{x_1, x_2, x_3, \ldots\}$ is a countable dense subset of *X*, then

$$\mathcal{HC}(T) = \left\{ x \in X : \forall i \ge 1, \forall k \ge 1, \exists n \text{ s. t. } T^n x \in B(x_i, \frac{1}{k}) \right\}$$
$$= \bigcap_{i,k \ge 1} \bigcup_{n \ge 1} T^{-n} B(x_i, \frac{1}{k}), \text{ which is a dense } \mathsf{G}_{\delta} \text{ set.}$$

If $\{x_1, x_2, x_3, \ldots\}$ is a countable dense subset of X, then

$$\mathcal{HC}(T) = \left\{ x \in X : \forall i \ge 1, \forall k \ge 1, \exists n \text{ s. t. } T^n x \in B(x_i, \frac{1}{k}) \right\}$$
$$= \bigcap_{i,k \ge 1} \bigcup_{n \ge 1} T^{-n} B(x_i, \frac{1}{k}), \text{ which is a dense } \mathsf{G}_{\delta} \text{ set.}$$

Hence if (T_n) is a countable family of hypercyclic operators, then the set $\bigcap \mathcal{HC}(T_n)$ of *common hypercyclic vectors* for (T_n) is also a dense G_{δ} set.

(日) (圖) (E) (E) (E)

If $\{x_1, x_2, x_3, \ldots\}$ is a countable dense subset of X, then

$$\mathcal{HC}(T) = \left\{ x \in X : \forall i \ge 1, \forall k \ge 1, \exists n \text{ s. t. } T^n x \in B(x_i, \frac{1}{k}) \right\}$$
$$= \bigcap_{i,k \ge 1} \bigcup_{n \ge 1} T^{-n} B(x_i, \frac{1}{k}), \text{ which is a dense } \mathsf{G}_{\delta} \text{ set.}$$

Hence if (T_n) is a countable family of hypercyclic operators, then the set $\bigcap \mathcal{HC}(T_n)$ of *common hypercyclic vectors* for (T_n) is also a dense G_{δ} set.

Question

What about an uncountable family $\{T_t\}$ of hypercyclic operators?

(日)

Theorem (Abakumov and Gordon, 2003), (Costakis and Sambarino, 2004)

If *B* is the unilateral backward shift, then $\bigcap_{t>1} \mathcal{HC}(tB)$ is a dense G_{δ} set.

(日) (圖) (E) (E) (E)

Theorem (Abakumov and Gordon, 2003), (Costakis and Sambarino, 2004)

If *B* is the unilateral backward shift, then $\bigcap_{t>1} \mathcal{HC}(tB)$ is a dense G_{δ} set.

Definition

A family of operators $\{F_t \in B(X) : t \in I\}$, where *I* is an interval, is a *path of operators* if the map $F : I \longrightarrow B(X)$, defined by

$$F(t) = F_t,$$

is continuous.

(日)

Theorem (Abakumov and Gordon, 2003), (Costakis and Sambarino, 2004)

If *B* is the unilateral backward shift, then $\bigcap_{t>1} \mathcal{HC}(tB)$ is a dense G_{δ} set.

Definition

A family of operators $\{F_t \in B(X) : t \in I\}$, where *I* is an interval, is a *path of operators* if the map $F : I \longrightarrow B(X)$, defined by

$$F(t) = F_t,$$

is continuous.

Reproof (2009)

Reestablished the above result with a simple proof, using the idea of paths.

Theorem (2009)

Between two hypercyclic unilateral weighted backward shifts,

- (1) there is a path of such operators with a dense G_{δ} set of common hypercyclic vectors.
- (2) there is a path of such operators with no common hypercyclic vector.

・ロト ・ 同 ト ・ 国 ト ・ 国 ト …

크

Theorem (2009)

Between two hypercyclic unilateral weighted backward shifts,

- (1) there is a path of such operators with a dense G_{δ} set of common hypercyclic vectors.
- (2) there is a path of such operators with no common hypercyclic vector.
 - Observation: The more operators a path contains, the less likely that the path has a common hypercyclic vector.

э

Theorem (2009)

Between two hypercyclic unilateral weighted backward shifts,

- (1) there is a path of such operators with a dense G_{δ} set of common hypercyclic vectors.
- (2) there is a path of such operators with no common hypercyclic vector.
 - Observation: The more operators a path contains, the less likely that the path has a common hypercyclic vector.
 - Question: Can a path be dense in a certain way, and yet the whole path still has a common hypercyclic vector?

