On Representations Subordinate to Topologically Introverted Spaces

Mehdi Monfared
University of Windsor

Joint Work with M．Filali and M．Neufang

- Given a Banach algebra A, the dual space A^{*} can be viewed as a Banach A-bimodule with the canonical operations:

$$
\langle\lambda \cdot a, b\rangle=\langle\lambda, a b\rangle, \quad\langle a \cdot \lambda, b\rangle=\langle\lambda, b a\rangle
$$

where $\lambda \in A^{*}$ and $a, b \in A$.

- Given a Banach algebra A, the dual space A^{*} can be viewed as a Banach A-bimodule with the canonical operations:

$$
\langle\lambda \cdot a, b\rangle=\langle\lambda, a b\rangle, \quad\langle a \cdot \lambda, b\rangle=\langle\lambda, b a\rangle
$$

where $\lambda \in A^{*}$ and $a, b \in A$.

- Let X be a norm closed A-submodule of A^{*}. For $\Psi \in X^{*}$ and $\lambda \in X$, define $\psi \cdot \lambda \in A^{*}$ by

$$
\langle\Psi \cdot \lambda, a\rangle=\langle\Psi, \lambda \cdot a\rangle .
$$

If $\psi \cdot \lambda \in X$ for all choices of $\psi \in X^{*}$ and $\lambda \in X$, then X is called an introverted subspace of A^{*}. Lau and Loy (1997); Dales and Lau (2005) .

- The dual of an introverted subspace of A^{*} is a Banach algebra: if $\Phi, \Psi \in X^{*}$ we define $\Phi \square \Psi \in X^{*}$ by

$$
\langle\Phi \square \Psi, \lambda\rangle=\langle\Phi, \Psi \cdot \lambda\rangle \quad\left(\lambda \in X^{*}\right)
$$

- The dual of an introverted subspace of A^{*} is a Banach algebra: if $\Phi, \Psi \in X^{*}$ we define $\Phi \square \Psi \in X^{*}$ by

$$
\langle\Phi \square \Psi, \lambda\rangle=\langle\Phi, \Psi \cdot \lambda\rangle \quad\left(\lambda \in X^{*}\right)
$$

Examples

(i) $X=A^{*}$.

- The dual of an introverted subspace of A^{*} is a Banach algebra: if $\Phi, \Psi \in X^{*}$ we define $\Phi \square \Psi \in X^{*}$ by

$$
\langle\Phi \square \Psi, \lambda\rangle=\langle\Phi, \Psi \cdot \lambda\rangle \quad\left(\lambda \in X^{*}\right)
$$

Examples

(i) $X=A^{*}$.
(ii) $X=\operatorname{LUC}(A)=\overline{\operatorname{lin}\left(A^{*} \cdot A\right)}{ }^{\|\cdot\|}$.

If G is a locally compact group, then $L U C\left(L^{1}(G)\right)=L U C(G)$.

- The dual of an introverted subspace of \boldsymbol{A}^{*} is a Banach algebra: if $\Phi, \Psi \in X^{*}$ we define $\Phi \square \psi \in X^{*}$ by

$$
\langle\Phi \square \Psi, \lambda\rangle=\langle\Phi, \psi \cdot \lambda\rangle \quad\left(\lambda \in X^{*}\right) .
$$

Examples

(i) $X=A^{*}$.
(ii) $X=\operatorname{LUC}(A)=\overline{\operatorname{lin}\left(A^{*} \cdot A\right)}{ }^{\|\cdot\|}$.

If G is a locally compact group, then $L U C\left(L^{1}(G)\right)=L U C(G)$.
(iii) $X=W A P(A)=\left\{\lambda \in A^{*}\right.$: the linear map

$$
\left.a \mapsto \lambda \cdot a, A \longrightarrow A^{*}, \text { is weakly compact }\right\} .
$$

- For more examples see: Granirer (1987), Dales (2000), Dales-Lau (2005).

