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Abstract

Even cut matroids are binary lifts of cographic matroids, i.e. they are binary ma-
troids whose matrix representation may be obtained by adding a row to the matrix
representation of a cographic matroid. A more tangible way of representing an even
cut matroid is via a grafts, that is, a graph together with a distinguished set of vertices.

In pathological cases, even cut matroids can have an arbitrary number of inequiva-
lent graft representations (for a suitable definition of equivalence). However, we prove
that if an even cut matroid is suitably connected and contains a minor with certain prop-
erties, then the number of its inequivalent representations is bounded by the number
of inequivalent representations of the minor. In particular, we prove two stabilizer the-
orems, for two types of minors and different types of connectivity (namely 3-connected
and connected matroids). For instance, we deduce that any connected even cut matroid
which contains R10 as a minor has at most 10 inequivalent representations.

These results are used in a forthcoming paper to provide a polynomial time algo-
rithm for the classes of even cycle and even cut matroids. We also believe that such
results will be valuable tools for the determination of the excluded minors for the class
of even cut matroids.

∗irene.pivotto@uwa.edu.au, Supported by an Australian Research Council DP140102747.

1



1 Introduction

The non-standard terms used here are defined in the next section; at this point we aim
to introduce the main results of the paper, leaving precise definitions for later. An even cut
matroid is a binary lift of a cographic matroid, i.e. it is a binary matroid whose binary matrix
representation may be obtained by adding a row to the binary matrix representation of a
cographic matroid. To any such matrix representation one may associate a graft, i.e. a graph
together with an even number of distinguished vertices (where the underlying graph is one
representing the cographic matroid). Grafts provide a tangible way of dealing with even cut
matroids. A given even cut matroid may be the lift of several different cographic matroids,
each producing a different graft. Grafts arising from different graph representations of the
same cographic matroid will be called equivalent, while grafts arising from different cographic
matroids are inequivalent. In Section 2.3 we show that an even cut matroid may have an
exponential number of inequivalent representations. However, if an even cut matroid M
contains a minor N with certain properties, then the number of inequivalent representations
of M is bounded in terms of the number of inequivalent representations of N (independently
of how large M is). This is expressed in the two main results of the paper, where we employ
the terms “non-degenerate” and “substantial” to encompass properties of the minor N which
will be described precisely in the next section.

Theorem. Let M be a 3-connected even cut matroid which contains as a minor a non-
degenerate 3-connected matroid N . Then the number of equivalence classes of representations
of M is at most twice the number of equivalence classes of representations of N .

Theorem. Let M be a connected even cut matroid which contains as a minor a connected
matroid N that is substantial. Then the number of equivalence classes of representations of
M is at most the number of equivalence classes of representations of N .

We will see that matroid R10 (which figures prominently in Seymour’s decomposition of
regular matroids [11]) is substantial and has, up to equivalence, 10 graft representations.
Thus, every connected even cut matroid containing R10 as a minor has, up to equivalence,
at most 10 graft representations.

Even cut matroids are a natural class of matroids to study as they are the smallest minor
closed class of binary matroids which contains all single element co-extensions of cographic
matroids. Robertson and Seymour [9] proved that, for every infinite set of graphs, one of its
members is isomorphic to a minor of another. Geelen, Gerards, and Whittle announced that
an analogous result holds for matroids representable over a finite field. Hence, any minor
closed class of binary matroids can be characterized by a finite set of excluded minors. In
particular, this is the case for even cut matroids. Tutte [12] gave an explicit description of
the excluded minors for the class of graphic matroids. By duality, this immediately provides
an explicit description of the excluded minors for the class of cographic matroids.

No explicit description of the excluded minors is known for even cut matroids. The
difficulty for this problem lies with the fact that we do not have a sufficient understanding
of the graft representations of even cut matroids. Theorems 7 and 9 are a first step toward
a better understanding of this problem. Eventually, we wish to extend the aforementioned
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theorems so as to have a compact description of the representations of arbitrary even cut
matroids. We believe that there exists a constant k such that every even cut matroid with
more than k inequivalent representations is constructed in a way analogous to that of the
Shuffle described in Section 2.3.

