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Lebesgue’s Differentiation Theorem:

Theorem [Lebesgue’s Differentiation Theorem]: Let
f : [a, b]→ R be increasing. Then f is differentiable almost
everywhere on [a, b], f ′ is measureable, integrable and∫

[a,b]
f ′dm ≤ f (b)− f (a).

Corollary: If f is of bounded variation on [a, b], then it is
differentiable almost everywhere. In particular, if f is absolutely
continuous on [a, b], then it is differentiable almost everywhere.
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Lebesgue’s Differentiation Theorem:

Proof: Consider E = {x ∈ [a, b] |D+f (x) > D−f (x)}. Let

Er ,s = {x ∈ [a, b] |D+f (x) > r > s > D−f (x)},

for r , s ∈ Q.
Then

E =
⋃

r ,s∈Q
Er ,s .

Let α = m∗(Er ,s) and ε > 0. Choose U open such that m(U) < α + ε
and Er ,s ⊆ U. For each x ∈ Er ,s , there is an arbitrarily small h > 0 such
that [x − h, x ] ⊆ U and

f (x)− f (x − h)

h
< s.

By Vitali’s Lemma, there are finitely may disjoint intervals I1, . . . , IN of

this type such that the interiors of the In’s cover a subset A of Er ,s with

m∗(A) > α− ε.
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Differentiation of Monotone Functions:

Proof Cont’d:
If In = [xn − hn, xn] for each n = 1, 2, · · · ,N, then

N∑
n=1

[f (xn)− f (xn − hn)] ≤ s
N∑

n=1

hn < s ·m(U) < s(α + ε)

Now for each point y ∈ A, there is an arbitrarily small interval [y , y + k]
that is contained in some In and is such that

f (y + k)− f (y)

k
> r .

Therefore
f (y + k)− f (y) > rk.

Appying Vitali’s Lemma again, we get intervals J1, . . . , JM disjoint and of

the type [y , y + k] ⊆ In such that
M⋃
i=1

Ji contains a subset B of A with

outer measure at least α− 2ε.
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Differentiation of Monotone Functions:

Proof Cont’d: Hence

M∑
i=1

[f (yi + ki )− f (yi )] > r
M∑
i=1

ki ≥ r(α− 2ε).

Since Ji ⊆ In and f is increasing,∑
Ji⊆In

[f (yi + ki )− f (yi )] ≤ f (xn)− f (xn − hn).

It follows that

r(α− 2ε) ≤
M∑
i=1

[f (yi + ki )− f (yi )] ≤
N∑

n=1

[f (xn)− f (xn − hn)] ≤ s(α− ε)

Since ε > 0 is arbitrary, rα ≤ sα. Since r > s, this implies that α = 0.
Therefore m∗(Er ,s) = 0, so m(Er ,s) = 0 and so m(E ) = 0.
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Differentiation of Monotone Functions:

Proof Cont’d: Similarly, if

E1 = {x ∈ [a, b] |D−f (x) > D+f (x)}

then m(E1) = 0. From this we can deduce that

D+f (x) = D−f (x) = D+f (x) = D−f (x)

almost everywhere. Therefore

g(x) = lim
h→0

f (x)− f (x + h)

h

exists as an extended real number almost everywhere on [a, b].
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Differentiation of Monotone Functions:

Proof Cont’d: Let

gn(x) = n[f (x +
1

n
)− f (x)],

where f (x) = f (b) for x ≥ b. Then gn → g almost everywhere on [a, b]
and since f is increasing, gn ≥ 0. Hence g ≥ 0 and g is measurable.
By Fatou’s Lemma,∫

[a,b]

g dm ≤ lim inf
n

∫
[a,b]

gn dm

= lim inf
n

n

∫
[a,b]

[f (x +
1

n
)− f (x)] dx

= lim inf
n

[
n

∫
[b,b+ 1

n ]

f dm − n

∫
[a,a+ 1

n ]

f dm

]

= lim inf
n

[
f (b)− n

∫
[a,a+ 1

n ]

f dm

]
≤ f (b)− f (a)
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Differentiation of Monotone Functions:

Therefore, g is integrable. Hence g(x) is finite almost everywhere
so f (x) is differentiable almost everywhere with f ′(x) = g(x).

Finally, ∫
[a,b]

f ′ dm =

∫
[a,b]

g dm ≤ f (b)− f (a).
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