AN APPLICATION OF PROPERTY (T) FOR DISCRETE QUANTUM GROUPS

Piotr M. Soltan (joint work with **David Kyed**)

Department of Mathematical Methods in Physics, Faculty of Physics,
University of Warsaw
and
Institute of Mathematics of the Polish Academy of Sciences

Banach Algebras 2011 Waterloo, August 8

COMPACT QUANTUM GROUPS

Definition

$$\mathbb{G}=ig(\mathrm{C}(\mathbb{G}),\Deltaig)$$

- $C(\mathbb{G})$ unital C^* -algebra
- $\Delta \colon \mathbf{C}(\mathbb{G}) \to \mathbf{C}(\mathbb{G}) \otimes \mathbf{C}(\mathbb{G})$

$$\begin{array}{ccc} C(\mathbb{G}) & \xrightarrow{\quad \Delta \quad} & C(\mathbb{G}) \otimes C(\mathbb{G}) \\ \Delta & & & & & & & \\ \Delta \otimes id & & & & & \\ C(\mathbb{G}) \otimes C(\mathbb{G}) & \xrightarrow{id \otimes \Delta} & C(\mathbb{G}) \otimes C(\mathbb{G}) \otimes C(\mathbb{G}) \end{array}$$

- $\Delta(C(\mathbb{G}))(\mathbf{1} \otimes C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$
- $(C(\mathbb{G}) \otimes \mathbf{1})\Delta(C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$

Examples

- *G* compact group,
 - $C(\mathbb{G}) := C(G)$
 - $\bullet \ \Delta(f)(x,y) = f(xy)$
- Γ discrete group
 - $C(\mathbb{G}) := C^*(\Gamma)$
 - $\Delta(\gamma) = \gamma \otimes \gamma$

or

- $C(\mathbb{G}) := C_r^*(\Gamma)$
- $\Delta(\gamma) = \gamma \otimes \gamma$

THE HOPF ALGEBRA

THEOREM (S.L. WORONOWICZ)

Let $\mathbb G$ be a compact quantum group. There exists a unique dense Hopf *-subalgebra $Pol(\mathbb G) \subset C(\mathbb G)$.

- $Pol(\mathbb{G})$ is a **Hopf algebra**, so
 - $Pol(\mathbb{G})$ is a unital *-subalgebra of $C(\mathbb{G})$,
 - $\Delta(\operatorname{Pol}(\mathbb{G})) \subset \operatorname{Pol}(\mathbb{G}) \odot \operatorname{Pol}(\mathbb{G})$,
 - there is a counit (denoted ϵ) and an antipode on $Pol(\mathbb{G})$.
- Moreover
 - for \mathbb{G} classical, i.e. $C(\mathbb{G}) = C(G)$, the subalgebra $Pol(\mathbb{G})$ is the algebra of **regular functions** on G,
 - if $C(\mathbb{G})=C^*(\Gamma)$ (or $C^*_r(\Gamma)$) we have $Pol(\mathbb{G})=\mathbb{C}[\Gamma]$.
- Pol(\$\mathbb{G}\$) is the linear span of matrix elements of irreducible corepresentations of \$\mathbb{G}\$.

NORMS ON $Pol(\mathbb{G})$

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{min})$
- $\bullet \ \|a\|_{\sim} = \max\{\|a\|, \big|\epsilon(a)\big|\}$
 - \leadsto the completion: $C(\widetilde{\mathbb{G}})$

Example: $Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$

$$ightharpoonup C(\mathbb{G}_{max}) = C_{full}^*(\Gamma)$$

$$ightarrow C(\mathbb{G}_{min}) = C_r^*(\Gamma)$$

$$ightharpoonup C(\widetilde{\mathbb{G}}) = ??$$

DEFINITION

A C*-norm on $\operatorname{Pol}(\mathbb{G})$ is a quantum group norm if

$$\Delta \colon \operatorname{Pol}(\mathbb{G}) \longrightarrow \operatorname{Pol}(\mathbb{G}) \otimes \operatorname{Pol}(\mathbb{G})$$

extends to completions.

FACT

All of the above C^* -norms are quantum group norms.

EXOTIC COMPLETIONS

- We are interested in **quantum group norms** on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{min}) \neq C(\mathbb{G})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}) \neq C(\mathbb{G}_{max})$

(in the sense that the canonical epimorphisms are not isomorphisms).

- Another interesting possibility is
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) = C(\mathbb{G}_{max}).$
- We call such norms exotic quantum group norms.
- Existence of exotic norms is interesting for the theory of quantum group actions.

DISCRETE QUANTUM GROUPS

 Each compact quantum group G comes with its discrete dual

$$\widehat{\mathbb{G}} = \big(c_0(\widehat{\mathbb{G}}), \widehat{\Delta}\big).$$

- \bullet Crucial fact: $c_0(\widehat{\mathbb{G}})$ is a direct sum of matrix algebras.
- If \mathbb{G} is classical ($C(\mathbb{G}) = C(G)$) and abelian then

$$c_0(\widehat{\mathbb{G}}) = c_0(\widehat{G}) = \bigoplus_{\widehat{G}} \mathbb{C}$$

- Representations of the C*-algebra $c_0(\widehat{\mathbb{G}})$ are in natural bijection with corepresentations of \mathbb{G} .
- Representations of the C*-algebra $C(\mathbb{G}_{max})$ are in natural bijection with corepresentations of $\widehat{\mathbb{G}}$.
- In 2008 Pierre Fima defined property (T) for discrete quantum groups. The analog of a finite set in $\widehat{\mathbb{G}}$ is a finite sum of simple summands of $c_0(\widehat{\mathbb{G}})$.

