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ABSTRACT. We conjecture that the length of the shortest odd circuit in a signed graph is equal to the maximum number of

pairwise disjoint odd circuit covers, as long as some necessary parity condition is satisfied and as long as the signed graph

does not containeK5 as a signed minor.

1. THE CONJECTURE

A signed graphis a pair(G, Σ) whereG is a graph andΣ ⊆ EG. A subset of edgesB is said to beodd (resp.

even) if |B ∩ Σ| is odd (resp. even). Thus an edgee is odd if e ∈ Σ andevenotherwise. We think of the odd (resp.

even) edges of(G,Σ) as having odd (resp. even) length. A setΓ ⊆ EG is asignatureof (G, Σ) if (G,Σ) and(G,Γ)

have the same set of odd circuits. A signed graph isbipartite if it has no odd circuit. A setB of edges of(G,Σ) is

an (odd circuit)coverif every odd circuit of(G,Σ) contains at least one edge ofB.

Given a signed graph we define two parameters. Denote byτ(G,Σ) the odd girth of(G,Σ), i.e. the length of the

shortest odd circuit. Denote byν(G, Σ) the maximum number of pairwise disjoint covers of(G, Σ). Since every

odd circuit intersects every cover we must have,

(*) τ(G, Σ) ≥ ν(G, Σ).

We will say that(G, Σ) packsif equality holds in (*). We are interested in this note in signed graphs which pack.

Thedouble triangleis the signed graph obtained from a triangle by replacing every edge by two parallel edges

where one is odd and one is even. The odd girth of the double triangle is two but it does not contains two disjoint

covers. For if it had disjoint coversB1 andB2 then each ofB1 andB2 would correspond to a triangle. However, as

there are an odd number of odd edges for somei ∈ [2] we would haveBi odd. But thenB3−i would not be a cover,

a contradiction. Thus the double triangle does not pack.

We now introduce a parity condition which will excludes examples such as the double triangle. A signed graph

(G, Σ) is consistentif the parity of the length of every odd cycle ofG is the same. Observe that the double triangle

is not consistent since its has odd circuits of length two and of length three. A characterization of consistent signed

graphs is given in the next proposition:

Proposition 1.1. The following statements are equivalent for a non-bipartite signed graph(G, Σ).

(1) (G,Σ) is consistent,

(2) eitherG is bipartite orEG is a signature of(G, Σ).
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Proof. Suppose that (1) holds. LetC be an even cycle of(G, Σ). Since(G, Σ) is not bipartite, there exists an odd

circuit C ′. ThenC 4 C ′ andC ′ are both odd cycles (whereC 4 C ′ denote the symmetric difference ofC andC ′).

It follows that the parity of|C ′| and |C 4 C ′| is the same. Thus|C ′ 4 (C 4 C ′)| = |C| is even. If every odd

circuit of (G, Σ) has even length thenG is bipartite. Thus every odd circuit of(G, Σ) has odd length and every even

circuit of (G, Σ) has even length, i.e.EG is a signature. Suppose that (2) holds. IfG is bipartite then all cycles have

even length, in particular so do all the odd cycles. IfEG is a signature then every odd cycle has odd length since

|C ∩ EG| = |C|. ¤

We denote byG̃ the signed graph(G,EG). Pr. 1.1 implies that̃K5 is consistent. We claim that̃K5 does not

pack. Clearly the odd-girth of̃K5 is three. However, since every cover ofK̃5 contains at least4 edges and sinceK5

has10 edges, there are no three disjoint set of covers. We conjecture that every consistent signed graph which does

not pack contains̃K5 as an ”obstruction”. We need to introduce the notion of minors to clarify what is meant by

”obstruction”.

We say that the signed graph(G, Σ) contains the signed graph(H, Γ) as asigned minor, if we can obtain(H, Γ)

from (G,Σ) by a sequence of the following operations: (i) delete an edge (and remove it from the signature if it is

present), (ii) contract an edge which is not in the signature, (iii) replace the signatureΓ by another signature. We say

that(G, Σ) is (H, Γ)-free if it does not contain(H, Γ) as a signed minor. Here is the main conjecture,

Main Conjecture: Consistent signed graphs which areK̃5-free, pack.