Another typical problem for a minor-closed class of matroids is that of recognition. Tutte
gave a polynomial time algorithm to check if a binary matroid (given by its binary matrix rep-
resentation) is graphic [13], and by duality this leads to a recognition algorithm for cographic
matroids. Unfortunately, not many efficient recognition algorithms are known for classes of
matroids. The main results of this paper were recently used in [3] to provide a polynomial
time recognition algorithm for even cycle and even cut matroids (even cycle matroids are
binary lifts of graphic matroids).

2 Preliminaries

We assume that the reader is familiar with the basics of matroid theory. Unless otherwise
stated, we follow the notation in Oxley [6]. We only consider binary matroids in this paper.
Thus the reader should substitute the term “binary matroid” every time “matroid” appears
in this text.

2.1 Graphs, grafts and even cut matroids

We will consider graphs with multiple edges and loops, but no isolated vertices. Let G be
a graph. For a set X ⊆ E(G), we write VG(X) to refer to the set of vertices incident to an
edge of X and G[X] for the subgraph with vertex set VG(X) and edge set X. We denote
by Vodd(G) the set of vertices of G of odd degree. Given X ⊆ E(G), we write BG(X) for
VG(X) ∩ VG(X̄), where X̄ = E(G) −X. (For any pair of sets A and B, A − B denotes set
difference, i.e. A − B = {a ∈ A : a /∈ B} and we write A − b as shorthand for A − {b}).
Throughout the paper we shall omit indices when there is no ambiguity. For instance we
may write B(X) for BG(X).

Next we define cycles and paths in a slightly non-standard way. A set of edges P of G is
a path if either P is empty or G[P ] is connected and has two vertices of degree one and all
other vertices of degree two. The two vertices of degree one are the ends of P . If P is a path
and a, b ∈ V (P ), then P (a, b) denotes the subpath of P between vertices a and b.

A subset C of edges of G is a cycle if G[C] is a graph where every vertex has even degree
(this is sometimes called an Eulerian subgraph). A cycle in a matroid is any symmetric
difference of circuits; equivalently, for a binary matroid a cycle is a (possibly empty) disjoint
union of circuits (see Theorem 9.1.2 in [6]). Thus the cycles of a graph G are the cycles of
the graphic matroid of G.

Let G be a graph. Given a set of vertices U , we denote by δG(U) the cut induced by
U , that is δG(U) := {uv ∈ E(G) : u ∈ U, v 6∈ U}. A bridge is a single edge forming a cut.
We denote by cut(G) the set of all cuts of G. Since the cuts of G correspond to the cycles
of the cographic matroid of G, we identify cut(G) with that matroid and say that G is a
representation of that matroid.
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A graft is a pair (G, T ) where G is a graph, T ⊆ V (G) and |T | is even. The vertices
in T are the terminals of the graft. A cut δ(U) is T -even (respectively T -odd) if |T ∩ U | is
even (respectively odd). When there is no ambiguity we omit the prefix T when referring to
T -even and T -odd cuts. We denote by ecut(G, T ) the set of all even cuts of (G, T ). It can
be verified that ecut(G, T ) is the set of cycles of a binary matroid, which is called the even
cut matroid represented by (G, T ). We identify ecut(G, T ) with that matroid and say that
(G, T ) is a representation of that matroid. When simply referring to a representation of an
even cut matroid we will always mean a graft representation. Occasionally we will mention
the matrix representation of an even cut matroid, meaning a binary matrix representing the
matroid (as discussed later in this section). Observe that since cut(G) = ecut(G, ∅), every
cographic matroid is an even cut matroid. Even cut matroids are discussed with some detail
in [8].

Given a graft (G, T ) we say that J ⊆ E(G) is a T -join of G if T = Vodd(G[J ]). It is easy
to see that if J is a T -join of G, then a cut C of G is T -even if and only if |C ∩ J | is even. If
J1 and J2 are T -joins of G then the symmetric difference J14J2 is a cycle of G1. Thus every
T -join of G may be generated, via symmetric difference, from a fixed T -join and a the cycles
of G.

Given a graft (G, T ), we say that an edge e of G is a pin if e is an odd bridge of G incident
to a vertex of degree one, which we call the head of the pin. By definition the head of a pin
is a terminal. We denote by pin(G, T ) the set of pins of (G, T ). Note that every T -join of G
contains every pin of (G, T ).

