PACKING T-JOINS AND EDGE COLOURING IN PLANAR GRAPHS

BERTRAND GUENIN

ABSTRACT. Let \mathcal{G} be a planar graph and let T be a subset of vertices of \mathcal{G} of even cardinality. Suppose that there exists a T-cut of \mathcal{G} of cardinality at most five and that the parity of the cardinality of every T-cut is the same. We show that in that case the cardinality of the smallest T-cut is equal to the maximum number of pairwise disjoint T-joins. As a corollary we obtain that for $k \in \{4, 5\}$, a k-regular planar graph has chromatic index k if and only if for every subset of vertices X of odd cardinality there are at least k edges with exactly one end in X. The case where k = 4 was conjectured by Seymour in 1979.

1. INTRODUCTION

In this paper graphs will be allowed parallel edges but will be loopless. A *cut* of a graph \mathcal{G} is a set of edges $\delta_{\mathcal{G}}(U) := \{uv \in E(\mathcal{G}) : u \in U, v \notin U\}$ where $U \neq \emptyset, U \neq V(\mathcal{G})$. The cardinality of $\delta_{\mathcal{G}}(U)$ is denoted $d_{\mathcal{G}}(U)$. Let v be a vertex of \mathcal{G} , we write $\delta_{\mathcal{G}}(v)$ and $d_{\mathcal{G}}(v)$ for $\delta_{\mathcal{G}}(\{v\})$ and $d_{\mathcal{G}}(\{v\})$ respectively. In cases when there is no ambiguity we shall omit the index \mathcal{G} . Thus d(v) denotes the degree of v.

A graft is a pair (\mathcal{G}, T) where \mathcal{G} is a graph and T a subset of vertices of even cardinality. A T-cut is a cut $\delta(U)$ where $|U \cap T|$ is odd. A T-join is a set of edges B which has the property that T is the set of vertices of odd degree of $\mathcal{G}[B]$ (the graph induced by B). Note that we do not require T-cuts and T-joins to be inclusion-wise minimal. We say that (\mathcal{G}, T) is a postman set if $E(\mathcal{G})$ is a T-join.

The cardinality of the smallest T-cut is denoted $\tau(\mathcal{G}, T)$. We call a collection of pairwise disjoint T-joins a *packing* (of T-joins). The cardinality of the largest packing is denoted $\nu(\mathcal{G}, T)$. The following observation is easy and well known,

Remark 1.1. Let $\delta(U)$ be a *T*-cut and let *B* be a *T*-join then $|\delta(U) \cap B|$ is odd.

Key words and phrases. T-joins, T-cuts, packing, graph colouring, chromatic index.

The last remark implies in particular that $\tau(\mathcal{G},T) \geq \nu(\mathcal{G},T)$. The graft (\mathcal{G},T) packs when equality holds. The parity of a *T*-cut $\delta(U)$ is the parity of d(U). Next we characterize grafts which have the property that all *T*-cuts have the same parity.

Proposition 1.2. The following statements are equivalent for a graft (\mathcal{G}, T) where $T \neq \emptyset$.

- (1) all *T*-cuts have the same parity,
- (2) \mathcal{G} is Eulerian or (\mathcal{G}, T) is a postman set.

Proof. Suppose that (2) holds. If \mathcal{G} is Eulerian then all cuts are even, in particular so are all T-cuts. If (\mathcal{G}, T) is a postman set then for every T-cut $\delta(U)$ we have $d(U) = |\delta(U) \cap E(\mathcal{G})|$ which is odd because of Remark 1.1 and the fact that $E(\mathcal{G})$ is a T-join. Suppose that (1) holds. Since $T \neq \emptyset$ there exists a T-cut, say $\delta(U)$. Consider a vertex $v \notin T$. Then $\delta(U \bigtriangleup \{v\})$ is a T-cut. Note that $\delta(v) = \delta(U \bigtriangleup U \bigtriangleup \{v\}) = \delta(U) \bigtriangleup \delta(U \bigtriangleup \{v\})$. Since $\delta(U), \delta(U \bigtriangleup \{v\})$ have the same parity, d(v) is even. Thus vertices not in T have even degree. We may assume that \mathcal{G} has vertex w of odd degree for otherwise \mathcal{G} is Eulerian. Then $w \in T$. To complete the proof it suffices to show that if a vertex $v \in T$ then v has odd degree. Since $\delta(U)$ is a T-cut so is $\delta(U \bigtriangleup \{v\} \bigtriangleup \{w\})$. Note that $\delta(v) \bigtriangleup \delta(w) = \delta(\{v\} \bigtriangleup \{w\}) = \delta(U \bigtriangleup U \bigtriangleup \{v\} \bigtriangleup \{w\}) = \delta(U) \bigtriangleup \delta(U \bigtriangleup \{v\} \bigtriangleup \{w\})$. Because $\delta(U), \delta(U \bigtriangleup \{v\} \bigtriangleup \{w\})$ have the same parity and d(w) is odd, so is d(v).

The following is the main result of the paper (which will be proved in sections 2, 3, and 4).

Theorem 1.3. Let (\mathcal{G}, T) be a graft where all T-cuts have the same parity. Then (\mathcal{G}, T) packs if \mathcal{G} is planar and $\tau(\mathcal{G}, T) \leq 5$.

The condition that all *T*-cuts have the same parity cannot be omitted in the hypothesis of the last theorem. Indeed consider the bipartite graph $K_{2,3}$ and let *T* consist of all vertices of $K_{2,3}$ with the exception of one of the vertices of degree 3. Then $2 = \tau(K_{2,3}, T) > \nu(K_{2,3}, T) = 1$ and $(K_{2,3}, T)$ does not pack.

Edge colouring. We write [n] for $\{1, ..., n\}$. We say that $\theta : E(\mathcal{G}) \to [k]$ is a *colouring* of \mathcal{G} with k colours if for every pair of edges e, e' incident to the same vertex we have $\theta(e) \neq \theta(e')$. The minimum number of colours $\chi'(\mathcal{G})$ needed colour the edges of \mathcal{G} is the *chromatic index* of \mathcal{G} .

The condition that \mathcal{G} be planar is also required in Theorem 1.3. Indeed let \mathcal{G} denote the Petersen graph. \mathcal{G} is 3-regular and every cut of \mathcal{G} contains at least 3-edges. Hence $\tau(\mathcal{G}, V(\mathcal{G})) = 3$. Suppose for a contradiction that $(\mathcal{G}, V(\mathcal{G}))$ packs. Then there exists 3 disjoint *T*-joins. Since $\delta(v)$ is a *T*-cut for every vertex v it follows that each of the *T*-joins is a perfect matching. But this implies that $\chi'(\mathcal{G}) = 3$, a contradiction as it is well known that $\chi'(\mathcal{G}) = 4$.

Corollary 1.4. Let \mathcal{G} be a k-regular planar graph where $k \leq 5$. Then $\chi'(\mathcal{G}) = k$ if and only if for all $U \subseteq V(\mathcal{G})$ where |U| is odd, we have $d(U) \geq k$.

Proof. Suppose that $\chi'(\mathcal{G}) = k$ and let J_1, \ldots, J_k denote each of the colour classes. Note that each colour class is a perfect matching. It follows that for $i \in [k]$ and for all $U \subseteq V(\mathcal{G})$ where |U| is odd, we have $J_i \cap \delta(U) \neq \emptyset$. Since J_1, \ldots, J_k are pairwise disjoint it follows that $d(U) \ge k$. Conversely, suppose that for all $U \subseteq V(\mathcal{G})$ where |U| is odd, we have $d(U) \ge k$. Then $|V(\mathcal{G})|$ is even and let $T := V(\mathcal{G})$. Let $\delta(U)$ be any T-cut. Then $|U \cap T| = |U|$ and |U| is odd. Hence $d(U) \ge k$. It follows that $\tau(\mathcal{G}, T) \ge k$. If k is even then \mathcal{G} is Eulerian. If k is odd then (\mathcal{G}, T) is a postman set. Proposition 1.2 implies that all T-cuts have the same parity. Theorem 1.3 imply that there exists a packing of k T-joins, say J_1, \ldots, J_k . Since $T = V(\mathcal{G}), \delta(v)$ is a T-cut for every $v \in V(\mathcal{G})$. Since \mathcal{G} is k-regular, J_1, \ldots, J_k must be perfect matchings. Let each matching correspond to a colour class, then $\chi'(\mathcal{G}) = k$.

Remark 1.5. The cases k = 0, 1, 2 are trivial. The case k = 3 states that every bridgeless cubic planar graph has chromatic index three. By a result of Tait [9] this is equivalent to the 4-colour theorem (which states that any map can be coloured using four colours so that adjacent countries get different colours).

The case k = 4 was conjectured by Seymour [7] (see also [4] problem 12.18). Seymour (personal communication) pointed out that it implies the following strengthening of the four colour theorem. (Note that we rely on the 4-colour theorem for the proof of Theorem 1.3.)

Corollary 1.6. Let *G* be a bridgeless plane graph. Then we can colour the vertices and the faces of *G* using four colours such that for every edge *uv*:

- (1) vertices u and v are assigned distinct colours,
- (2) the two faces F_1, F_2 which share edge uv are assigned distinct colours,
- (3) exactly three colours are used to colour $\{u, v, F_1, F_2\}$.

