On Representations Subordinate to Topologically Introverted Spaces

Mehdi Monfared

University of Windsor

Joint Work with M. Filali and M. Neufang

<ロト <回ト < 国ト < 国ト < 国ト 三 国

• Given a Banach algebra *A*, the dual space *A*^{*} can be viewed as a Banach *A*-bimodule with the canonical operations:

$$\langle \lambda \cdot a, b \rangle = \langle \lambda, ab \rangle, \quad \langle a \cdot \lambda, b \rangle = \langle \lambda, ba \rangle,$$

where $\lambda \in A^*$ and $a, b \in A$.

• Given a Banach algebra *A*, the dual space *A*^{*} can be viewed as a Banach *A*-bimodule with the canonical operations:

$$\langle \lambda \cdot a, b \rangle = \langle \lambda, ab \rangle, \quad \langle a \cdot \lambda, b \rangle = \langle \lambda, ba \rangle,$$

where $\lambda \in A^*$ and $a, b \in A$.

• Let *X* be a norm closed *A*-submodule of *A*^{*}. For $\Psi \in X^*$ and $\lambda \in X$, define $\Psi \cdot \lambda \in A^*$ by

$$\langle \Psi \cdot \lambda, a \rangle = \langle \Psi, \lambda \cdot a \rangle.$$

If $\Psi \cdot \lambda \in X$ for all choices of $\Psi \in X^*$ and $\lambda \in X$, then X is called an introverted subspace of A^* . Lau and Loy (1997); Dales and Lau (2005).

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

$$\langle \Phi \Box \Psi, \lambda
angle = \langle \Phi, \Psi \cdot \lambda
angle \qquad (\lambda \in X^*).$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi \cdot \lambda \rangle \qquad (\lambda \in X^*).$$

Examples

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(i) $X = A^*$.

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi \cdot \lambda \rangle \qquad (\lambda \in X^*).$$

Examples

(i) $X = A^*$.

(ii) $X = LUC(A) = \overline{\lim (A^* \cdot A)}^{\|\cdot\|}$. If *G* is a locally compact group, then $LUC(L^1(G)) = LUC(G)$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi \cdot \lambda \rangle \qquad (\lambda \in X^*).$$

Examples

(i) $X = A^*$.

(ii)
$$X = LUC(A) = \overline{\lim (A^* \cdot A)}^{\|\cdot\|}$$
.
If *G* is a locally compact group, then $LUC(L^1(G)) = LUC(G)$.

(iii) $X = WAP(A) = \{ \lambda \in A^* : \text{the linear map} \}$

 $a \mapsto \lambda \cdot a, A \longrightarrow A^*$, is weakly compact}.

• For more examples see: Granirer (1987), Dales (2000), Dales-Lau (2005).

Subordination

• Let *E* be a dual Banach space and $\mathcal{L}(E)$ be equipped with the W*OT. Given a continuous representation

$$\pi\colon A\longrightarrow \mathscr{L}(E),$$

and given $y \in E, \lambda \in E_*$, we define $\pi_{y,\lambda} \in A^*$ by

$$\pi_{\mathbf{y},\lambda}(\mathbf{a}) = \langle \pi(\mathbf{a})\mathbf{y},\lambda \rangle \qquad (\mathbf{a} \in \mathbf{A}).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Subordination

• Let *E* be a dual Banach space and $\mathcal{L}(E)$ be equipped with the W*OT. Given a continuous representation

$$\pi\colon A\longrightarrow \mathscr{L}(E),$$

and given $y \in E, \lambda \in E_*$, we define $\pi_{y,\lambda} \in A^*$ by

$$\pi_{\mathbf{y},\lambda}(\mathbf{a}) = \langle \pi(\mathbf{a})\mathbf{y},\lambda \rangle \qquad (\mathbf{a} \in \mathbf{A}).$$

• If $X \subset A^*$ is introverted, we say π is subordinate to X if

$$\pi_{y,\lambda} \in X$$
 $(y \in E, \lambda \in E_*).$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• Let G be a locally compact group and

$$W\colon G\longrightarrow \mathscr{L}(H)$$

be a unitary representation.

• Let G be a locally compact group and

$$W\colon G\longrightarrow \mathscr{L}(H)$$

be a unitary representation. Consider

$$\pi \colon L^1(G) \longrightarrow \mathscr{L}(\mathscr{L}(H))$$
$$\pi(f)T = \int_G W(t)T W(t)^* f(t) d(t).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(i) π is an isometric representation of $L^1(G)$.