In Section 2 we point out that the Main Conjecture is a special case of a conjecture on binary clutters. We restate

the Main Conjecture in Sections 3. Section 4 present special cases of the Main conjecture.

2. CYCLING CLUTTERS

A clutterH is a finite family of sets, over some finite ground setEH, with the property that no set ofH contains,

or is equal to, another set ofH. Theblockerb(H) of H is the clutter defined as follows:Eb(H) := EH andb(H)

is the set of inclusion-wise minimal members of{B : B ∩ C 6= ∅, ∀C ∈ H}. It is well known that for a clutter,H,

b(b(H)) = H. A clutter is said to bebinary if, for any C1, C2, C3 ∈ H, their symmetric differenceC1 4 C2 4 C3

contains, or is equal to, a set ofH. Givenw ∈ ZEH
+ we define the following two parameters:

τ(H, w) = min
{
wT x : x(S) ≥ 1 ∀S ∈ H, x ∈ {0, 1}EH}

,

ν(H, w) = max
{∑

S∈H
yS :

∑

S:e∈S∈H
yS ≤ we ∀e ∈ EH, y ∈ ZH+

}
.

It follows from linear programming duality that,

(*) τ(H, w) ≥ ν(H, w).

We say thatH packswith weightsw if equality holds in (*). We say that weightsw ∈ ZEH
+ areEulerian if for all

pairsT, T ′ ∈ b(H), w(T 4 T ′) is even. ClutterH is cycling if it packs for all Eulerian weights.
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LetP10 be the clutter whose ground set correspond to the Petersen graph and where elements ofP10 correspond to

the postman sets of the Petersen graph (i.e. sets of edges which induce a graph whose odd degree vertices correspond

to the odd degree vertices of the Petersen graph). LetOK5 denote the clutter, whereEOK5 corresponds to the edges

of the complete graphK5 and the elements ofOK5 are each of the odd circuits ofK5 (the triangles or the circuits

of length five). The ground set of the clutterLF7 are the elements of the Fano matroid and the sets inLF7 are the

circuits of length three (the lines) of the Fano matroid. It can be readily checked that none ofLF7 ,OK5 , b(OK5),P10

are cycling.

LetH be a clutter andi ∈ EH. ThecontractionH/i anddeletionH \ i are clutters with ground setEH − {i}
where:H/i is the set of inclusion-wise minimal members of{S − {i} : S ∈ H} and;H \ i := {S : i 6∈ S ∈ H}.
Contractions and deletions can be performed sequentially, and the result does not depend on the order. A clutter

obtained fromH by a sequence of deletions and a sequence of contractions is called aminor of H. It can be readily

checked that if a clutter is cycling then so are all its minors.

Cycling conjecture:

A binary clutter is cycling if and only if it has none of the following minors:LF7 ,OK5 , b(OK5),P10.

Cycling clutters where introduced by Seymour [9] who also proposed an excluded minor characterization for these

clutters. However, his proposed characterization was not correct. The above conjecture can be found in [8].

Suppose the Cycling Conjecture holds. We will show that the Main Conjecture must hold as well. Consider a

consistent signed graph(G,Σ) which isK̃5-free and letH be theclutter of odd circuitsof (G, Σ), i.e. EH = EG

and the elements ofH are the odd circuits of(G, Σ). Thenb(H) is theclutter of coversof (G, Σ), i.e. the elements

of b(H) are the (inclusion-wise) minimal covers of(G, Σ). It can be readily checked that none ofLF7 ,OK5 ,P10 are

minors of clutters of covers. Moreover, since(G,Σ) is K̃5-free,b(H) does not contain the minorb(OK5). Consider

anyS1, S2 ∈ H. ThenS1, S2 are odd circuits of(G, Σ). Since(G, Σ) is consistent, the parities of|S1| and|S2| are

the same. It follows that|S14S2| = |S1|+ |S2|−2|S1∩S2| is even. Hence,1 (the vector of all ones) form Eulerian

weights. It would follow from the Cycling Conjecture thatτ(b(H),1) = ν(b(H),1). But τ(b(H),1) = τ(G,Σ)

andν(b(H),1) = ν(G, Σ), thus the Main Conjecture must hold.