Proof. We construct the medial graph \mathcal{H} of \mathcal{G} , i.e. vertices of \mathcal{H} correspond to the edges of \mathcal{G} and two vertices of \mathcal{H} are adjacent if and only if they correspond to consecutive edges in some face of \mathcal{G} . Since \mathcal{G} is bridgeless, \mathcal{H} is simple and 4-regular, moreover, it can be readily checked that for every $X \subseteq V(G)$ where |X| is odd, $d(X) \ge 4$. It follows from corollary 1.4 that $\chi'(H) = 4$. Choose the colours to be the elements, say $\alpha, \beta, \gamma, \delta$, of the $Z_2 \times Z_2$ group. Then for every $v \in V(H)$ the sum of the colours over the edges of $\delta_H(v)$ is $\alpha + \beta + \gamma + \delta = (0,0)$. It follows that for the dual \mathcal{H}^* of \mathcal{H} the sum of the colours over the edges of every facial circuit is (0,0). Since for plane graphs the cycle space is generated by the facial circuits, the sum of the colours over the edges of any circuit of \mathcal{H}^* is (0,0). Therefore, the following assignment of colours to the vertices of \mathcal{H}^* is well defined: give colour (0,0) to some initial vertex z_o and for all vertices z find a path P from z_o to z and assign to z the colour which is equal to the sum of all colours along the edges of the path P. The graph \mathcal{H} can be drawn on the plane so that each vertex is placed in the middle of its corresponding edge of \mathcal{G} and so that faces of \mathcal{H} correspond to either vertices of \mathcal{G} or to faces of \mathcal{G} . Hence, the vertex colouring of \mathcal{H}^* correspond to a colouring of the faces and vertices of \mathcal{G} . Let e = uv be an edge of \mathcal{G} , let F_1, F_2 be the faces of \mathcal{G} containing e, and for i = 1, 2 let f_i, g_i be the edge of F_i incident to uand v respectively. Then $e, f_1, f_2, g_1, g_2 \in V(H)$ and $f_1e, f_2e, g_1e, g_2e \in E(H)$. We may assume that f_1e, g_1e, g_2e, f_2e are assigned colours $\alpha, \beta, \gamma, \delta$ respectively. Suppose face u of H is assigned colour x then faces F_1, v, F_2 of \mathcal{H} are assigned colours $x + \alpha, x + \alpha + \beta, x + \alpha + \beta + \gamma$. Since $x \neq x + \alpha + \beta$, (1) holds; and since $x + \alpha \neq x + \alpha + \beta + \gamma$ (2) holds. (1) and (2) imply that two colours are used at least to colour u, v, F_1, F_2 . But since $x, x + \alpha, x + \alpha + \beta, x + \alpha + \beta + \gamma$ do not sum to (0, 0), exactly three colours are used, i.e. (3) holds.

A general conjecture. Let (\mathcal{G}, T) be a graft. Consider a partition of $V(\mathcal{G})$ into subsets V_1, \ldots, V_r such that for each $i \in [r]$ the induced subgraph $\mathcal{G}[V_i]$ is connected and $|V_i \cap T|$ is odd. Let \mathcal{G}' be the simple graph with vertex set [r] and where $ij \in E(\mathcal{G}')$ if and only if there exists an edge of \mathcal{G} with one end in V_i and one end in V_j . A subgraph of \mathcal{G}' is called a *T*-minor of \mathcal{G} . Observe that if a graph is a *T*-minor of \mathcal{G} then it is minor of \mathcal{G} as well, however the converse is not true in general.

Conjecture 1.7. Let (\mathcal{G}, T) be a graft where all T-cuts have the same parity. Then the graft packs if \mathcal{G} does not contain the Petersen graph as a T-minor.

Seymour [8] introduced a property called *cycling* for multi-commodity flows in binary matroids. Characterizing which grafts (where all *T*-cuts have the same parity) pack can be viewed as a special case of the problem of characterizing which binary matroids are cycling. Proposition 1.2 implies that if (\mathcal{G}, T) is a postman set then all *T*-cuts have the same parity. Hence the next conjecture is a special case of Conjecture 1.7.

Conjecture 1.8 (Conforti and Johnson [5, 1]). Let (\mathcal{G}, T) be a postman set where \mathcal{G} has no Petersen *minor. Then* (\mathcal{G}, T) *packs.*

Since the Petersen graph is not planar, Conjecture 1.7 suggests that the condition that $\tau(\mathcal{G}, T) \leq 5$ is not required in Theorem 1.3. In other words,

Conjecture 1.9. A graft (\mathcal{G}, T) packs if \mathcal{G} is planar and all T-cuts have the same parity.

Following the argument in the proof of Corollary 1.4, this in turn would imply,

Conjecture 1.10 (Seymour (personal communication)). Let \mathcal{G} be a k-regular graph with no Petersen minor. Then $\chi'(\mathcal{G}) = k$ if and only if for all $U \subseteq V(\mathcal{G})$ where |U| is odd, we have $d(U) \ge k$.

Note that conjectures 1.8 and 1.10 would both imply the recently proved conjecture of Tutte [6, 2, 3] which states that cubic bridgeless graphs with no Petersen minor have chromatic index three. It can be easily shown that a graph has a *nowhere zero* 4-*flow* if and only if it contains three pairwise disjoint postman sets. Thus conjecture 1.7 would also imply,

Conjecture 1.11 (Tutte [10]). *Every bridgeless graph not containing the Petersen graph as a minor has a nowhere zero* 4*-flow.*

Organization of the paper. In Section 2 we derive properties that minimal counterexamples to Theorem 1.3 or Conjecture 1.9 must satisfy. Using the 4-colour theorem we deduce that any such minimal counterexample satisfies $\tau(\mathcal{G}, T) \ge 4$. We use discharging arguments to show that both cases $\tau(\mathcal{G}, T) = 4$ and $\tau(\mathcal{G}, T) = 5$ lead to a contradiction, this is done in Sections 3 and 4.

2. GENERAL PROPERTIES

Let β be some fixed non-negative integer. Consider the following statement: "Let (\mathcal{G}, T) be a graft where all *T*-cuts have the same parity, then (\mathcal{G}, T) packs if \mathcal{G} is planar and $\tau(\mathcal{G}, T) \leq \beta$ ". Observe that if $\beta = 5$ then the statement is equivalent to Theorem 1.3. Moreover, if the statement holds for every β then Conjecture 1.9 is true. Suppose that there is a graft which contradicts the above statement. Among all such grafts we choose one, say (\mathcal{G}, T) , which satisfies the following properties,

- (1) it minimizes $|V(\mathcal{G})|$;
- (2) it minimizes $\tau(\mathcal{G}, T)$ among all grafts satisfying (1);
- (3) it minimizes |E(G)| among all grafts satisfying (1) and (2).

Throughout the remainder of the paper, k denotes $\tau(\mathcal{G}, T)$.

Lemma 2.1. Let $\delta(X)$ be a *T*-cut with d(X) = k. Then |X| = 1 or $|\overline{X}| = 1$.

Proof. Suppose for a contradiction, |X| > 1 and $|\overline{X}| > 1$. Let $X_1 := X$ and $X_2 := \overline{X}$. Suppose for a contradiction $|X_1|, |X_2| > 1$. Let us first show that for $i = 1, 2, \mathcal{G}[X_i]$ (the graph induced by

vertices X_i) is connected. If not we can partition X_i into X'_i, X''_i so that there are no edges between X'_i and X''_i . Since $|X_i \cap T|$ is odd, we may assume that $|X'_i \cap T|$ is odd. Note that we may assume that \mathcal{G} is connected. It follows that there is at least one edge between X_{3-i} and X''_i . Hence the T-cut $\delta(X'_i) \subset \delta(X_i)$, a contradiction.

For i = 1, 2, let \mathcal{G}_i be obtained from \mathcal{G} by identifying all vertices of \mathcal{G} in X_{3-i} to a single new vertex z_i and deleting all loops. Also let $T_i = (T \cap X_i) \cup \{z_i\}$. By construction $|T_i|$ is even, and (G_i, T_i) is a graft. Since $\mathcal{G}[X_{3-i}]$ is connected it follows that \mathcal{G}_i is a minor of \mathcal{G} . In particular \mathcal{G}_i is a planar graph. Observe that T_i -cuts of \mathcal{G}_i correspond to T-cuts of \mathcal{G} which contain all vertices X_{3-i} on the same shore. It follows that, $\tau(G_i, T_i) \ge k$ and that all T_i -cuts of \mathcal{G}_i have the same parity. Because $d(z_i) = k$ we have in fact $\tau(G_i, T_i) = k$. Since $|X_{3-i}| > 1$, $|V(G_i)| < |V(G)|$. It follows from the choice of (\mathcal{G}, T) that (G_i, T_i) packs.

Thus for i = 1, 2 there exists packing of T_i -joins B_1^i, \ldots, B_k^i . As $d(z_i) = k$, each B_1^i, \ldots, B_k^i uses exactly one edge incident to z_i . We may assume for each $l \in [k]$ that B_l^1 and B_l^2 contain the edge incident to z_1 and z_2 which corresponds to the same edge of \mathcal{G} . For $l \in [k]$ let $B_l := B_l^1 \cup B_l^2$. Since B_l^i is a T_i -join, $T \cap X_i$ is the set vertices of odd degree of $\mathcal{G}[B_l]$ in X_i . It follows that B_l is a T-join of \mathcal{G} and that (\mathcal{G}, T) packs, a contradiction.

Lemma 2.2. (1) $T = V(\mathcal{G})$ and (2) \mathcal{G} is k-regular.

Proof. Suppose for a contradiction that there exists $v \in V(\mathcal{G})$ where either $v \notin T$ or d(v) > k.

Claim: Not all edges incident to v are parallel.