Subordination

- Let E be a dual Banach space and $\mathscr{L}(E)$ be equipped with the W^{*} OT. Given a continuous representation

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

and given $y \in E, \lambda \in E_{*}$, we define $\pi_{y, \lambda} \in A^{*}$ by

$$
\pi_{y, \lambda}(a)=\langle\pi(a) y, \lambda\rangle \quad(a \in A)
$$

Subordination

- Let E be a dual Banach space and $\mathscr{L}(E)$ be equipped with the $\mathrm{W}^{*} \mathrm{OT}$. Given a continuous representation

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

and given $y \in E, \lambda \in E_{*}$, we define $\pi_{y, \lambda} \in A^{*}$ by

$$
\pi_{y, \lambda}(a)=\langle\pi(a) y, \lambda\rangle \quad(a \in A)
$$

- If $X \subset A^{*}$ is introverted, we say π is subordinate to X if

$$
\pi_{y, \lambda} \in X \quad\left(y \in E, \lambda \in E_{*}\right)
$$

Example

- Let G be a locally compact group and

$$
W: G \longrightarrow \mathscr{L}(H)
$$

be a unitary representation.

Example

- Let G be a locally compact group and

$$
W: G \longrightarrow \mathscr{L}(H)
$$

be a unitary representation. Consider

$$
\begin{gathered}
\pi: L^{1}(G) \longrightarrow \mathscr{L}(\mathscr{L}(H)) \\
\pi(f) T=\int_{G} W(t) T W(t)^{*} f(t) d(t)
\end{gathered}
$$

(i) π is an isometric representation of $L^{1}(G)$.

Example

- Let G be a locally compact group and

$$
W: G \longrightarrow \mathscr{L}(H)
$$

be a unitary representation. Consider

$$
\begin{gathered}
\pi: L^{1}(G) \longrightarrow \mathscr{L}(\mathscr{L}(H)) \\
\pi(f) T=\int_{G} W(t) T W(t)^{*} f(t) d(t) .
\end{gathered}
$$

(i) π is an isometric representation of $L^{1}(G)$.
(ii) If $T \in \mathscr{L}(H), T_{*}=\sum_{i=1}^{\infty} x_{i} \otimes y_{i} \in H \widehat{\otimes}_{\gamma} H=\mathscr{L}(H)_{*}$, then for almost all $t \in G$:

$$
\pi_{T, T_{*}}(t)=\sum_{i}\left\langle T W(t)^{*} x_{i} \mid W(t)^{*} y_{i}\right\rangle
$$

Example

- Let G be a locally compact group and

$$
W: G \longrightarrow \mathscr{L}(H)
$$

be a unitary representation. Consider

$$
\begin{gathered}
\pi: L^{1}(G) \longrightarrow \mathscr{L}(\mathscr{L}(H)) \\
\pi(f) T=\int_{G} W(t) T W(t)^{*} f(t) d(t) .
\end{gathered}
$$

(i) π is an isometric representation of $L^{1}(G)$.
(ii) If $T \in \mathscr{L}(H), T_{*}=\sum_{i=1}^{\infty} x_{i} \otimes y_{i} \in H \widehat{\otimes}_{\gamma} H=\mathscr{L}(H)_{*}$, then for almost all $t \in G$:

$$
\pi_{T, T_{*}}(t)=\sum_{i}\left\langle T W(t)^{*} x_{i} \mid W(t)^{*} y_{i}\right\rangle
$$

(iii) $\pi_{T, T^{*}} \in \operatorname{LUC}(G)$, hence π subordinate to $L U C\left(L^{1}(G)\right)$.

Example

- If

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

is a norm continuous representation on a reflexive Banach space E, then all coordinate functions of π are weakly almost periodic functionals on A; in other words, π is subordinate to $W A P(A)$ (N. J. Young (1976)).

Example

－If

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

is a norm continuous representation on a reflexive Banach space E ，then all coordinate functions of π are weakly almost periodic functionals on A ；in other words，π is subordinate to $W A P(A)$（N．J．Young（1976））．

A Little Digression．．．

－Question：Is every $\lambda \in W A P(A)$ a coordinate function of some continuous representation of A on a reflexive Banach space？

Example

- If

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

is a norm continuous representation on a reflexive Banach space E, then all coordinate functions of π are weakly almost periodic functionals on A; in other words, π is subordinate to $W A P(A)$ (N. J. Young (1976)).

