PACKING ODD CIRCUIT COVERS: A CONJECTURE

BERTRAND GUENIN

ABSTRACT. We conjecture that the length of the shortest odd circuit in a signed graph is equal to the maximum number of
pairwise disjoint odd circuit covers, as long as some necessary parity condition is satisfied and as long as the signed graph

does not containf(g, as a signed minor.

1. THE CONJECTURE

A signed graphs a pair(G, X) whereG is a graph an& C EG. A subset of edges is said to beodd (resp.
even) if|B N X| is odd (resp. even). Thus an edges oddif e € ¥ andevenotherwise. We think of the odd (resp.
even) edges fGG, ) as having odd (resp. even) length. ABet EG is asignatureof (G, Y) if (G, X) and(G,T")
have the same set of odd circuits. A signed graghipartite if it has no odd circuit. A seB of edges of G, ¥) is
an (odd circuit)coverif every odd circuit of(G, X) contains at least one edge Bf

Given a signed graph we define two parameters. Denoté@yY.) the odd girth of G, X)), i.e. the length of the
shortest odd circuit. Denote by(G, ¥) the maximum number of pairwise disjoint covers(6f, ). Since every

odd circuit intersects every cover we must have,
*) 7(G,2) 2 v(G,X).

We will say that(G, ) packsif equality holds in (*). We are interested in this note in signed graphs which pack.

The double triangleis the signed graph obtained from a triangle by replacing every edge by two parallel edges
where one is odd and one is even. The odd girth of the double triangle is two but it does not contains two disjoint
covers. For if it had disjoint coverB; and B, then each of3; and B, would correspond to a triangle. However, as
there are an odd number of odd edges for somé2] we would haveB; odd. But thenB;_; would not be a cover,

a contradiction. Thus the double triangle does not pack.

We now introduce a parity condition which will excludes examples such as the double triangle. A signed graph
(G, X) is consistentf the parity of the length of every odd cycle 6f is the same. Observe that the double triangle
is not consistent since its has odd circuits of length two and of length three. A characterization of consistent signed
graphs is given in the next proposition:

Proposition 1.1. The following statements are equivalent for a non-bipartite signed gfahix).
(1) (G, %) is consistent,
(2) eitherG is bipartite or EG is a signature of G, X).
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Proof. Suppose that (1) holds. Lét be an even cycle dfG, X). Since(G, ) is not bipartite, there exists an odd
circuit C’. ThenC A C’" andC’ are both odd cycles (wheré A C’ denote the symmetric difference 6fandC"’).

It follows that the parity ol C’| and|C' A C’| is the same. ThufC’' A (C' A C")| = |C| is even. If every odd
circuit of (G, X) has even length the@ is bipartite. Thus every odd circuit ¢+, >) has odd length and every even
circuit of (G, X) has even length, i.d2G is a signature. Suppose that (2) holdsZIfs bipartite then all cycles have
even length, in particular so do all the odd cyclesElf is a signature then every odd cycle has odd length since
|CNEG|=|C]|. O

We denote byG the signed grapfiG, EG). Pr. 1.1 implies thaf; is consistent. We claim that; does not
pack. Clearly the odd-girth oKs is three. However, since every coverlsf contains at least edges and sinck;
has10 edges, there are no three disjoint set of covers. We conjecture that every consistent signed graph which does
not pack containgss as an "obstruction”. We need to introduce the notion of minors to clarify what is meant by
"obstruction”.

We say that the signed grap&y, X) contains the signed gragliZ, I") as asigned minoyif we can obtain H,T")
from (G, X) by a sequence of the following operations: (i) delete an edge (and remove it from the signature if it is
present), (ii) contract an edge which is not in the signature, (iii) replace the sigfayranother signature. We say
that(G, X) is (H,T')-free if it does not contaiid, I') as a signed minor. Here is the main conjecture,

Main Conjecture: Consistent signed graphs which dte-free, pack.

In Section 2 we point out that the Main Conjecture is a special case of a conjecture on binary clutters. We restate
the Main Conjecture in Sections 3. Section 4 present special cases of the Main conjecture.

2. CYCLING CLUTTERS

A clutter H is a finite family of sets, over some finite ground £8t, with the property that no set @{ contains,
or is equal to, another set #f. Theblockerb(H) of H is the clutter defined as followsEb(H) := E'H andb(H)
is the set of inclusion-wise minimal members{d@ : BN C # (,VC € H}. Itis well known that for a clutterH,
b(b(H)) = H. A clutter is said to béinary if, for any C1, Cs, C5 € H, their symmetric differenc€; A Cy A Cs
contains, or is equal to, a setif. Givenw € ZE™ we define the following two parameters:

7(H,w) =min{w’z : 2(S) > 1VS € H,z € {0,1}""},

v(H,w) :max{z ys Z ys <w, Ve € EH,y € Zf}
SeH S:eeSeH

It follows from linear programming duality that,
*) T(H,w) > v(H,w).