Proof of claim: Suppose for a contradiction that all edges in $\delta(v)$ have both the same ends. Consider first the case $v \in T$. Let $e_1, e_2 \in \delta(v)$, and let $\mathcal{G}' := G \setminus \{e_1, e_2\}$. Since all *T*-cuts of \mathcal{G} have the same parity, $d_{\mathcal{G}}(v) \ge k + 2$. As edges of $\delta_{\mathcal{G}}(v)$ are parallel this implies $\tau(G', T) \ge k$. Note that all *T*-cuts of \mathcal{G}' have the same parity. By the choice of (\mathcal{G}, T) , (\mathcal{G}', T) has a packing of k *T*-joins. A contradiction since *T*-joins of \mathcal{G}' are *T*-joins of \mathcal{G} . Suppose now that $v \notin T$. Let $\mathcal{G}' := \mathcal{G} \setminus \delta(v)$.

Since edges of $\delta(v)$ are parallel, no minimal T-cut of \mathcal{G} uses any edge of $\delta(v)$. Hence, $\tau(\mathcal{G}', T) \ge k$. By the choice of (\mathcal{G}, T) , (\mathcal{G}', T) packs, hence so does (\mathcal{G}, T) , a contradiction.

Consider a planar embedding of \mathcal{G} and visit edges of $\delta(v)$ in a clockwise fashion. It follows from the Claim that there are two consecutive edges of the form u_1v and u_2v where $u_1 \neq u_2$. Let \mathcal{G}' be obtained by replacing edges u_1v, u_2v of \mathcal{G} by an edge u_1u_2 . Note that the planar embedding of \mathcal{G} can be transformed into a planar embedding of \mathcal{G}' . Observe also that since \mathcal{G} has no loops neither does \mathcal{G}' . Clearly, for all $w \in T - \{v\}, d_{\mathcal{G}'}(w) = d_{\mathcal{G}}(w) \geq k$. Let $\delta(X)$ be a T-cut of \mathcal{G} where either $\{v\} = X$ or where both |X| > 1 and $|\overline{X}| > 1$. Then d(X) > k, in the former case by the choice of v and in the latter one by Lemma 2.1. Since all T-cuts have the same parity $d(X) \geq k + 2$. It follows that $\tau(\mathcal{G}', T) = k$. Note that all T-cuts of \mathcal{G}' have the same parity. By the choice of (\mathcal{G}, T) there exists a packing B'_1, \ldots, B'_k of T-joins of \mathcal{G}' . If none of B'_1, \ldots, B'_k use u_1u_2 then they are T-joins of \mathcal{G} as well and (\mathcal{G}, T) packs, a contradiction. Otherwise there is an edge, say $u_1u_2 \in B'_1$, and $B'_1 - \{u_1u_2\} \cup \{u_1v, u_2v\}, B'_2, \ldots, B'_k$ is a packing of T-joins of \mathcal{G} , and (\mathcal{G}, T) packs, a contradiction.

Lemma 2.3. $k \ge 4$.

Proof. Lemma 2.2 states that $V(\mathcal{G}) = T$ and \mathcal{G} is k-regular. Let $X \subseteq V(\mathcal{G})$ where |X| is odd. Then $|X| = |X \cap T|$ and since $\tau(\mathcal{G}, T) \ge k$, we have $d(X) \ge k$. Suppose $k \le 3$. It follows from Remark 1.5 that $\chi'(\mathcal{G}) = k$. Since \mathcal{G} is k-regular and $T = V(\mathcal{G})$, every colour class is a T-join. But then (\mathcal{G}, T) packs, a contradiction.

We say that a collection of T-joins, B_1, \ldots, B_k is an *e*-colouring for some edge e, if they pairwise intersect at most in e (i.e. for all $i, j \in [k], i \neq j, B_i \cap B_j \subseteq \{e\}$) and if there does not exist a collection, B'_1, \ldots, B'_k of T-joins which pairwise intersect at most in e and for which $|\{B'_i : e \in B'_i, i \in [k]\}| < |\{B_i : e \in B_i, i \in [k]\}|$. **Lemma 2.4.** Suppose B_1, \ldots, B_k is an e-colouring then (1) for every vertex v which is not an end of e every edge of $\delta(v)$ is in exactly one of B_1, \ldots, B_k . Moreover, we can assume that (2) for some odd $r \ge 3$, e is in all of B_1, \ldots, B_r and in none of B_{r+1}, \ldots, B_k .

Proof. Let v be a vertex of \mathcal{G} which is not an end of e. Since $v \in T$, $\delta(v)$ is a T-cut. Now (1) follows from the fact that v has degree k and that B_1, \ldots, B_k intersect at most in e. It follows from the fact that \mathcal{G} is k-regular and $T = V(\mathcal{G})$ that $E(\mathcal{G})$ is a T-join if k is odd, and that $E(\mathcal{G})$ is an Eulerian subgraph if k is even. Let $B' := B_1 \triangle B_2 \triangle \ldots \triangle B_k$. Note that B' is a T-join if k is odd and is an Eulerian subgraph if k is even. Hence, in either cases, $B'' := B' \triangle E(\mathcal{G})$ is an Eulerian subgraph. (1) implies that $B'' \subseteq \{e\}$. Since \mathcal{G} has no loops, $B'' = \emptyset$. It follows that there exists an odd number of T-joins among B_1, \ldots, B_k which use the edge e. Hence, upon relabeling we can assume that for some odd r, e is in all of B_1, \ldots, B_r and in none of B_{r+1}, \ldots, B_k . Moreover, $r \geq 2$, for otherwise (\mathcal{G}, T) packs. This proves (2).

Lemma 2.5. There exists an e-colouring for every edge e.

Proof. Let \mathcal{G}' be the graph obtained from \mathcal{G} by contracting edge e and deleting all loops. Let u, v denote the ends of e and let $T' := T - \{u, v\}$. Since |T| is even so is |T'|. T'-cuts of \mathcal{G}' correspond to T-cuts of \mathcal{G} where both u and v are on the same shore. In particular, all T'-cuts of \mathcal{G}' have the same parity and $\tau(\mathcal{G}', T') \ge k$. It follows by the choice of (\mathcal{G}, T) that there exists a packing of k T'-joins of \mathcal{G}' . These T'-joins can be extended to T-joins of \mathcal{G} by possibly adding e. Hence, there exists a collection of k T-joins, say B_1, \ldots, B_k , which pairwise intersect at most in e. Among such collections choose one with the fewest number of T-joins using e.

Consider $e \in E(\mathcal{G})$ and an *e*-colouring B_1, \ldots, B_k at *e*. We say that a *T*-cut $\delta(U)$ is a *mate* of B_i $(i \in [k])$ if $e \in \delta(U)$ and for all $j \in [k] - \{i\}, |\delta(U) \cap B_j| = 1$.

Lemma 2.6. Let B_1, \ldots, B_k be any e-colouring then all of B_1, \ldots, B_k have mates.

Proof. Let $r := |\{B_i : e \in B_i, i \in [k]\}|$. Let \mathcal{G}' be obtained by adding r - 3 parallel edges to e. Lemma 2.4 implies that r is odd. It follows that since all T-cuts of \mathcal{G} have the same parity so do all

T-cuts of \mathcal{G}' . The *e*-colouring B_1, \ldots, B_k of \mathcal{G} implies that there exists an *e*-colouring B'_1, \ldots, B'_k of \mathcal{G}' where $\{j : e \in B'_j, j \in [k]\} = \{1, 2, 3\}.$

Claim: Let $i \in [k]$ and let $\mathcal{G}'' := \mathcal{G}' \setminus B'_i$. Then $\tau(\mathcal{G}'', T) \leq k - 3$.

Proof of claim: If all T-cuts of \mathcal{G}' are even (resp. odd) then Remark 1.1 implies that all T-cuts of \mathcal{G}'' are odd (resp. even). For every vertex v which is not an end of e, $d_{\mathcal{G}''}(v) < k$. Thus $\tau(\mathcal{G}'',T) < k$ and it follows from the choice of (\mathcal{G},T) that (\mathcal{G}'',T) packs. Suppose for a contradiction that $\tau(\mathcal{G}'',T) \ge k-1$. Then there exists a packing of k-1 T-joins of \mathcal{G}'' , say $\hat{B}_1,\ldots,\hat{B}_{k-1}$. But then B'_i together with $\hat{B}_1,\ldots,\hat{B}_{k-1}$ imply that there exists an e-colouring of \mathcal{G} where at most r-2 of the T-joins use edge e, a contradiction. Hence $\tau(\mathcal{G}'',T) < k-1$. Since T-cuts of \mathcal{G}' and T-cuts of \mathcal{G}'' have distinct parities, $\tau(\mathcal{G}'',T) \le k-3$.

Let $\delta_{\mathcal{G}''}(U)$ be a minimum *T*-cut of \mathcal{G}'' . Consider first the case where $i \in \{1, 2, 3\}$. Then for $j = 4, \ldots, k, B'_i \text{ is a } T\text{-join of } \mathcal{G}''$ and in particular $\delta_{\mathcal{G}''}(U) \cap B'_j \neq \emptyset$. The Claim states that $|\delta_{\mathcal{G}''}(U)| \leq k - 3$. Hence, $|\delta_{\mathcal{G}''}(U) \cap B'_j| = 1$ for $j = 4, \ldots, k$, and $\delta_{\mathcal{G}''}(U) \cap (B'_1 \cup B'_2 \cup B'_3) = \emptyset$. Since $\delta_{\mathcal{G}'}(U) \subseteq \delta_{\mathcal{G}''}(U) \cup B'_i$ is a *T*-join of \mathcal{G}' , it intersects each of B'_1, B'_2, B'_3 . Hence $e \in \delta_{\mathcal{G}'}(U)$. But then $\delta_{\mathcal{G}}(U)$ is a mate of B_i . Consider now the case where i > 3. For $j \in [k] - \{i\}$, B'_j are *T*-joins of \mathcal{G}'' , thus $\delta_{\mathcal{G}''}(U) \cap B'_j \neq \emptyset$. The Claim states that $|\delta_{\mathcal{G}''}(U)| \leq k - 3$. Hence, $|\delta_{\mathcal{G}''}(U) \cap B'_j| = 1$ for $j \in [k] - \{i\}$ and $e \in \delta_{\mathcal{G}''}(U)$. But then $\delta_{\mathcal{G}}(U)$ is a mate of B_i .

