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ABSTRACT. Let G be a planar graph and let T be a subset of vertices of G of even cardinality.

Suppose that there exists a T -cut of G of cardinality at most five and that the parity of the cardinality

of every T -cut is the same. We show that in that case the cardinality of the smallest T -cut is equal

to the maximum number of pairwise disjoint T -joins. As a corollary we obtain that for k ∈ {4, 5},

a k-regular planar graph has chromatic index k if and only if for every subset of vertices X of

odd cardinality there are at least k edges with exactly one end in X . The case where k = 4 was

conjectured by Seymour in 1979.

1. INTRODUCTION

In this paper graphs will be allowed parallel edges but will be loopless. A cut of a graph G is a

set of edges δG(U) := {uv ∈ E(G) : u ∈ U, v 6∈ U} where U 6= ∅, U 6= V (G). The cardinality of

δG(U) is denoted dG(U). Let v be a vertex of G, we write δG(v) and dG(v) for δG({v}) and dG({v})

respectively. In cases when there is no ambiguity we shall omit the index G. Thus d(v) denotes the

degree of v.

A graft is a pair (G, T ) where G is a graph and T a subset of vertices of even cardinality. A T -cut

is a cut δ(U) where |U ∩T | is odd. A T -join is a set of edges B which has the property that T is the

set of vertices of odd degree of G[B] (the graph induced by B). Note that we do not require T -cuts

and T -joins to be inclusion-wise minimal. We say that (G, T ) is a postman set if E(G) is a T -join.

The cardinality of the smallest T -cut is denoted τ(G, T ). We call a collection of pairwise disjoint

T -joins a packing (of T -joins). The cardinality of the largest packing is denoted ν(G, T ). The

following observation is easy and well known,

Remark 1.1. Let δ(U) be a T -cut and let B be a T -join then |δ(U) ∩B| is odd.
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The last remark implies in particular that τ(G, T ) ≥ ν(G, T ). The graft (G, T ) packs when

equality holds. The parity of a T -cut δ(U) is the parity of d(U). Next we characterize grafts which

have the property that all T -cuts have the same parity.

Proposition 1.2. The following statements are equivalent for a graft (G, T ) where T 6= ∅.

(1) all T -cuts have the same parity,

(2) G is Eulerian or (G, T ) is a postman set.

Proof. Suppose that (2) holds. If G is Eulerian then all cuts are even, in particular so are all T -cuts.

If (G, T ) is a postman set then for every T -cut δ(U) we have d(U) = |δ(U) ∩ E(G)| which is odd

because of Remark 1.1 and the fact that E(G) is a T -join. Suppose that (1) holds. Since T 6= ∅

there exists a T -cut, say δ(U). Consider a vertex v 6∈ T . Then δ(U 4 {v}) is a T -cut. Note that

δ(v) = δ(U 4 U 4 {v}) = δ(U)4 δ(U 4 {v}). Since δ(U), δ(U 4 {v}) have the same parity,

d(v) is even. Thus vertices not in T have even degree. We may assume that G has vertex w of odd

degree for otherwise G is Eulerian. Then w ∈ T . To complete the proof it suffices to show that if

a vertex v ∈ T then v has odd degree. Since δ(U) is a T -cut so is δ(U 4 {v} 4 {w}). Note that

δ(v)4 δ(w) = δ({v}4{w}) = δ(U 4U 4{v}4{w}) = δ(U)4 δ(U 4{v}4{w}). Because

δ(U), δ(U 4 {v} 4 {w}) have the same parity and d(w) is odd, so is d(v). �

The following is the main result of the paper (which will be proved in sections 2, 3, and 4).

Theorem 1.3. Let (G, T ) be a graft where all T -cuts have the same parity. Then (G, T ) packs if G

is planar and τ(G, T ) ≤ 5.

The condition that all T -cuts have the same parity cannot be omitted in the hypothesis of the last

theorem. Indeed consider the bipartite graph K2,3 and let T consist of all vertices of K2,3 with the

exception of one of the vertices of degree 3. Then 2 = τ(K2,3, T ) > ν(K2,3, T ) = 1 and (K2,3, T )

does not pack.
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Edge colouring. We write [n] for {1, . . . , n}. We say that θ : E(G) → [k] is a colouring of G

with k colours if for every pair of edges e, e′ incident to the same vertex we have θ(e) 6= θ(e′). The

minimum number of colours χ′(G) needed colour the edges of G is the chromatic index of G.

The condition that G be planar is also required in Theorem 1.3. Indeed let G denote the Petersen

graph. G is 3-regular and every cut of G contains at least 3-edges. Hence τ(G, V (G)) = 3. Suppose

for a contradiction that (G, V (G)) packs. Then there exists 3 disjoint T -joins. Since δ(v) is a T -cut

for every vertex v it follows that each of the T -joins is a perfect matching. But this implies that

χ′(G) = 3, a contradiction as it is well known that χ′(G) = 4.

Corollary 1.4. Let G be a k-regular planar graph where k ≤ 5. Then χ′(G) = k if and only if for

all U ⊆ V (G) where |U | is odd, we have d(U) ≥ k.

Proof. Suppose that χ′(G) = k and let J1, . . . , Jk denote each of the colour classes. Note that each

colour class is a perfect matching. It follows that for i ∈ [k] and for all U ⊆ V (G) where |U | is odd,

we have Ji∩δ(U) 6= ∅. Since J1, . . . , Jk are pairwise disjoint it follows that d(U) ≥ k. Conversely,

suppose that for all U ⊆ V (G) where |U | is odd, we have d(U) ≥ k. Then |V (G)| is even and let

T := V (G). Let δ(U) be any T -cut. Then |U ∩ T | = |U | and |U | is odd. Hence d(U) ≥ k. It

follows that τ(G, T ) ≥ k. If k is even then G is Eulerian. If k is odd then (G, T ) is a postman set.

Proposition 1.2 implies that all T -cuts have the same parity. Theorem 1.3 imply that there exists a

packing of k T -joins, say J1, . . . , Jk. Since T = V (G), δ(v) is a T -cut for every v ∈ V (G). Since

G is k-regular, J1, . . . , Jk must be perfect matchings. Let each matching correspond to a colour

class, then χ′(G) = k. �

Remark 1.5. The cases k = 0, 1, 2 are trivial. The case k = 3 states that every bridgeless cubic

planar graph has chromatic index three. By a result of Tait [9] this is equivalent to the 4-colour

theorem (which states that any map can be coloured using four colours so that adjacent countries

get different colours).
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The case k = 4 was conjectured by Seymour [7] (see also [4] problem 12.18). Seymour (personal

communication) pointed out that it implies the following strengthening of the four colour theorem.

(Note that we rely on the 4-colour theorem for the proof of Theorem 1.3.)

Corollary 1.6. Let G be a bridgeless plane graph. Then we can colour the vertices and the faces of

G using four colours such that for every edge uv:

(1) vertices u and v are assigned distinct colours,

(2) the two faces F1, F2 which share edge uv are assigned distinct colours,

(3) exactly three colours are used to colour {u, v, F1, F2}.

Proof. We construct the medial graph H of G, i.e. vertices of H correspond to the edges of G and

two vertices ofH are adjacent if and only if they correspond to consecutive edges in some face of G.

