
Chapter 2

Measures and Measure Spaces

In summarizing the flaws of the Riemann integral we can focus on two main points:

1) Many nice functions are not Riemann integrable.

2) The Riemann integral does not behave well with respect to limits of sequence of functions. That is,
we cannot interchange the limit and the integral.

In the core part of this course we will see how it is possible to develop a theory of integration that goes a
long way to repair these flaws. To do so we will start by looking at how we go about defining an abstract
notion of length for sets.

2.1 Algebras and σ-algebras

Definition 2.1.1. Let X be a non-empty set. We denote by

P(X) = {A | A ⊆ X}.

P(X) is called the power set of X
An algebra of subsets of X is a collection A ⊆ P(X) such that

1. ∅ ∈ A

2. E1, E2 ∈ A implies E1 ∪ E2 ∈ A

3. E ∈ A implies Ec = X \ E ∈ A

A is said to be a σ-algebra if

1) ∅ ∈ A

2) {En}∞n=1 ⊆ A implies
⋃∞
n=1En ∈ A

3) E ∈ A implies Ec = X \ E ∈ A

Remark 2.1.2. 1) Every σ-algebra is an algebra.

2) E1 ∩ E2 = (Ec1 ∪ Ec2)c, so algebras are closed under intersection as well. A similar use of DeMorgan’s
Laws shows that a σ-algebra is closed under countable intersections.

3) Let A be an algebra. Let {Fn} ⊆ A. Let E1 = F1, E2 = F2 \F1, E3 = F3 \ (F1 ∪F2) and then proceed
recursively to define En+1 = Fn+1 \ (F1 ∪ F2 ∪ · · · ∪ Fn). Then {En} ⊆ A, {En} is pairwise disjoint
and

∞⋃
n=1

En =

∞⋃
n=1

Fn.
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4) Let A ⊂ P(X) be an algebra (σ-algebra) and let E ∈ A. Let

A|E = {A ∩ E|A ∈ A}.

Then A|E is an algebra (σ-algebra) in P(E).

Example 2.1.3. P(X) is a σ-algebra.

Proposition 2.1.4. If {Aα}α∈I is a collection of algebras (resp. σ-algebras) then
⋂
α∈I Aα is an algebra

(resp. σ-algebra).

Proof. This proof is left as an exercise.

The previous proposition leads us immediately to the following important observation.

Observation. Given any set S ⊆ P(X) then there exists a smallest algebra (resp. σ-algebra) that contains
S, namely ⋂

{A | S ⊆ A}.

Notation 2.1.6. Given S ⊆ P, let A(S), the algebra generated by S, be the smallest algebra containing S,
and σ(S), the σ-algebra generated by S, be the smallest σ-algebra containing S.

Example 2.1.7. The collection of all finite unions of sets of the form {R, (−∞, b], (a, b], (a,∞)} is an algebra,
but it is not a σ-algebra.

Definition 2.1.8. Let S = {U ⊆ R | U is open}. The σ-algebra generated by S is called the Borel σ-algebra
of R and is denoted B(R).

More generally, we may take the Borel σ-algebra of any topological space (X, τ) which we denote by
B(X).

Of course open and closed sets are certainly the most important elements elements of B(X). However,
there are other classes of sets in B(X) which also play an important role. In particular, a set A ⊆ X is called
Gδ if A =

⋂∞
n=1 Un where each Un is open. A set A ⊆ X is called Fσ if A =

⋃∞
n=1 Fn where each Fn is

closed. A set is A ⊆ X called Gδσ if A =
⋃∞
n=1An where each An is Gδ and it is Fσδ if A =

⋂∞
n=1An where

each An is Fσ.
Additional subscripts may be appended in the most obvious way.

Remark 2.1.9. The Gδ sets are exactly the complements of the Fσ sets, and vice versa.
Notice that in a metric space (X, d) closed sets are always Gδ. To see why suppose that F is closed. For

each n ∈ N let

Un =
⋃
x∈F

B(x,
1

n
).

where B(x, r) = {y ∈ X | d(x, y) < r}. Then Un is open and

F =

∞⋂
n=1

Un.

Problem 2.1.10. Are there sets in R which are neither Fσ or Gδ?

The next fact, which is proved using transfinite induction, shows that the answer to the previous problem
is clearly yes.
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Fact 2.1.11. |B(R)| = c, the cardinality of R.

Problem 2.1.12. Since singletons are closed in R it is clear that every countable set is an Fσ set. But is
Q a Gδ set in R ?

To answer this problem we first recall the notion of category for a topological space.

Definition 2.1.13. A set A in a topological space (X, τ) is said to be nowhere dense if A has empty interior.
It is of first category in (X, τ) if

A =

∞⋃
n=1

An

where An is nowhere dense for each n ∈ N.

A is of second category in (X, τ) if it is not of first category.

A is residual if Ac is of first category.

Theorem 2.1.14. [Baire’s Category Theorem]. Let X be a complete metric space. If {Un}∞n=1 is a
collection of dense open sets then

⋂∞
n=1 Un is dense.

Proof. Let W be open and non-empty. Then there exists an x1 ∈ X and 0 < r1 ≤ 1 such that

B(x1, r1) ⊆ B[x1, r1] ⊆W ∩ U1.

Next we can find x2 ∈ X and 0 < r2 <
1
2 such that

B(x2, r2) ⊆ B[x2, r2] ⊆ B(x1, r1) ∩ U2.

We can then proceed recursively to find sequences {xn} ⊆ X and {rn} ⊂ R with 0 < rn ≤ 1
n , and

B(xn+1, rn+1) ⊆ B[xn+1, rn+1] ⊆ B(xn, rn) ∩ Un+1.

Since rn → 0 and B[xn+1, rn+1] ⊆ B[xn, rn], Cantor’s Intersection Theorem implies that there exists an

x0 ∈
∞⋂
n=1

B[xn, rn.]

But then x0 ∈ B[x1, r1] ⊆W and x0 ∈ B[xn, rn] ⊆ Un for each n ∈ N. This shows that

x0 ∈W ∩ (

∞⋂
n=1

Un).

Remark 2.1.15. The Baire Category Theorem shows that if {Un} is a sequence of open dense sets, then
∞⋂
n=1

Un is dense in X. We also know that
∞⋂
n=1

Un is a Gδ. These dense Gδ subsets of a complete metric space

are always residual, as we will see below, and as such are topologically fat.