Lemma 2.7. Let B_1, \ldots, B_k be an e-colouring and let $\delta(U)$ be a mate of B_i for some $i \in [k]$. Suppose there is a circuit C such that $|C \cap \delta(U) \cap B_i| \ge 2$. Then $|C| \ge 3$. Moreover, if C is a triangle with edges, say f, g, h, then $f, g \in B_i, h \notin B_i$ and f, g are both incident to a same end of e.

Proof. Let C be a circuit where $|C| \leq 3$ and $|C \cap \delta(U) \cap B_i| \geq 2$. Lemma 2.4(1) implies that the common endpoint of the two edges of C in B_i is an end of e. Suppose |C| = 2. Then Lemma 2.4(1) implies that both edges of C are parallel to e. It follows that all cuts using e contain two edges in B_i . Thus none of B_j where $j \in [k] - \{i\}$ has a mate, a contradiction to Lemma 2.6.

We say that a triangle f, g, h as given in the previous proposition and where $e \notin \{f, g, h\}$ is a bad triangle for $\delta(U)$.

Lemma 2.8. Let B_1, \ldots, B_k where $k \in \{4, 5\}$ be any e-colouring. Then for all $i \in [k]$, B_i has a mate with no bad triangles.

Proof. Consider a counterexample which minimizes $|B_i|$, i.e. every mate of B_i has a bad triangle but for every *e*-colouring B'_1, \ldots, B'_k where $|B'_i| < |B_i|$, B'_i has a mate with no bad triangles. Let u, v be the ends of *e*. Since B_i has a least one mate, there is a triangle with edges f, g, h where $f, g \in B_i, h \in B_j$ $(j \neq i)$ and both f, g are incident to u. Define, $B'_i = B_i \triangle C$, $B'_j := B_j \triangle C$ and let $B'_i := B_i$ for all $l \in [k] - \{i, j\}$. Clearly, B'_1, \ldots, B'_k is an *e*-colouring. Since $|B'_i| < |B_i|$ there is a mate $\delta(U)$ of B'_i with no bad triangle. It can be readily checked that $\delta(U)$ is also a mate of B_i . Let f', g', h' be the edges of a bad triangle of $\delta(U)$ for B_i where $f', g' \in \delta(U) \cap B_i$. Since f', g', h' is no longer a bad triangle for B'_i , triangles f, g, h, and f', g', h' must have an edge in common, say g = g'.

Consider the case where k = 4. Then $i \notin [3]$ since otherwise d(u) = 4 implies that u is not incident to an edge of B_4 , a contradiction as $u \in T$ and B_4 is a T-join. Hence, i = 4, but then $\delta(U) - \{e\} \subseteq B'_4$, a contradiction as $g' \in \delta(U) \cap B'_j$. Consider the case where k = 5. Then e is not included in all of B_1, \ldots, B_5 , for otherwise, $\delta(U) - \{e\} \subseteq B'_i$, a contradiction as $g' \in \delta(U) \cap B'_j$. Thus we know from Lemma 2.4 that $e \in (B_1 \cap B_2 \cap B_3) - B_4 - B_5$. Then $i \notin [3]$ since otherwise d(u) = 5 implies that u is not incident to both an edge of B_4 and B_5 , a contradiction as $u \in T$ and B_4, B_5 are T-joins. Hence, we can assume i = 4. Since $h \in \delta(U)$ we must have $h \in B_5$. By symmetry (interchange in the previous arguments the roles of triangles f, g, h and f', g', h'), we must also have $h' \in B_5$. It follows that the vertex common to both h and h' is v. But then every cut $\delta(U)$ which contains e intersects either B_4 or B_5 at least twice. It follows that none of B_1, B_2, B_3 have a mate, a contradiction.

It can be easily checked that every cut is either a T-cut or the symmetric difference of two T-cuts. Hence, Remark 1.1 implies the following observation.

Remark 2.9. For all cuts $\delta(U)$ and T-joins $B, B', |\delta(U) \cap B|$ and $|\delta(U) \cap B'|$ have the same parity.

Lemma 2.10. *G* does not have a two edge cutset. In particular faces of G share at most one edge.

Proof. Suppose there are edges e, e' such that $\mathcal{G} \setminus \{e', e'\}$ has two components $\mathcal{G}_1, \mathcal{G}_2$. Since \mathcal{G} is k-regular, there exists an edge e_1 in \mathcal{G}_1 and an edge e_2 in \mathcal{G}_2 . It follows from Remark 2.9 that for every e_1 -colouring and for every e_2 -colouring both e and e' are in the same T-join. Then we can combine the e_1 -colouring and the e_2 -colouring to find an edge colouring of \mathcal{G} , a contradiction. \Box

Lemma 2.11. Let n, m, f denote respectively, the number of vertices, edges, and faces of \mathcal{G} . Then

$$2m + (k-4)n < 4f$$

Proof. Since \mathcal{G} is k-regular, 2m = kn. Euler's formula states that n - m + f = 2, hence in particular f > m - n or equivalently, 4f > 4m - 4n = 2m + (2m - 4n). Since 2m = kn we have 2m + (2m - 4n) = 2m + (kn - 4n) = 2m + (k - 4)n.

3. DISCHARGING FOR $\tau(\mathcal{G}, T) = 4$

In this section we shall prove that no minimum counterexample satisfies k = 4. Let us assign every face F of \mathcal{G} an initial charge equal to |F|. We say that we *move* one charge from a face H to a face F, if we decrease the number of charges of face H by one and increase the number of charges of face F by one. Note that the total number of charges remains unchanged. We say that two faces are *adjacent* if they share at least one edge. We apply, once for each face H, the following rule,

Discharging rule: if |H| > 4 and H has 4 distinct adjacent faces G_1, G_2, G_3, G_4 where $|G_i| \ge 4$ for $i \in [4]$, then for all adjacent faces F of H where |F| < 4 move one charge from H to F.

For each face F let α_F denote the resulting charge.

Remark 3.1. If F is a face where $|F| \ge 4$ then $\alpha_F \ge 4$.

Suppose that for every face F, $\alpha_F \ge 4$, then

$$2m = \sum_{\text{faces } F} |F| = \sum_{\text{faces } F} \alpha_F \ge 4f$$

which contradicts, Lemma 2.11. Hence the next lemma shows $k \neq 4$.

Lemma 3.2. For every face F we have $\alpha_F \ge 4$.

Proof. Because of Remark 3.1 we may assume that $|F| \le 4$. Since \mathcal{G} is loopless we may assume that $|F| \ge 2$. Hence, it suffices to consider the following two cases.

Case 1: |F| = 2.

Let e, e' be the two edges in F. Lemma 2.5 states that there is an e-colouring B_1, B_2, B_3, B_4 . Lemma 2.4 implies that $e \in (B_1 \cap B_2 \cap B_3) - B_4$ and that $E(\mathcal{G}) = B_1 \cup B_2 \cup B_3 \cup B_4$. Lemma 2.8 implies that for each $i \in [4]$, B_i has a mate $\delta(U_i)$ with no bad triangle. Since $\delta(U_4) - \{e\} \subseteq B_4$, $e' \in B_4$. It follows that for $i \in [4], \delta(U_i) - \{e, e'\} \subseteq B_i$. Let H (resp. H') be the face distinct from F with e (resp. e'). For all $i \in [4]$, let g_i be an edge, distinct from e, in $H \cap \delta(U_i) \subseteq B_i$ and let G_i be the face distinct from H with g_i . Since $|\delta(U_i) \cap G_i|$ is even, there is an edge $g'_i \in G_i \cap \delta(U_i)$ distinct from g_i . Clearly, $g'_i \neq e$. Because $\delta(U_i)$ have no bad triangles, $|G_i| \geq 4$ for all $i \in [4]$. Lemma 2.10 implies that the faces G_1, G_2, G_3, G_4 are distinct. It follows from the discharge rule that face F receives one charge from the face H. By symmetry, F also receives one charge from H'. It follows that $\alpha_F \geq 4$.

Case 2: |F| = 3.