Since G is bridgeless, H is simple and 4-regular, moreover, it can be readily checked that for every

X ⊆ V (G) where |X| is odd, d(X) ≥ 4. It follows from corollary 1.4 that χ′(H) = 4. Choose the

colours to be the elements, say α, β, γ, δ, of the Z2 × Z2 group. Then for every v ∈ V (H) the sum

of the colours over the edges of δH(v) is α+ β + γ + δ = (0, 0). It follows that for the dualH∗ of

H the sum of the colours over the edges of every facial circuit is (0, 0). Since for plane graphs the

cycle space is generated by the facial circuits, the sum of the colours over the edges of any circuit

ofH∗ is (0, 0). Therefore, the following assignment of colours to the vertices ofH∗ is well defined:

give colour (0, 0) to some initial vertex zo and for all vertices z find a path P from zo to z and assign

to z the colour which is equal to the sum of all colours along the edges of the path P . The graph

H can be drawn on the plane so that each vertex is placed in the middle of its corresponding edge

of G and so that faces of H correspond to either vertices of G or to faces of G. Hence, the vertex

colouring of H∗ correspond to a colouring of the faces and vertices of G. Let e = uv be an edge of

G, let F1, F2 be the faces of G containing e, and for i = 1, 2 let fi, gi be the edge of Fi incident to u

and v respectively. Then e, f1, f2, g1, g2 ∈ V (H) and f1e, f2e, g1e, g2e ∈ E(H). We may assume

that f1e, g1e, g2e, f2e are assigned colours α, β, γ, δ respectively. Suppose face u of H is assigned

colour x then faces F1, v, F2 of H are assigned colours x + α, x + α + β, x + α + β + γ. Since
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x 6= x+ α+ β, (1) holds; and since x+ α 6= x+ α+ β + γ (2) holds. (1) and (2) imply that two

colours are used at least to colour u, v, F1, F2. But since x, x+α, x+α+ β, x+α+ β+ γ do not

sum to (0, 0), exactly three colours are used, i.e. (3) holds. �

A general conjecture. Let (G, T ) be a graft. Consider a partition of V (G) into subsets V1, . . . , Vr

such that for each i ∈ [r] the induced subgraph G[Vi] is connected and |Vi ∩T | is odd. Let G′ be the

simple graph with vertex set [r] and where ij ∈ E(G′) if and only if there exists an edge of G with

one end in Vi and one end in Vj . A subgraph of G′ is called a T -minor of G. Observe that if a graph

is a T -minor of G then it is minor of G as well, however the converse is not true in general.

Conjecture 1.7. Let (G, T ) be a graft where all T -cuts have the same parity. Then the graft packs

if G does not contain the Petersen graph as a T -minor.

Seymour [8] introduced a property called cycling for multi-commodity flows in binary matroids.

Characterizing which grafts (where all T -cuts have the same parity) pack can be viewed as a special

case of the problem of characterizing which binary matroids are cycling. Proposition 1.2 implies

that if (G, T ) is a postman set then all T -cuts have the same parity. Hence the next conjecture is a

special case of Conjecture 1.7.

Conjecture 1.8 (Conforti and Johnson [5, 1]). Let (G, T ) be a postman set where G has no Petersen

minor. Then (G, T ) packs.

Since the Petersen graph is not planar, Conjecture 1.7 suggests that the condition that τ(G, T ) ≤ 5

is not required in Theorem 1.3. In other words,

Conjecture 1.9. A graft (G, T ) packs if G is planar and all T -cuts have the same parity.

Following the argument in the proof of Corollary 1.4, this in turn would imply,

Conjecture 1.10 (Seymour (personal communication)). Let G be a k-regular graph with no Pe-

tersen minor. Then χ′(G) = k if and only if for all U ⊆ V (G) where |U | is odd, we have d(U) ≥ k.
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Note that conjectures 1.8 and 1.10 would both imply the recently proved conjecture of Tutte [6, 2, 3]

which states that cubic bridgeless graphs with no Petersen minor have chromatic index three. It can

be easily shown that a graph has a nowhere zero 4-flow if and only if it contains three pairwise

disjoint postman sets. Thus conjecture 1.7 would also imply,

Conjecture 1.11 (Tutte [10]). Every bridgeless graph not containing the Petersen graph as a minor

has a nowhere zero 4-flow.

Organization of the paper. In Section 2 we derive properties that minimal counterexamples to

Theorem 1.3 or Conjecture 1.9 must satisfy. Using the 4-colour theorem we deduce that any such

minimal counterexample satisfies τ(G, T ) ≥ 4. We use discharging arguments to show that both

cases τ(G, T ) = 4 and τ(G, T ) = 5 lead to a contradiction, this is done in Sections 3 and 4.

2. GENERAL PROPERTIES

Let β be some fixed non-negative integer. Consider the following statement: “Let (G, T ) be a

graft where all T -cuts have the same parity, then (G, T ) packs if G is planar and τ(G, T ) ≤ β”.

Observe that if β = 5 then the statement is equivalent to Theorem 1.3. Moreover, if the statement

holds for every β then Conjecture 1.9 is true. Suppose that there is a graft which contradicts the

above statement. Among all such grafts we choose one, say (G, T ), which satisfies the following

properties,

(1) it minimizes |V (G)|;

(2) it minimizes τ(G, T ) among all grafts satisfying (1);

(3) it minimizes |E(G)| among all grafts satisfying (1) and (2).

Throughout the remainder of the paper, k denotes τ(G, T ).

Lemma 2.1. Let δ(X) be a T -cut with d(X) = k. Then |X| = 1 or |X̄| = 1.

Proof. Suppose for a contradiction, |X| > 1 and |X̄| > 1. Let X1 := X and X2 := X̄ . Suppose

for a contradiction |X1|, |X2| > 1. Let us first show that for i = 1, 2, G[Xi] (the graph induced by
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vertices Xi) is connected. If not we can partition Xi into X ′i, X
′′
i so that there are no edges between

X ′i and X ′′i . Since |Xi ∩ T | is odd, we may assume that |X ′i ∩ T | is odd. Note that we may assume

that G is connected. It follows that there is at least one edge between X3−i and X ′′i . Hence the

T -cut δ(X ′i) ⊂ δ(Xi), a contradiction.

For i = 1, 2, let Gi be obtained from G by identifying all vertices of G in X3−i to a single new

vertex zi and deleting all loops. Also let Ti = (T ∩Xi) ∪ {zi}. By construction |Ti| is even, and

(Gi, Ti) is a graft. Since G[X3−i] is connected it follows that Gi is a minor of G. In particular Gi is a

planar graph. Observe that Ti-cuts of Gi correspond to T -cuts of G which contain all vertices X3−i

on the same shore. It follows that, τ(Gi, Ti) ≥ k and that all Ti-cuts of Gi have the same parity.

Because d(zi) = k we have in fact τ(Gi, Ti) = k. Since |X3−i| > 1, |V (Gi)| < |V (G)|. It follows

from the choice of (G, T ) that (Gi, Ti) packs.

Thus for i = 1, 2 there exists packing of Ti-joins Bi
1, . . . , B

i
k. As d(zi) = k, each Bi

1, . . . , B
i
k

uses exactly one edge incident to zi. We may assume for each l ∈ [k] that B1
l and B2

l contain the

edge incident to z1 and z2 which corresponds to the same edge of G. For l ∈ [k] let Bl := B1
l ∪B2

l .

Since Bi
l is a Ti-join, T ∩Xi is the set vertices of odd degree of G[Bl] in Xi. It follows that Bl is a

T -join of G and that (G, T ) packs, a contradiction. �

Lemma 2.2. (1) T = V (G) and (2) G is k-regular.

Proof. Suppose for a contradiction that there exists v ∈ V (G) where either v 6∈ T or d(v) > k.

Claim: Not all edges incident to v are parallel.

Proof of claim: Suppose for a contradiction that all edges in δ(v) have both the same ends. Consider

first the case v ∈ T . Let e1, e2 ∈ δ(v), and let G′ := G\{e1, e2}. Since all T -cuts of G have the

same parity, dG(v) ≥ k + 2. As edges of δG(v) are parallel this implies τ(G′, T ) ≥ k. Note that

all T -cuts of G′ have the same parity. By the choice of (G, T ), (G′, T ) has a packing of k T -joins.