We say thatH packswith weightsw if equality holds in (*). We say that weights € Z£ areEulerianif for all
pairsT, T’ € b(H), w(T A T') is even. CluttefH is cyclingif it packs for all Eulerian weights.
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LetP;, be the clutter whose ground set correspond to the Petersen graph and where elefigrisroéspond to
the postman sets of the Petersen graph (i.e. sets of edges which induce a graph whose odd degree vertices correspond
to the odd degree vertices of the Petersen graph)Olketdenote the clutter, whetBO ., corresponds to the edges
of the complete graplk’s and the elements @, are each of the odd circuits &5 (the triangles or the circuits
of length five). The ground set of the clutté., are the elements of the Fano matroid and the sefs-inare the
circuits of length three (the lines) of the Fano matroid. It can be readily checked that népe 615, b(Ok. ), P1o
are cycling.

Let H be a clutter and € E’H. Thecontraction /: anddeletion’{ \ ¢ are clutters with ground séi’H — {i}
where:H /i is the set of inclusion-wise minimal members{¢f — {i} : S €e H} and;H \i:={S:i & S € H}.
Contractions and deletions can be performed sequentially, and the result does not depend on the order. A clutter
obtained frontH by a sequence of deletions and a sequence of contractions is catiedof H. It can be readily

checked that if a clutter is cycling then so are all its minors.

Cycling conjecture:
A binary clutter is cycling if and only if it has none of the following minois;.., Ok, b(Ok. ), P1o-

Cycling clutters where introduced by Seymour [9] who also proposed an excluded minor characterization for these

clutters. However, his proposed characterization was not correct. The above conjecture can be found in [8].
Suppose the Cycling Conjecture holds. We will show that the Main Conjecture must hold as well. Consider a

consistent signed grafld, 3) which is K5-free and let be theclutter of odd circuitsof (G,Y),i.e. EH = EG

and the elements 6f are the odd circuits ofG, ). Thenb(H) is theclutter of coverf (G, ¥), i.e. the elements

of b(H) are the (inclusion-wise) minimal covers @, ). It can be readily checked that none®f. , Ok, , P1o are

minors of clutters of covers. Moreover, singg, %) is K5-free,b(H) does not contain the mindtOy. ). Consider

anySi, Se € H. ThenS;, Ss are odd circuits of G, X). Since(G, X0) is consistent, the parities ¢f;| and|S;| are

the same. It follows thatS; A Sa| = |S1|+|S2| — 2|51 N S2| is even. Hencel (the vector of all ones) form Eulerian

weights. It would follow from the Cycling Conjecture thatb(+),1) = v(b(H),1). But7(b(H),1) = 7(G,¥)

andv(b(H),1) = v(G, X), thus the Main Conjecture must hold.

3. HOMEOMORPHISM AND VERTEX COLOURING

We will restate the Main Conjecture in terms of graph isomorphisms. Using this reformulation we will show in
the subsequent section that theolour theorem [1, 6] is a special case of the Main Conjecture.

Let (G,X) and (H,T') be signed graphs. We say th#t, X) is homeomorphido (H,T') if for some suitable
choice of signature dfG, ) there exists a mapping of the vertices®fo the vertices off such that all odd edges
of G get mapped to odd edges &f and all even edges @ get mapped to even edges Bf The augmented
hypercube of ordek is the signed graph with even edges corresponding to the hypercube oft@ddrodd edges
connecting opposite points of the hypercube. In the next figure we draw the augmented hypercubes of dimensions
one, two, and three (where solid edges are even and dashed edges are odd).
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Proposition 3.1. Let (G, X) be a signed graph and léte Z, . Supposé is even and> is bipartite ork is odd and
EG is a signature. Then the following statements are equivalent,

(1) there exists: disjoint covers of G, ¥),
(2) (G, %) is homeomorphic to the augmented hypercube of dtderl.

We will need the following easy observations,
Remark 3.2. The sefl” C EG is a signature ofG, X)) ifand only if I' = ¥ A 6(U) for some cut(U).
Remark 3.3. An (inclusion-wise) minimal cover is a signature.

Proof of Pr. 3.1. Suppose (1) holds. Re. 3.3 implies that there /adisjoint signaturess,, ..., By. We choose
such signature$, ..., By, such that Ule B;| is maximized. Because the definition of homeomorphism allows
us to choose the signature, we may assumelhat Y. Because of Re. 3.2 we can assume that fer2, ... k,

B; =% A §(U;—4) for some cut (U;_1).

Claim. U¥ | B; = EG.