Let e, f, f' be the three edges in F. As in the previous case there is an e-colouring B_1, B_2, B_3, B_4 and $e \in (B_1 \cap B_2 \cap B_3) - B_4, E(G) = B_1 \cup B_2 \cup B_3 \cup B_4$. Moreover, for each $i \in [4], B_i$ has mate $\delta(U_i)$ with no bad triangles. Since $\delta(U_4) - \{e\} \subseteq B_4$, one of f, f', say f, is in B_4 . Let Hbe the face distinct from F which contains f. Lemma 2.4(1) implies that $f' \notin B_4$. After relabeling

we may assume that $f' \in B_1$. It follows that for i = 2, 3, 4, each mate $\delta(U_i)$ contains f. For i = 2, 3, 4, we let g_i be an edge distinct from f in $H \cap \delta(U_i) \subseteq B_i$; we let G_i be the face distinct from H with g_i ; and we let $g'_i \in G_i \cap \delta(U_i) \subseteq B_i$ be an edge distinct from g_i . Note $g'_i \neq e$ for otherwise $\delta(U_i) = \{e, f, g_i\}$, hence $k \leq 3$, a contradiction. Since $\delta(U_i)$ have no bad triangles, $|G_i| \geq 4$ (i = 2, 3, 4). Define $B'_1 := B_4 \bigtriangleup F$ and $B'_4 := B_1 \bigtriangleup F$. Note that B'_1, B_2, B_3, B'_4 form a e-colouring. By Lemma 2.8, B'_4 has a mate $\delta(U)$ with no bad triangles. Since $f' \in B'_1$ and $f \in B'_4$, $\delta(U)$ contains f. Let \tilde{g} be an edge distinct from f in $H \cap \delta(U) \subseteq B'_4$, let \tilde{G} be the face distinct from H with \tilde{g} , and let $\tilde{g}' \in \tilde{G} \cap \delta(U) \subseteq B'_4$ be an edge distinct from g_i . Since $\delta(U)$ has no bad triangle, $|\tilde{G}| \geq 4$. Since $g_4 \in B'_1$ and $\tilde{g} \in B'_4$ faces G_2, G_3, G_4, \tilde{G} are all distinct. This implies that F receives one charge from the face H and that $\alpha_F \geq 4$.

4. DISCHARGING FOR $\tau(\mathcal{G}, T) = 5$

In this section we shall prove that no minimum counterexample satisfies k = 5. Given a face F we write N(F) for the set of faces adjacent to F (but distinct from F). Let us assign to every face F an initial charge equal to |F|.

Discharging rules for faces *H*:

- (F1) if |H| > 4 and there exists faces $G_1, G_2, G_3, G_4 \in N(H)$ where $|G_i| \ge 4$ for $i \in [4]$ then move 1 charge from H to all faces $F \in N(H)$ where |F| < 4.
- (F2) suppose |H| > 4 and there exists faces G₁, G₂, G₃ ∈ N(H) where |G_i| ≥ 4 for i ∈ [3].
 For every edge e of H let e' and e" be the two edges of H adjacent to e. Let F, F', F" be the faces, distinct from H, containing respectively edges e, e', e". Suppose |F| < 4. If |F'| ≤ 3 and |F"| ≤ 3 then move 1 charge from H to F, otherwise move 1/2 charge from H to F.

Let us assign to every vertex v an initial charge equal to one. Throughout this section we will assume that \mathcal{G} has a fixed planar embedding. Let $v \in V(\mathcal{G})$. Since d(v) = 5 by going around v in a clockwise, or counterclockwise fashion we will visit in sequence faces F_1, \ldots, F_5 where for all $i \in [5], F_i, F_{i+1}$ (k + 1 = 1) are adjacent faces. We write $NF(v) = (F_1, \ldots, F_k)$. We also write $NF_i(v)$ (resp. $NF_i^+(v)$) for the set of faces F of NF(v) where |F| is equal to (resp. at least) i.

Discharging rules for vertices v: Suppose that $NF(v) = (F_1, F_2, F_3, F_4, F_5)$.

- (V1) if $|NF_4^+(v)| = 4$ then move 1 from v to the face in $NF(v) NF_4^+(F)$.
- (V2) if $|NF_4^+(v)| = 3$ then move 1/2 from v to each face in $NF(v) NF_4^+(F)$.
- (V3) if $NF_4^+(v) = \{F_1\}$ then move 1/2 from v to F_2 and F_5 .
- (V4) if $NF_4^+(v) = \{F_1, F_2\}$ then move 1/2 from v to F_3 and F_5 .
- (V5) if $NF_4^+(v) = \{F_1, F_3\}$ and $|F_4| = |F_5| = 2$ then move 1/2 from v to F_4 and F_5 .
- (V6) if $NF_4^+(v) = \{F_1, F_3\}$, and $|F_4| = |F_5| = 3$ then move 1 from v to F_2 .
- (V7) if $NF_4^+(v) = \{F_1, F_3\}, |F_4| = 2$, and $|F_5| = 3$ then move 1/2 to F_2 and F_4 .

Remark 4.1. Observe that in every case at most one of the rules (F1),(F2) and (V1)-(V7) will apply.

For each face F (resp. vertex v) let α_F (resp. α_v) denote the charge after discharging.

Remark 4.2. Rules (F1),(F2) imply that if a face H satisfies $|H| \ge 4$ then $\alpha_H \ge 4$. Rules (V1)-(V7) imply that $\alpha_v \ge 0$ for all $v \in V(\mathcal{G})$.

Suppose that for every face F of \mathcal{G} , $\alpha_F \ge 4$, then since $\alpha_v \ge 0$ for all $v \in V(\mathcal{G})$,

$$2m + n = \sum_{\text{faces } F} |F| + n = \sum_{\text{faces } F} \alpha_F + \sum_{v \in V(\mathcal{G})} \alpha_v \ge 4f$$

which contradicts, Lemma 2.11. Hence Remark 4.2 implies that it will suffice to show lemmas 4.9 and 4.11.

Lemma 4.3. Let e be an edge and let F_1 , F_2 be the two faces containing e. If $|F_1| \le 5$ or $|F_2| \le 5$ then for every e-colouring B_1, \ldots, B_5 , $e \in (B_1 \cap B_2 \cap B_3) - B_4 - B_5$.

Proof. Let B_1, \ldots, B_5 be an *e*-colouring. Lemmas 2.4 implies that an odd number, at least three, of B_1, \ldots, B_5 use *e*. Suppose that $e \in B_1 \cap B_2 \cap B_3 \cap B_4 \cap B_5$. Lemma 2.8 implies that for

 $i \in [5]$, B_i has a mate $\delta(U_i)$. By definition of mates, for all $i \in [5]$, $\delta(U_i) - \{e\} \subseteq B_i$. In particular, $|F_1|, |F_2| \ge 6$.

Let H be a face of \mathcal{G} , we define $val(H) := |\{F \in N(H) : |F| \ge 4\}|$.

Lemma 4.4. Suppose that \mathcal{G} has faces F_1 and F_2 with a single common edge e. Let B_1, \ldots, B_5 be an e-colouring. For j = 1, 2 let e_j be some edge in $F_j - \{e\}$ and let H_j be the face using e_j which is distinct from F_i . Suppose that $e_1 \in B_4$ and $e_2 \in B_5$ and let $I \subseteq [5]$ be a set of indices. If for all $i \in I$, B_i has a mate $\delta(U_i)$ with no bad triangles which uses both e_1, e_2 then $val(H_1), val(H_2) \ge |I|$.

Proof. Let $j \in [2]$ and let $i \in [I]$. Since $e, e_1, e_2 \in \delta(U_i)$ it follows from the definition of mates that $\delta(U_i) - \{e, e_1, e_2\} \subseteq B_i$. For all $i \in I$, let g_i^j be an edge in $H_j \cap \delta(U_i) \subseteq B_i$ and let G_i^j be the face distinct from H_j with g_i^j . There is an edge $\hat{g}_i^j \in G_i^j \cap \delta(U_i)$ distinct from g_i^j . Observe that $\hat{g}_i^j \neq e$ for otherwise $\delta(U_i) = \{e, e_i, g_i^j\} < 5 = k$, a contradiction. Because $\delta(U_i)$ have no bad triangles, $|G_i^j| \ge 4$ for all $i \in I$. Finally, Lemma 2.10 implies that $\{G_i^j : i \in I\}$ are all distinct. Thus $val(H_j) \ge |I|$.

Lemma 4.5. Suppose that \mathcal{G} has faces F_1 and F_2 with a common edge e and $|F_1|, |F_2| \leq 3$. Let B_1, \ldots, B_5 be an e-colouring. We may assume (after possibly relabeling B_4, B_5) that $F_1 - \{e\}$ contains exactly one edge in B_4 and that $F_2 - \{e\}$ contains exactly one edge in B_5 .

Proof. Lemma 4.3 implies that $e \in (B_1 \cap B_2 \cap B_3) - B_4 - B_5$. Lemma 2.8 implies that for $i \in [5]$, B_i has a mate $\delta(U_i)$. Mates $\delta(U_4), \delta(U_5)$ imply (after possibly relabeling B_4, B_5) that $(F_1 - \{e\}) \cap B_4 \neq \emptyset, (F_2 - \{e\}) \cap B_5 \neq \emptyset$. Finally, $F_1 - \{e\}$ (resp. $F_2 - \{e\}$) contain at most one edge in B_4 (resp. B_5) because of Lemma 2.4(1).

Lemma 4.6. Suppose that \mathcal{G} has adjacent faces F_1 and F_2 where $|F_1| = 2$ and $|F_2| \leq 3$. Then F_1 and F_2 have two adjacent faces H_1 and H_2 respectively, where $val(H_1), val(H_2) \geq 4$. In particular $|H_1|, |H_2| \geq 5$ and all faces adjacent to H_1 or H_2 receive one charge from these faces.

Proof. Suppose that F_1 consists of edges e, e_1 and that F_2 consists of either edges e, e_2 or e, e_2, e'_2 . Let B_1, \ldots, B_5 be an e-colouring. Because of Lemma 4.5 we can assume that $e_1 \in B_4, e_2 \in B_5$, and $e'_2 \in B_s$ where $s \in [4]$. It follows that for all $i \in [5] - \{s\}$, $\delta(U_i)$ uses both e_1, e_2 . For j = 1, 2 let H_j be the face containing e_j which is distinct from F_j . Lemma 4.6 implies that $val(H_1), val(H_2) \ge 4$. Hence, $|H_1|, |H_2| \ge 5$ and the result follows from rule (F1).