A contradiction since T -joins of G′ are T -joins of G. Suppose now that v 6∈ T . Let G′ := G\δ(v).
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Since edges of δ(v) are parallel, no minimal T -cut of G uses any edge of δ(v). Hence, τ(G′, T ) ≥ k.

By the choice of (G, T ), (G′, T ) packs, hence so does (G, T ), a contradiction. 3

Consider a planar embedding of G and visit edges of δ(v) in a clockwise fashion. It follows from

the Claim that there are two consecutive edges of the form u1v and u2v where u1 6= u2. Let G′ be

obtained by replacing edges u1v, u2v of G by an edge u1u2. Note that the planar embedding of G

can be transformed into a planar embedding of G′. Observe also that since G has no loops neither

does G′. Clearly, for all w ∈ T −{v}, dG′(w) = dG(w) ≥ k. Let δ(X) be a T -cut of G where either

{v} = X or where both |X| > 1 and |X̄| > 1. Then d(X) > k, in the former case by the choice

of v and in the latter one by Lemma 2.1. Since all T -cuts have the same parity d(X) ≥ k + 2.

It follows that τ(G′, T ) = k. Note that all T -cuts of G′ have the same parity. By the choice of

(G, T ) there exists a packing B′1, . . . , B
′
k of T -joins of G′. If none of B′1, . . . , B

′
k use u1u2 then

they are T -joins of G as well and (G, T ) packs, a contradiction. Otherwise there is an edge, say

u1u2 ∈ B′1, and B′1 − {u1u2} ∪ {u1v, u2v}, B′2, . . . , B′k is a packing of T -joins of G, and (G, T )

packs, a contradiction. �

Lemma 2.3. k ≥ 4.

Proof. Lemma 2.2 states that V (G) = T and G is k-regular. Let X ⊆ V (G) where |X| is odd.

Then |X| = |X ∩ T | and since τ(G, T ) ≥ k, we have d(X) ≥ k. Suppose k ≤ 3. It follows from

Remark 1.5 that χ′(G) = k. Since G is k-regular and T = V (G), every colour class is a T -join. But

then (G, T ) packs, a contradiction. �

We say that a collection of T -joins, B1, . . . , Bk is an e-colouring for some edge e, if they pairwise

intersect at most in e (i.e. for all i, j ∈ [k], i 6= j, Bi ∩ Bj ⊆ {e}) and if there does not exist a

collection, B′1, . . . , B
′
k of T -joins which pairwise intersect at most in e and for which |{B′i : e ∈

B′i, i ∈ [k]}| < |{Bi : e ∈ Bi, i ∈ [k]}|.
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Lemma 2.4. Suppose B1, . . . , Bk is an e-colouring then (1) for every vertex v which is not an end

of e every edge of δ(v) is in exactly one of B1, . . . , Bk. Moreover, we can assume that (2) for some

odd r ≥ 3, e is in all of B1, . . . , Br and in none of Br+1, . . . , Bk.

Proof. Let v be a vertex of G which is not an end of e. Since v ∈ T , δ(v) is a T -cut. Now (1)

follows from the fact that v has degree k and that B1, . . . , Bk intersect at most in e. It follows from

the fact that G is k-regular and T = V (G) that E(G) is a T -join if k is odd, and that E(G) is an

Eulerian subgraph if k is even. Let B′ := B14B24 . . .4Bk. Note that B′ is a T -join if k is odd

and is an Eulerian subgraph if k is even. Hence, in either cases, B′′ := B′ 4 E(G) is an Eulerian

subgraph. (1) implies that B′′ ⊆ {e}. Since G has no loops, B′′ = ∅. It follows that there exists

an odd number of T -joins among B1, . . . , Bk which use the edge e. Hence, upon relabeling we

can assume that for some odd r, e is in all of B1, . . . , Br and in none of Br+1, . . . , Bk. Moreover,

r ≥ 2, for otherwise (G, T ) packs. This proves (2). �

Lemma 2.5. There exists an e-colouring for every edge e.

Proof. Let G′ be the graph obtained from G by contracting edge e and deleting all loops. Let u, v

denote the ends of e and let T ′ := T −{u, v}. Since |T | is even so is |T ′|. T ′-cuts of G′ correspond

to T -cuts of G where both u and v are on the same shore. In particular, all T ′-cuts of G′ have the

same parity and τ(G′, T ′) ≥ k. It follows by the choice of (G, T ) that there exists a packing of k

T ′-joins of G′. These T ′-joins can be extended to T -joins of G by possibly adding e. Hence, there

exists a collection of k T -joins, say B1, . . . , Bk, which pairwise intersect at most in e. Among such

collections choose one with the fewest number of T -joins using e. �

Consider e ∈ E(G) and an e-colouring B1, . . . , Bk at e. We say that a T -cut δ(U) is a mate of Bi

(i ∈ [k]) if e ∈ δ(U) and for all j ∈ [k]− {i}, |δ(U) ∩Bj | = 1.

Lemma 2.6. Let B1, . . . , Bk be any e-colouring then all of B1, . . . , Bk have mates.

Proof. Let r := |{Bi : e ∈ Bi, i ∈ [k]}|. Let G′ be obtained by adding r − 3 parallel edges to e.

Lemma 2.4 implies that r is odd. It follows that since all T -cuts of G have the same parity so do all
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T -cuts of G′. The e-colouring B1, . . . , Bk of G implies that there exists an e-colouring B′1, . . . , B
′
k

of G′ where {j : e ∈ B′j , j ∈ [k]} = {1, 2, 3}.

Claim: Let i ∈ [k] and let G′′ := G′ \B′i. Then τ(G′′, T ) ≤ k − 3.

Proof of claim: If all T -cuts of G′ are even (resp. odd) then Remark 1.1 implies that all T -cuts

of G′′ are odd (resp. even). For every vertex v which is not an end of e, dG′′(v) < k. Thus

τ(G′′, T ) < k and it follows from the choice of (G, T ) that (G′′, T ) packs. Suppose for a contradic-

tion that τ(G′′, T ) ≥ k − 1. Then there exists a packing of k − 1 T -joins of G′′, say B̂1, . . . , B̂k−1.

But then B′i together with B̂1, . . . , B̂k−1 imply that there exists an e-colouring of G where at most

r − 2 of the T -joins use edge e, a contradiction. Hence τ(G′′, T ) < k − 1. Since T -cuts of G′ and

T -cuts of G′′ have distinct parities, τ(G′′, T ) ≤ k − 3. 3

Let δG′′(U) be a minimum T -cut of G′′. Consider first the case where i ∈ {1, 2, 3}. Then for

j = 4, . . . , k, B′i ∩ B′j = ∅. Hence, for each j = 4, . . . , k, B′j is a T -join of G′′ and in particular

δG′′(U) ∩ B′j 6= ∅. The Claim states that |δG′′(U)| ≤ k − 3. Hence, |δG′′(U) ∩ B′j | = 1 for

j = 4, . . . , k, and δG′′(U) ∩ (B′1 ∪ B′2 ∪ B′3) = ∅. Since δG′(U) ⊆ δG′′(U) ∪ B′i is a T -join of G′,

it intersects each of B′1, B
′
2, B

′
3. Hence e ∈ δG′(U). But then δG(U) is a mate of Bi. Consider now

the case where i > 3. For j ∈ [k] − {i}, B′j are T -joins of G′′, thus δG′′(U) ∩ B′j 6= ∅. The Claim

states that |δG′′(U)| ≤ k − 3. Hence, |δG′′(U) ∩ B′j | = 1 for j ∈ [k] − {i} and e ∈ δG′′(U). But

then δG(U) is a mate of Bi. �

Lemma 2.7. Let B1, . . . , Bk be an e-colouring and let δ(U) be a mate of Bi for some i ∈ [k].