Our next corollary shows the connection between the Baire Category Theorem and our notion of category.

Corollary 2.1.16. [Baire Category Theorem II]
Every complete metric space (X, d) is of second category in itself.
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Proof. Assume that X is of first category. Then there exists a sequence An of nowhere dense sets so that

X =

∞⋃
n=1

An =

∞⋃
n=1

An.

Now let Un = (An)c. Then Un is open and dense. But

∞⋂
n=1

Un = ∅

which is impossible.

Corollary 2.1.17. Q is not Gδ in R.

Proof. Assume that Q =
⋂∞
n=1 Un, where Un is open for each n. Then R/Q =

⋃∞
n=1 Fn, where Fn = U cn

is closed and nowhere dense. Let Q = {r1, r2, . . .}. Then F ′n = Fn ∪ {rn} is closed and nowhere dense and
R =

⋃∞
n=1 F

′
n. This is a contradiction since R is not of first category.

The next example is a set in R which is not Borel. Observe that the construction of this set requires the
Axiom of Choice. While this is not necessary to construct non-Borel sets it turns out that this set is even
more pathological than simply being non-Borel. We will see later that it is an example of a set that is also
not Lebesgue measurable.

Example 2.1.18. Consider [0, 1]. Define an equivalence relation on [0, 1] by x ∼ y if x − y ∈ Q. Use the
Axiom of Choice to choose one element from each equivalence class and denote this set by S. We will show
later that S is not Borel.

Remark 2.1.19. There is nothing special about using the open sets of R to define B(R).

B(R) = σ{(a, b) | a, b ∈ R} = σ{(a, b] | a, b ∈ R} = σ{[a, b) | a, b ∈ R} = σ{[a, b] | a, b ∈ R}

2.2 Measures and Measure Spaces

In trying to find a notion of length or measure for an arbitray subset A ⊆ R we are looking for a function
m : P(R)→ R∗ = R ∪ {±∞} with the following properties:

1. m(I) = the usual length of I for all intervals I

2. If {An} is a sequence of pairwise disjoint subsets of R, then

m(

∞⋃
n=1

An) =

∞∑
n=1

m(An).

3. m(x+A) = m(A) for all A ∈ P(R) and x ∈ R.

The problem is that no such measure exists. If we weaken our conditions and only look for a measure on
some sufficiently large sub-σ-algebra A of P(R) then we may succeed. More specifically, we would like A to
contain B(R). The measure function that we get is called the Lebesgue measure on R. It will serve as our
motivation for defining and constructing abstract measures on arbitrary sets.

Definition 2.2.1. A pair (X,A) consisting of a set X together with a σ-algebra A ⊆ P(X) is called a
measurable space. A (countably additive) measure on A is a function µ : A → R∗ = R ∪ {±∞} such that
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1) µ(∅) = 0

2) µ(E) ≥ 0 for all E ∈ A

3) If {En}∞n=1 ⊆ A is a sequence of pairwise disjoint sets, then µ(
⋃∞
n=1En) =

∑∞
n=1 µ(En).

A triple (X,A, µ) is called a measure space where A is a σ-algebra in P(X), and µ is a measure on A. If
E ∈ A, then E is called A-measurable, or more commonly measurable .

(X,A, µ) is complete if µ(E) = 0 and S ⊆ E implies that S ∈ A.
If µ(X) = 1 then µ is called a probability measure and (X,A, µ) is called a probability space. In this case,

the elements of A are called events.

Remark 2.2.2. Condition (3) is known as countable additivity. If we replace (3) by

3′. If {En}Nn=1 ⊆ A is a finite sequence of pairwise disjoint sets, then µ(
⋃N
n=1En) =

∑N
n=1 µ(En), then

µ is called a finitely additive measure on A.
We will see that the assumption of countable additivity for a measure leads to powerful convergence

results for integration. Finitely additive measures are less useful but still play an important role in analysis.
We will generally not consider finitely additive measures in this course.

Example 2.2.3. 1) The simplest example of a measure is the counting measure µ on the set X. More
specifically, for any A ⊆ X we define

µ(A) =

{
| A | if A is finite.

∞ if A is infinite.

where | A | denotes the cardinality of A.

If X is finite, then µ∗(A) = |A|
|X| is caled the normalized counting measure on X.

2) Let (X,A) be a measurable space. Let x0 ∈ X. The point mass at x0 is a measure µx0
defined by

µx0
(A) =

{
1 if x0 ∈ A
0 if x0 6∈ A.

Definition 2.2.4. We call a measure µ finite if µ(X) <∞. We call µ σ-finite if there exists there exists a

sequence {En} ⊆ A such that X =
∞⋃
n=1

En with µ(En) <∞ for each n ∈ N.

Example 2.2.5. Let X = N and A = P(N). Let f : N→ R∗+ be any function. Define

µf (E) :=
∑
n∈E

f(n) =

∞∑
n=1

f(n)χE(n).

It is easy to see that properties 1) and 2) for a measure are satisfied by µf . The fact that µf is countably
additive is simply a restatement of the fact that for positive series the sum is independent of order. That is
if ai,j ≥ 0, then

∞∑
i=1

∞∑
j=1

ai,j =

∞∑
j=1

∞∑
i=1

ai,j .

Hence µf is a countably additive measure on P(N).

The measure µf is finite if and only if
∞∑
n=1

f(n) <∞. That is to say that µf is finite if and only if

f ∈ l1(N)+ = {g ∈ l1(N) | g(n) ≥ 0 for all n ∈ N}.
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In addition, µf is σ-finite if f(n) <∞ for each n ∈ N.
Moreover, if µ is a countably additive measure on P(N), then if we define

fµ : N→ R∗+ by
fµ(n) = µ({n}),

then µ = µfµ . That is, there is a one to one correspondence between measures on R and functions f : N→ R∗+
.

More generally, suppose that X is any set. Given a function f : X → R∗+, we can define

µf (E) := sup{f(x1) + f(x2) + · · ·+ f(xn) | x1, x2, . . . , xn ∈ E, with xi 6= xj if i 6= j}.

Then µf is a countably additive measure on P(X ). If f ∈ l1(X)+, then µf is finite. It is σ-finite if
f(x) = 0 for all but countably many x ∈ X and f(x) <∞ for all x ∈ X.

Problem 2.2.6. Given a measure µ on (X,P(X)) can we always find a function f : X → R∗+ such that
µ = µf?