Lemma 4.7. Let $v \in V(\mathcal{G})$ and $\delta(v) = \{e_1, e_2, e_3, e_4, e_5\}$. Suppose that $\{e_1, e_2\}$ and $\{e_2, e_3\}$ are faces of \mathcal{G} . Then the ends of e_1, e_4, e_5 distinct from v are independent.

Proof. Let v_1 (resp. v_4 ; v_5) be the end of e_1 (resp. e_4 ; e_5) distinct from v. Lemma 4.6 implies that $v_1 \neq v_4$ and $v_1 \neq v_5$. Let B_1, \ldots, B_5 be an e_2 -colouring. Because of Lemma 4.5 we can assume that $e_1 \in B_4$ and $e_3 \in B_5$. Since $v \in T$ there is $i \in [5]$ such that $e_4, e_5 \in B_i$. Then Lemma 2.4(1) implies that $v_4 \neq v_5$.

Lemma 4.8. Let e_1, e_2 be edges such that $\{e_1, e_2\}$ is a face and let v, v' be the ends of e_1, e_2 . Consider, $\delta(v) = \{e_1, e_2, e_3, e_4, e_5\}$ and $\delta(v') = \{e'_5, e'_4, e'_3, e_2, e_1\}$ where the labeling is obtained by visiting edges in a clockwise fashion around v and v'. Let F_{34} (resp. F_{45}, F'_{34}, F'_{45}) be the faces containing edges e_3, e_4 (resp. $e_4e_5; e'_3e'_4; e'_4e'_5$). Let H_1 and H_2 be the faces with respectively edges e_5, e_1, e'_5 and e_3, e_2, e'_3 .

- (a) if $|H_2| = 3$ then $|H_1| \ge 5$ and $val(H_1) \ge 4$.
- (b) if $|F_{34}| \neq 3$ or $|F_{45}| \neq 3$ then $val(H_1) + val(H_2) \ge 5$.
- (c) if $|F_{34}| \neq 3$ or $|F_{45}| \neq 3$ and; $|F'_{34}| \neq 3$ or $|F'_{45}| \neq 3$ then $val(H_1) + val(H_2) \ge 6$.

Proof. Let B_1, \ldots, B_5 be the e_1 -colouring given in Lemma 4.3. Lemma 2.8 implies that for $i \in [5]$, B_i has a mate $\delta(U_i)$ with no bad triangles. For all $i \in [5]$ and $j \in [2]$, let g_i^j be an edge in $H^j \cap \delta(U_i)$ and let G_i^j be the unique (Lemma 2.10) face distinct from H with g_i^j . There is an edge $\hat{g}_i^j \in G_i \cap \delta(U_i)$ distinct from g_i^j . Because of $\delta(U_4)$ and $\delta(U_5)$ we may assume that $e_2 \in B_4$.

Claim: We have $|G_5^1|, |G_5^2| \ge 4$. Moreover for all $i \in [4]$, there is $j \in [2]$ such that $|G_i^j| \ge 4$ and $g_i^j, \hat{g}_i^j \in B_i$ unless one of the following statements (1) or (2) holds, where

- (1) $\delta(U_i) = \delta(v)$ and $|F_{34}| = |F_{45}| = 3$;
- (2) $\delta(U_i) = \delta(v')$ and $|F'_{34}| = |F'_{45}| = 3$.

Proof of claim: Note that $\delta(U_5) - \{e_1, e_2\} \subseteq B_5$. In particular, $g_5^1, g_5^2, g_5^2 \in B_5$. Hence, since $\delta(U_5)$ has no bad triangles, $|G_5^1|, |G_5^2| \ge 4$. For all $i \in [4], \delta(U_i) - \{e_1, e_2\}$ is included in B_i except for a unique edge, say $f_i \in B_5$. Suppose that $|G_i^1|, |G_i^2| \le 3$ we will show (1) or (2) holds. Suppose that for some $j \in [2], f_i \neq g_i^j, \hat{g}_i^j$. Then the fact that $\delta(U_i)$ has no bad triangles implies that $|G_i^j| \ge 4$, a contradiction. Thus $f_i \in \{g_i^1, \hat{g}_i^1\} \cap \{g_i^2, \hat{g}_i^2\}$. It follows that $\hat{g}_i^1 = \hat{g}_i^2$ and thus that $\delta(U_i) = \{e_1, e_2, g_i^1, \hat{g}_i^1, g_i^2\}$. It follows from Lemma 2.1 that $\delta(U_i) = \delta(v)$ or $\delta(U_i) = \delta(v')$. We may assume that the former case occurs. Then $G_i^1 = F_{45}$ and $G_i^2 = F_{34}$. In particular we must have $|F_{34}|, |F_{45}| \le 3$. Lemma 4.7 implies that $|F_{34}| = 3$ or $|F_{45}| = 3$. Suppose for a contradiction that $|F_{45}| = 2$. Since B_1, \ldots, B_5 are T-joins and since $e_1 \in (B_1 \cap B_2 \cap B_3) - B_4 - B_5$ and $e_2 \in B_4$, we must have $e_3, e_5 \in B_i$ and $e_4 \in B_5$. Let e be the edge in $F_{34} - \{e_3, e_4\}$. Then $C := \{e_3, e_5, e\}$ is a bad triangle for $\delta(U_i)$, a contradiction.

Consider first the case where $|H_2| = 3$, i.e. $H_2 = \{e_2, e_3, e'_3\}$. Then $\delta(U_5)$ implies that one of e_3, e'_3 , say e_3 , is in B_5 . Lemma 2.4(1) implies that e'_3 is in some B_s where $s \in [4]$. Let $i \in [5] - \{s\}$. To prove (a) it suffices to show that $|G_i^1| \ge 4$. Because of the Claim we may assume $i \ne 5$. Since $e'_3 \in B_s, e_3 \in \delta(U_i)$. It follows that $\delta(v') \ne \delta(U_i)$. Suppose $\delta(U_i) = \delta(v)$, then $e_4, e_5 \in B_i$. But since F_{45} is not a bad triangle of $\delta(U_i), |F_{45}| \ne 3$. Thus neither statement (1) or (2) holds. Since $e_3 \in B_5 \cap \delta(U_i)$, it follows from the Claim that $|G_i^1| \ge 4$.

Suppose now $|F_{34}| \neq 3$ or $|F_{45}| \neq 3$. Then statement (1) is not satisfied for any $i \in [4]$. It follows from the Claim that there exists at least three indices $i \in [4]$ for which $|G_i^j| \ge 4$ for some $j \in [2]$. Since $|G_5^1|, |G_5^2| \ge 4$ it implies $val(H_1) + val(H_2) \ge 5$, proving (b). Finally, suppose $|F_{34}| \neq 3$ or $|F_{45}| \neq 3$ and; $|F'_{34}| \neq 3$ or $|F'_{45}| \neq 3$. Then neither statement (1) nor (2) is not satisfied for any $i \in [4]$. It follows from the Claim that for all $i \in [4], |G_i^j| \ge 4$ for some $j \in [2]$. Since $|G_5^1|, |G_5^2| \ge 4$ it implies $val(H_1) + val(H_2) \ge 6$, proving (c).

Lemma 4.9. If H is a face with |H| = 2 then $\alpha_H \ge 4$.

Proof. Let e_1, e_2 be the edges of H and let v, v' be the two ends of e_1, e_2 .

Claim 1: We can assume that there is no edge e_3 such that $\{e_2, e_3\}$ is a face of \mathcal{G} .

Proof of claim: Suppose that there is such an edge e_3 . Let H_1 (resp. H_3) be the face containing e_1 (resp. e_3) which is distinct from $\{e_1, e_2\}$ (resp. $\{e_2, e_3\}$). Lemma 4.6 implies that $\{e_1, e_2\}$ receives one charge from H_1 and that $|H_1|, |H_3| \ge 4$. Rules (V2) and (V5) imply that $\{e_1, e_2\}$ receives 1/2 from both v and v'. Hence, $\alpha_{\{e_1, e_2\}} \ge 4$.

Assume that the faces NF(v), NF(v') and the edges $\delta(v)$, $\delta(v')$ are as described in Lemma 4.8. Claim 1 implies that if $|H_2| \le 3$ then $|H_2| = 3$. Moreover, Lemma 4.8(a) implies that if $|H_2| = 3$ then $|H_1| \ge 5$.

Claim 2: $\{e_1, e_2\}$ receives at least 1/2 charge from both v and v'.

Proof of claim: We may assume $|NF_4^+(v)| \le 2$ for otherwise rule (V2) implies that face $\{e_1, e_2\}$ receives 1/2 charge from v. Consider first the case where $|H_2| = 3$, and hence $|H_1| \ge 5$. If $|NF_4^+(v)| = 1$ then rule (V3) implies that $\{e_1, e_2\}$ receives 1/2 charge from v. Thus $|NF_4^+(v)| = 2$ and either $|F_{45}| \ge 4$ or $|F_{34}| \ge 4$. Then $\{e_1, e_2\}$ receives 1/2 charge from v, in the former case because or rule (V4) and in the latter case because of rule (V7).

The remaining case is where $|H_1|, |H_2| \ge 4$. Since $|NF_4^+(v)| \le 2$, $|F_{34}|, |F_{45}| \le 3$. Lemma 4.7 implies that either $|F_{34}| \ne 2$ or $|F_{45}| \ne 2$. Thus either $|F_{34}| = |F_{45}| = 3$, or up to symmetry, $|F_{34}| = 2$ and $|F_{45}| = 3$. Then $\{e_1, e_2\}$ receives 1/2 charge from v, in the former case because or rule (V6) and in the latter case because of rule (V7).