A Little Digression...

- Question: Is every $\lambda \in W A P(A)$ a coordinate function of some continuous representation of A on a reflexive Banach space?

Yes, if A has a bounded approximate identity.

- Theorem (Daws (2007) Let A be a unital dual Banach algebra with a predual A_{*}. Then each norm one element $\mu \in A_{*}$ has an admissible norm.
- Theorem (Daws (2007) Let A be a unital dual Banach algebra with a predual A_{*}. Then each norm one element $\mu \in A_{*}$ has an admissible norm.

In other words, there exists a norm $\|\cdot\|_{\mu}$ on

$$
A \cdot \mu=\{a \cdot \mu: a \in A\}
$$

such that the completion of $A \cdot \mu$ is a reflexive space E_{μ}, and the left module action of A on E_{μ} induces a w^{*}-continuous representation

$$
\pi: A \longrightarrow \mathscr{L}\left(E_{\mu}\right)
$$

Moreover, there exists $x \in E_{\mu}$ and $\lambda \in E_{\mu}^{*}$ such that

$$
\mu=\pi_{x, \lambda}
$$

- Theorem (Daws (2007) Let A be a unital dual Banach algebra with a predual A_{*}. Then each norm one element $\mu \in A_{*}$ has an admissible norm.

In other words, there exists a norm $\|\cdot\|_{\mu}$ on

$$
A \cdot \mu=\{a \cdot \mu: a \in A\}
$$

such that the completion of $A \cdot \mu$ is a reflexive space E_{μ}, and the left module action of A on E_{μ} induces a w^{*}-continuous representation

$$
\pi: A \longrightarrow \mathscr{L}\left(E_{\mu}\right)
$$

Moreover, there exists $x \in E_{\mu}$ and $\lambda \in E_{\mu}^{*}$ such that

$$
\mu=\pi_{x, \lambda} .
$$

- In 2003, Megrelishvili proved a representation theorem for WAP-functions associated to a semitopological flow (S, X).
－Theorem：Let E be reflexive and

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

be subordinate to an introverted $X \subset A^{*}$ ．

- Theorem: Let E be reflexive and

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

be subordinate to an introverted $X \subset A^{*}$.
(i) $\tilde{\pi}: X^{*} \longrightarrow \mathscr{L}(E), \quad\langle\tilde{\pi}(\Psi) y, f\rangle=\left\langle\Psi, \pi_{y, f}\right\rangle$,
in which $\psi \in X^{*}, y \in E, f \in E^{*}$, is a w^{*}-continuous representation of X^{*}.

- Theorem: Let E be reflexive and

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

be subordinate to an introverted $X \subset A^{*}$.
(i) $\widetilde{\pi}: X^{*} \longrightarrow \mathscr{L}(E), \quad\langle\widetilde{\pi}(\Psi) y, f\rangle=\left\langle\Psi, \pi_{y, f}\right\rangle$,
in which $\psi \in X^{*}, y \in E, f \in E^{*}$, is a w^{*}-continuous representation of X^{*}.
(ii) The image of $\widetilde{\pi}$ is the WOT-closure of the image of π.

- Theorem: Let E be reflexive and

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

be subordinate to an introverted $X \subset A^{*}$.
(i) $\widetilde{\pi}: X^{*} \longrightarrow \mathscr{L}(E), \quad\langle\widetilde{\pi}(\Psi) y, f\rangle=\left\langle\Psi, \pi_{y, f}\right\rangle$,
in which $\psi \in X^{*}, y \in E, f \in E^{*}$, is a w^{*}-continuous representation of X^{*}.
(ii) The image of $\widetilde{\pi}$ is the WOT-closure of the image of π.
(iii) For every $a \in A, \widetilde{\pi}(\dot{a})=\pi(a)$, where \dot{a} is the canonical image of a in X^{*}.
－Theorem：Let E be reflexive and