Next we explain how to get a binary matrix representation of an even cut matroid. Let
(G, T ) be a graft and J a T -join of G. Let A(G) be a binary matrix whose rows span the
cycle space of G (i.e. A(G) is a binary matrix representation of the cographic matroid of
G). Let S be the transpose of the incidence vector of J ; hence S is a row vector indexed by
E(G) and Se is 1 if e ∈ J and 0 otherwise. Construct a matrix A from A(G) by adding row
S. Let M(A) be the binary matroid represented by A. and let C be a cycle of M(A). Then
C intersects every cycle of G and also set J with even parity. The sets that intersect every
cycle of G with even parity are exactly the cuts of G. Moreover, a cut intersects J with even
parity if and only if it is T -even. Thus M(A) = ecut(G, T ).

A matroid M is a lift of a matroid N if there exists a matroid M ′, with an element e such
that M = M ′\e and N = M ′/e. Even cut matroids are lifts of cographic matroids: in the
matrix construction above one may add a column e with a one in row S and zero everywhere
else to get a matrix representation of matroid M ′ in the definition of lifts.

Consider a graft (G, T ). What is a basis for ecut(G, T )? A set F ⊆ E(G) is dependent
if and only if it contains an even cut. Hence, if (G, T ) does not contain any odd cut (i.e.
T is empty) then ecut(G, T ) = cut(G) and a basis is just formed by the complement of a
spanning tree. If (G, T ) contains at least one odd cut, every basis for ecut(G, T ) is formed
by the complement B̄ of a spanning tree B together with an edge f ∈ B forming an odd cut
with edges in B̄.

A cocycle of a matroid is The co-cycle space of ecut(G, T ) is the space spanned by the rows
of A, where A is the binary matrix representation of ecut(G, T ). Note that the symmetric
difference of a cycle and a T -join is a T -join. From the above construction we have the
following (see also [4]).
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Remark 1. The cocycles of ecut(G, T ) are the cycles of G and the T -joins of (G, T ).

We define minor operations on grafts as follows. Let (G, T ) be a graft and let e ∈ E(G).
Then (G, T ) \ e is defined as (G \ e, T ′), where T ′ = ∅ if e is an odd bridge of (G, T ) and
T ′ = T otherwise. Note that the even cuts of (G, T ) \ e are either even cuts of (G, T ) not
using e or even cuts of (G, T ) with the element e removed.

We define (G, T )/e as (G/e, T ′), where T ′ is defined as follows. Let u and v be the ends
of e in G and let w be the vertex obtained by contracting e. If x 6= w, then x ∈ T ′ if and
only if x ∈ T ; w ∈ T ′ if and only if |{u, v} ∩ T | = 1. With this definition we have that

Remark 2. ecut(G, T )/C \D = ecut
(
(G, T )/D \ C

)
.

In particular, this implies that being an even cut matroid is a minor closed property.

2.2 Representations of cographic matroids are nice

We will state a theorem by Whitney that shows, for a cographic matroid, how to construct
the set of all its representations (as graphs) from a single representation. We require a number
of definitions.

Suppose that BG(X) = {u1, u2} for some u1, u2 ∈ V (G) and X ⊂ E(G). Let G′ be the
graph obtained by identifying vertices u1 and u2 of G[X] with vertices u2 and u1 of G[X̄]
respectively. Then G′ is obtained from G by a Whitney-flip on X. We will also call Whitney-
flip the operation consisting of identifying two vertices from distinct components, or the
operation consisting of partitioning the graph into components each of which is a block of G.
We define two graphs to be equivalent if one can be obtained from the other by a sequence
of Whitney-flips (it is easy to verify that this does indeed define an equivalence relation).

In a seminal paper [15], Whitney proved the following.

Theorem 3. All representations of a cographic matroid are equivalent.

It follows in particular that, if a cographic matroid is 3-connected, then it has a unique
representation.

2.3 Representations of even cut matroids are naughty

The situation is considerably more complicated for even cut matroids than for cographic
matroids, as we will illustrate in this section.