Suppose $|H_2| = 3$. Then Lemma 4.8(a) implies that $val(H_1) \ge 4$ and $|H_1| \ge 5$. It follows from rule (F1) that $\{e_2, e_3\}$ receives one charge from H_1 . Claim 2 implies that $\{e_1, e_2\}$ receives 1/2charge from v and by symmetry 1/2 charge from v'. Hence, $\alpha_{\{e_1, e_2\}} \ge 4$. Hence, we will assume that $|H_1|, |H_2| \ge 4$. Up to symmetry, it suffices to consider the following cases.

Case 1: $|F_{34}| = |F_{45}| = |F'_{34}| = |F'_{45}| = 3.$

Then rule (V6) implies that $\{e_1, e_2\}$ receives one charge from both v and v'. Hence, $\alpha_{\{e_1, e_2\}} \ge 4$.

Case 2: $|F'_{34}| = |F'_{45}| = 3$. Moreover, $|F_{34}| \neq 3$ or $|F_{45}| \neq 3$.

It follows from Lemma 4.8(b) that $val(H_1) + val(H_2) \ge 5$. Thus $val(H_j) \ge 3$ for some $j \in [2]$. Because of F'_{34}, F'_{45} we have $|H_j| \ge 5$. It follows from rule (F2) that $\{e_1, e_2\}$ receives 1/2 charge from H_j . Rule (V6) implies that $\{e_1, e_2\}$ receives one charge from v'. Finally, Claim 2 implies $\{e_1, e_2\}$ receives 1/2 charge from v. Hence, $\alpha_{\{e_1, e_2\}} \ge 4$.

Case 3: $|F_{34}| \neq 3$ or $|F_{45}| \neq 3$. Moreover, $|F'_{34}| \neq 3$ or $|F'_{45}| \neq 3$.

Lemma 4.8(c) implies that $val(H_1) + val(H_2) \ge 6$. Suppose $val(H_j) \ge 4$ for some $j \in [2]$. Then rule (F1) implies that $\{e_1, e_2\}$ receives one charge from H_j . Finally, Claim 2 implies that $\{e_1, e_2\}$ receives at least 1/2 charge from both v and v'. Hence, $\alpha_{\{e_1, e_2\}} \ge 4$. Thus we can assume that $val(H_1) = val(H_2) = 3$. Suppose $|F_{34}| \le 3$ and $|F_{45}| \le 3$. Then $|H_1| \ge 5$ and $|H_2| \ge 5$. Rules (F1) or (F2) imply that face $\{e_1, e_2\}$ receives at least 1/2 from both H_1, H_2 . Together with Claim 2 this implies that $\alpha_{\{e_1, e_2\}} \ge 4$. Hence, we may assume, $|F_{34}| \ge 4$ or $|F_{45}| \ge 4$. Similarly we have $|F'_{34}| \ge 4$ or $|F'_{45}| \ge 4$.

Suppose $|F_{34}| \ge 4$ and $|F_{45}| \ge 4$. Then rule (V1) implies that $\{e_1, e_2\}$ receives one charge from v. If $|F'_{34}| \ge 4$ and $|F'_{45}| \ge 4$ then rule (V1) implies that $\{e_1, e_2\}$ receives one charge from v. But then, $\alpha_{\{e_1, e_2\}} \ge 4$. Thus we may assume (after possibly relabeling), that $|F'_{34}| \le 3$. It follows that $|H_2| \ge 5$ and that rule (F2) implies that $\{e_1, e_2\}$ receives 1/2 charge from H_2 . But then Claim 2 implies that $\{e_1, e_2\}$ receives 1/2 charge from v' and $\alpha_{\{e_1, e_2\}} \ge 4$.

Thus we can assume that exactly one of F_{34} , F_{45} has size ≥ 4 and that exactly one of F'_{34} , F'_{45} has size ≥ 4 . Consider first the case where $|F_{34}| \leq 3$ and $|F'_{34}| \leq 3$. Then (F2) implies that $\{e_1, e_2\}$ receives 1 charge from H_2 and Claim 2 implies that $\alpha_{\{e_1, e_2\}} \geq 4$. Consider now the case where $|F_{34}| \leq 3$ and $|F'_{45}| \leq 3$. It follows that $|H_1| \geq 5$ and $|H_2| \geq 5$. Thus rule (F2) implies that face $\{e_1, e_2\}$ receives at least 1/2 from both H_1, H_2 . Together with Claim 2 this implies that $\alpha_{\{e_1, e_2\}} \geq 4$.

Let B_1, \ldots, B_5 be an *e*-colouring and let i_1, i_2, i_3, i_4, i_5 be distinct elements of [5]. The plane dual of \mathcal{G} is denoted \mathcal{G}^* . Consider C a circuit of \mathcal{G}^* included in $B_{i_1} \cup B_{i_2} \cup B_{i_3}$. Then C partitions the plane into two regions, say $\mathcal{R}, \mathcal{R}'$. Let E_{i_4} (resp. E_{i_5}) be the set of edges of B_{i_4} (resp. B_{i_5}) with both ends in \mathcal{R} . Define, $B'_{i_4} := B_{i_4} \triangle E_{i_4} \triangle E_{i_5}$ and $B'_{i_5} := B_{i_5} \triangle E_{i_4} \triangle E_{i_5}$. Since B_{i_4} and B_{i_5} are T-joins, $B_{i_4} \triangle B_{i_5}$ is an Eulerian subgraph which can be decomposed into a collection \mathcal{F} of edge disjoint circuits. Consider any circuit $C \in \mathcal{F}$. Since $\delta(U) \subseteq B_{i_1} \cup B_{i_2} \cup B_{i_3}$, if $C \in \mathcal{F}$ has an edge in common with $\delta(U)$ then it must be e. Because \mathcal{G} is planar it follows that C is either entirely inside \mathcal{R} or entirely inside \mathcal{R}' . Let C_1, \ldots, C_q be the circuits of \mathcal{F} inside \mathcal{R} . Then $B'_{i_4} = B_{i_4} \triangle C_1 \triangle \ldots \triangle C_q$ and $B'_{i_5} = B_{i_5} \triangle C_1 \triangle \ldots \triangle C_q$. Hence, in particular B'_{i_4}, B'_{i_5} are T-joins and $B_1, B_2, B_3, B'_{i_4}, B'_{i_5}$ is an e-colouring. We will say that this new e-colouring is obtained by swapping colours B_{i_4}, B_{i_5} inside region \mathcal{R} . Let \mathcal{R} be a region and suppose that a new e-colouring is obtained by sequentially swapping colours inside regions which are all contained in \mathcal{R} . Then we say that the new e-colouring is obtained by a *changes which are local to* \mathcal{R} .

Lemma 4.10. Let F be a face with |F| = 3 then either $\alpha_F \ge 4$ or for all $H \in N(F)$, $|H| \ge 4$.

Proof. If some face adjacent to F has only two edges then Lemma 4.6 implies that F receives one charge from another adjacent face. But then $\alpha_F \ge 4$ thus we may assume all faces adjacent to F have at least three edges. Let e, e_1, e_2 be the edges of F and suppose that there is a face F' with edges e, e'_1, e'_2 . For j = 1, 2 let H_j (resp. H'_j) be the face distinct from F (resp. F') with e_j . We can assume that

$$(*) val(H_1), val(H_2) \le 3.$$

For otherwise $val(H_j) \ge 4$ for some $j \in [2]$ and rule (F1) implies that F receives one charge from H_j , so in particular $\alpha_F \ge 4$. Let \mathcal{G}^* denote the plane dual of \mathcal{G} . \mathcal{G}^* contains the following edges,

$$e = FF'$$
 $e_1 = FH_1$ $e_2 = FH_2$ $e'_1 = F'H'_1$ $e'_2 = F'H'_2$.

For j = 1, 2 let $K_1^j, \ldots, K_{t_j}^j$ be the vertices of \mathcal{G}^* adjacent to H_j , but distinct from F, which correspond to faces of \mathcal{G} with at least four edges. Equation (*) states that $t_1, t_2 \leq 3$. Consider an *e*-colouring B_1, \ldots, B_5 . Lemma 4.3 implies that $e \in (B_1 \cup B_2 \cup B_3) - B_4 - B_5$. We call an $H_j H'_j$ -path P in \mathcal{G}^* a *j*-link if $P \subseteq B_i$ for some $i \in [3]$ and $H_j K_l^j$ is an edge of P for some $l \in \{1, \ldots, t_j\}$.

Claim 1:

- (a) Internal vertices of *j*-links, j = 1, 2, are distinct from F, F'.
- (b) 1-links and 2-links are vertex disjoint.

Proof of claim: Suppose F is a vertex of a j-link P. Then P and e_j contain a circuit C of \mathcal{G}^* which does not intersect all of B_1, \ldots, B_5 with the same parity. As C is a cut of \mathcal{G} it contradicts Remark 2.9. Suppose a 1-links P_1 and a 2-link P_2 have an internal vertex in common. Then P_1, P_2, e_1, e_2 contain a circuit C. We have $P_1 \subseteq B_i, P_2 \subseteq B_{i'}$ for some $i, i' \in [3]$. Since C must intersect all of B_1, \ldots, B_5 with the same parity we must have $\{e_1, e_2\} \in B_i \cup B_{i'}$. But then neither B_4 nor B_5 has a mate, a contradiction.

Claim 1(a) implies that given an *j*-link P, (P, e_j, e, e'_j) forms a circuit of \mathcal{G}^* which partitions the plane into two regions. Denote by $\mathcal{R}(P)$ the region which does not contain H_2 . Denote by $\mathcal{K}(P)$ the vertices among $\{K_1^j, \ldots, K_{t_j}^j\}$ which are in (but possibly on the boundary of) the region $\mathcal{R}(P)$. A *j*-link P is *extreme* if we cannot make changes local to $\mathcal{R}(P)$ to obtain a *j*-link P' where $\mathcal{K}(P') \supset \mathcal{K}(P)$.