• Let G be a locally compact group and

$$W \colon G \longrightarrow \mathscr{L}(H)$$

be a unitary representation. Consider

$$\pi \colon L^1(G) \longrightarrow \mathscr{L}(\mathscr{L}(H))$$
$$\pi(f)T = \int_G W(t)T W(t)^* f(t) d(t).$$

(i) π is an isometric representation of L¹(G).
(ii) If T ∈ ℒ(H), T_{*} = ∑_{i=1}[∞] x_i ⊗ y_i ∈ H_{⊗γ}H = ℒ(H)_{*}, then for almost all t ∈ G:

$$\pi_{T,T_*}(t) = \sum_i \langle T W(t)^* x_i | W(t)^* y_i \rangle.$$

《曰》 《聞》 《臣》 《臣》 三臣 …

• Let G be a locally compact group and

$$W: G \longrightarrow \mathscr{L}(H)$$

be a unitary representation. Consider

$$\pi \colon L^1(G) \longrightarrow \mathscr{L}(\mathscr{L}(H))$$
$$\pi(f)T = \int_G W(t)T W(t)^* f(t) d(t).$$

(i) π is an isometric representation of L¹(G).
(ii) If T ∈ ℒ(H), T_{*} = ∑_{i=1}[∞] x_i ⊗ y_i ∈ H_{⊗γ}H = ℒ(H)_{*}, then for almost all t ∈ G:

$$\pi_{\mathcal{T},\mathcal{T}_*}(t) = \sum_i \langle \mathcal{T} W(t)^* x_i | W(t)^* y_i \rangle.$$

∃ < <p>𝔄 𝔅 𝔅

(iii) $\pi_{T,T^*} \in LUC(G)$, hence π subordinate to $LUC(L^1(G))$.

• If

$$\pi \colon A \longrightarrow \mathscr{L}(E)$$

is a norm continuous representation on a reflexive Banach space *E*, then all coordinate functions of π are weakly almost periodic functionals on *A*; in other words, π is subordinate to WAP(A) (N. J. Young (1976)).

• If

$$\pi \colon \boldsymbol{A} \longrightarrow \mathscr{L}(\boldsymbol{E})$$

is a norm continuous representation on a reflexive Banach space *E*, then all coordinate functions of π are weakly almost periodic functionals on *A*; in other words, π is subordinate to WAP(A) (N. J. Young (1976)).

A Little Digression...

• Question: Is every $\lambda \in WAP(A)$ a coordinate function of some continuous representation of A on a reflexive Banach space?

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• If

$$\pi: A \longrightarrow \mathscr{L}(E)$$

is a norm continuous representation on a reflexive Banach space *E*, then all coordinate functions of π are weakly almost periodic functionals on *A*; in other words, π is subordinate to WAP(A) (N. J. Young (1976)).

A Little Digression...

• Question: Is every $\lambda \in WAP(A)$ a coordinate function of some continuous representation of A on a reflexive Banach space?

Yes, if A has a bounded approximate identity.

• Theorem (Daws (2007) Let *A* be a unital dual Banach algebra with a predual A_* . Then each norm one element $\mu \in A_*$ has an admissible norm.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Theorem (Daws (2007) Let *A* be a unital dual Banach algebra with a predual A_* . Then each norm one element $\mu \in A_*$ has an admissible norm.

In other words, there exists a norm $\|\cdot\|_{\mu}$ on

$$\mathbf{A} \cdot \boldsymbol{\mu} = \{ \mathbf{a} \cdot \boldsymbol{\mu} \colon \mathbf{a} \in \mathbf{A} \}$$

such that the completion of $A \cdot \mu$ is a reflexive space E_{μ} , and the left module action of A on E_{μ} induces a w^* -continuous representation

$$\pi\colon \boldsymbol{A}\longrightarrow \mathscr{L}(\boldsymbol{E}_{\mu}).$$

Moreover, there exists $x \in E_{\mu}$ and $\lambda \in E_{\mu}^*$ such that

$$\mu = \pi_{\mathbf{X},\lambda}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Theorem (Daws (2007) Let *A* be a unital dual Banach algebra with a predual A_* . Then each norm one element $\mu \in A_*$ has an admissible norm.

In other words, there exists a norm $\|\cdot\|_{\mu}$ on

$$\mathbf{A} \cdot \boldsymbol{\mu} = \{ \mathbf{a} \cdot \boldsymbol{\mu} \colon \mathbf{a} \in \mathbf{A} \}$$

such that the completion of $A \cdot \mu$ is a reflexive space E_{μ} , and the left module action of A on E_{μ} induces a w^* -continuous representation

$$\pi\colon \boldsymbol{A}\longrightarrow \mathscr{L}(\boldsymbol{E}_{\mu}).$$

Moreover, there exists $x \in E_{\mu}$ and $\lambda \in E_{\mu}^*$ such that

$$\mu = \pi_{\mathbf{X},\lambda}.$$

• In 2003, Megrelishvili proved a representation theorem for WAP-functions associated to a semitopological flow (S, X).