Proof. LetT = EG A B; A ... A Bi. We will first showT is a cut. LetU = U; A ... A U,_;. Note that
S(U) A ... A§(Uk—1) = 6(U). Supposé is bipartite and: is even. Therl’ = EG A §(U). SinceG is bipartite
EG is a cut and so i§'. SupposeZG is a signature anél is odd. Thenl' = EG A X A §(U). SinceX, EG are
signaturesFG A ¥ is a cut (it intersects every odd and even circuits with even parity). Thus for both’Eases
cut. DefineBj := By AT = B; UT. Re. 3.2 impliesB; is a signature. The’ = () for otherwiseB1, Bs, ..., By
contradicts the choice dBy, . .., By. &

The vertices of the augmented hypercgbeI") of orderk—1 are all thed, 1-strings of lengttk — 1. We map vertices
of G to H as follows: ifv is in U; then digit: of v is 1 otherwise it is0. Letuv € . Suppose for a contradiction,
uv is not mapped to opposite points @, T"). Then for some digit, verticesu, v have the same value, i.e. either
bothu,v € U; or bothu,v € U;, thusuv € X A §(U;). It follows thatuv € X N (X A §(U;)) = By N By,

a contradiction sincé3,, B;, 1 are disjoint. Letuv ¢ X. Suppose for a contradiction bothv are mapped to the
same vertex off. Thenuv ¢ 6(U;) for anyi € [k — 1]. It follows thatuv ¢ B; U ... By, contradicting the
Claim. Suppose for a contradictiony is not mapped to adjacent point of/,T"). Then for a pair of digitg, j
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verticesu andv have distinct values for both digiisandj. It follows thatuv € 6(U;) N §(U;). Sinceuw is even,
w € (XA SU;)) N (X AU;)) = Biyr N Bjy1, acontradiction a®; 1, Bj4+1 are disjoint.

Suppose (2) holds, i.€G, ) is homeomorphic to the augmented hyperc(lerl") of orderk — 1. Observe that
all odd circuits of(G, ) are mapped into odd cycles @i, I'). Hence, it suffices to show théi, I") hask disjoint
covers. Let be the set of edges connecting opposite pointd oFori = 1,...,k — 1, letU; be the set of vertices
of H where digiti is zero. LetB; = Y andB; = X A6(U;—1) fori =2,..., k. Re. 3.2 implies thaB;, ..., B, are
covers. ConsideB; fori € {2,...,k}. Letuv € ¥ = B;. Sinceuv connects opposite points &f, uv € §(U;_1)
anduv € ¥ A 6(U;—1) = B,. HenceBy, B; disjoint. ConsidetB;, B; fori,j € {2,...,k} andi # j. If uv € &
then we showed alreadyv ¢ B;, B;. Supposew ¢ 3 anduv € B;. Thenuv € §(U;—1). Sinceuv connects
adjacent pointsyv ¢ 6(U;—1). Thenuv ¢ ¥ A 6(U;—1) = B;. HenceB;, B; are disjoint. O

We are ready to restate the Main Conjecture,

Main Conjecture (restated). Consider a signed graptz, X) where eitherx = EG or G is bipartite. Suppose
(G,Y) is Ks-free. Then(G, ) is homeomorphic to the augmented hypercube of okderl wherek denotes the
odd girth of (G, X).

Pr. 1.1 implies thafG, ¥) is consistent. The Main Conjecture would imply that= 7(G, %) = v(G, X). Hence,
there exists: disjoint covers inG, ¥) and the result follows from Pr. 3.1.

4. SPECIAL CASES

We present special cases of the Main Conjecture in this section.

4.1. Vertex colouring. We say thatz containsH as anodd minorif H can be obtained frord: by first deleting

edges and then contractimyeryedge on some cut. A grapf is odd-K5-free if it does not containks as an

odd minor. Clearly if a graph ig(5-free it is odd#5-free. However the converse is not true in general as the
graph obtained froni’s by replacing a single edge by two series edges illustrates. Bert Gerards [2] conjectured the
following generalization of the Four-Colour Theorem which is now a theorem [4].

Theorem 4.1. Odd-K5-free graphs arel-colourable.

We claim that the Main Conjecture implies the previous theorem. Consider a simple@naplth is odd#5-
free. It can be readily checked that the signed grépis K5-free. Choose = 3. Then the restated version of
the Main Conjecture would imply tha&¥ is homeomorphic td<,, hence that: is 4-colourable. Note that itz is
bipartite andr (G, ¥) = 2 then the restated version of the Main Conjecture is trivial since being homeomorphic to
the augmented hypercube of orders the same a6/ being bipartite. Thus the first interesting case for the case
whereG is bipartite isk = 4.