Claim 2: Let $j \in [2]$. Suppose $e_j \in B_4$ and $e'_j \in B_5$. Let P be an extreme j-link, where $P \subseteq B_i$ for some $i \in [3]$. Consider any $i' \in [3] - \{i\}$. Then after changes which are local to $\mathcal{R}(P)$ there is no j-link included in $B_{i'}$.

Proof of claim: Let K_1, \ldots, K_s be the vertices of \mathcal{G}^* in $\mathcal{K}(P)$. Note that because P is extreme, when make changes local to $\mathcal{R}(P)$ we will not create a new *j*-link using an edge H_jK where K is a vertex not in $\mathcal{K}(P)$. We may assume that H_1K_1 is an edge of P. (*) implies $s \leq 3$. Let i'' be the element in $[3] - \{i, i'\}$. Suppose $s \le 2$. If $H_j K_2 \notin B_{i'}$ we are done. Otherwise, swap colours $B_{i'}, B_{i''}$ inside $\mathcal{R}(P)$ to reduce it to that case. Thus we can assume s = 3. If $H_j K_2, H_j K_3 \notin B_{i'}$ then we are done. Since we can swap colours $B_{i'}, B_{i''}$ inside $\mathcal{R}(P)$ we can assume $H_j K_2 \in B_{i'}$ and $H_j K_3 \in B_{i''}$. Moreover, may assume there is a path $P_2 \subseteq B_{i'}$ using $H_j K_2$ from H_j to some vertex of \mathcal{G}^* (possibly H'_j) in P (otherwise we are done). Since we can swap colours $B_{i'}, B_{i''}$ inside $\mathcal{R}(P)$ we can also assume there is a path $P_3 \subseteq B_{i''}$ using $H_j K_3$ from H_j to some vertex on P. Let z be the first vertex common to P, P_3 starting from H_j which is distinct from H_j . Then the subpaths of P, P_3 between H_j and z define the boundary of a region \mathcal{R}' which is contained in $\mathcal{R}(P)$. Since we can swap colours $B_{i'}, B_{i''}$ inside $\mathcal{R}(P)$ we can also \mathcal{R}'_i . Then swap colours $B_{i'}, B_{i''}$ inside $\mathcal{R}(P)$ we can also \mathcal{R}'_i .

Because of Lemma 4.5 we can assume that $e_1 \in B_4$, $e'_1 \in B_5$, $e_2 \notin B_4$, and $e'_2 \notin B_5$.

Claim 3: We can assume $e_2 \in B_5$ and $e'_2 \in B_4$.

Proof of claim: Consider first the case where $e_2 \in B_i$ and $e'_2 \in B_{i'}$ where $i, i' \in [3]$. Let $i'' \in [3] - \{i, i'\}$ and let $L = \{i'', 4, 5\}$. Then for $l \in L$ mates of B_l , with no bad triangles, consist of edges e_1, e'_1, e and an H_1, H'_1 -path $P_l \subseteq B_l$ containing an edge $H_1K_t^1$ for some $t \leq t_1$. This implies that $t_1 = 3$ and vertices K_1^1, K_2^1, K_3^1 are in the paths $P_l, l \in L$. Let l_1, l_2, l_3 be distinct elements of L. Let z be the first vertex common to P_{l_1}, P_{l_3} starting from H_1 which is distinct from H_1 . Then the subpaths of P_{l_1}, P_{l_3} between H_1 and z define the boundary of a region \mathcal{R}' which does not contain F'. We may assume, (after possibly relabeling l_1, l_2, l_3) that the vertex in $\{K_1^1, K_2^1, K_3^1\}$ of P_{l_2} is in \mathcal{R}' . Then swap colours B_{l_2} and B_i inside that region. Claim 1(a) implies that e_2 and e'_2 remain in respectively, B_i and $B_{i'}$. Hence, for the resulting e-colouring, B_{l_2} has no mate with no bad triangles, a contradiction. Thus either, $e_2 \in B_5$ or $e'_2 \in B_4$. Assume the former case occurs as the latter can be dealt with similarly. We can assume that $e'_2 \in B_i$ for some $i \in [3]$. Then

(†) For all l ∈ [3] - {i}, mates of B_l with no bad triangles consist of edges e₁, e'₁, e and a 1-link included in B_l.

Hence, there is an extreme 1-link P included in $B_{i'}$ for some $i' \in [3]$. We claim that statement (†) remains true after changes local to $\mathcal{R}(P)$. If vertex H'_2 of \mathcal{G}^* is not in $\mathcal{R}(P)$ then (†) follows from the fact that e'_2 remains in B_i . If vertex H'_2 is inside $\mathcal{R}(P)$, then (†) follows from Claim 1(b). Let $i'' \in [3] - \{i, i'\}$. Claim 2 states that there are changes local to $\mathcal{R}(P)$ such that afterwards there does not exist a 1-link included in $B_{i''}$. But (†) implies that $B_{i''}$ does not have a mate with no bad triangles, a contradiction. \diamond

Consider first the case where there is no *j*-link for some $j \in [2]$. Then for all $i \in [3]$ there must be a (3 - j)-link included in B_i . Let P be an extreme (3 - j)-link included in some $B_i, i \in [3]$. Following a similar argument as in the previous claim, it can be shown that there still won't be any *j*-link after changes local to $\mathcal{R}(P)$. Choose $i' \in [3] - \{i\}$. Claim 2 implies that after changes local to $\mathcal{R}(P)$ there does not exist a (3 - j)-link included in $B_{i'}$. But then $B_{i'}$ has no mate with no bad triangle, a contradiction. Otherwise for j = 1, 2 let P_j be an extreme link and let $i_j \in [3]$ be such that $P_j \subseteq B_{i_j}$. Claim 1(b) implies that P_1 and P_2 do not intersect. It follows that for j = 1, 2, changes local to $\mathcal{R}(P_j)$ do not change the *e*-colouring inside $\mathcal{R}(P_{3-j})$ and will not change the fact that P_{3-j} is extreme (since otherwise the new extreme (3 - j)-link would intersect P_j). Let i'' be the element in $[3] - \{i_1, i_2\}$. Claim 2 implies that after changes local to $\mathcal{R}(P_1)$ and $\mathcal{R}(P_2)$ there does not exist, for j = 1, 2, a j-link, included in $B_{i''}$. It follows that $B_{i''}$ does not have a mate with no bad triangles, a contradiction.

Lemma 4.11. Let H be a face with |H| = 3 then $\alpha_H \ge 4$.

Proof. Let e_1, e_2, e_3 be the edges of H. For each $i \in [3]$ let F_i be the face containing e_i which is distinct from H. Lemma 4.10 implies that $|F_i| \ge 4$ for all $i \in [3]$. Let v_{12} (resp. v_{23} ; v_{31}) be the common end of e_1, e_2 (resp. $e_2, e_3; e_3, e_1$). We will show that face H receives 1/2 charge from v_{12} (and by symmetry from v_{13} and v_{23}). Since $d(v_{12}) = 5$ there are two faces F, F' so that $NF(v_{12}) = (F_1, H, F_2, F, F')$. We can assume that $|F| \ne 2$ or that $|F'| \ne 2$ for otherwise there exists three edges incident to v_{12} which are parallel and Lemma 4.6 implies that H receives one charge from F_1 and from F_2 . We can assume that $|F|, |F'| \le 3$, for otherwise rules (V1) or (V2), would imply that H receives at least 1/2 charge from v_{12} . If |F| = |F'| = 3 then (V6) implies Hreceives one charge from v_{12} . If either |F| = 2 or |F'| = 2 then (V7) implies that H receives 1/2charge from v_{12} .

ACKNOWLEDGMENTS

I would like to thank Bert Gerards for early discussions on this problem, in particular for suggesting the proof of Lemma 2.2.

REFERENCES

- [1] G. Cornuéjols. Packing and Covering. Society for Industrial and Applied Mathematics, 2001. ISBN 0-89871-481-8.
- [2] R. Thomas D. P. Sanders. Edge three-coloring cubic apex graphs. Technical report. Manuscript.
- [3] R. Thomas D. P. Sanders, P. D. Seymour. Edge three-coloring cubic doublecross graphs. Technical report. In preparation.
- [4] T.R. Jensen and B. Toft. Graph coloring problems. Wiley-Interscience Publication, 1995. ISBN 0-471-02865-7.
- [5] E. L. Johnson M. Conforti. Two min-max theorems for graphs noncontractible to a four wheel. Technical report, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 1987.
- [6] R. Thomas N. Robertson, P. D. Seymour. Tutte's edge-coloring conjecture. J. Combinatorial Theory B, 70:2–44, 1997.
- [7] P. D. Seymour. On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte. *Proc. of london Math.* Soc, 3(38):423–450, 1979.
- [8] P.D. Seymour. Matroids and multicommodity flows. European J. of Combinatorics, pages 257–290, 1981.
- [9] Tait. On the colouring of maps. In Proc. Roy. Soc. Edinburgh Sect. A, volume 10, pages 501-503,729, 1878-1880.
- [10] W. T. Tutte. On the algebraic theory of graph colourings. J. Combin. Theory, 1:15–50, 1966.

BERTRAND GUENIN

DEPARTMENT OF COMBINATORICS AND OPTIMIZATION

FACULTY OF MATHEMATICS

UNIVERSITY OF WATERLOO

WATERLOO, ON N2L 3G1, CANADA

E-mail address: bguenin@math.uwaterloo.ca