Consider the measure µ on (R,P(R)) given by

µ(E) =

{
0 if E is countable.

∞ if E is uncountable.

Then it is easy to see that there is no function f : X → R∗+ such that µ = µf .

In this case the measure µ is not σ-finite. If µ was assumed to be σ-finite could such a function f be
found?. What would happen if µ is assumed to be finite?

The proof of the following useful proposition is left as an exercise:

Proposition 2.2.7. Let (X,A, µ) be a measure space and let E ∈ A.

1) Define γE : A → R∗ by
γE(A) = µ(A ∩ E).

Then γE is a measure on A.

2) µ|A|E
is a measure on A|E .

3) Given measures {µ1, µ2, . . . , µn} on A and positive scalars {α1, α2, . . . αn}, then

γ =

n∑
i=1

αiµi

is also a measure on A.

The next proposition is almost trivial but it is none the less very important:

Proposition 2.2.8. (Monotonicity). Let (X,A, µ) be a measure space. If E,F ∈ A with E ⊆ F , then
µ(E) ≤ µ(F ). If µ(E) <∞, then µ(F \ E) = µ(F )− µ(E).

Proof. This follows since
µ(F ) = µ(E) + µ(F \ E)

and hence if µ(E) <∞, then we get
µ(F )− µ(E) = µ(F \ E).
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The next lemma which is also straight forward, will be used many times throughout the course.

Lemma 2.2.9. Let A ⊆ P(X) be an algebra. Assume that {En}∞n=1 ⊆ A. Then there exists {Fn}∞n=1 ⊆ A

such that
k⋃

n=1
En =

k⋃
n=1

Fn for all k ∈ N, Fn ⊆ En for all n ∈ N, and {Fn}∞n=1 is pairwise disjoint. Moreover,

∞⋃
n=1

En =
∞⋃
n=1

Fn.

Proof. Let F1 := E1 ∈ A. For each n ≥ 2, let Fn := En \ (
n−1⋃
i=1

Fi).

Proposition 2.2.10. (Countable Subadditivity) Let (X,A, µ) be a measure space with {En}∞n=1 ⊆ A. Then

µ(

∞⋃
n=1

En) ≤
∞∑
n=1

µ(En).

Proof. Let {Fn}∞n=1 be as in Lemma 2.2.9. Then

µ(

∞⋃
n=1

En) = µ(

∞⋃
n=1

Fn) =

∞∑
n=1

µ(Fn) ≤
∞∑
n=1

µ(En).

Theorem 2.2.11. (Continuity from Below) Let (X,A, µ) be a measure space with {En}∞n=1 ⊆ A. If Ei ⊆
Ei+i for each i ∈ N, then

µ(

∞⋃
n=1

En) = lim
n→∞

µ(En).

Proof. First observe that if µ(En) =∞ for some n ∈ N, then monotonicity shows that

µ(

∞⋃
n=1

En) =∞ = lim
n→∞

µ(En).

As such we may assume that µ(En) <∞ for all n ∈ N.
Let F1 := E1 and for n ≥ 2 let Fn = En \ En−1. Then {Fn}∞n=1 is a pairwsie disjoint sequence with

En =
n⋃
i=1

Fi. Moreover,

µ(Fn) = µ(En)− µ(En−1)

for n > 1. It follows that
m∑
n=1

µ(Fn) = µ(Em).

Finally, we have

µ(

∞⋃
n=1

En) = µ(

∞⋃
n=1

Fn)

=

∞∑
n=1

µ(Fn)

= lim
m→∞

m∑
n=1

µ(Fn)

= lim
m→∞

µ(Em)
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Remark 2.2.12. Theorem 2.2.11 is also called the Monotone Convergence Theorem for Measures.

Theorem 2.2.13. (Continuity from Above) Let (X,A, µ) be a measure space with {En}∞n=1 ⊆ A. If µ(E1) <
∞ and if Ei+1 ⊆ Ei for each i ∈ N, then

µ(

∞⋂
n=1

En) = lim
n→∞

µ(En).

Proof. Let Fn = E1 \ En. Then {Fn} is an increasing sequence of A-measurable sets with

∞⋃
n=1

Fn = E1 \
∞⋂
n=1

En.

and as such by Continuity from Below we have

µ(E1)− µ(

∞⋂
n=1

En) = µ(

∞⋃
n=1

Fn)

= lim
n→∞

µ(Fn)

= lim
n→∞

µ(E1)− µ(En)

= µ(E1)− lim
n→∞

µ(En).

It follows that

µ(

∞⋂
n=1

En) = lim
n→∞

µ(En).

Remark 2.2.14. In the previous Theorem the assumption that µ(E1),∞ was necessary in the sense that if
µ(En) = ∞ for each n ∈ N, then the result may fail. For example, Let X = N and let µ be the counting
measure on P(N). If En = {n, n+ 1, n+ 2, . . .}, then µ(En) =∞ for each n ∈ N, but

µ(

∞⋂
n=1

En) = µ(∅) = 0 6= lim
n→∞

µ(En).

2.3 Constructing Measures: The Carathéodory Method

Suppose that one is looking for a generalized notion of length of subsets of R. It would be reasonable that
we ask for a measure m on P(R) with the following properties:

1) m(I) = length for I for all intervals I

2) m is countably additive

3 m(x+A) = m(A) for all A ∈ P(R) and x ∈ R

The problem is that no such measure exists. If we weaken our conditions and only look for a measure on
some sufficiently large sub-σ-algebra A of P(R) then we may suceed. More specifically, we would like A to
contain B(R) and be complete with respect to the measure. To see how this measure, which is known as
Lebesgues measure, is contructed we will introduce a general process known as the Carathéodory Method
for constructing a measure.
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Definition 2.3.1. [Outer Measure and Measurable sets]
Let X be any non-empty set. A function µ∗ : P(X)→ R∗ is called an outer measure if

1. µ∗(∅) = 0

2. µ∗(A) ≤ µ∗(B) if A ⊆ B (monotonicity)

3. If {En}∞n=1 ⊆ A then µ∗(
⋃∞
n=1En) ≤

∑∞
n=1 µ

∗(En). (countable subadditivity)

We say that µ∗ is finite if µ∗(X) < ∞. We say that µ∗ is σ-finite if there exists a sequence {En} ⊆ P(X)
such that X =

⋃∞
n=1En and µ∗(En) <∞ for all n.

A set E ∈ P(R) is said to be µ∗-measurable or measurable if for every A ∈ P(R)

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

Otherwise we say that E is non-measurable.

Remark 2.3.2. Notice that µ∗(A) ≤ µ∗(A∩E) +µ∗(A∩Ec) for every A ∈ P(X). Thus we need only show
that µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec) for every A ∈ P(X) to show that E is measurable. Furthermore, we
need only assume that µ∗(A) <∞.

In the case that µ∗(A) < µ∗(A ∩ E) + µ∗(A ∩ Ec) then A = (A ∩ E) ∪ (A ∩ Ec) is called a paradoxical
decomposition of the non-measurable set E.

Example 2.3.3. Let I be an interval in R and let `(I) denote its length. For any E ⊆ R define

m∗(E) = inf

{ ∞∑
n=1

`(In) | E ⊆
∞⋃
n=1

In, In’s are open intervals

}

m∗ is called the Lebesgue outer measure on R.

To see that m∗ is indeed an outer measure on R observe that from the definition, it is clear that:

1. m∗(∅) = 0

2. m∗(E) ≥ 0

3. If F ⊆ E, then m∗(F ) ≤ m∗(E).

As such to confirm that m∗ is an outer measure we need only show that m∗ is countably subadditive.

Theorem 2.3.4. If m∗ is the Lebesgue outer measure on R, then m∗ is countably subadditive.

Proof. Let {En}∞n=1 ⊆ P(R). We may assume without lost of generality that m∗(En) < ∞ for all n. Let
ε > 0. For each n ∈ N choose a countable collection {Ii,n} of open intervals with En ⊆

⋃∞
i=1 Ii,n such that∑∞

i=1 `(Ii,n) ≤ m∗(En) + ε
2n . Note that

∞⋃
n=1

En ⊆
∞⋃

i,n=1

Ii,n,
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so

m∗

( ∞⋃
n=1

En

)
≤

∞∑
i,n=1

`(Ii,n)

=

∞∑
n=1

∞∑
i=1

`(Ii,n)

≤
∞∑
n=1

(
m∗(En) +

ε

2n

)
≤

( ∞∑
n=1

m∗(En)

)
+ ε

Since this is true for all ε > 0 we get m∗(
⋃∞
n=1En) ≤

∑∞
n=1m

∗(En).

It is reasonable to ask if m∗, or indeed if any given outer measure µ∗ is in fact a measure. Clearly, if there
is a set E ∈ P(X) which is non-measurable with respect to µ∗, then µ∗ fails to be even finitely additive.

The next theorem illustrates that if we restrict an outer measure µ∗ to the set of all measurable sets,
then we do indeed get a true measure.

Theorem 2.3.5. [Carathéodory’s Theorem] Let µ∗ be an outer measure on X. The set B of µ∗-measurable
sets in P(X) is a σ-algebra and if µ = µ∗|B , then µ is a complete measure on B.

Proof. : It is clear that ∅ ∈ B since for any A ∈ P(X)

µ∗(A) = µ∗(A ∩ R) = µ∗(A ∩ ∅) + µ∗(A ∩ ∅c)

It is also clear that if E ∈ B, then Ec ∈ B by symmetry of the definition of µ∗-measurable.
Let E1, E2 ∈ B and let A ∈ P(X). Since E2 is measurable,

µ∗(A) = µ∗(A ∩ E2) + µ∗(A ∩ Ec2)

Since E1 is measurable,
µ∗(A ∩ Ec2) = µ∗(A ∩ Ec2 ∩ E1) + µ∗(A ∩ Ec2 ∩ Ec1)

These together imply that

µ∗(A) = µ∗(A ∩ E2) + µ∗(A ∩ Ec2 ∩ E1) + µ∗(A ∩ Ec2 ∩ Ec1)

Notice that A ∩ (E1 ∪ E2) = (A ∩ E2) ∪ (A ∩ E1 ∩ Ec2). Thus

µ∗(A ∩ (E1 ∪ E2)) ≤ µ∗(A ∩ E2) + µ∗(A ∩ E1 ∩ Ec2)

by subadditivity, so

µ∗(A) ≥ µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ Ec2 ∩ Ec1) = µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ (E2 ∪ E1)c)

which implies E1 ∪ E2 ∈ B. Therefore B is an algebra.
Now let {Ei}∞i=1 ⊆ B be a sequence of pairwise disjoint µ∗-measurable sets and let E =

⋃∞
i=1Ei. Let

Gn =
⋃n
i=1Ei. Then Gn ∈ B and for any A ∈ P(X)

µ∗(A) = µ∗(A ∩Gn) + µ∗(A ∩Gcn) ≥ µ∗(A ∩Gn) + µ∗(A ∩ Ec)

since Ec ⊆ Gcn. Notice Gn ∩ En = En and Gn ∩ Ecn = Gn−1. Since En is measurable

µ∗(A ∩Gn) = µ∗(A ∩Gn ∩ En) + µ∗(A ∩Gn ∩ Ecn) = µ∗(A ∩ En) + µ∗(A ∩Gn−1)
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An inductive argument shows that µ∗(A ∩Gn) =
∑n
i=1 µ

∗(A ∩ Ei). Therefore

µ∗(A) ≥ µ∗(A ∩ Ec) +

n∑
i=1

µ∗(A ∩ Ei)

for all n. Hence

µ∗(A) ≥ µ∗(A ∩ Ec) +

∞∑
n=1

µ∗(A ∩ Ei) ≥ µ∗(A ∩ Ec) + µ∗

( ∞⋃
n=1

(A ∩ Ei)

)
= µ∗(A ∩ Ec) + µ∗(A ∩ E)

Thus E is measurable. Given any sequence {Ei}∞i=1 ⊆ B with E =
⋃∞
i=1Ei, we can find a pairwise disjoint

sequence {Fi}∞i=1 ⊆ B with E =
⋃∞
i=1 Fi. Hence E ∈ B and B is a σ-algebra.

Let E1, E2 ∈ B be disjoint. Then since E2 is measurable,

µ(E1 ∪E2) = µ∗(E1 ∪E2) = µ∗((E1 ∪E2) ∩E2) + µ∗((E1 ∪E2) ∩Ec2) = µ∗(E2) + µ∗(E1) = µ(E2) + µ(E1)

Hence µ is finitely additive. Let {Ei}∞i=1 ⊆ B be a sequence of pairwise disjoint µ∗-measurable sets and let
E =

⋃∞
i=1Ei. Then

µ(E) = µ∗(E) ≥ µ∗
(

n⋃
i=1

Ei

)
= µ

(
n⋃
i=1

Ei

)
=

n∑
i=1

µ(Ei)

for every n. Taking the limit, we have µ(E) ≥
∑∞
i=1 µ(Ei). On the other hand,

µ(E) = µ∗(E) ≤
∞∑
i=1

µ∗(Ei) =

∞∑
i=1

µ(Ei)

Thus µ(E) =
∑∞
i=1 µ(Ei) and µ is countable additive. Clearly µ(∅) = 0 and µ(E) ≥ 0 for all E ∈ B, so µ is

a measure on B.
Let µ(E) = 0 and F ⊆ E. Then

µ(A) ≥ µ∗(A ∩ F c) = µ∗(A ∩ F c) + µ∗(A ∩ E) ≥ µ∗(A ∩ F c) + µ∗(A ∩ F )

so F ∈ B. Therefore (X,B, µ∗|B) is complete.

2.4 Lebesgue Measure

Remark 2.4.1. Recall that the Lebesgue outer measure m∗ was defined on P(R) by letting

m∗(E) = inf

{ ∞∑
n=1

`(In) | E ⊆
∞⋃
n=1

In, In’s are open intervals

}
for any E ⊆ R.

We denote the σ-algebra of m∗-measurable sets by M(R). Elements of M(R) are said to be Lebesgue
measurable. m = m∗|M(R) is called the Lebesgue measure on R.

In this section we will take a brief look at some of the properties of the Lebesgue measure.

Proposition 2.4.2. If I is an interval, then m∗(I) = `(I).

Proof. Assume that I = [a, b] and let ε > 0. Then if I1 = (a− ε
2 , b+ ε

2 ), we have I ⊆ I1, so

m∗(I) ≤ `(I1) = b− a+ ε = `(I) + ε

Since ε was arbitary, m∗(I) ≤ `(I).
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Assume that I ⊆
⋃∞
i=1 Ii, where each Ii is an open interval. Since [a, b] is compact, there is a finite

subcover. Out of these finitely many elements, choose the longest one that contains a. Without lose of
generality, we may suppose it is I1 = (a1, b1). If b ∈ I1 we are done. Otherwise, choose the longest such

interval that contains b1 and call it I2. Continue this process to get I1, . . . , Ik such that I ⊆
⋃k
i=1 Ii.

Furthermore, if Ij = (aj , bj), then a1 < a < b < bk and a1 < a2 < b1 < a3 < b2 < . . . < ak < bk−1 < bk and
bi − ai ≥ bi − bi−1. Hence

k∑
i=1

bi − ai ≥ b1 − a1 +

k∑
i=2

bi − bi−1 = bk − a1 > b− a

Therefore
∞∑
i=1

`(Ii) ≥
k∑
i=1

`(Ii) =

k∑
i=1

bi − ai > b− a = `(I)

Hence m∗(I) ≥ `(I), so m∗(I) = `(I).
Assume that I is a finite interval. For any ε > 0, we can find a closed interval J ⊆ I such that

`(I) < `(J) + ε. Hence

`(I)− ε < `(J) = m∗(J) ≤ m∗(I) ≤ m∗(Ī) = `(Ī) = `(I)

so m∗(I) = `(I).
Finally, if `(I) = ∞, then for any M > 0 we can find a finite interval J ⊆ I with `(J) > M . Then

m∗(I) ≥ m∗(J) = `(J) > M , so m∗(I) =∞ = `(I).

Lemma 2.4.3. The intervals (a,∞) and (−∞, a] are m∗-measurable.

Proof. Let A ⊆ R. We need to show that

m∗(A) ≥ m∗(A ∩ (a,∞)) +m∗(A ∩ (−∞, a])

and moreover, we may assume that m∗(A) <∞. Let ε > 0. We can find a collection of open intervals with
A ⊆

⋃∞
i=1 Ii and

∑∞
i=1 `(Ii) < m∗(A) + ε. Let I ′n = In ∩ (a,∞) and I ′′n = In ∩ (−∞, a]. Then I ′n and I ′′n are

intervals and `(In) = `(I ′n) + `(I ′′n) = m∗(I ′n) +m∗(I ′′n). We have

m∗(A ∩ (a,∞)) ≤ m∗
( ∞⋃
i=1

I ′i

)
≤
∞∑
i=1

m∗(I ′i)

and

m∗(A ∩ (−∞, a]) ≤ m∗
( ∞⋃
i=1

I ′′i

)
≤
∞∑
i=1

m∗(I ′′i )

Hence

m∗(A ∩ (a,∞)) +m∗(A ∩ (−∞, a]) ≤
∞∑
i=1

m∗(I ′i) +

∞∑
i=1

m∗(I ′′i )

=

∞∑
i=1

m∗(I ′i) +m∗(I ′′i )

=

∞∑
i=1

`(I ′i) + `(I ′′i )

=

∞∑
i=1

`(Ii)

< m∗(A) + ε
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Since ε was arbitrary, m∗(A) ≥ m∗(A ∩ (a,∞)) +m∗(A ∩ (−∞, a]).

Given that intervals of the type (a,∞) and (−∞, a] generate the Borel σ-algebra, the next theorem is
immediate.

Theorem 2.4.4. B(R) ⊆M(R)

Remark 2.4.5. 1) Clearly every countable or finite set has Lebesgue measure 0.

2) Since the length of an interval is translation invariant, it follows that m∗ is also translation invariant.
Now let E ∈M(R), A ⊆ R and x ∈ R. Then

m∗(x+A) = m∗(A)

= m∗(A ∩ E) +m∗(A ∩ Ec)
= m∗((x+A) ∩ (x+ E)) +m∗((x+A) ∩ (x+ Ec))

= m∗((x+A) ∩ (x+ E)) +m∗((x+A) ∩ (x+ E)c)

If A is arbitrary then so is x + A, so x + E ∈ M(R). That is M(R) is translation invariant and as
such so is m.

The following is a useful characterization of Lebesgue measurable sets. It’s proof will be left as an exercise.

Proposition 2.4.6. Let E ⊆ R. The following are equivalent:

1. E ∈M(R)

2. Given ε > 0 there is an open set U ⊆ R with E ⊆ U and m∗(U \ E) < ε.

3. Given ε > 0 there is a closed set F ⊆ R with F ⊆ E and m∗(E \ F ) < ε.

Definition 2.4.7. Let (X, τ) be a topological space. Let A be a σ-algebra in P(X) which contains the
Borel sets B(X). Let µ be a measure on A. Then we say that:

1) µ is inner regular if m(E) = sup{m(K) | K ⊆ E is compact} for all E ∈ A.

2) µ is outer regular if m(E) = inf{m(U) | U ⊇ E is open} for all E ∈ A.

We are now in a position to obtain some important properties of the Lebesgue measure including the
fact that m is both inner and outer regular. The results are either immediate or the follow easily from the
previous proposition.

Theorem 2.4.8. [Regularity of the Lebesgue measure] Let E ∈ B(R). Then

1) m(E) = sup{m(K) | K ⊆ E is compact}

2) m(E) = inf{m(U) | U ⊇ E is open}

3) If U is open, then m(U) =
∑∞
n=1(bn − an) where U =

⋃∞
n=1(an, bn) is a decomposition of U into

disjoint open intervals.

4) m({x}) = 0

5) If K ⊂ R is compact, then m(K) <∞.

Problem 2.4.9. It is reasonable to ask if every A ⊆ R is Lebesgue measurable?
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Example 2.4.10. Let x, y ∈ [0, 1) and let x⊕ y := x+ y (mod 1). If E ⊆ [0, 1) is measurable, then x⊕ E
is measurable and m(E) = m(x ⊕ E). Indeed, let E1 = {y ∈ E | x + y < 1} = E ∩ (−∞, 1 − x) and
E2 = {y ∈ E | x + y ≥ 1} = E ∩ [1 − x,∞). Then E = E1 ∪ E2, E1 ∩ E2 = ∅, and E1, E2 are both
measurable. It follows that

x⊕ E = (x⊕ E1) ∪ (x⊕ E2) = (x⊕ E1) ∪ ((x− 1)⊕ E2)

is measurable and m(x⊕ E) = m(E).
Define an equivalence relation on [0, 1) by x ∼ y ⇔ x − y ∈ Q. Using the Axiom of Choice, construct

a set E ⊆ [0, 1) consisting of one element from each equivalence class. Let Q ∩ [0, 1) = {r1, r2, . . .} be an
enumeration of the rationals in [0, 1). Let En := rn ⊕ E. Is E measurable?

If E is measurable, then En is measurable and m(E) = m(En) for each n. But [0, 1) =
⋃∞
n=1En, and

the En’s are pariwise disjoint, so

1 = m([0, 1)) =

( ∞⋃
n=1

En

)
=

∞∑
n=1

m(En) =

∞∑
n=1

m(E)

which is impossible. The set E in this example is not Borel, since the Borel sets are measurable. Unfortu-
nately, E is not a particularily nice non-Borel set, as its existence depends on the Axiom of Choice.

We have seen that using the Aziom of Choice we can construct a non-measurable set. (As an exercise,
show that, assuming the Axiom of Choice, if m(E) > 0, then E contains a non-measurable set.) In contrast,
without the Axiom of Choice we can find a model for the real line in which every subset is in fact Lebesgue
measurable.

Problem 2.4.11. Given a Borel set Λ in R2, is it necessarily true that the projection of Λ onto the real line
is Borel? (The answer is no, but this is not obvious why this would be so).

Example 2.4.12. We have already noted that since singletons are measurable with measure 0, it follows
that every countable subset of R is measurable with measure 0.

The Cantor set C is compact, nowhere dense, and has cardinality c. It turns out that it also has measure
zero. Since m is complete, it follows from this that the cardinality of M(R) is 2c. As such most Lebesgue
measurable sets are non-Borel.

2.5 Extending Measures

The Carathéodory Method allowed us to construct a measure from an outer measure. In this section we will
see how to extend measures from an algebra to a full σ-algebra.

Definition 2.5.1. Let A ⊆ P(x) be an algebra. A measure on A is a function µ : A → R∗ such that

1) µ(∅) = 0

2) µ(E) ≥ 0 for all E ∈ A

3) If {En}∞n=1 ⊆ A is a sequence of pairwise disjoint sets with
∞⋃
n=1

En ∈ A, then µ(
∞⋃
n=1

En) =
∞∑
n=1

µ(En).

Proposition 2.5.2. Given such a measure µ on an algebra A ⊆ P(X) define µ∗ : P(X)→ R∗ by

µ∗(A) = inf
{ ∞∑
n=1

µ(En)|{En} ⊆ A, A ⊆
∞⋃
n=1

En

}
.

Then

29



1) µ∗(∅) = 0.

2) µ∗(B) ≥ 0 for each B ∈ P(X).

3) If A ⊆ B, then µ∗(A) ≤ µ∗(B).

4) If B ∈ A, then µ∗(B) = µ(B).

5) If {Bn}∞n=1 ⊆ P(X), then µ∗(
⋃∞
n=1Bn) ≤

∞∑
n=1

µ∗(Bn).

Proof. The proof of 1), 2), 3) are immediate conseqeunces of the definition.

To prove 4) we first note that µ∗(B) ≤ µ(B) for all B ∈ A.

Let {Fn}∞n=1 ⊆ A be such that B ⊆
∞⋃
n=1

Fn.

Let E1 = F1, E2 = F2 \ F1, E3 = F3 \ (F1 ∪ F2) and then proceed recursively to define En+1 =
Fn+1 \ (F1 ∪ F2 ∪ · · · ∪ Fn). Then {En} ⊆ A, {En} is pairwise disjoint and

∞⋃
n=1

En =

∞⋃
n=1

Fn.

Observe also that

B =

∞⋃
n=1

(B ∩ En)

It follows that

µ(B) = µ(

∞⋃
n=1

(B ∩ En))

=

∞∑
n=1

µ(B ∩ En)

≤
∞∑
n=1

µ(En)

≤
∞∑
n=1

µ(Fn).

Hence µ(B) ≤ µ∗(B).

To prove 5), let ε > 0 and choose sequences {En,k} ⊂ A such that

Bn ⊆
∞⋃
k=1

En,k and

∞∑
k=1

µ(En,k) ≤ µ∗(Bn) +
ε

2n
.

Then {En,k} is a countable collection of sets in A whose union contains
∞⋃
n=1

Bn. Hence

µ∗(

∞⋃
n=1

Bn) ≤
∞∑
n=1

( ∞∑
k=1

µ(En,k)
)

≤
∞∑
n=1

(µ∗(Bn) +
ε

2n
)

= (

∞∑
n=1

µ∗(Bn)) + ε
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Remark 2.5.3. It is clear from the previous proposition that µ∗ is an outer measure on P(X). We call µ∗

the outer measure generated by µ. The next theorem shows us that µ can be extended to a measure on the
full σ-algebra generated by the algebra A.

Theorem 2.5.4. [Carathéodory Extension Theorem]
Let µ be a measure on an algebra A ⊆ P(X). Let µ∗ be the outer measure generated by µ. Let A∗ be the

σ-algebra of µ∗ measurable sets. Then A ⊆ A∗ and µ extends to a measure µ̄ on A∗.

Proof. We need only show that A ⊆ A∗. Let E ∈ A and let A ⊆ X. As before, we can assume that
µ∗(A) <∞ and that we need only show that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec).

Let ε > 0 and choose{Fn} ⊂ A such that

A ⊆
∞⋃
n=1

Fn and

∞∑
n=1

µ(Fn) ≤ µ∗(A) + ε.

Note that

A ∩ E ⊆
∞⋃
n=1

E ∩ Fn and A ∩ Ec ⊆
∞⋃
n=1

Ec ∩ Fn.

It follows that

µ∗(A ∩ E) ≤
∞∑
n=1

µ(E ∩ Fn) and µ∗(A ∩ Ec) ≤
∞∑
n=1

µ(Ec ∩ Fn).

Hence

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤
∞∑
n=1

µ(E ∩ Fn) +

∞∑
n=1

µ(Ec ∩ Fn)

=

∞∑
n=1

µ(Fn)

≤ µ∗(A) + ε.

Since ε was arbitray, we have µ∗(A ∩ E) + µ∗(A ∩ E) ≤ µ∗(A).
The remainder of the Proposition follows from Carathéodory’s Theorem.

Remark 2.5.5. The measure µ̄ constructed in the previous theorem is called the Carathéodory extension
of the measure µ.

We can ask: given a measure µ on an algebra A, is the extension of µ to A∗ unique?

Example 2.5.6. Let X = (0, 1] ∩ Q. Let A be the algebra of all finite union of sets of the form (a, b] ∩ Q
where a, b ∈ X. It is easy to see that the smallest σ-algebra containing A is all of P(X). Let µ be the
counting measure on A. Then

µ(E) =

{
0 if E = ∅
∞ otherwise.

This implies that for each A ∈ P(X),

µ∗(A) =

{
0 if A = ∅
∞ otherwise.
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From the Carathéodory Extension Theorem we can conclude that A∗ = P(X) and that µ̄ = µ∗. On the
other hand, the counting measure on P(X) = A∗ also extends µ but it is not equal to µ̄.

Observe that in this example the original measure µ fails to be σ-finite.

Theorem 2.5.7. [Hahn Extension Theorem]
Suppose that µ is a σ-finite measure on an algebra A. Then there is a unique extension µ̄ to a measure

on A∗, the σ-algebra of all µ∗-measurable sets.

Let γ be a measure on A∗ that agrees with µ on A. Let µ̄ be the Carathéodory extension of µ.
Case 1: Assume that µ(X) <∞, and hence that both γ and µ̄ are also finite.

Let E ∈ A∗ and let {En}∞n=1 ⊆ A with E ⊆
∞⋃
n=1

En. Then

γ(E) ≤ γ(

∞⋃
n=1

En) ≤
∞∑
n=1

γ(En) =

∞∑
n=1

µ(En).

From this it follows that
γ(E) ≤ µ∗(E) = µ̄(E).

A similar argument shows that
γ(Ec) ≤ µ∗(Ec) = µ̄(Ec).

However
γ(E) + γ(Ec) = γ(X) = µ(X) = µ̄(X) = µ̄(E) + µ̄(Ec).

and since γ(E) ≤ µ∗(E) and γ(Ec) ≤ µ∗(Ec), we must have γ(E) = µ∗(E).
Case 2: Assume that µ is a σ-finite. Let {Fn} ⊂ A be an increasing sequence with µ(Fn) < ∞ and

X =
∞⋃
n=1

Fn. Then µ̄(E ∩ Fn) = γ(E ∩ Fn) for each n ∈ N and all E ∈ A∗. It follows that

µ̄(E) = lim
n→∞

µ̄(E ∩ Fn) = lim
n→∞

γ(E ∩ Fn) = γ(E)

and we are done.

2.6 Lebesgue-Stieltjes Measures

In this section we will use the Carathéodory Extension Theorem to identify a fundamental class of measures
which generalize the Lebesgue measure on R.

Let A be the collection of all finite unions of sets of the form (−∞, b], (a,∞), (a, b]. Then it is easy to
show that A is an algebra. Let F (x) be a non-decreasing function on R with

F (c) = lim
x→c+

F (x)

for each c ∈ R. Note also that lim
x→−∞

F (x) and lim
x→∞

F (x) both exist as extended real numbers. Define

1) µF ((a, b]) = F (b)− F (a)

2) µF ((a,∞)) = lim
x→∞

F (x)− F (a)

3) µF ((−∞, b]) = F (b)− lim
x→−∞

F (x)

4) µF ((−∞,∞)) = lim
x→∞

F (x)− lim
x→−∞

F (x)

5) µF (∅) = 0

We can then extend µF to all of A in the obvious way.
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Theorem 2.6.1. Let F (x) be a non-decreasing function on R with

F (c) = lim
x→c+

F (x)

for each c ∈ R. Let µF be defined as above. Then µF is a measure on the algebra A of all finite unions of
sets of the form (−∞, b], (a,∞), (a, b].

Proof. We will prove that if {(an, bn]} is a pairwise disjoint sequence of intervals with

(a, b] =

∞⋃
n=1

(an, bn],

then

µF ((a, b]) =

∞∑
n=1

µF ((an, bn]).

Let {(an1
, bn1

], (an2
, bn2

], . . . , (ank , bnk ]} be any finite collection of theses intervals. We may assume that

a ≤ an1 < bn1 ≤ an2 < bn2 ≤ · · · ≤ ank < bnk ≤ b

Then

k∑
i=1

µF ((ani , bni ]) =

k∑
i=1

F (bni)− F (ani)

= F (bn1
)− F (an1

) + F (bn2
)− F (an2

) + · · ·+ F (bnk)− F (ank)

= F (bnk)− (F (ank)− F (bnk−1
))− · · · (F (an2

− F (bn1
))− F (an1

)

≤ F (bnk)− F (an1
)

≤ F (b)− F (a)

= µF ((a, b]

Since the number of subintervals in the collection was arbitrary, this shows that

µF ((a, b]) ≥
∞∑
n=1

µF ((an, bn]).

From here on we may assume that a1 = a.
Now let ε > 0. Then choose a sequence {εn} of positive numbers so that

∞∑
n=1

εn <
ε

2
.

Next since F is continuous from the right, for each n = 1, 2, 3, . . . we can pick a δn > 0 such that

F (bn + δn)− F (bn) < εn.

And finally, let δ0 be chosen so that 0 < δ0 < b− a and

F (a+ δ0)− F (a) <
ε

2

Since the interval [a+ δ0, b] is compact and since {(an, bn + δn)} is a cover we can find finitely many of
these intervals

{(an1
, bn1

+ δn1
), (an2

, bn2
+ δn2

), . . . , (ank , bnk + δnk)}
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which also cover [a + δ0, b]. By reordering if necessary and omitting unnecessary intervals we can assmue
that

an1
< a+ δ0 < bn1

+ δn1

and
an1

< an2
< bn1

+ δn1
< an3

< bn2
+ δn2

< an4
< · · · ank < bnk−1

+ δnk−1
≤ b < bnk + δnk

Then

F (b)− F (a+ δ0) ≤ F (bnk + δk)− F (an1
)

≤
k∑
i=1

F (bni + δi)− F (ani)

≤
k∑
i=1

(F (bni)− F (ani) + εi)

< (

k∑
i=1

F (bni)− F (ani)) +
ε

2

From this it follows that

F (b)− F (a) < (

k∑
i=1

F (bni)− F (ani)) + ε

and since ε was arbitrary we get

µF ((a, b]) = F (b)− F (a) ≤
∞∑
n=1

F (bn)− F (an) =

∞∑
n=1

µF ((an, bn]).

Finally this shows that

µF ((a, b]) =

∞∑
n=1

µF ((an, bn]).

The remaining cases are similar.

Definition 2.6.2. Let F (x) be a non-decreasing function on R with

F (c) = lim
x→c+

F (x)

for each c ∈ R. The measure µF obtained in the previous proposition is called the Lebesgue-Stieltjes measure
associated with F .

Theorem 2.6.3. Let F (x) be a non-decreasing function on R. Then µF is regular.

Proof. Let E ⊆ R be µF -measurable.
Step 1: First assume that E ⊆ [a, b]. Let ε > 0. Then there exists a sequence {(an, bn]} such that

(an, bn] ⊆ [a− 1, b+ 1],

E ⊆
∞⋃
n=1

(an, bn]

and
∞∑
n=1

µF ((an, bn]) < µF (E) +
ε

2
.
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For each n ∈ N choose 0 < δn < 1 so that

µF ((an, bn + δn)) < µF ((an, bn]) +
ε

2n
.

Then

E ⊆
∞⋃
n=1

(an, bn]

and
∞∑
n=1

µF ((an, bn + δn)) <

∞∑
n=1

[µF ((an, bn]) +
ε

2n
] < µF (E) + ε.

Hence we have shown that there is an open set U =
∞⋃
n=1

(an, bn + δn) with E ⊆ U and µF (U)− µF (E) < ε.

Now let E′ = [a, b] \ E. Then there exists an open set U ′ such that E′ ⊆ U ′ and µF (U ′)− µF (E′) < ε. Let
K = [a, b] \ U ′. Then K is compact, K ⊆ E and

µF (E \K) < ε.

Step 2: Next assume that µF (E) <∞. Let {Ej}j∈Z = {(j, j + 1]}n∈Z. Then

E =
⋃
j∈Z

Ej .

For each j ∈ Z, let εj > 0 be chosen so that
∑
j∈Z

εj <
ε
2 . Then we can find compact sets {Kj}j∈Z and open

sets {Uj}j∈Z such that Kj ⊆ Ej ⊆ Uj with

µF (Uj)− µF (Ej) < εj

and
µF (Ej)− µF (Kj) < εj

Then if U =
⋃
j∈Z

Uj , then E ⊆ U and µF (U \ E) < ε
2 < ε.

µF (E) = inf{µF (U)|E ⊆ U,U is open}.

We can find an M ∈ N so that µF (E \ [−M,M ]) < ε
2 . Let

K =

M⋃
j=−M−1

Kj .

Then K is compact, K ⊆ E and µF (E \K) < ε. Hence

µF (E) = sup{µF (K)|K ⊆ E,K is compact}.

Step 3: If µF (E) =∞, then clearly µF (U) =∞ for any open set U with E ⊂ U . Hence

µF (E) = inf{µF (U)|E ⊆ U,U is open}.

For any M > 0 there is an n ∈ N such that

µF (E ∩ [−n, n]) > M + 1.

But then there exists a compact set K such that K ⊆ E ∩ [−n, n] with µF (K) > M . It follows that

µF (E) = sup{µF (K)|K ⊆ E,K is compact}.
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At this point we have seen that every right continuous non-decreasing function induces a unique regular
measure on B(R). We shall see that if we add the additional requirement that the measure be finite, then
all such measures arise this way.

Theorem 2.6.4. Let µ be a finite regular measure on B(R). Let

F (x) = µ((−∞, x]).

Then F (x) is nondecreasing, right continuous and

µF (E) = µ(E)

for every E ∈ B(R).

Proof. It is clear that F (x) is nondecreasing. Since µ is finite and since

(−∞, x] =

∞⋂
n=1

(−∞, x+
1

n
]

we have that

F (x) = µ((−∞, x]) = lim
n→∞

(−∞, x+
1

n
] = lim

n→∞
F (x+

1

n
)

Since F (x) is nondecreasing, this shows that

F (x) = lim
t→x+

F (t).

That is F (x) is right continuous.
Finally, we have that for each interval I of the type (−∞, b], (a,∞), (a, b], it is immediate that

µ(I) = µF (I).

It follows from the Hahn Extension Theorem that µ = µF on B(R).
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