4.2. Edge colouring and planar graphs. A graphG is ak-graph if G is k-regular, and for every cdt{U') such that
|U| is odd,|6(U)| > k. An edge colouringf a graphG is an assignment of colours to the edges0fA colouring
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is properif edges incident to the same vertex are assigned different colours. We s&y ¢hatbek-edge-coloured
if there exists a proper edge-colouring@fwith & colours. Seymour [5] proposed the following conjecture.

Conjecture 4.2. Planar k-graphs arek-edge-colourable.
Proposition 4.3. The Main Conjecture implies Conjecture 4.2.

Proof. Let G be a planég:-graph. Ifk is even, then leE be a perfect matching a (such a matching must exist
sinceG is ak-graph). Ifk is odd, then le®. = EG. This implies that in both cases, for every e(t/) of G,
[0(U) NX|is odd if and only if|U] is odd. LetG* be the plane dual af. The odd cycles ofG*, ¥) correspond to
cuts§(U) of G where|§(U)| is odd. Sinces is ak graph,|d(U)| > k. Hence, the odd girth ofG*, %) is k. If k

is odd thenX = EG and if k is even therG* is bipartite (as is Eulerian). It follows from Pr. 1.1 thdiG*, X) is
consistent. Sinc&™ is planar it has nd(s minors. In particula{G*,Y) is Ks-free. If the Main Conjecture holds,
there exists disjoint coverBy, ..., By of (G*,X). SinceBy,..., By are disjoint and sinc®; intersect every cut
d(v) of G, it follows that eachBy, . . ., By are perfect matchings @f. HenceG is k-edge-colourable. |

4.3. Quasi orders and bounds.We say that a grapty’ is homeomorphic td{ if there is a mapping fron¥' G to

V' H such that edges af are mapped to edges &f. Given graphs=, H we write G < H to indicate that7 is
homeomorphic td{. Then the relatior defines a quasi order (a reflective and transitive binary relation) on the set
of all graphs. We say that a graghis aboundfor a class of graph§ it for every graphG in G we haveG < H.
Naserasr [7] conjectured that,

Conjecture 4.4. The class of planar graphs with girttk + 1 is bounded by the augmented hypercube of opder

In [7] the statement is given in terms of a Cayley graph but it can be readily checked that this is the same graph as
the augmented hypercube. Suppose the (restated) Main Conjecture halsiereG has odd girttek 4 1. Since
G is planar,G is Ks-free. Thus, and hence?, is isomorphic to the augmented hypercube of oderSince this
holds for every planar grapfi with odd girth2k + 1, Conjecture 4.4 must hold.

Naserasr [7] showed that Conjecture 4.4 %as equivalent to Conjecture 4.2 for= 2k + 1. (This equivalence
follows also from the proof of Pr. 4.3 and the equivalence between the two formulations of the Main Conjecture.)
Guenin [3] proved Conjecture 4.2 for= 4, 5, hence Conjecture 4.4 holds fbr= 2 (the casé: = 1 is the 4-colour
theorem).

4.4. The 2-commodity cut theorem. Consider a grapt¥ with pairs(sy,¢1) and(se, t2) of vertices. A2-commodity-
cutis a setB C EG such thaty \ B has nos; t;-path and na.ts-paths. Seymour [10] proved the following result,

Theorem 4.5. For a bipartite graphG, the length of the shortest path among alt; - and sat,-paths is equal to
the maximum number of pairwise disjolitommodity cuts.

Proposition 4.6. The Main Conjecture implies Theorem 4.5



PACKING ODD CIRCUIT COVERS: A CONJECTURE 7

Proof. Fori = 1,2 let [; denote the length of the shortest;-path. We may assumie = I, for if sayl; <

l> then add to the graph a path from a new vertéxo s; of lengthl, — I; and prove the result for the pairs
(sh,t1) and(sz,t2). Let G’ be the graph obtained frod by adding edges;¢; andssts. LetT be a signature of

(G',{s1t1, sat2}) which avoids both edgest;, sot2. Let H be the graph obtained fro’ by contracting edges

s1t1, sato and denote by, 5 the vertices off corresponding to respectivedyt;, sots.

Claim 1. (H,T) is consistent.

Proof. Every odd circuit of H,T") corresponds to as;t;-path of G. SinceG is bipartite fori € [2] all s;¢;-paths of
G have the same parity length. Singe= [, the s1t1- andssto-paths ofG have the same parity length. It follows
that all odd circuits of H, ") have the same parity length. &

Claim 2. (H,T)is Ks-free.

Proof. By construction vertices, , r intersect all odd circuits. It follows that every minor (@, I") will have a pair
of vertices which intersect all odd circuits. HowevE’r5 does not have such a pair. O

If the Main Conjecture holds, then there exists= [, disjoint covers of(H,T'). Since there is a one-to-one
correspondence between odd circuit§ Hf I') ands;t;-paths ofG, each cover is 8-commodity-cut ofG. |
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