Let \mathcal{B} be the set of all unilateral weighted backward shifts on ℓ^2 .

イロト イヨト イヨト イヨト

∃ 990

Let \mathcal{B} be the set of all unilateral weighted backward shifts on ℓ^2 .

Proposition (2011)

There is a path in \mathcal{B} which is SOT-dense in \mathcal{B} , and every operator along the path has the exact same dense G_{δ} set of hypercyclic vectors.

(日)

Let \mathcal{B} be the set of all unilateral weighted backward shifts on ℓ^2 .

Proposition (2011)

There is a path in \mathcal{B} which is SOT-dense in \mathcal{B} , and every operator along the path has the exact same dense G_{δ} set of hypercyclic vectors.

Definition

A *hypercyclic subspace* for T is a closed, infinite dimensional subspace of X consisting entirely, except for the zero vector, of hypercyclic vectors.

(日)

Let \mathcal{B} be the set of all unilateral weighted backward shifts on ℓ^2 .

Proposition (2011)

There is a path in \mathcal{B} which is SOT-dense in \mathcal{B} , and every operator along the path has the exact same dense G_{δ} set of hypercyclic vectors.

Definition

A *hypercyclic subspace* for T is a closed, infinite dimensional subspace of X consisting entirely, except for the zero vector, of hypercyclic vectors.

Proposition (2011)

There is a path of hypercyclic shifts in \mathcal{B} that is SOT-dense in \mathcal{B} such that the whole path has a common hypercyclic subspace.

For a separable, infinite dimensional Banach space X, let $T \in B(X)$, and

 $\mathcal{S}(T) = \{L^{-1}TL : L \text{ is invertible in } B(X)\}$

be the *conjugate class*, or the *similarity orbit*, of T.

(日) (圖) (E) (E) (E)

For a separable, infinite dimensional Banach space X, let $T \in B(X)$, and

 $\mathcal{S}(T) = \{L^{-1}TL : L \text{ is invertible in } B(X)\}$

be the *conjugate class*, or the *similarity orbit*, of *T*.

Theorem (with Bès, 2003)

If T is hypercyclic then $\mathcal{S}(T)$ is SOT-dense in B(X).

(日) (圖) (E) (E) (E)

For a separable, infinite dimensional Banach space X, let $T \in B(X)$, and

 $\mathcal{S}(T) = \{L^{-1}TL : L \text{ is invertible in } B(X)\}$

be the *conjugate class*, or the *similarity orbit*, of T.

Theorem (with Bès, 2003)

If T is hypercyclic then $\mathcal{S}(T)$ is SOT-dense in B(X).

Theorem (2011)

The similarity orbit $\mathcal{S}(T)$ of a hypercyclic operator T contains a path $\{F_t\}$ that is SOT-dense in B(X) and yet the path has a dense G_{δ} set of common hypercyclic vectors. Furthermore, for any $g \in \mathcal{HC}(T)$, the path of operators may be chosen such that $\{\text{span Orb}(T,g)\} \setminus \{0\} \subseteq \bigcap_{t \in [1,\infty)} \mathcal{HC}(F_t).$

Corollary 1

Let g be any nonzero vector in X. Then the set

$$\mathcal{A} = \{A \in B(X) : g \in \mathcal{HC}(A)\}$$

is SOT-dense and SOT-connected in B(X). Furthermore,

$$\bigcap_{A \in \mathcal{A}} \mathcal{HC}(A) = (\operatorname{span}\{g\}) \setminus \{0\}.$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Ξ.

Corollary 1

Let g be any nonzero vector in X. Then the set

$$\mathcal{A} = \{A \in B(X) : g \in \mathcal{HC}(A)\}$$

is SOT-dense and SOT-connected in B(X). Furthermore,

$$\bigcap_{A \in \mathcal{A}} \mathcal{HC}(A) = (\operatorname{span}\{g\}) \setminus \{0\}.$$

Corollary 2

The set of all hypercyclic operators in B(X) is SOT-connected.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Proof of Corollary 1. To prove the first part, it suffices to show there is an operator $T \in B(X)$ for which $g \in \mathcal{HC}(T)$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Proof of Corollary 1. To prove the first part, it suffices to show there is an operator $T \in B(X)$ for which $g \in \mathcal{HC}(T)$.

Let T_0 be a hypercyclic operator with $\mathcal{HC}(T_0) \neq X \setminus \{0\}$. Hence, there is an invertible operator L such that $g \in \mathcal{HC}(L^{-1}T_0L)$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Proof of Corollary 1. To prove the first part, it suffices to show there is an operator $T \in B(X)$ for which $g \in \mathcal{HC}(T)$.

