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• Given a Banach algebra A, the dual space A∗ can be viewed
as a Banach A-bimodule with the canonical operations:

〈λ · a,b〉 = 〈λ,ab〉, 〈a · λ,b〉 = 〈λ,ba〉,

where λ ∈ A∗ and a,b ∈ A.

• Let X be a norm closed A-submodule of A∗. For Ψ ∈ X ∗ and
λ ∈ X , define Ψ · λ ∈ A∗ by

〈Ψ · λ,a〉 = 〈Ψ, λ · a〉.

If Ψ · λ ∈ X for all choices of Ψ ∈ X ∗ and λ ∈ X , then X is called
an introverted subspace of A∗. Lau and Loy (1997); Dales and
Lau (2005) .
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• The dual of an introverted subspace of A∗ is a Banach
algebra: if Φ,Ψ ∈ X ∗ we define Φ2Ψ ∈ X ∗ by

〈Φ2Ψ, λ〉 = 〈Φ,Ψ · λ〉 (λ ∈ X ∗).

Examples

(i) X = A∗.

(ii) X = LUC(A) = lin (A∗ · A)
‖·‖

.
If G is a locally compact group, then LUC(L1(G)) = LUC(G).

(iii) X = WAP(A) = { λ ∈ A∗ : the linear map

a 7→ λ · a, A −→ A∗, is weakly compact}.

• For more examples see: Granirer (1987), Dales (2000),
Dales–Lau (2005).
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Subordination

• Let E be a dual Banach space and L (E) be equipped with
the W∗OT. Given a continuous representation

π : A −→ L (E),

and given y ∈ E , λ ∈ E∗, we define πy ,λ ∈ A∗ by

πy ,λ(a) = 〈π(a)y , λ〉 (a ∈ A).

• If X ⊂ A∗ is introverted, we say π is subordinate to X if

πy ,λ ∈ X (y ∈ E , λ ∈ E∗).
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Example

• Let G be a locally compact group and

W : G −→ L (H)

be a unitary representation.

Consider

π : L1(G) −→ L (L (H))

π(f )T =

∫
G

W (t)T W (t)∗f (t) d(t).

(i) π is an isometric representation of L1(G).
(ii) If T ∈ L (H), T∗ =

∑∞
i=1 xi ⊗ yi ∈ H⊗̂γH = L (H)∗,

then for almost all t ∈ G:

πT ,T∗(t) =
∑

i

〈T W (t)∗xi |W (t)∗yi〉.

(iii) πT ,T∗ ∈ LUC(G), hence π subordinate to LUC(L1(G)).
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Example

• If
π : A −→ L (E)

is a norm continuous representation on a reflexive Banach
space E , then all coordinate functions of π are weakly almost
periodic functionals on A; in other words, π is subordinate to
WAP(A) (N. J. Young (1976)).

A Little Digression...

• Question: Is every λ ∈WAP(A) a coordinate function of some
continuous representation of A on a reflexive Banach space?

Yes, if A has a bounded approximate identity.
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• Theorem (Daws (2007) Let A be a unital dual Banach algebra
with a predual A∗. Then each norm one element µ ∈ A∗ has an
admissible norm.

In other words, there exists a norm ‖ · ‖µ on

A · µ = {a · µ : a ∈ A}

such that the completion of A · µ is a reflexive space Eµ, and
the left module action of A on Eµ induces a w∗-continuous
representation

π : A −→ L (Eµ).

Moreover, there exists x ∈ Eµ and λ ∈ E∗µ such that

µ = πx ,λ.

• In 2003, Megrelishvili proved a representation theorem for
WAP-functions associated to a semitopological flow (S,X ).
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• Theorem: Let E be reflexive and

π : A −→ L (E)

be subordinate to an introverted X ⊂ A∗.

(i) π̃ : X ∗ −→ L (E), 〈π̃(Ψ)y , f 〉 = 〈Ψ, πy ,f 〉,
in which Ψ ∈ X ∗, y ∈ E , f ∈ E∗, is a w∗-continuous
representation of X ∗.

(ii) The image of π̃ is the WOT-closure of the image of π.
(iii) For every a ∈ A, π̃(ȧ) = π(a), where ȧ is the canonical

image of a in X ∗.
(iv) The map π −→ π̃ is a bijection between the set of all

continuous representations of A on E subordinate to X and
the set of all of w∗-continuous representations of X ∗ on E .