We say that two grafts (G1, T1) and (G2, T2) are equivalent if G1 and G2 are equivalent and
a T1-join of G1 is a T2-join of G2. If G1 and G2 are equivalent, then cycle(G1) = cycle(G2).
Thus, if one T1-join of G1 is a T2-join of G2, then every T1-join of G1 is a T2-join of G2,
so, by Remark 1 ecut(G1, T1) = ecut(G2, T2) whenever (G1, T1) and (G2, T2) are equivalent.
Conversely, if G1 and T2 are equivalent and ecut(G1, T1) = ecut(G2, T2), then every T1-join
of G1 is a T2-join of G2, so (G1, T1) and (G2, T2) are equivalent. We summarise this in the
following remark.
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Remark 4. Let G1 and G2 be equivalent graphs. Then for two sets of terminals T1 for G1

and T2 for G2 we have ecut(G1, T1) = ecut(G2, T2) if and only if (G1, T1) and (G2, T2) are
equivalent.

Equivalence of grafts does indeed define an equivalence relation. It follows that we can
partition the representations of any even cut matroid N into equivalence classes R1, . . . ,Rk.
We will say that Ri (i ∈ [k]) 1 is an equivalence class of representations of N . There is no
direct analogue to Whitney’s theorem for even cut matroids, as the following result illustrates.

Remark 5. For any integer k, there exists an even cut matroid M with |E(M)| ≤ 6k and
4k−1 equivalence classes of representations.

We now describe a general operation to construct a matroid as in the previous result. Let
(G, T ) be a graft with T = {a, b, c, d}, for distinct vertices a, b, c, d. Let X ⊆ E(G) with
BG(X) ⊆ T . Construct a graph G′ from G[X] and G[X̄] by the following vertex identifica-
tions:

• identify vertex a of G[X] with vertex b of G[X̄], producing vertex a′;

• identify vertex b of G[X] with vertex a of G[X̄], producing vertex b′;

• identify vertex c of G[X] with vertex d of G[X̄], producing vertex c′;

• identify vertex d of G[X] with vertex c of G[X̄], producing vertex d′.

Let T ′ = {a′, b′, c′, d′}. We say that the grafts (G, T ) and (G′, T ′) are related by a shuffle move
on X with pairing a, b. One may check that every cycle and every T -join of G corresponds
to either a cycle or a T ′-join of G′ and vice versa. As cycles and T -joins of (G, T ) form the
co-cycles of ecut(G, T ) (by Remark 1) this implies that ecut(G, T ) = ecut(G′, T ′). A shuffle
move is illustrated in Figure 1: white vertices are terminals and dotted lines denote vertices
that are identified.

X

X̄

ba

d

a

c

b

cd

X

X̄

ba

d c

b a

c d

Figure 1: A shuffle move.

Using sequences of shuffle moves we can construct many inequivalent grafts representing
the same even cut matroid. Suppose (G, T ) is a graft with |T | = 4 and E(G) partitions into

1[k] = {1, . . . , k}
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sets X1, . . . , Xk, with BG(Xi) = T for every i ∈ [k]. Then, for every i 6= 1, we may apply a
shuffle move on Xi or not. For a shuffle move we have three different choices of pairings. This
leads to four choices for every i 6= 1, thus 4k−1 representations of M , which will be pairwise
inequivalent as long as each Xi is sufficiently connected. For example, we may choose each
Xi to be a copy of the graph K4, producing a graph with 6k edges and 4k−1 equivalence
classes of representations, as required.

The example we just constructed shows that if a graft (G, T ) has only four terminals, then
ecut(G, T ) may have many inequivalent representations. One may wonder if having more than
four terminals forces the representation to be unique, up to equivalence. Unfortunately, this
is not the case, as stated in the following remark.

Remark 6. For every integer k, there exists a graft (G, T ) with the property that:

(1) every graft equivalent to (G, T ) has at least k terminals, and

(2) ecut(G, T ) has at least two inequivalent representations.

An example of a construction for Remark 6 with k = 12 is given in Figure 2: (a) and (b) are

G1 G2 G3 G4

Ω

G5

G1 G2 G3 G4

Ω

G5

v1 v2

w1 w2

v1 v2

w1 w2

(a)

(b)

Figure 2: |T | ≥ 6 and inequivalent representations

non-equivalent representations of the same even cut matroid. White vertices are terminals,
dashed lines represent 2-separations. Each of the graphs G1, . . . , G5 may be any graph. The
arrows indicate how each piece is flipped. Note that every cycle and every T -join of (a)
corresponds to either a cycle or a T -join of (b) and vice versa. As cycles and T -joins form
the co-cycles of even cut matroids, this implies that (a) and (b) represent the same even
cut matroid. This operation generalizes to any number of graphs G1, . . . , Gr in which case
we obtain 2r + 2 terminals in both (a) and (b). This proves Remark 6. We will see that
this construction is a special example of the clip operation defined in section 4.2. It is also
possible to extend this construction to graphs that are 4-connected.
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2.4 Main results

2.4.1 Non-degenerate minors

We say that a graft (G, T ) is degenerate if there is a graft (G′, T ′) equivalent to (G, T ) with
|T ′| ≤ 4. It follows from the definition that if a graft is degenerate then so are all grafts
equivalent to it. We say that an equivalence class of representations of an even cut matroid
is non-degenerate if all grafts in the class are non-degenerate.