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

be subordinate to an introverted $X \subset A^{*}$ ．
（i）$\tilde{\pi}: X^{*} \longrightarrow \mathscr{L}(E), \quad\langle\tilde{\pi}(\Psi) y, f\rangle=\left\langle\Psi, \pi_{y, f}\right\rangle$ ，
in which $\psi \in X^{*}, y \in E, f \in E^{*}$ ，is a w^{*}－continuous representation of X^{*} ．
（ii）The image of $\widetilde{\pi}$ is the WOT－closure of the image of π ．
（iii）For every $a \in A, \widetilde{\pi}(\dot{a})=\pi(a)$ ，where \dot{a} is the canonical image of a in X^{*} ．
（iv）The map $\pi \longrightarrow \tilde{\pi}$ is a bijection between the set of all continuous representations of A on E subordinate to X and the set of all of w^{*}－continuous representations of X^{*} on E ．

- Theorem: Let E be reflexive and

$$
\pi: A \longrightarrow \mathscr{L}(E)
$$

be subordinate to an introverted $X \subset A^{*}$.
(i) $\tilde{\pi}: X^{*} \longrightarrow \mathscr{L}(E), \quad\langle\tilde{\pi}(\Psi) y, f\rangle=\left\langle\Psi, \pi_{y, f}\right\rangle$,
in which $\psi \in X^{*}, y \in E, f \in E^{*}$, is a w^{*}-continuous representation of X^{*}.
(ii) The image of $\tilde{\pi}$ is the WOT-closure of the image of π.
(iii) For every $a \in A, \widetilde{\pi}(\dot{a})=\pi(a)$, where \dot{a} is the canonical image of a in X^{*}.
(iv) The map $\pi \longrightarrow \tilde{\pi}$ is a bijection between the set of all continuous representations of A on E subordinate to X and the set of all of w^{*}-continuous representations of X^{*} on E.
(v) If π is irreducible then so is π, the converse holds if X is faithful.

π－invarience

－Let a representation

$$
\pi: A \longrightarrow \mathscr{L}(H)
$$

be subordinate to an introverted space $X \subset A^{*}$ ．Suppose that in a suitable orthonormal basis $\left(e_{i}\right)_{i \in I}$ of H ，we have

$$
\begin{equation*}
C_{j}=\sum_{i \in I}\left\|\pi_{i j}\right\|_{A^{*}}<\infty \quad \text { and } \quad C=\sup _{j \in I} C_{j}<\infty \tag{*}
\end{equation*}
$$

π－invarience

－Let a representation

$$
\pi: A \longrightarrow \mathscr{L}(H)
$$

be subordinate to an introverted space $X \subset A^{*}$ ．Suppose that in a suitable orthonormal basis $\left(e_{i}\right)_{i \in I}$ of H ，we have

$$
\begin{equation*}
C_{j}=\sum_{i \in I}\left\|\pi_{i j}\right\|_{A^{*}}<\infty \quad \text { and } \quad C=\sup _{j \in I} C_{j}<\infty \tag{*}
\end{equation*}
$$

Then for an $\bar{\Psi} \in \ell^{\infty}\left(I, X^{*}\right)$ the following are equivalent：
（i）$a \cdot \bar{\Psi}={ }^{t} \pi(a) \bar{\Psi}$ ，for all $a \in A$ ；
（ii）$\Phi \square \bar{\Psi}={ }^{t} \widetilde{\pi}(\Phi) \bar{\Psi}$ ，for all $\Phi \in X^{*}$ ．

- Let a representation

$$
\pi: A \longrightarrow \mathscr{L}(H)
$$

be subordinate to an introverted space $X \subset A^{*}$. Suppose that in a suitable orthonormal basis $\left(e_{i}\right)_{i \in I}$ of H, we have

$$
\begin{equation*}
C_{j}=\sum_{i \in I}\left\|\pi_{i j}\right\|_{A^{*}}<\infty \quad \text { and } \quad C=\sup _{j \in I} C_{j}<\infty \tag{*}
\end{equation*}
$$

Then for an $\bar{\Psi} \in \ell^{\infty}\left(I, X^{*}\right)$ the following are equivalent:
(i) $a \cdot \bar{\Psi}={ }^{t} \pi(a) \bar{\Psi}$, for all $a \in A$;
(ii) $\Phi \square \bar{\Psi}={ }^{t} \widetilde{\pi}(\Phi) \bar{\Psi}$, for all $\Phi \in X^{*}$.