3. HOMEOMORPHISM AND VERTEX COLOURING

We will restate the Main Conjecture in terms of graph isomorphisms. Using this reformulation we will show in

the subsequent section that the4-colour theorem [1, 6] is a special case of the Main Conjecture.

Let (G, Σ) and(H, Γ) be signed graphs. We say that(G, Σ) is homeomorphicto (H, Γ) if for some suitable

choice of signature of(G, Σ) there exists a mapping of the vertices ofG to the vertices ofH such that all odd edges

of G get mapped to odd edges ofH and all even edges ofG get mapped to even edges ofH. The augmented

hypercube of orderk is the signed graph with even edges corresponding to the hypercube of orderk and odd edges

connecting opposite points of the hypercube. In the next figure we draw the augmented hypercubes of dimensions

one, two, and three (where solid edges are even and dashed edges are odd).
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Proposition 3.1. Let (G, Σ) be a signed graph and letk ∈ Z+. Supposek is even andG is bipartite ork is odd and

EG is a signature. Then the following statements are equivalent,

(1) there existsk disjoint covers of(G, Σ),

(2) (G,Σ) is homeomorphic to the augmented hypercube of orderk − 1.

We will need the following easy observations,

Remark 3.2. The setΓ ⊆ EG is a signature of(G, Σ) if and only if Γ = Σ4 δ(U) for some cutδ(U).

Remark 3.3. An (inclusion-wise) minimal cover is a signature.

Proof of Pr. 3.1.Suppose (1) holds. Re. 3.3 implies that there arek-disjoint signaturesB1, . . . , Bk. We choose

such signaturesB1, . . . , Bk such that| ∪k
i=1 Bi| is maximized. Because the definition of homeomorphism allows

us to choose the signature, we may assume thatB1 = Σ. Because of Re. 3.2 we can assume that fori = 2, . . . , k,

Bi = Σ4 δ(Ui−1) for some cutδ(Ui−1).

Claim. ∪k
i=1Bi = EG.

Proof. Let T = EG 4 B1 4 . . . 4 Bk. We will first showT is a cut. LetU = U1 4 . . . 4 Uk−1. Note that

δ(U1)4 . . .4 δ(Uk−1) = δ(U). SupposeG is bipartite andk is even. ThenT = EG4 δ(U). SinceG is bipartite

EG is a cut and so isT . SupposeEG is a signature andk is odd. ThenT = EG4 Σ4 δ(U). SinceΣ, EG are

signaturesEG4 Σ is a cut (it intersects every odd and even circuits with even parity). Thus for both casesT is a

cut. DefineB′
1 := B1 4 T = B1 ∪ T . Re. 3.2 impliesB′

1 is a signature. ThenT = ∅ for otherwiseB′
1, B2, . . . , Bk

contradicts the choice ofB1, . . . , Bk. 3

The vertices of the augmented hypercube(H, Γ) of orderk−1 are all the0, 1-strings of lengthk−1. We map vertices

of G to H as follows: ifv is in Ui then digiti of v is 1 otherwise it is0. Let uv ∈ Σ. Suppose for a contradiction,

uv is not mapped to opposite points of(H, Γ). Then for some digiti, verticesu, v have the same value, i.e. either

bothu, v ∈ Ui or bothu, v ∈ Ūi, thusuv ∈ Σ 4 δ(Ui). It follows thatuv ∈ Σ ∩ (Σ 4 δ(Ui)) = B1 ∩ Bi+1,

a contradiction sinceB1, Bi+1 are disjoint. Letuv 6∈ Σ. Suppose for a contradiction bothu, v are mapped to the

same vertex ofH. Thenuv 6∈ δ(Ui) for any i ∈ [k − 1]. It follows thatuv 6∈ B1 ∪ . . . Bk, contradicting the

Claim. Suppose for a contradiction,uv is not mapped to adjacent point of(H, Γ). Then for a pair of digitsi, j
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verticesu andv have distinct values for both digitsi andj. It follows thatuv ∈ δ(Ui) ∩ δ(Uj). Sinceuv is even,

uv ∈ (Σ4 δ(Ui)) ∩ (Σ4 δ(Uj)) = Bi+1 ∩Bj+1, a contradiction asBi+1, Bj+1 are disjoint.

Suppose (2) holds, i.e.(G,Σ) is homeomorphic to the augmented hypercube(H, Γ) of orderk− 1. Observe that

all odd circuits of(G,Σ) are mapped into odd cycles of(H, Γ). Hence, it suffices to show that(H, Γ) hask disjoint

covers. LetΣ be the set of edges connecting opposite points ofH. For i = 1, . . . , k − 1, let Ui be the set of vertices

of H where digiti is zero. LetB1 = Σ andBi = Σ4 δ(Ui−1) for i = 2, . . . , k. Re. 3.2 implies thatB1, . . . , Bk are

covers. ConsiderBi for i ∈ {2, . . . , k}. Let uv ∈ Σ = B1. Sinceuv connects opposite points ofH, uv ∈ δ(Ui−1)

anduv 6∈ Σ4 δ(Ui−1) = Bi. HenceB1, Bi disjoint. ConsiderBi, Bj for i, j ∈ {2, . . . , k} andi 6= j. If uv ∈ Σ

then we showed alreadyuv 6∈ Bi, Bj . Supposeuv 6∈ Σ anduv ∈ Bj . Thenuv ∈ δ(Uj−1). Sinceuv connects

adjacent points,uv 6∈ δ(Ui−1). Thenuv 6∈ Σ4 δ(Ui−1) = Bi. HenceBi, Bj are disjoint. ¤

We are ready to restate the Main Conjecture,

Main Conjecture (restated). Consider a signed graph(G, Σ) where eitherΣ = EG or G is bipartite. Suppose

(G, Σ) is K̃5-free. Then(G,Σ) is homeomorphic to the augmented hypercube of orderk − 1 wherek denotes the

odd girth of(G, Σ).

Pr. 1.1 implies that(G,Σ) is consistent. The Main Conjecture would imply thatk = τ(G, Σ) = ν(G, Σ). Hence,

there existsk disjoint covers in(G, Σ) and the result follows from Pr. 3.1.

4. SPECIAL CASES

We present special cases of the Main Conjecture in this section.

4.1. Vertex colouring. We say thatG containsH as anodd minorif H can be obtained fromG by first deleting

edges and then contractingeveryedge on some cut. A graphG is odd-K5-free if it does not containK5 as an

odd minor. Clearly if a graph isK5-free it is odd-K5-free. However the converse is not true in general as the

graph obtained fromK5 by replacing a single edge by two series edges illustrates. Bert Gerards [2] conjectured the

following generalization of the Four-Colour Theorem which is now a theorem [4].

Theorem 4.1. Odd-K5-free graphs are4-colourable.

We claim that the Main Conjecture implies the previous theorem. Consider a simple graphG which is odd-K5-

free. It can be readily checked that the signed graphG̃ is K̃5-free. Choosek = 3. Then the restated version of

the Main Conjecture would imply thatG is homeomorphic toK4, hence thatG is 4-colourable. Note that ifG is

bipartite andτ(G, Σ) = 2 then the restated version of the Main Conjecture is trivial since being homeomorphic to

the augmented hypercube of order1 is the same asG being bipartite. Thus the first interesting case for the case

whereG is bipartite isk = 4.

4.2. Edge colouring and planar graphs. A graphG is ak-graph, if G isk-regular, and for every cutδ(U) such that

|U | is odd,|δ(U)| ≥ k. An edge colouringof a graphG is an assignment of colours to the edges ofG. A colouring
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is proper if edges incident to the same vertex are assigned different colours. We say thatG can bek-edge-coloured

if there exists a proper edge-colouring ofG with k colours. Seymour [5] proposed the following conjecture.

Conjecture 4.2. Planark-graphs arek-edge-colourable.

Proposition 4.3. The Main Conjecture implies Conjecture 4.2.

Proof. Let G be a planek-graph. Ifk is even, then letΣ be a perfect matching ofG (such a matching must exist

sinceG is a k-graph). Ifk is odd, then letΣ = EG. This implies that in both cases, for every cutδ(U) of G,

|δ(U) ∩ Σ| is odd if and only if|U | is odd. LetG∗ be the plane dual ofG. The odd cycles of(G∗,Σ) correspond to

cutsδ(U) of G where|δ(U)| is odd. SinceG is ak graph,|δ(U)| ≥ k. Hence, the odd girth of(G∗, Σ) is k. If k

is odd thenΣ = EG and if k is even thenG∗ is bipartite (asG is Eulerian). It follows from Pr. 1.1 that(G∗, Σ) is

consistent. SinceG∗ is planar it has noK5 minors. In particular(G∗, Σ) is K̃5-free. If the Main Conjecture holds,

there exists disjoint coversB1, . . . , Bk of (G∗, Σ). SinceB1, . . . , Bk are disjoint and sinceBi intersect every cut

δ(v) of G, it follows that eachB1, . . . , Bk are perfect matchings ofG. HenceG is k-edge-colourable. ¤

4.3. Quasi orders and bounds.We say that a graphG is homeomorphic toH if there is a mapping fromV G to

V H such that edges ofG are mapped to edges ofH. Given graphsG,H we writeG ¹ H to indicate thatG is

homeomorphic toH. Then the relation¹ defines a quasi order (a reflective and transitive binary relation) on the set

of all graphs. We say that a graphH is aboundfor a class of graphsG it for every graphG in G we haveG ¹ H.

Naserasr [7] conjectured that,

Conjecture 4.4. The class of planar graphs with girth2k + 1 is bounded by the augmented hypercube of order2k.

In [7] the statement is given in terms of a Cayley graph but it can be readily checked that this is the same graph as

the augmented hypercube. Suppose the (restated) Main Conjecture holds forG̃ whereG has odd girth2k + 1. Since

G is planar,G̃ is K̃5-free. ThusG̃, and henceG, is isomorphic to the augmented hypercube of order2k. Since this

holds for every planar graphG with odd girth2k + 1, Conjecture 4.4 must hold.

Naserasr [7] showed that Conjecture 4.4 fork is equivalent to Conjecture 4.2 forr = 2k + 1. (This equivalence

follows also from the proof of Pr. 4.3 and the equivalence between the two formulations of the Main Conjecture.)

Guenin [3] proved Conjecture 4.2 forr = 4, 5, hence Conjecture 4.4 holds fork = 2 (the casek = 1 is the 4-colour

theorem).

4.4. The 2-commodity cut theorem. Consider a graphG with pairs(s1, t1) and(s2, t2) of vertices. A2-commodity-

cut is a setB ⊆ EG such thatG \B has nos1t1-path and nos2t2-paths. Seymour [10] proved the following result,

Theorem 4.5. For a bipartite graphG, the length of the shortest path among alls1t1- ands2t2-paths is equal to

the maximum number of pairwise disjoint2-commodity cuts.

Proposition 4.6. The Main Conjecture implies Theorem 4.5
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Proof. For i = 1, 2 let li denote the length of the shortestsiti-path. We may assumel1 = l2, for if say l1 <

l2 then add to the graph a path from a new vertexs′1 to s1 of length l2 − l1 and prove the result for the pairs

(s′1, t1) and(s2, t2). Let G′ be the graph obtained fromG by adding edgess1t1 ands2t2. Let Γ be a signature of

(G′, {s1t1, s2t2}) which avoids both edgess1t1, s2t2. Let H be the graph obtained fromG′ by contracting edges

s1t1, s2t2 and denote byr1, r2 the vertices ofH corresponding to respectivelys1t1, s2t2.

Claim 1. (H, Γ) is consistent.

Proof. Every odd circuit of(H, Γ) corresponds to ansiti-path ofG. SinceG is bipartite fori ∈ [2] all siti-paths of

G have the same parity length. Sincel1 = l2 thes1t1- ands2t2-paths ofG have the same parity length. It follows

that all odd circuits of(H, Γ) have the same parity length. 3

Claim 2. (H, Γ) is K̃5-free.

Proof. By construction verticesr1, r2 intersect all odd circuits. It follows that every minor of(H, Γ) will have a pair

of vertices which intersect all odd circuits. However,K̃5 does not have such a pair. 3

If the Main Conjecture holds, then there existsl1 = l2 disjoint covers of(H, Γ). Since there is a one-to-one

correspondence between odd circuits of(H, Γ) andsiti-paths ofG, each cover is a2-commodity-cut ofG. ¤
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