Suppose there is a circuit C such that |C ∩ δ(U) ∩ Bi| ≥ 2. Then |C| ≥ 3. Moreover, if C is a

triangle with edges, say f, g, h, then f, g ∈ Bi, h 6∈ Bi and f, g are both incident to a same end of e.

Proof. Let C be a circuit where |C| ≤ 3 and |C ∩ δ(U) ∩ Bi| ≥ 2. Lemma 2.4(1) implies that the

common endpoint of the two edges of C inBi is an end of e. Suppose |C| = 2. Then Lemma 2.4(1)

implies that both edges of C are parallel to e. It follows that all cuts using e contain two edges in

Bi. Thus none of Bj where j ∈ [k]− {i} has a mate, a contradiction to Lemma 2.6. �
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We say that a triangle f, g, h as given in the previous proposition and where e 6∈ {f, g, h} is a bad

triangle for δ(U).

Lemma 2.8. Let B1, . . . , Bk where k ∈ {4, 5} be any e-colouring. Then for all i ∈ [k], Bi has a

mate with no bad triangles.

Proof. Consider a counterexample which minimizes |Bi|, i.e. every mate of Bi has a bad triangle

but for every e-colouring B′1, . . . , B
′
k where |B′i| < |Bi|, B′i has a mate with no bad triangles. Let

u, v be the ends of e. Since Bi has a least one mate, there is a triangle with edges f, g, h where

f, g ∈ Bi, h ∈ Bj (j 6= i) and both f, g are incident to u. Define, B′i = Bi 4 C, B′j := Bj 4 C

and let B′l := Bl for all l ∈ [k] − {i, j}. Clearly, B′1, . . . , B
′
k is an e-colouring. Since |B′i| < |Bi|

there is a mate δ(U) of B′i with no bad triangle. It can be readily checked that δ(U) is also a mate

of Bi. Let f ′, g′, h′ be the edges of a bad triangle of δ(U) for Bi where f ′, g′ ∈ δ(U) ∩ Bi. Since

f ′, g′, h′ is no longer a bad triangle for B′i, triangles f, g, h, and f ′, g′, h′ must have an edge in

common, say g = g′.

Consider the case where k = 4. Then i 6∈ [3] since otherwise d(u) = 4 implies that u is not

incident to an edge of B4, a contradiction as u ∈ T and B4 is a T -join. Hence, i = 4, but then

δ(U)−{e} ⊆ B′4, a contradiction as g′ ∈ δ(U)∩B′j . Consider the case where k = 5. Then e is not

included in all of B1, . . . , B5, for otherwise, δ(U)− {e} ⊆ B′i, a contradiction as g′ ∈ δ(U) ∩B′j .

Thus we know from Lemma 2.4 that e ∈ (B1 ∩B2 ∩B3)−B4 −B5. Then i 6∈ [3] since otherwise

d(u) = 5 implies that u is not incident to both an edge of B4 and B5, a contradiction as u ∈ T

and B4, B5 are T -joins. Hence, we can assume i = 4. Since h ∈ δ(U) we must have h ∈ B5.

By symmetry (interchange in the previous arguments the roles of triangles f, g, h and f ′, g′, h′), we

must also have h′ ∈ B5. It follows that the vertex common to both h and h′ is v. But then every cut

δ(U) which contains e intersects either B4 or B5 at least twice. It follows that none of B1, B2, B3

have a mate, a contradiction. �
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It can be easily checked that every cut is either a T -cut or the symmetric difference of two T -cuts.

Hence, Remark 1.1 implies the following observation.

Remark 2.9. For all cuts δ(U) and T -joinsB,B′, |δ(U)∩B| and |δ(U)∩B′| have the same parity.

Lemma 2.10. G does not have a two edge cutset. In particular faces of G share at most one edge.

Proof. Suppose there are edges e, e′ such that G\{e′, e′} has two components G1,G2. Since G is

k-regular, there exists an edge e1 in G1 and an edge e2 in G2. It follows from Remark 2.9 that for

every e1-colouring and for every e2-colouring both e and e′ are in the same T -join. Then we can

combine the e1-colouring and the e2-colouring to find an edge colouring of G, a contradiction. �

Lemma 2.11. Let n,m, f denote respectively, the number of vertices, edges, and faces of G. Then

2m+ (k − 4)n < 4f

Proof. Since G is k-regular, 2m = kn. Euler’s formula states that n − m + f = 2, hence in

particular f > m − n or equivalently, 4f > 4m − 4n = 2m + (2m − 4n). Since 2m = kn we

have 2m+ (2m− 4n) = 2m+ (kn− 4n) = 2m+ (k − 4)n. �

3. DISCHARGING FOR τ(G, T ) = 4

In this section we shall prove that no minimum counterexample satisfies k = 4. Let us assign

every face F of G an initial charge equal to |F |. We say that we move one charge from a face H to a

face F , if we decrease the number of charges of face H by one and increase the number of charges

of face F by one. Note that the total number of charges remains unchanged. We say that two faces

are adjacent if they share at least one edge. We apply, once for each face H , the following rule,

Discharging rule: if |H| > 4 and H has 4 distinct adjacent faces G1, G2, G3, G4 where |Gi| ≥ 4

for i ∈ [4], then for all adjacent faces F of H where |F | < 4 move one charge from H to F .

For each face F let αF denote the resulting charge.
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Remark 3.1. If F is a face where |F | ≥ 4 then αF ≥ 4.

Suppose that for every face F , αF ≥ 4, then

2m =
∑

faces F

|F | =
∑

faces F

αF ≥ 4f

which contradicts, Lemma 2.11. Hence the next lemma shows k 6= 4.

Lemma 3.2. For every face F we have αF ≥ 4.

Proof. Because of Remark 3.1 we may assume that |F | ≤ 4. Since G is loopless we may assume

that |F | ≥ 2. Hence, it suffices to consider the following two cases.

Case 1: |F | = 2.

Let e, e′ be the two edges in F . Lemma 2.5 states that there is an e-colouring B1, B2, B3, B4.

Lemma 2.4 implies that e ∈ (B1∩B2∩B3)−B4 and thatE(G) = B1 ∪B2 ∪B3 ∪B4. Lemma 2.8

implies that for each i ∈ [4], Bi has a mate δ(Ui) with no bad triangle. Since δ(U4) − {e} ⊆ B4,

e′ ∈ B4. It follows that for i ∈ [4], δ(Ui)−{e, e′} ⊆ Bi. Let H (resp. H ′) be the face distinct from

F with e (resp. e′). For all i ∈ [4], let gi be an edge, distinct from e, in H ∩ δ(Ui) ⊆ Bi and let Gi

be the face distinct from H with gi. Since |δ(Ui) ∩ Gi| is even, there is an edge g′i ∈ Gi ∩ δ(Ui)

distinct from gi. Clearly, g′i 6= e. Because δ(Ui) have no bad triangles, |Gi| ≥ 4 for all i ∈ [4].

Lemma 2.10 implies that the faces G1, G2, G3, G4 are distinct. It follows from the discharge rule

that face F receives one charge from the face H . By symmetry, F also receives one charge from

H ′. It follows that αF ≥ 4.

Case 2: |F | = 3.

