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Lebesgue's Differentiation Theorem:

Theorem [Lebesgue’s Differentiation Theorem]: Let
f :[a, b] — R be increasing. Then f is differentiable almost
everywhere on [a, b], f’ is measureable, integrable and

/ f'dm < f(b) — £(a).
[a.6]

Corollary: If f is of bounded variation on [a, b], then it is
differentiable almost everywhere. In particular, if f is absolutely
continuous on [a, b], then it is differentiable almost everywhere.
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Lebesgue's Differentiation Theorem:

Proof: Consider E = {x € [a, b] | DTf(x) > D_f(x)}. Let
E,s={x€[ab]|D"f(x)>r>s>D_f(x)}

for r,s € Q.
Then

E= U E ..

r,scQ

Let & = m*(E;s) and € > 0. Choose U open such that m(U) < oo+ ¢
and E, ; C U. For each x € E, s, there is an arbitrarily small h > 0 such
that [x — h,x] C U and

f(x) — _
() —fx—h) __
h
By Vitali's Lemma, there are finitely may disjoint intervals /y,..., Iy of

this type such that the interiors of the /,'s cover a subset A of E, s with
m*(A) > a —e.
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Differentiation of Monotone Functions:

Proof Cont’d:
If I, = [xn — hpn, xpn] for each n=1,2,--- N, then

N N
D [F(xa) = Flxa — b))l <5 hy<s5-m(U) < s(a+e)
n=1 n=1

Now for each point y € A, there is an arbitrarily small interval [y, y + k]
that is contained in some /, and is such that

fly + k) —fy)

K >r.
Therefore
fly+k)—~f(y) > rk.
Appying Vitali's Lemma again, we get intervals Ji, ..., Jy disjoint and of
M

the type [y,y + k] C I, such that |J J; contains a subset B of A with

i=1
outer measure at least o — 2e.
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Differentiation of Monotone Functions:

Proof Cont’d: Hence
M M
STIF(yi + ki) = Fl > 1> ki > r(a - 2¢).
i=1 i=1

Since J; C I, and f is increasing,

D TF(yi+ ki) = F(yi)] < F(m) — F(x0 — ).

-/igln

It follows that
M
r(a — 2¢) Zf(y,—i—k —fy,]<Z[fx,,—f( —hy)] <s(a—¢)
i=1 n=1

Since € > 0 is arbitrary, ra < sa. Since r > s, this implies that o = 0.
Therefore m*(E, s) =0, so m(E, s) =0 and so m(E) = 0.
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Differentiation of Monotone Functions:

Proof Cont’d: Similarly, if
Ey ={x€a,b]| D" f(x) > Dif(x)}
then m(E;) = 0. From this we can deduce that
D*f(x) = D™ f(x) = D, f(x) = D_f(x)
almost everywhere. Therefore

g(x) = /!igno W

exists as an extended real number almost everywhere on [a, b].

Brian Forrest Proof of the Lebesgue Differentiation Theorem



Differentiation of Monotone Functions:

Proof Cont’'d: Let
1
gn(x) = nl[f(x + ) = f(x)],

where f(x) = f(b) for x > b. Then g, — g almost everywhere on [a, b]
and since f is increasing, g, > 0. Hence g > 0 and g is measurable.
By Fatou's Lemma,

/ gdm < Iiminf/ gndm
[a,b] " [a,b]

. 1
= liminf n/[ayb][f(x—k)—f(x)] dx

n n

= liminf n/ fdm—n/ fdm
n [b,b+1] [a,a+1]

= liminf |f(b) — n fdm
" [ (®) /[a,aﬂl 1
f(b) —f(a)

IN
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Differentiation of Monotone Functions:

Therefore, g is integrable. Hence g(x) is finite almost everywhere
so f(x) is differentiable almost everywhere with f'(x) = g(x).

/ f’dm:/ gdm < f(b) — f(a).
[a,b] [a,b]

Finally,
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