• Theorem: Let E be reflexive and

$$\pi: A \longrightarrow \mathscr{L}(E)$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

be subordinate to an introverted $X \subset A^*$.

• Theorem: Let E be reflexive and

$$\pi: A \longrightarrow \mathscr{L}(E)$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

be subordinate to an introverted $X \subset A^*$.

(i)
$$\widetilde{\pi} : X^* \longrightarrow \mathscr{L}(E), \quad \langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle,$$

in which $\Psi \in X^*, y \in E, f \in E^*$, is a *w**-continuous representation of *X**.

• Theorem: Let E be reflexive and

$$\pi: A \longrightarrow \mathscr{L}(E)$$

be subordinate to an introverted $X \subset A^*$.

(i)
$$\widetilde{\pi}: X^* \longrightarrow \mathscr{L}(E), \quad \langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle,$$

in which $\Psi \in X^*, y \in E, f \in E^*$, is a *w**-continuous representation of *X**.

(ii) The image of $\tilde{\pi}$ is the WOT-closure of the image of π .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Theorem: Let E be reflexive and

$$\pi: A \longrightarrow \mathscr{L}(E)$$

be subordinate to an introverted $X \subset A^*$.

- (i) $\widetilde{\pi}: X^* \longrightarrow \mathscr{L}(E), \quad \langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle,$ in which $\Psi \in X^*, y \in E, f \in E^*$, is a *w**-continuous representation of *X**.
- (ii) The image of $\tilde{\pi}$ is the WOT-closure of the image of π .
- (iii) For every $a \in A$, $\tilde{\pi}(\dot{a}) = \pi(a)$, where \dot{a} is the canonical image of a in X^* .

《曰》 《聞》 《臣》 《臣》 三臣 …

Theorem: Let E be reflexive and

$$\pi: A \longrightarrow \mathscr{L}(E)$$

be subordinate to an introverted $X \subset A^*$.

- (i) $\widetilde{\pi}: X^* \longrightarrow \mathscr{L}(E), \quad \langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle,$ in which $\Psi \in X^*, y \in E, f \in E^*$, is a *w**-continuous representation of *X**.
- (ii) The image of $\tilde{\pi}$ is the WOT-closure of the image of π .
- (iii) For every $a \in A$, $\tilde{\pi}(\dot{a}) = \pi(a)$, where \dot{a} is the canonical image of a in X^* .
- (iv) The map $\pi \longrightarrow \tilde{\pi}$ is a bijection between the set of all continuous representations of *A* on *E* subordinate to *X* and the set of all of *w*^{*}-continuous representations of *X*^{*} on *E*.

Theorem: Let E be reflexive and

$$\pi: A \longrightarrow \mathscr{L}(E)$$

be subordinate to an introverted $X \subset A^*$.

- (i) $\widetilde{\pi}: X^* \longrightarrow \mathscr{L}(E), \quad \langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle,$ in which $\Psi \in X^*, y \in E, f \in E^*$, is a *w**-continuous representation of *X**.
- (ii) The image of $\tilde{\pi}$ is the WOT-closure of the image of π .
- (iii) For every $a \in A$, $\tilde{\pi}(\dot{a}) = \pi(a)$, where \dot{a} is the canonical image of a in X^* .
- (iv) The map $\pi \longrightarrow \tilde{\pi}$ is a bijection between the set of all continuous representations of *A* on *E* subordinate to *X* and the set of all of *w*^{*}-continuous representations of *X*^{*} on *E*.
- (v) If $\tilde{\pi}$ is irreducible then so is π , the converse holds if X is faithful.

π -invarience

Let a representation

$$\pi\colon A\longrightarrow \mathscr{L}(H)$$

be subordinate to an introverted space $X \subset A^*$. Suppose that in a suitable orthonormal basis $(e_i)_{i \in I}$ of H, we have

$$C_j = \sum_{i \in I} \|\pi_{ij}\|_{\mathcal{A}^*} < \infty$$
 and $C = \sup_{j \in I} C_j < \infty.$ (*)

π -invarience

Let a representation

$$\pi\colon A\longrightarrow \mathscr{L}(H)$$

be subordinate to an introverted space $X \subset A^*$. Suppose that in a suitable orthonormal basis $(e_i)_{i \in I}$ of H, we have

$$C_j = \sum_{i \in I} \|\pi_{ij}\|_{\mathcal{A}^*} < \infty$$
 and $C = \sup_{j \in I} C_j < \infty.$ (*)

Then for an $\overline{\Psi} \in \ell^{\infty}(I, X^*)$ the following are equivalent:

(i)
$$a \cdot \overline{\Psi} = {}^t \pi(a) \overline{\Psi}$$
, for all $a \in A$;
(ii) $\Phi \Box \overline{\Psi} = {}^t \overline{\pi}(\Phi) \overline{\Psi}$, for all $\Phi \in X^*$.