Let e, f, f ′ be the three edges in F . As in the previous case there is an e-colouring B1, B2, B3, B4

and e ∈ (B1 ∩ B2 ∩ B3) − B4, E(G) = B1 ∪ B2 ∪ B3 ∪ B4. Moreover, for each i ∈ [4], Bi has

mate δ(Ui) with no bad triangles. Since δ(U4) − {e} ⊆ B4, one of f, f ′, say f , is in B4. Let H

be the face distinct from F which contains f . Lemma 2.4(1) implies that f ′ 6∈ B4. After relabeling
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we may assume that f ′ ∈ B1. It follows that for i = 2, 3, 4, each mate δ(Ui) contains f . For

i = 2, 3, 4, we let gi be an edge distinct from f in H ∩ δ(Ui) ⊆ Bi; we let Gi be the face distinct

from H with gi; and we let g′i ∈ Gi ∩ δ(Ui) ⊆ Bi be an edge distinct from gi. Note g′i 6= e for

otherwise δ(Ui) = {e, f, gi}, hence k ≤ 3, a contradiction. Since δ(Ui) have no bad triangles,

|Gi| ≥ 4 (i = 2, 3, 4). Define B′1 := B4 4 F and B′4 := B1 4 F . Note that B′1, B2, B3, B
′
4 form a

e-colouring. By Lemma 2.8, B′4 has a mate δ(U) with no bad triangles. Since f ′ ∈ B′1 and f ∈ B′4,

δ(U) contains f . Let g̃ be an edge distinct from f in H ∩ δ(U) ⊆ B′4, let G̃ be the face distinct

from H with g̃, and let g̃′ ∈ G̃ ∩ δ(U) ⊆ B′4 be an edge distinct from gi. Since δ(U) has no bad

triangle, |G̃| ≥ 4. Since g4 ∈ B′1 and g̃ ∈ B′4 faces G2, G3, G4, G̃ are all distinct. This implies that

F receives one charge from the face H and that αF ≥ 4. �

4. DISCHARGING FOR τ(G, T ) = 5

In this section we shall prove that no minimum counterexample satisfies k = 5. Given a face F

we write N(F ) for the set of faces adjacent to F (but distinct from F ). Let us assign to every face

F an initial charge equal to |F |.

Discharging rules for faces H:

(F1) if |H| > 4 and there exists faces G1, G2, G3, G4 ∈ N(H) where |Gi| ≥ 4 for i ∈ [4] then

move 1 charge from H to all faces F ∈ N(H) where |F | < 4.

(F2) suppose |H| > 4 and there exists faces G1, G2, G3 ∈ N(H) where |Gi| ≥ 4 for i ∈ [3].

For every edge e of H let e′ and e′′ be the two edges of H adjacent to e. Let F, F ′, F ′′

be the faces, distinct from H , containing respectively edges e, e′, e′′. Suppose |F | < 4. If

|F ′| ≤ 3 and |F ′′| ≤ 3 then move 1 charge from H to F , otherwise move 1/2 charge from

H to F .

Let us assign to every vertex v an initial charge equal to one. Throughout this section we will

assume that G has a fixed planar embedding. Let v ∈ V (G). Since d(v) = 5 by going around v in

a clockwise, or counterclockwise fashion we will visit in sequence faces F1, . . . , F5 where for all
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i ∈ [5], Fi, Fi+1 (k + 1 = 1) are adjacent faces. We write NF (v) = (F1, . . . , Fk). We also write

NFi(v) (resp. NF+
i (v)) for the set of faces F of NF (v) where |F | is equal to (resp. at least) i.

Discharging rules for vertices v: Suppose that NF (v) = (F1, F2, F3, F4, F5).

(V1) if |NF+
4 (v)| = 4 then move 1 from v to the face in NF (v)−NF+

4 (F ).

(V2) if |NF+
4 (v)| = 3 then move 1/2 from v to each face in NF (v)−NF+

4 (F ).

(V3) if NF+
4 (v) = {F1} then move 1/2 from v to F2 and F5.

(V4) if NF+
4 (v) = {F1, F2} then move 1/2 from v to F3 and F5.

(V5) if NF+
4 (v) = {F1, F3} and |F4| = |F5| = 2 then move 1/2 from v to F4 and F5.

(V6) if NF+
4 (v) = {F1, F3}, and |F4| = |F5| = 3 then move 1 from v to F2.

(V7) if NF+
4 (v) = {F1, F3}, |F4| = 2, and |F5| = 3 then move 1/2 to F2 and F4.

Remark 4.1. Observe that in every case at most one of the rules (F1),(F2) and (V1)-(V7) will apply.

For each face F (resp. vertex v) let αF (resp. αv) denote the charge after discharging.

Remark 4.2. Rules (F1),(F2) imply that if a face H satisfies |H| ≥ 4 then αH ≥ 4. Rules (V1)-

(V7) imply that αv ≥ 0 for all v ∈ V (G).

Suppose that for every face F of G, αF ≥ 4, then since αv ≥ 0 for all v ∈ V (G),

2m+ n =
∑

faces F

|F |+ n =
∑

faces F

αF +
∑

v∈V (G)

αv ≥ 4f

which contradicts, Lemma 2.11. Hence Remark 4.2 implies that it will suffice to show lemmas 4.9

and 4.11.

Lemma 4.3. Let e be an edge and let F1, F2 be the two faces containing e. If |F1| ≤ 5 or |F2| ≤ 5

then for every e-colouring B1, . . . , B5, e ∈ (B1 ∩B2 ∩B3)−B4 −B5.

Proof. Let B1, . . . , B5 be an e-colouring. Lemmas 2.4 implies that an odd number, at least three,

of B1, . . . , B5 use e. Suppose that e ∈ B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5. Lemma 2.8 implies that for
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i ∈ [5], Bi has a mate δ(Ui). By definition of mates, for all i ∈ [5], δ(Ui)−{e} ⊆ Bi. In particular,

|F1|, |F2| ≥ 6. �

Let H be a face of G, we define val(H) := |{F ∈ N(H) : |F | ≥ 4}|.

Lemma 4.4. Suppose that G has faces F1 and F2 with a single common edge e. Let B1, . . . , B5

be an e-colouring. For j = 1, 2 let ej be some edge in Fj − {e} and let Hj be the face using

ej which is distinct from Fi. Suppose that e1 ∈ B4 and e2 ∈ B5 and let I ⊆ [5] be a set of

indices. If for all i ∈ I , Bi has a mate δ(Ui) with no bad triangles which uses both e1, e2 then

val(H1), val(H2) ≥ |I|.

Proof. Let j ∈ [2] and let i ∈ [I]. Since e, e1, e2 ∈ δ(Ui) it follows from the definition of mates

that δ(Ui) − {e, e1, e2} ⊆ Bi. For all i ∈ I , let gji be an edge in Hj ∩ δ(Ui) ⊆ Bi and let Gj
i be

the face distinct from Hj with gji . There is an edge ĝji ∈ G
j
i ∩ δ(Ui) distinct from gji . Observe that

ĝji 6= e for otherwise δ(Ui) = {e, ei, gji } < 5 = k, a contradiction. Because δ(Ui) have no bad

triangles, |Gj
i | ≥ 4 for all i ∈ I . Finally, Lemma 2.10 implies that {Gj

i : i ∈ I} are all distinct.

Thus val(Hj) ≥ |I|. �

Lemma 4.5. Suppose that G has faces F1 and F2 with a common edge e and |F1|, |F2| ≤ 3. Let

B1, . . . , B5 be an e-colouring. We may assume (after possibly relabeling B4, B5) that F1 − {e}

contains exactly one edge in B4 and that F2 − {e} contains exactly one edge in B5.

Proof. Lemma 4.3 implies that e ∈ (B1 ∩ B2 ∩ B3) − B4 − B5. Lemma 2.8 implies that for

i ∈ [5], Bi has a mate δ(Ui). Mates δ(U4), δ(U5) imply (after possibly relabeling B4, B5) that

(F1−{e})∩B4 6= ∅, (F2−{e})∩B5 6= ∅. Finally, F1−{e} (resp. F2−{e}) contain at most one

edge in B4 (resp. B5) because of Lemma 2.4(1). �

Lemma 4.6. Suppose that G has adjacent faces F1 and F2 where |F1| = 2 and |F2| ≤ 3. Then

F1 and F2 have two adjacent faces H1 and H2 respectively, where val(H1), val(H2) ≥ 4. In

particular |H1|, |H2| ≥ 5 and all faces adjacent to H1 or H2 receive one charge from these faces.
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Proof. Suppose that F1 consists of edges e, e1 and that F2 consists of either edges e, e2 or e, e2, e′2.