- We call such an element $\bar{\psi} \in \ell^{\infty}\left(I, X^{*}\right)$ to be π-invariant.

Application to ideal theory

- Theorem: Using the preceeding notation, if

$$
\bar{\Psi} \in \ell^{\infty}\left(I, X^{*}\right)
$$

is a non-zero, π-invariant element, then

$$
M:=\overline{\operatorname{lin}\{\bar{\Psi}(i): i \in I\}} \cdot \|
$$

is a closed left ideal of $\left(X^{*}, \square\right)$.

Application to ideal theory

- Theorem: Using the preceeding notation, if

$$
\bar{\Psi} \in \ell^{\infty}\left(I, X^{*}\right)
$$

is a non-zero, π-invariant element, then

$$
M:=\overline{\operatorname{lin}\{\bar{\Psi}(i): i \in I\}}{ }^{\|} \cdot \|
$$

is a closed left ideal of $\left(X^{*}, \square\right)$. Further, if π is algebraically irreducible, then $\operatorname{dim}(M) \geq|I|$ and M is the minimal closed left ideal containing any non-zero linear combination of $\bar{\Psi}(i)(i \in I)$.

Application to ideal theory

- Theorem: Using the preceeding notation, if

$$
\bar{\Psi} \in \ell^{\infty}\left(I, X^{*}\right)
$$

is a non-zero, π-invariant element, then

$$
M:=\overline{\operatorname{lin}\{\bar{\Psi}(i): i \in I\}}{ }^{\|} \cdot \|
$$

is a closed left ideal of $\left(X^{*}, \square\right)$. Further, if π is algebraically irreducible, then $\operatorname{dim}(M) \geq|I|$ and M is the minimal closed left ideal containing any non-zero linear combination of $\bar{\Psi}(i)(i \in I)$.

- The converse of the above theorem holds for finite dimensional left ideals of $\left(X^{*}, \square\right)$

A Cohomological Property

- Kaniuth, Lau, and Pym (2008) have shown that if

$$
\varphi: A \longrightarrow \mathbb{C}
$$

is a non-zero character, then existence of a φ-mean in $A^{* *}$, that is, an element $\psi \in A^{* *}$ such that

$$
a \cdot \Psi=\varphi(a) \Psi, \quad \Psi(\varphi) \neq 0
$$

is equivalent to the triviality of certain cohomology groups of A.

A Cohomological Property

- Kaniuth, Lau, and Pym (2008) have shown that if

$$
\varphi: A \longrightarrow \mathbb{C}
$$

is a non-zero character, then existence of a φ-mean in $A^{* *}$, that is, an element $\psi \in A^{* *}$ such that

$$
a \cdot \psi=\varphi(a) \Psi, \quad \Psi(\varphi) \neq 0
$$

is equivalent to the triviality of certain cohomology groups of A.

- Since a representation $\pi: A \longrightarrow \mathscr{L}(H)$ can be interpreted as a generalized character, a question arises of whether an analogous connection exists if the character φ is replaced by a representation π.
- Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a representation satisfying $(*)$. Let E is a Banach right A-module, and I be a set with $|I|=\operatorname{dim}(H)$.
- Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a representation satisfying $(*)$. Let E is a Banach right A-module, and I be a set with $|I|=\operatorname{dim}(H)$.

Given $\bar{x} \in \ell^{1}(I, E)$, we may define:

$$
\begin{align*}
& (a \cdot \bar{x})(i)=(\pi(a) \bar{x})(i), \tag{1}\\
& (\bar{x} \cdot a)(i)=\bar{x}(i) \cdot a \tag{2}
\end{align*}
$$

where $a \in A, i \in I$. This turns $\ell^{1}(I, E)$ into a Banach A-bimodule.

- Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a representation satisfying $(*)$. Let E is a Banach right A-module, and I be a set with $|I|=\operatorname{dim}(H)$.