$\pi ext{-invarience}$

Let a representation

$$\pi\colon A\longrightarrow \mathscr{L}(H)$$

be subordinate to an introverted space $X \subset A^*$. Suppose that in a suitable orthonormal basis $(e_i)_{i \in I}$ of H, we have

$$C_j = \sum_{i \in I} \|\pi_{ij}\|_{\mathcal{A}^*} < \infty$$
 and $C = \sup_{j \in I} C_j < \infty.$ (*)

Then for an $\overline{\Psi} \in \ell^{\infty}(I, X^*)$ the following are equivalent: (i) $a \cdot \overline{\Psi} = {}^t \pi(a) \overline{\Psi}$, for all $a \in A$;

(ii)
$$\Phi \Box \overline{\Psi} = {}^t \widetilde{\pi}(\Phi) \overline{\Psi}$$
, for all $\Phi \in X^*$.

• We call such an element $\overline{\Psi} \in \ell^{\infty}(I, X^*)$ to be π -invariant.

Application to ideal theory

• Theorem: Using the preceeding notation, if

 $\overline{\Psi} \in \ell^{\infty}(I, X^*)$

is a non-zero, π -invariant element, then

$$M:=\overline{\ln\left\{\overline{\Psi}(i)\colon i\in I\right\}}^{\|\cdot\|}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

is a closed left ideal of (X^*, \Box) .

Application to ideal theory

• Theorem: Using the preceeding notation, if

 $\overline{\Psi} \in \ell^{\infty}(I, X^*)$

is a non-zero, π -invariant element, then

$$M:=\overline{\ln\left\{\overline{\Psi}(i)\colon i\in I\right\}}^{\|\cdot\|}$$

is a closed left ideal of (X^*, \Box) . Further, if π is algebraically irreducible, then dim $(M) \ge |I|$ and M is the minimal closed left ideal containing any non-zero linear combination of $\overline{\Psi}(i)$ ($i \in I$).

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Application to ideal theory

• Theorem: Using the preceeding notation, if

 $\overline{\Psi} \in \ell^{\infty}(I, X^*)$

is a non-zero, π -invariant element, then

$$M:=\overline{\ln\left\{\overline{\Psi}(i)\colon i\in I\right\}}^{\|\cdot\|}$$

is a closed left ideal of (X^*, \Box) . Further, if π is algebraically irreducible, then dim $(M) \ge |I|$ and M is the minimal closed left ideal containing any non-zero linear combination of $\overline{\Psi}(i)$ ($i \in I$).

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• The converse of the above theorem holds for finite dimensional left ideals of (X^*, \Box)

A Cohomological Property

• Kaniuth, Lau, and Pym (2008) have shown that if

$$\varphi \colon \mathbf{A} \longrightarrow \mathbb{C}$$

is a non-zero character, then existence of a φ -mean in A^{**} , that is, an element $\Psi \in A^{**}$ such that

$$\mathbf{a} \cdot \Psi = \varphi(\mathbf{a})\Psi, \quad \Psi(\varphi) \neq \mathbf{0},$$

is equivalent to the triviality of certain cohomology groups of A.

《曰》 《聞》 《臣》 《臣》 三臣 …

A Cohomological Property

• Kaniuth, Lau, and Pym (2008) have shown that if

$$\varphi \colon \mathbf{A} \longrightarrow \mathbb{C}$$

is a non-zero character, then existence of a φ -mean in A^{**} , that is, an element $\Psi \in A^{**}$ such that

$$\mathbf{a} \cdot \Psi = \varphi(\mathbf{a})\Psi, \quad \Psi(\varphi) \neq \mathbf{0},$$

is equivalent to the triviality of certain cohomology groups of A.

• Since a representation $\pi: A \longrightarrow \mathscr{L}(H)$ can be interpreted as a generalized character, a question arises of whether an analogous connection exists if the character φ is replaced by a representation π .

• Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a representation satisfying (*). Let *E* is a Banach right *A*-module, and *I* be a set with $|I| = \dim(H)$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a representation satisfying (*). Let *E* is a Banach right *A*-module, and *I* be a set with $|I| = \dim(H)$.