Let B1, . . . , B5 be an e-colouring. Because of Lemma 4.5 we can assume that e1 ∈ B4, e2 ∈ B5,

and e′2 ∈ Bs where s ∈ [4]. It follows that for all i ∈ [5] − {s}, δ(Ui) uses both e1, e2. For

j = 1, 2 let Hj be the face containing ej which is distinct from Fj . Lemma 4.6 implies that

val(H1), val(H2) ≥ 4. Hence, |H1|, |H2| ≥ 5 and the result follows from rule (F1). �

Lemma 4.7. Let v ∈ V (G) and δ(v) = {e1, e2, e3, e4, e5}. Suppose that {e1, e2} and {e2, e3} are

faces of G. Then the ends of e1, e4, e5 distinct from v are independent.

Proof. Let v1 (resp. v4; v5) be the end of e1 (resp. e4; e5) distinct from v. Lemma 4.6 implies that

v1 6= v4 and v1 6= v5. Let B1, . . . , B5 be an e2-colouring. Because of Lemma 4.5 we can assume

that e1 ∈ B4 and e3 ∈ B5. Since v ∈ T there is i ∈ [5] such that e4, e5 ∈ Bi. Then Lemma 2.4(1)

implies that v4 6= v5. �

Lemma 4.8. Let e1, e2 be edges such that {e1, e2} is a face and let v, v′ be the ends of e1, e2.

Consider, δ(v) = {e1, e2, e3, e4, e5} and δ(v′) = {e′5, e′4, e′3, e2, e1} where the labeling is obtained

by visiting edges in a clockwise fashion around v and v′. Let F34 (resp. F45, F
′
34, F

′
45) be the faces

containing edges e3, e4 (resp. e4e5; e′3e
′
4; e′4e

′
5). LetH1 andH2 be the faces with respectively edges

e5, e1, e
′
5 and e3, e2, e′3.

(a) if |H2| = 3 then |H1| ≥ 5 and val(H1) ≥ 4.

(b) if |F34| 6= 3 or |F45| 6= 3 then val(H1) + val(H2) ≥ 5.

(c) if |F34| 6= 3 or |F45| 6= 3 and; |F ′34| 6= 3 or |F ′45| 6= 3 then val(H1) + val(H2) ≥ 6.

Proof. LetB1, . . . , B5 be the e1-colouring given in Lemma 4.3. Lemma 2.8 implies that for i ∈ [5],

Bi has a mate δ(Ui) with no bad triangles. For all i ∈ [5] and j ∈ [2], let gji be an edge in

Hj ∩ δ(Ui) and let Gj
i be the unique (Lemma 2.10) face distinct from H with gji . There is an edge

ĝji ∈ Gi ∩ δ(Ui) distinct from gji . Because of δ(U4) and δ(U5) we may assume that e2 ∈ B4.

Claim: We have |G1
5|, |G2

5| ≥ 4. Moreover for all i ∈ [4], there is j ∈ [2] such that |Gj
i | ≥ 4 and

gji , ĝ
j
i ∈ Bi unless one of the following statements (1) or (2) holds, where
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(1) δ(Ui) = δ(v) and |F34| = |F45| = 3;

(2) δ(Ui) = δ(v′) and |F ′34| = |F ′45| = 3.

Proof of claim: Note that δ(U5) − {e1, e2} ⊆ B5. In particular, g15, ĝ
1
5, g

2
5, ĝ

2
5 ∈ B5. Hence, since

δ(U5) has no bad triangles, |G1
5|, |G2

5| ≥ 4. For all i ∈ [4], δ(Ui) − {e1, e2} is included in Bi

except for a unique edge, say fi ∈ B5. Suppose that |G1
i |, |G2

i | ≤ 3 we will show (1) or (2) holds.

Suppose that for some j ∈ [2], fi 6= gji , ĝ
j
i . Then the fact that δ(Ui) has no bad triangles implies

that |Gj
i | ≥ 4, a contradiction. Thus fi ∈ {g1i , ĝ1i } ∩ {g2i , ĝ2i }. It follows that ĝ1i = ĝ2i and thus that

δ(Ui) = {e1, e2, g1i , ĝ1i , g2i }. It follows from Lemma 2.1 that δ(Ui) = δ(v) or δ(Ui) = δ(v′). We

may assume that the former case occurs. ThenG1
i = F45 andG2

i = F34. In particular we must have

|F34|, |F45| ≤ 3. Lemma 4.7 implies that |F34| = 3 or |F45| = 3. Suppose for a contradiction that

|F45| = 2. Since B1, . . . , B5 are T -joins and since e1 ∈ (B1 ∩B2 ∩B3)−B4 −B5 and e2 ∈ B4,

we must have e3, e5 ∈ Bi and e4 ∈ B5. Let e be the edge in F34 − {e3, e4}. Then C := {e3, e5, e}

is a bad triangle for δ(Ui), a contradiction. 3

Consider first the case where |H2| = 3, i.e. H2 = {e2, e3, e′3}. Then δ(U5) implies that one of

e3, e
′
3, say e3, is inB5. Lemma 2.4(1) implies that e′3 is in someBs where s ∈ [4]. Let i ∈ [5]−{s}.

To prove (a) it suffices to show that |G1
i | ≥ 4. Because of the Claim we may assume i 6= 5. Since

e′3 ∈ Bs, e3 ∈ δ(Ui). It follows that δ(v′) 6= δ(Ui). Suppose δ(Ui) = δ(v), then e4, e5 ∈ Bi. But

since F45 is not a bad triangle of δ(Ui), |F45| 6= 3. Thus neither statement (1) or (2) holds. Since

e3 ∈ B5 ∩ δ(Ui), it follows from the Claim that |G1
i | ≥ 4.

Suppose now |F34| 6= 3 or |F45| 6= 3. Then statement (1) is not satisfied for any i ∈ [4]. It

follows from the Claim that there exists at least three indices i ∈ [4] for which |Gj
i | ≥ 4 for some

j ∈ [2]. Since |G1
5|, |G2

5| ≥ 4 it implies val(H1) + val(H2) ≥ 5, proving (b). Finally, suppose

|F34| 6= 3 or |F45| 6= 3 and; |F ′34| 6= 3 or |F ′45| 6= 3. Then neither statement (1) nor (2) is not

satisfied for any i ∈ [4]. It follows from the Claim that for all i ∈ [4], |Gj
i | ≥ 4 for some j ∈ [2].

Since |G1
5|, |G2

5| ≥ 4 it implies val(H1) + val(H2) ≥ 6, proving (c). �

Lemma 4.9. If H is a face with |H| = 2 then αH ≥ 4.



PACKING T -JOINS AND EDGE COLOURING IN PLANAR GRAPHS 19

Proof. Let e1, e2 be the edges of H and let v, v′ be the two ends of e1, e2.

Claim 1: We can assume that there is no edge e3 such that {e2, e3} is a face of G.

Proof of claim: Suppose that there is such an edge e3. Let H1 (resp. H3) be the face containing e1

(resp. e3) which is distinct from {e1, e2} (resp. {e2, e3}). Lemma 4.6 implies that {e1, e2} receives

one charge from H1 and that |H1|, |H3| ≥ 4. Rules (V2) and (V5) imply that {e1, e2} receives 1/2

from both v and v′. Hence, α{e1,e2} ≥ 4. 3

Assume that the faces NF (v), NF (v′) and the edges δ(v), δ(v′) are as described in Lemma 4.8.

Claim 1 implies that if |H2| ≤ 3 then |H2| = 3. Moreover, Lemma 4.8(a) implies that if |H2| = 3

then |H1| ≥ 5.

Claim 2: {e1, e2} receives at least 1/2 charge from both v and v′.