Let T_0 be a hypercyclic operator with $\mathcal{HC}(T_0) \neq X \setminus \{0\}$. Hence, there is an invertible operator L such that $g \in \mathcal{HC}(L^{-1}T_0L)$.

For the second part, observe that

$$(\operatorname{span}\{g\}) \setminus \{0\} \subseteq \bigcap_{A \in \mathcal{A}} \mathcal{HC}(A).$$

・ロット (母) ・ ヨ) ・ ・ ヨ)

Proof of Corollary 1. To prove the first part, it suffices to show there is an operator $T \in B(X)$ for which $g \in \mathcal{HC}(T)$.

Let T_0 be a hypercyclic operator with $\mathcal{HC}(T_0) \neq X \setminus \{0\}$. Hence, there is an invertible operator L such that $g \in \mathcal{HC}(L^{-1}T_0L)$.

For the second part, observe that

$$(\operatorname{span}\{g\}) \setminus \{0\} \subseteq \bigcap_{A \in \mathcal{A}} \mathcal{HC}(A).$$

Let $h \notin \text{span}\{g\}$. Again, there is an invertible operator L_0 such that $g \in \mathcal{HC}(L_0^{-1}T_0L_0)$ and $h \notin \mathcal{HC}(L_0^{-1}T_0L_0)$. Thus

$$h \notin \bigcap_{A \in \mathcal{A}} \mathcal{HC}(A). \quad \Box$$

(日)

Suppose the Banach space X is a Hilbert space H.

Theorem (2011)

There is a path of hypercyclic operators in B(H) which is SOT-dense in B(H) and every operator along the path has the exact same dense G_{δ} set \mathcal{G} of hypercyclic vectors.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Suppose the Banach space X is a Hilbert space H.

Theorem (2011)

There is a path of hypercyclic operators in B(H) which is SOT-dense in B(H) and every operator along the path has the exact same dense G_{δ} set \mathcal{G} of hypercyclic vectors.

Corollary

The set of operators T in B(H) with $\mathcal{G} \subset \mathcal{HC}(T)$ is SOT-connected.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

The similarity orbit S(T) contains a suborbit, called the *unitary* orbit $U(T) = \{U^{-1}TU : U \text{ unitary in } B(H)\}.$

< 日 > < 回 > < 回 > < 回 > < 回 > <

The similarity orbit S(T) contains a suborbit, called the *unitary* orbit $U(T) = \{U^{-1}TU : U \text{ unitary in } B(H)\}.$

All operators in $\mathcal{U}(T)$ have the same norm ||T||, so $\mathcal{U}(T)$ is not dense in B(H),

(日) (圖) (E) (E) (E)

The similarity orbit S(T) contains a suborbit, called the *unitary* orbit $U(T) = \{U^{-1}TU : U \text{ unitary in } B(H)\}.$

All operators in $\mathcal{U}(T)$ have the same norm ||T||, so $\mathcal{U}(T)$ is not dense in B(H), and in fact not even SOT-dense in $||T|| \cdot \text{Sph}(H)$.

(日) (圖) (E) (E) (E)

The similarity orbit S(T) contains a suborbit, called the *unitary* orbit $U(T) = \{U^{-1}TU : U \text{ unitary in } B(H)\}.$

All operators in $\mathcal{U}(T)$ have the same norm ||T||, so $\mathcal{U}(T)$ is not dense in B(H), and in fact not even SOT-dense in $||T|| \cdot \text{Sph}(H)$.

Theorem (2011)

If *T* is a hypercyclic operator in B(H), and $g \in \mathcal{HC}(T)$, then there exists a path of operators $\{F_t\}$ contained entirely in $\mathcal{U}(T)$ for which $\mathcal{U}(T) \subseteq \overline{\{F_t\}}^{SOT}$ and the dense G_{δ} set of common hypercyclic vectors contains all nonzero vectors in span Orb(T, g).

(日)

Corollary

Let $\{u_i \in H : i \ge 1\}$ be a linearly independent subset of H that spans a dense linear manifold of H, and let T in B(H) be a hypercyclic operator. Then there exists a path of operators $\{G_t\}$ contained in $\mathcal{U}(T)$ for which $\mathcal{U}(T) \subseteq \overline{\{G_t\}}^{SOT}$ and $(\operatorname{span}\{u_i : i \ge 1\}) \setminus \{0\} \subseteq \bigcap_{t \in [0,\infty)} \mathcal{HC}(F_t).$

(日) (圖) (E) (E) (E)