Given $\overline{x} \in \ell^1(I, E)$, we may define:

$$(\mathbf{a} \cdot \overline{\mathbf{x}})(\mathbf{i}) = (\pi(\mathbf{a})\overline{\mathbf{x}})(\mathbf{i}), \tag{1}$$

$$(\overline{x} \cdot a)(i) = \overline{x}(i) \cdot a,$$
 (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $a \in A$, $i \in I$. This turns $\ell^1(I, E)$ into a Banach *A*-bimodule.

• Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a representation satisfying (*). Let *E* is a Banach right *A*-module, and *I* be a set with $|I| = \dim(H)$.

Given $\overline{x} \in \ell^1(I, E)$, we may define:

$$(\mathbf{a} \cdot \overline{\mathbf{x}})(\mathbf{i}) = (\pi(\mathbf{a})\overline{\mathbf{x}})(\mathbf{i}), \tag{1}$$

$$(\overline{x} \cdot a)(i) = \overline{x}(i) \cdot a,$$
 (2)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

where $a \in A$, $i \in I$. This turns $\ell^1(I, E)$ into a Banach *A*-bimodule.

• We can link the existence of π -invariant elements in $\ell^{\infty}(I, A^{**})$ to the study of derivations

$$d: A \longrightarrow \ell^1(I, E)^*.$$

• Theorem: Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a continuous representation satisfying the condition (*) as well as the strong Hahn–Banach separation property on a column *j*, for some $j \in I$.

Suppose that for every Banach right *A*-module *E*, every continuous derivation $d: A \longrightarrow \ell^1(I, E)^*$ is inner. In that case, there exists a π -invariant element $\overline{\Phi}_i \in \ell^\infty(I, A^{**})$ such that:

$$\langle \overline{\Phi}_j(i), \pi_{kj} \rangle = \delta_{ik} \quad (i, k \in I).$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Theorem: Let $\pi: A \longrightarrow \mathscr{L}(H)$ be a continuous representation satisfying the condition (*) as well as the strong Hahn–Banach separation property on a column *j*, for some $j \in I$.

Suppose that for every Banach right *A*-module *E*, every continuous derivation $d: A \longrightarrow \ell^1(I, E)^*$ is inner. In that case, there exists a π -invariant element $\overline{\Phi}_i \in \ell^\infty(I, A^{**})$ such that:

$$\langle \overline{\Phi}_j(i), \pi_{kj} \rangle = \delta_{ik} \quad (i, k \in I).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• We can show the following converse result as well.

• Theorem: Suppose that $\pi: A \longrightarrow \mathscr{L}(H)$ satisfies (*), and for each $j \in I$, there exists a π -invariant element $\overline{\Phi}_j \in \ell^{\infty}(I, A^{**})$ such that

(i)
$$\sup_{j} \|\overline{\Phi}_{j}\|_{\infty} < \infty;$$

(ii)
$$\langle \overline{\Phi}_j(i), \pi_{kj} \rangle = \delta_{ik} \quad (i, k \in I).$$

If *E* is any Banach right *A*-module and $\ell^1(I, E)$ is equipped with the Banach *A*-bimodule structure defined in (1)–(2), then every continuous derivation $d = (d_i)_{i \in I} : A \longrightarrow \ell^1(I, E)^*$ is inner, provided that

$$d_i^{**}(\overline{\Phi}_i(i)) = d_j^{**}(\overline{\Phi}_j(i)) \quad (i,j \in I).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• Theorem: Suppose that $\pi: A \longrightarrow \mathscr{L}(H)$ satisfies (*), and for each $j \in I$, there exists a π -invariant element $\overline{\Phi}_j \in \ell^{\infty}(I, A^{**})$ such that

(i)
$$\sup_{j} \|\overline{\Phi}_{j}\|_{\infty} < \infty;$$

(ii)
$$\langle \overline{\Phi}_j(i), \pi_{kj} \rangle = \delta_{ik} \quad (i, k \in I).$$

If *E* is any Banach right *A*-module and $\ell^1(I, E)$ is equipped with the Banach *A*-bimodule structure defined in (1)–(2), then every continuous derivation $d = (d_i)_{i \in I} : A \longrightarrow \ell^1(I, E)^*$ is inner, provided that

$$d_i^{**}(\overline{\Phi}_i(i)) = d_j^{**}(\overline{\Phi}_j(i)) \quad (i,j \in I).$$

• In the special case that $\pi: A \longrightarrow \mathbb{C}$ is a character, the above theorem and its converse recover with the main result of Kaniuth, Lau, and Pym (2008).

Thank you for your attention.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで