Proof of the Lebesgue Differentiation Theorem

Brian Forrest

August 30, 2013

Brian Forrest [Proof of the Lebesgue Differentiation Theorem](#page-7-0)

Theorem [Lebesgue's Differentiation Theorem]: Let $f : [a, b] \rightarrow \mathbb{R}$ be increasing. Then f is differentiable almost everywhere on $[a, b]$, f' is measureable, integrable and

$$
\int_{[a,b]} f' dm \leq f(b) - f(a).
$$

Corollary: If f is of bounded variation on [a, b], then it is differentiable almost everywhere. In particular, if f is absolutely continuous on $[a, b]$, then it is differentiable almost everywhere.

Lebesgue's Differentiation Theorem:

Proof: Consider
$$
E = \{x \in [a, b] | D^+ f(x) > D_- f(x)\}
$$
. Let

$$
E_{r,s} = \{x \in [a, b] | D^+ f(x) > r > s > D_- f(x)\},
$$

for $r, s \in \mathbb{Q}$. Then

$$
E=\bigcup_{r,s\in\mathbb{Q}}E_{r,s}.
$$

Let $\alpha = m^*(E_{r,s})$ and $\epsilon > 0$. Choose U open such that $m(U) < \alpha + \epsilon$ and $E_{r,s} \subseteq U.$ For each $x \in E_{r,s}$, there is an arbitrarily small $h > 0$ such that $[x - h, x] \subseteq U$ and

$$
\frac{f(x)-f(x-h)}{h}
$$

By Vitali's Lemma, there are finitely may disjoint intervals I_1, \ldots, I_N of this type such that the interiors of the I_n 's cover a subset A of $E_{r,s}$ with $m^*(A) > \alpha - \epsilon$.

Differentiation of Monotone Functions:

Proof Cont'd:
\nIf
$$
I_n = [x_n - h_n, x_n]
$$
 for each $n = 1, 2, \dots, N$, then
\n
$$
\sum_{n=1}^N [f(x_n) - f(x_n - h_n)] \leq s \sum_{n=1}^N h_n < s \cdot m(U) < s(\alpha + \epsilon)
$$

Now for each point $y \in A$, there is an arbitrarily small interval $[y, y + k]$ that is contained in some I_n and is such that

$$
\frac{f(y+k)-f(y)}{k}>r.
$$

Therefore

$$
f(y+k)-f(y)>k.
$$

Appying Vitali's Lemma again, we get intervals J_1, \ldots, J_M disjoint and of the type $[y, y+k] \subseteq I_n$ such that $\bigcup\, J_i$ contains a subset B of A with M $i=1$ outer measure at least $\alpha - 2\epsilon$.

Differentiation of Monotone Functions:

Proof Cont'd: Hence

$$
\sum_{i=1}^M [f(y_i+k_i)-f(y_i)] > r \sum_{i=1}^M k_i \geq r(\alpha-2\epsilon).
$$

Since $J_i \subset I_n$ and f is increasing,

$$
\sum_{J_i\subseteq I_n}[f(y_i+k_i)-f(y_i)]\leq f(x_n)-f(x_n-h_n).
$$

It follows that

$$
r(\alpha-2\epsilon)\leq \sum_{i=1}^M[f(y_i+k_i)-f(y_i)]\leq \sum_{n=1}^N[f(x_n)-f(x_n-h_n)]\leq s(\alpha-\epsilon)
$$

Since $\epsilon > 0$ is arbitrary, $r\alpha \leq s\alpha$. Since $r > s$, this implies that $\alpha = 0$. Therefore $m^*(E_{r,s}) = 0$, so $m(E_{r,s}) = 0$ and so $m(E) = 0$.

Proof Cont'd: Similarly, if

$$
E_1 = \{x \in [a, b] \mid D^-f(x) > D_+f(x)\}
$$

then $m(E_1) = 0$. From this we can deduce that

$$
D^+f(x) = D^-f(x) = D_+f(x) = D_-f(x)
$$

almost everywhere. Therefore

$$
g(x) = \lim_{h \to 0} \frac{f(x) - f(x+h)}{h}
$$

exists as an extended real number almost everywhere on $[a, b]$.

Differentiation of Monotone Functions:

Proof Cont'd: Let

$$
g_n(x) = n[f(x+\frac{1}{n})-f(x)],
$$

where $f(x) = f(b)$ for $x \ge b$. Then $g_n \rightarrow g$ almost everywhere on [a, b] and since f is increasing, $g_n \geq 0$. Hence $g \geq 0$ and g is measurable. By Fatou's Lemma,

$$
\int_{[a,b]} g dm \leq \liminf_{n} \int_{[a,b]} g_n dm
$$
\n
$$
= \liminf_{n} \left[f(x + \frac{1}{n}) - f(x) \right] dx
$$
\n
$$
= \liminf_{n} \left[n \int_{[b,b+\frac{1}{n}]} f dm - n \int_{[a,a+\frac{1}{n}]} f dm \right]
$$
\n
$$
= \liminf_{n} \left[f(b) - n \int_{[a,a+\frac{1}{n}]} f dm \right]
$$
\n
$$
\leq f(b) - f(a)
$$

Therefore, g is integrable. Hence $g(x)$ is finite almost everywhere so $f(x)$ is differentiable almost everywhere with $f'(x) = g(x)$. Finally,

$$
\int_{[a,b]} f' dm = \int_{[a,b]} g dm \leq f(b) - f(a).
$$