EXAMPLES

- 1. Let $\mathbb G$ be classical: $\mathrm C(\mathbb G)=\mathrm C(G)$, where G is a compact group. Then
 - we have

$$\mathrm{c}_0(\widehat{\mathbb{G}}) = \bigoplus_{\pi ext{ - irrep of } G} \mathit{M}_{\dim \pi}(\mathbb{C}),$$

- $\widehat{\Delta}$ reflects the tensor product of representations of *G*.
- 2. Let Γ be a discrete group and $\mathbb{G} = (C^*(\Gamma), \Delta)$. Then
 - $c_0(\widehat{\mathbb{G}}) = c_0(\Gamma)$,
 - $\bullet \ \widehat{\Delta} \colon c_0(\widehat{\mathbb{G}}) \to M\big(c_0(\widehat{\mathbb{G}}) \otimes c_0(\widehat{\mathbb{G}})\big)$

$$\widehat{\Delta}(f)(x,y) = f(xy).$$

- $\widehat{\Delta}$ is a morphism $c_0(\widehat{\mathbb{G}}) \to c_0(\widehat{\mathbb{G}}) \otimes c_0(\widehat{\mathbb{G}})$.
- $\widehat{\mathbb{G}} = (c_0(\widehat{\mathbb{G}}), \widehat{\Delta})$ is a discrete quantum group.
- $\widehat{\mathbb{G}}$ has property (T) in the sense of Fima if and only if Γ has property (T).

OTHER CHARACTERIZATIONS

THEOREM (DAVID KYED & P.M.S.)

The following are equivalent:

- $\widehat{\mathbb{G}}$ has property (T) in the sense of Fima,
- the counit ϵ is an isolated point of $Spec(C(\mathbb{G}_{max}))$,
- all finite dimensional representations are isolated points of Spec($C(\mathbb{G}_{max})$),
- the C^* -algebra $C(\mathbb{G}_{max})$ has property (T) of Bekka,
- there exists a unique minimal projection p in the center of $C(\mathbb{G}_{max})$ with $\epsilon(p) = 1$,
- there exists a minimal projection $p \in C(\mathbb{G}_{max})$ with $\epsilon(p)=1$,
- $\widehat{\mathbb{G}}$ has property (T) as defined by Petrescu & Joita (1992, for Kac algebras only),
- $\widehat{\mathbb{G}}$ has property (T) as defined by Bédos, Conti & Tuset (2005, for algebraic quantum groups).

FIRST EXOTIC EXAMPLES

THEOREM

Take a non-coamenable \mathbb{G}^* . Then

- $C(\mathbb{G}_{min}) \neq C(\widetilde{\mathbb{G}_{min}})$,
- if $C(\widetilde{\mathbb{G}_{min}}) = C(\mathbb{G}_{max})$ then $\widehat{\mathbb{G}}$ has property (T).

This provides many examples such that

$$\mathbb{G}_{min} \neq \mathbb{G} \neq \mathbb{G}_{max}$$

(take $\mathbb{G}=\widetilde{\mathbb{G}_{min}}$ with \mathbb{G} without property (T)).

^{*}i.e. $C(\mathbb{G}_{min}) \neq C(\mathbb{G}_{max})$

SPECIAL REPRESENTATION

• Let π be the representation of $C(\mathbb{G}_{max})$ which is the direct sum of all infinite-dimensional irreducible representations.

THEOREM

If $\widehat{\mathbb{G}}$ has property (T) then the C^* -norm on $Pol(\mathbb{G})$ defined by π is a quantum group norm.

• Denote the resulting quantum group by \mathbb{G}_{π} .

MORE EXOTIC EXAMPLES

- Take $\widehat{\mathbb{G}}$ infinite property (T) discrete quantum group.
- \mathbb{G}_{π} does not admit a continuous counit, so

$$\mathbb{G}_{\boldsymbol{\pi}} \neq \widetilde{\mathbb{G}_{\boldsymbol{\pi}}}.$$

• It could happen that $\mathbb{G}_{min} = \mathbb{G}_{\pi}$, but in most cases

$$\mathbb{G}_{min} \neq \mathbb{G}_{\pi}$$
.

• there are examples when $\widetilde{\mathbb{G}_{\pi}}=\mathbb{G}_{max},$ but in most cases

$$\widetilde{\mathbb{G}_{\boldsymbol{\pi}}} \neq \mathbb{G}_{\max}$$
.

SUMMARY

• G — coamenable

$$\mathbb{G}_{min} = \mathbb{G} = \widetilde{\mathbb{G}} = \mathbb{G}_{max}.$$

ullet \mathbb{G} — non-coamenable, $\widehat{\mathbb{G}}$ not Kazhdan

$$\mathbb{G}_{min}=\mathbb{G}\neq\widetilde{\mathbb{G}}\neq\mathbb{G}_{max}.$$

ullet $\widehat{\mathbb{G}}$ — Kazhdan, minimally almost periodic

$$\mathbb{G}_{\min} \neq \mathbb{G} \neq \widetilde{\mathbb{G}} = \mathbb{G}_{\max}.$$

ullet $\widehat{\mathbb{G}}$ — Kazhdan, not minimally almost periodic

$$\mathbb{G}_{\min} \neq \mathbb{G} \neq \widetilde{\mathbb{G}} \neq \mathbb{G}_{\max}$$
.