Proof of claim: We may assume |NF+
4 (v)| ≤ 2 for otherwise rule (V2) implies that face {e1, e2}

receives 1/2 charge from v. Consider first the case where |H2| = 3, and hence |H1| ≥ 5. If

|NF+
4 (v)| = 1 then rule (V3) implies that {e1, e2} receives 1/2 charge from v. Thus |NF+

4 (v)| = 2

and either |F45| ≥ 4 or |F34| ≥ 4. Then {e1, e2} receives 1/2 charge from v, in the former case

because or rule (V4) and in the latter case because of rule (V7).

The remaining case is where |H1|, |H2| ≥ 4. Since |NF+
4 (v)| ≤ 2, |F34|, |F45| ≤ 3. Lemma 4.7

implies that either |F34| 6= 2 or |F45| 6= 2. Thus either |F34| = |F45| = 3, or up to symmetry,

|F34| = 2 and |F45| = 3. Then {e1, e2} receives 1/2 charge from v, in the former case because or

rule (V6) and in the latter case because of rule (V7). 3

Suppose |H2| = 3. Then Lemma 4.8(a) implies that val(H1) ≥ 4 and |H1| ≥ 5. It follows from

rule (F1) that {e2, e3} receives one charge from H1. Claim 2 implies that {e1, e2} receives 1/2

charge from v and by symmetry 1/2 charge from v′. Hence, α{e1,e2} ≥ 4. Hence, we will assume

that |H1|, |H2| ≥ 4. Up to symmetry, it suffices to consider the following cases.

Case 1: |F34| = |F45| = |F ′34| = |F ′45| = 3.
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Then rule (V6) implies that {e1, e2} receives one charge from both v and v′. Hence, α{e1,e2} ≥ 4.

Case 2: |F ′34| = |F ′45| = 3. Moreover, |F34| 6= 3 or |F45| 6= 3.

It follows from Lemma 4.8(b) that val(H1) + val(H2) ≥ 5. Thus val(Hj) ≥ 3 for some j ∈ [2].

Because of F ′34, F
′
45 we have |Hj | ≥ 5. It follows from rule (F2) that {e1, e2} receives 1/2 charge

from Hj . Rule (V6) implies that {e1, e2} receives one charge from v′. Finally, Claim 2 implies

{e1, e2} receives 1/2 charge from v. Hence, α{e1,e2} ≥ 4.

Case 3: |F34| 6= 3 or |F45| 6= 3. Moreover, |F ′34| 6= 3 or |F ′45| 6= 3.

Lemma 4.8(c) implies that val(H1) + val(H2) ≥ 6. Suppose val(Hj) ≥ 4 for some j ∈ [2]. Then

rule (F1) implies that {e1, e2} receives one charge from Hj . Finally, Claim 2 implies that {e1, e2}

receives at least 1/2 charge from both v and v′. Hence, α{e1,e2} ≥ 4. Thus we can assume that

val(H1) = val(H2) = 3. Suppose |F34| ≤ 3 and |F45| ≤ 3. Then |H1| ≥ 5 and |H2| ≥ 5. Rules

(F1) or (F2) imply that face {e1, e2} receives at least 1/2 from both H1, H2. Together with Claim 2

this implies that α{e1,e2} ≥ 4. Hence, we may assume, |F34| ≥ 4 or |F45| ≥ 4. Similarly we have

|F ′34| ≥ 4 or |F ′45| ≥ 4.

Suppose |F34| ≥ 4 and |F45| ≥ 4. Then rule (V1) implies that {e1, e2} receives one charge

from v. If |F ′34| ≥ 4 and |F ′45| ≥ 4 then rule (V1) implies that {e1, e2} receives one charge from v.

But then, α{e1,e2} ≥ 4. Thus we may assume (after possibly relabeling), that |F ′34| ≤ 3. It follows

that |H2| ≥ 5 and that rule (F2) implies that {e1, e2} receives 1/2 charge fromH2. But then Claim 2

implies that {e1, e2} receives 1/2 charge from v′ and α{e1,e2} ≥ 4.

Thus we can assume that exactly one of F34, F45 has size ≥ 4 and that exactly one of F ′34, F
′
45

has size ≥ 4. Consider first the case where |F34| ≤ 3 and |F ′34| ≤ 3. Then (F2) implies that

{e1, e2} receives 1 charge from H2 and Claim 2 implies that α{e1,e2} ≥ 4. Consider now the case

where |F34| ≤ 3 and |F ′45| ≤ 3. It follows that |H1| ≥ 5 and |H2| ≥ 5. Thus rule (F2) implies

that face {e1, e2} receives at least 1/2 from both H1, H2. Together with Claim 2 this implies that

α{e1,e2} ≥ 4. �
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Let B1, . . . , B5 be an e-colouring and let i1, i2, i3, i4, i5 be distinct elements of [5]. The plane dual

of G is denoted G∗. Consider C a circuit of G∗ included in Bi1 ∪ Bi2 ∪ Bi3 . Then C partitions the

plane into two regions, say R,R′. Let Ei4 (resp. Ei5) be the set of edges of Bi4 (resp. Bi5) with

both ends in R. Define, B′i4 := Bi4 4 Ei4 4 Ei5 and B′i5 := Bi5 4 Ei4 4 Ei5 . Since Bi4 and

Bi5 are T -joins, Bi4 4 Bi5 is an Eulerian subgraph which can be decomposed into a collection F

of edge disjoint circuits. Consider any circuit C ∈ F . Since δ(U) ⊆ Bi1 ∪ Bi2 ∪ Bi3 , if C ∈ F

has an edge in common with δ(U) then it must be e. Because G is planar it follows that C is

either entirely inside R or entirely inside R′. Let C1, . . . , Cq be the circuits of F inside R. Then

B′i4 = Bi4 4 C1 4 . . . 4 Cq and B′i5 = Bi5 4 C1 4 . . . 4 Cq. Hence, in particular B′i4 , B
′
i5

are T -joins and B1, B2, B3, B
′
i4
, B′i5 is an e-colouring. We will say that this new e-colouring is

obtained by swapping colours Bi4 , Bi5 inside region R. Let R be a region and suppose that a new

e-colouring is obtained by sequentially swapping colours inside regions which are all contained in

R. Then we say that the new e-colouring is obtained by a changes which are local toR.

Lemma 4.10. Let F be a face with |F | = 3 then either αF ≥ 4 or for all H ∈ N(F ), |H| ≥ 4.

Proof. If some face adjacent to F has only two edges then Lemma 4.6 implies that F receives one

charge from another adjacent face. But then αF ≥ 4 thus we may assume all faces adjacent to F

have at least three edges. Let e, e1, e2 be the edges of F and suppose that there is a face F ′ with

edges e, e′1, e
′
2. For j = 1, 2 let Hj (resp. H ′j) be the face distinct from F (resp. F ′) with ej . We

can assume that

(*) val(H1), val(H2) ≤ 3.

For otherwise val(Hj) ≥ 4 for some j ∈ [2] and rule (F1) implies that F receives one charge from

Hj , so in particular αF ≥ 4. Let G∗ denote the plane dual of G. G∗ contains the following edges,

e = FF ′ e1 = FH1 e2 = FH2 e′1 = F ′H ′1 e′2 = F ′H ′2.
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For j = 1, 2 let Kj
1 , . . . ,K

j
tj

be the vertices of G∗ adjacent to Hj , but distinct from F , which

correspond to faces of G with at least four edges. Equation (*) states that t1, t2 ≤ 3. Consider

an e-colouring B1, . . . , B5. Lemma 4.3 implies that e ∈ (B1 ∪ B2 ∪ B3) − B4 − B5. We call

an HjH
′
j-path P in G∗ a j-link if P ⊆ Bi for some i ∈ [3] and HjK

j
l is an edge of P for some

l ∈ {1, . . . , tj}.