(v) If π̃ is irreducible then so is π, the converse holds if X is
faithful.
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π-invarience

• Let a representation

π : A −→ L (H)

be subordinate to an introverted space X ⊂ A∗. Suppose that in
a suitable orthonormal basis (ei)i∈I of H, we have

Cj =
∑
i∈I

‖πij‖A∗ <∞ and C = sup
j∈I

Cj <∞. (∗)

Then for an Ψ ∈ `∞(I,X ∗) the following are equivalent:
(i) a ·Ψ = tπ(a)Ψ, for all a ∈ A;
(ii) Φ2Ψ = t π̃(Φ)Ψ, for all Φ ∈ X ∗.

•We call such an element Ψ ∈ `∞(I,X ∗) to be π-invariant.
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Application to ideal theory

• Theorem: Using the preceeding notation, if

Ψ ∈ `∞(I,X ∗)

is a non-zero, π-invariant element, then

M := lin {Ψ(i) : i ∈ I}
‖·‖

is a closed left ideal of (X ∗,2).

Further, if π is algebraically
irreducible, then dim(M) ≥ |I| and M is the minimal closed left
ideal containing any non-zero linear combination of Ψ(i) (i ∈ I).

• The converse of the above theorem holds for finite
dimensional left ideals of (X ∗,2)
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A Cohomological Property

• Kaniuth, Lau, and Pym (2008) have shown that if

ϕ : A −→ C

is a non-zero character, then existence of a ϕ-mean in A∗∗, that
is, an element Ψ ∈ A∗∗ such that

a ·Ψ = ϕ(a)Ψ, Ψ(ϕ) 6= 0,

is equivalent to the triviality of certain cohomology groups of A.

• Since a representation π : A −→ L (H) can be interpreted as
a generalized character, a question arises of whether an
analogous connection exists if the character ϕ is replaced by a
representation π.
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• Let π : A −→ L (H) be a representation satisfying (∗). Let E is
a Banach right A-module, and I be a set with |I| = dim(H).

Given x ∈ `1(I,E), we may define:

(a · x)(i) = (π(a)x)(i), (1)

(x · a)(i) = x(i) · a, (2)

where a ∈ A, i ∈ I. This turns `1(I,E) into a Banach
A-bimodule.

•We can link the existence of π-invariant elements in `∞(I,A∗∗)
to the study of derivations

d : A −→ `1(I,E)∗.



• Let π : A −→ L (H) be a representation satisfying (∗). Let E is
a Banach right A-module, and I be a set with |I| = dim(H).

Given x ∈ `1(I,E), we may define:

(a · x)(i) = (π(a)x)(i), (1)

(x · a)(i) = x(i) · a, (2)

where a ∈ A, i ∈ I. This turns `1(I,E) into a Banach
A-bimodule.

•We can link the existence of π-invariant elements in `∞(I,A∗∗)
to the study of derivations

d : A −→ `1(I,E)∗.



• Let π : A −→ L (H) be a representation satisfying (∗). Let E is
a Banach right A-module, and I be a set with |I| = dim(H).

Given x ∈ `1(I,E), we may define:

(a · x)(i) = (π(a)x)(i), (1)

(x · a)(i) = x(i) · a, (2)

where a ∈ A, i ∈ I. This turns `1(I,E) into a Banach
A-bimodule.

•We can link the existence of π-invariant elements in `∞(I,A∗∗)
to the study of derivations

d : A −→ `1(I,E)∗.



• Theorem: Let π : A −→ L (H) be a continuous representation
satisfying the condition (∗) as well as the strong Hahn–Banach
separation property on a column j , for some j ∈ I.

Suppose that for every Banach right A-module E , every
continuous derivation d : A −→ `1(I,E)∗ is inner. In that case,
there exists a π-invariant element Φj ∈ `∞(I,A∗∗) such that:

〈Φj(i), πkj〉 = δik (i , k ∈ I).

•We can show the following converse result as well.
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• Theorem: Suppose that π : A −→ L (H) satisfies (∗), and for
each j ∈ I, there exists a π-invariant element Φj ∈ `∞(I,A∗∗)
such that

(i) supj ‖Φj‖∞ <∞;

(ii) 〈Φj(i), πkj〉 = δik (i , k ∈ I).
If E is any Banach right A-module and `1(I,E) is equipped with
the Banach A-bimodule structure defined in (1)–(2), then every
continuous derivation d = (di)i∈I : A −→ `1(I,E)∗ is inner,
provided that

d∗∗i (Φi(i)) = d∗∗j (Φj(i)) (i , j ∈ I).

• In the special case that π : A −→ C is a character, the above
theorem and its converse recover with the main result of
Kaniuth, Lau, and Pym (2008).
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