Given $\bar{x} \in \ell^{1}(I, E)$, we may define:

$$
\begin{align*}
& (a \cdot \bar{x})(i)=(\pi(a) \bar{x})(i), \tag{1}\\
& (\bar{x} \cdot a)(i)=\bar{x}(i) \cdot a \tag{2}
\end{align*}
$$

where $a \in A, i \in I$. This turns $\ell^{1}(I, E)$ into a Banach A-bimodule.

- We can link the existence of π-invariant elements in $\ell^{\infty}\left(I, A^{* *}\right)$ to the study of derivations

$$
d: A \longrightarrow \ell^{1}(I, E)^{*}
$$

- Theorem: Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a continuous representation satisfying the condition $(*)$ as well as the strong Hahn-Banach separation property on a column j, for some $j \in I$.

Suppose that for every Banach right A-module E, every continuous derivation $d: A \longrightarrow \ell^{1}(I, E)^{*}$ is inner. In that case, there exists a π-invariant element $\bar{\Phi}_{j} \in \ell^{\infty}\left(I, A^{* *}\right)$ such that:

$$
\left\langle\bar{\Phi}_{j}(i), \pi_{k j}\right\rangle=\delta_{i k} \quad(i, k \in I)
$$

- Theorem: Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a continuous representation satisfying the condition $(*)$ as well as the strong Hahn-Banach separation property on a column j, for some $j \in I$.

Suppose that for every Banach right A-module E, every continuous derivation $d: A \longrightarrow \ell^{1}(I, E)^{*}$ is inner. In that case, there exists a π-invariant element $\bar{\Phi}_{j} \in \ell^{\infty}\left(I, A^{* *}\right)$ such that:

$$
\left\langle\bar{\Phi}_{j}(i), \pi_{k j}\right\rangle=\delta_{i k} \quad(i, k \in I)
$$

- We can show the following converse result as well.
- Theorem: Suppose that π : $A \longrightarrow \mathscr{L}(H)$ satisfies $(*)$, and for each $j \in I$, there exists a π-invariant element $\bar{\Phi}_{j} \in \ell^{\infty}\left(I, A^{* *}\right)$ such that
(i) $\sup _{j}\left\|\bar{\Phi}_{j}\right\|_{\infty}<\infty$;
(ii) $\left\langle\bar{\Phi}_{j}(i), \pi_{k j}\right\rangle=\delta_{i k} \quad(i, k \in I)$.

If E is any Banach right A-module and $\ell^{1}(I, E)$ is equipped with the Banach A-bimodule structure defined in (1)-(2), then every continuous derivation $d=\left(d_{i}\right)_{i \in I}: A \longrightarrow \ell^{1}(I, E)^{*}$ is inner, provided that

$$
d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right)=d_{j}^{* *}\left(\bar{\Phi}_{j}(i)\right) \quad(i, j \in I)
$$

- Theorem: Suppose that π : $A \longrightarrow \mathscr{L}(H)$ satisfies $(*)$, and for each $j \in I$, there exists a π-invariant element $\bar{\Phi}_{j} \in \ell^{\infty}\left(I, A^{* *}\right)$ such that
(i) $\sup _{j}\left\|\bar{\Phi}_{j}\right\|_{\infty}<\infty$;
(ii) $\left\langle\bar{\Phi}_{j}(i), \pi_{k j}\right\rangle=\delta_{i k} \quad(i, k \in I)$.

If E is any Banach right A-module and $\ell^{1}(I, E)$ is equipped with the Banach A-bimodule structure defined in (1)-(2), then every continuous derivation $d=\left(d_{i}\right)_{i \in I}: A \longrightarrow \ell^{1}(I, E)^{*}$ is inner, provided that

$$
d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right)=d_{j}^{* *}\left(\bar{\Phi}_{j}(i)\right) \quad(i, j \in I)
$$

- In the special case that $\pi: A \longrightarrow \mathbb{C}$ is a character, the above theorem and its converse recover with the main result of Kaniuth, Lau, and Pym (2008).

Thank you for your attention.