Claim 1:

(a) Internal vertices of j-links, j = 1, 2, are distinct from F, F ′.

(b) 1-links and 2-links are vertex disjoint.

Proof of claim: Suppose F is a vertex of a j-link P . Then P and ej contain a circuit C of G∗

which does not intersect all of B1, . . . , B5 with the same parity. As C is a cut of G it contradicts

Remark 2.9. Suppose a 1-links P1 and a 2-link P2 have an internal vertex in common. Then

P1, P2, e1, e2 contain a circuit C. We have P1 ⊆ Bi, P2 ⊆ Bi′ for some i, i′ ∈ [3]. Since C must

intersect all of B1, . . . , B5 with the same parity we must have {e1, e2} ∈ Bi ∪Bi′ . But then neither

B4 nor B5 has a mate, a contradiction. 3

Claim 1(a) implies that given an j-link P , (P, ej , e, e
′
j) forms a circuit of G∗ which partitions the

plane into two regions. Denote byR(P ) the region which does not containH2. Denote byK(P ) the

vertices among {Kj
1 , . . . ,K

j
tj
} which are in (but possibly on the boundary of) the region R(P ). A

j-link P is extreme if we cannot make changes local toR(P ) to obtain a j-link P ′ where K(P ′) ⊃

K(P ).

Claim 2: Let j ∈ [2]. Suppose ej ∈ B4 and e′j ∈ B5. Let P be an extreme j-link, where P ⊆ Bi

for some i ∈ [3]. Consider any i′ ∈ [3]− {i}. Then after changes which are local to R(P ) there is

no j-link included in Bi′ .

Proof of claim: Let K1, . . . ,Ks be the vertices of G∗ in K(P ). Note that because P is extreme,

when make changes local to R(P ) we will not create a new j-link using an edge HjK where K is

a vertex not in K(P ). We may assume that H1K1 is an edge of P . (*) implies s ≤ 3. Let i′′ be
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the element in [3] − {i, i′}. Suppose s ≤ 2. If HjK2 6∈ Bi′ we are done. Otherwise, swap colours

Bi′ , Bi′′ inside R(P ) to reduce it to that case. Thus we can assume s = 3. If HjK2, HjK3 6∈ Bi′

then we are done. Since we can swap colours Bi′ , Bi′′ inside R(P ) we can assume HjK2 ∈ Bi′

and HjK3 ∈ Bi′′ . Moreover, may assume there is a path P2 ⊆ Bi′ using HjK2 from Hj to some

vertex of G∗ (possiblyH ′j) in P (otherwise we are done). Since we can swap coloursBi′ , Bi′′ inside

R(P ) we can also assume there is a path P3 ⊆ Bi′′ using HjK3 from Hj to some vertex on P . Let

z be the first vertex common to P, P3 starting fromHj which is distinct fromHj . Then the subpaths

of P, P3 between Hj and z define the boundary of a region R′ which is contained in R(P ). Since

we can swap colours Bi′ , Bi′′ insideR(P ) we can assume that K2 is insideR′. Then swap colours

Bi′ and B4 insideR′. 3

Because of Lemma 4.5 we can assume that e1 ∈ B4, e′1 ∈ B5, e2 6∈ B4, and e′2 6∈ B5.

Claim 3: We can assume e2 ∈ B5 and e′2 ∈ B4.

Proof of claim: Consider first the case where e2 ∈ Bi and e′2 ∈ Bi′ where i, i′ ∈ [3]. Let i′′ ∈

[3] − {i, i′} and let L = {i′′, 4, 5}. Then for l ∈ L mates of Bl, with no bad triangles, consist

of edges e1, e′1, e and an H1, H
′
1-path Pl ⊆ Bl containing an edge H1K

1
t for some t ≤ t1. This

implies that t1 = 3 and vertices K1
1 ,K

1
2 ,K

1
3 are in the paths Pl, l ∈ L. Let l1, l2, l3 be distinct

elements of L. Let z be the first vertex common to Pl1 , Pl3 starting from H1 which is distinct from

H1. Then the subpaths of Pl1 , Pl3 between H1 and z define the boundary of a regionR′ which does

not contain F ′. We may assume, (after possibly relabeling l1, l2, l3) that the vertex in {K1
1 ,K

1
2 ,K

1
3}

of Pl2 is in R′. Then swap colours Bl2 and Bi inside that region. Claim 1(a) implies that e2 and e′2

remain in respectively, Bi and Bi′ . Hence, for the resulting e-colouring, Bl2 has no mate with no

bad triangles, a contradiction. Thus either, e2 ∈ B5 or e′2 ∈ B4. Assume the former case occurs as

the latter can be dealt with similarly. We can assume that e′2 ∈ Bi for some i ∈ [3]. Then

(†) For all l ∈ [3]− {i}, mates of Bl with no bad triangles

consist of edges e1, e′1, e and a 1-link included in Bl.
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Hence, there is an extreme 1-link P included in Bi′ for some i′ ∈ [3]. We claim that statement (†)

remains true after changes local to R(P ). If vertex H ′2 of G∗ is not in R(P ) then (†) follows from

the fact that e′2 remains in Bi. If vertex H ′2 is inside R(P ), then (†) follows from Claim 1(b). Let

i′′ ∈ [3] − {i, i′}. Claim 2 states that there are changes local to R(P ) such that afterwards there

does not exist a 1-link included in Bi′′ . But (†) implies that Bi′′ does not have a mate with no bad

triangles, a contradiction. 3

Consider first the case where there is no j-link for some j ∈ [2]. Then for all i ∈ [3] there must

be a (3 − j)-link included in Bi. Let P be an extreme (3 − j)-link included in some Bi, i ∈ [3].

Following a similar argument as in the previous claim, it can be shown that there still won’t be any

j-link after changes local to R(P ). Choose i′ ∈ [3]− {i}. Claim 2 implies that after changes local

to R(P ) there does not exist a (3 − j)-link included in Bi′ . But then Bi′ has no mate with no bad

triangle, a contradiction. Otherwise for j = 1, 2 let Pj be an extreme link and let ij ∈ [3] be such

that Pj ⊆ Bij . Claim 1(b) implies that P1 and P2 do not intersect. It follows that for j = 1, 2,

changes local to R(Pj) do not change the e-colouring inside R(P3−j) and will not change the fact

that P3−j is extreme (since otherwise the new extreme (3 − j)-link would intersect Pj). Let i′′ be

the element in [3] − {i1, i2}. Claim 2 implies that after changes local to R(P1) and R(P2) there

does not exist, for j = 1, 2, a j-link, included in Bi′′ . It follows that Bi′′ does not have a mate with

no bad triangles, a contradiction. �

Lemma 4.11. Let H be a face with |H| = 3 then αH ≥ 4.

Proof. Let e1, e2, e3 be the edges of H . For each i ∈ [3] let Fi be the face containing ei which

is distinct from H . Lemma 4.10 implies that |Fi| ≥ 4 for all i ∈ [3]. Let v12 (resp. v23; v31)

be the common end of e1, e2 (resp. e2, e3; e3, e1). We will show that face H receives 1/2 charge

from v12 (and by symmetry from v13 and v23). Since d(v12) = 5 there are two faces F, F ′ so that

NF (v12) = (F1, H, F2, F, F
′). We can assume that |F | 6= 2 or that |F ′| 6= 2 for otherwise there

exists three edges incident to v12 which are parallel and Lemma 4.6 implies that H receives one
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charge from F1 and from F2. We can assume that |F |, |F ′| ≤ 3, for otherwise rules (V1) or (V2),

would imply that H receives at least 1/2 charge from v12. If |F | = |F ′| = 3 then (V6) implies H

receives one charge from v12. If either |F | = 2 or |F ′| = 2 then (V7) implies that H receives 1/2

charge from v12. �
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