An even cut matroid M is degenerate if some representation (G, T ) of M is degenerate,
it is non-degenerate otherwise. If a graft has less than six terminals, then so do all of its
minors, thus being degenerate is a minor closed property. If a matroid is cographic, then it
has a representation (G, ∅) as an even cut matroid, hence it is degenerate.

An example of an even cut matroid which is non-degenerate is given by the matroid R10

(introduced in [11]). R10 has, up to equivalence, 10 representations as an even cut matroid,
which are all isomorphic to the graft in Figure 3. (As always, terminals are represented by
white vertices.) Hence R10 is a non-degenerate even cut matroid.

Figure 3: Graft representation of R10.

We are now ready to restate the first main result of the paper.

Theorem 7. Let M be a 3-connected even cut matroid which contains as a minor a non-
degenerate 3-connected matroid N . Then the number of equivalence classes of M is at most
twice the number of equivalence classes of N .

This result implies, in particular, that every 3-connected even cut matroid containing R10 as
a minor has, up to equivalence, at most 20 representations. We will strengthen this result in
Section 2.4.2.

We will show that degenerate even cut matroids are “close” to being cographic matroids.
We require a number of definitions to formalize this notion.

LetN andM be matroids where E(N) = E(M). ThenN is a lift ofM if, for some matroid
M ′ where E(M ′) = E(M)∪ {Ω}, M = M ′/Ω and N = M ′ \Ω. If N is a lift of M then M is
a projection of N . Lifts and projections were introduced in [2]. As discussed in Section 2.1,
every even cut matroidN is a lift of a cographic matroid; indeed, for any representation (G, T )
of N we may construct a graft (G′, T ′) by adding an odd bridge Ω. Then N = ecut(G, T ) =
ecut((G′, T ′)/Ω) = ecut(G′, T ′)\Ω and ecut(G′, T ′)/Ω = ecut((G′, T ′)\Ω) = ecut(G, ∅) is a
cographic matroid. The following result shows that degenerate even cut matroids are also
projections of cographic matroids.

Remark 8. Let (H,S) be a graft.
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(1) If |S| ≤ 2, then ecut(H,S) is a cographic matroid.

(2) If |S| = 4, then ecut(H,S) is a projection of a cographic matroid.

Proof. (1) The result is obvious if S = ∅. Now suppose that |S| = 2. Let G be obtained
from H by identifying the two vertices in S. Then cut(G) = ecut(H,S). (2) Suppose that
|S| = 4. Let G be obtained from H by adding an edge Ω = (s1, s2), for distinct s1, s2 ∈ S.
Let M ′ = ecut(G, T ). Then by construction (G, T ) \ Ω = (H,S), hence M ′/Ω = M . By
definition of the minor operations on grafts, (G, T )/Ω has two terminals. Therefore, by (1),
ecut((G, T )/Ω) = M ′ \ Ω is a cographic matroid.

2.4.2 Substantial minors

Consider a graft (G, T ) and suppose that there exist graphs G1 and G2 equivalent to G and
paths P1 and P2 in G1 and G2 respectively, such that T = Vodd(G[P14P2]). We call the
pair (G1, P1) and (G2, P2) a reaching pair for (G, T ). If (G, T ) is degenerate, then there exist
(possibly empty) paths P1 and P2 in G such that T = Vodd(G[P14P2]); hence (G,P1) and
(G,P2) form a reaching pair for (G, T ). It follows that having no reaching pair is a stronger
property than being non-degenerate. An example of a reaching pair is given in Figure 4.
Here G1 = G, while G2 is obtained from G by two Whitney flips, one on each 2-separation.
Path P1 is dashed, while path P2 is dotted.

G1

P1

G2

P2

(G, T )

= P1∆P2
∪

Figure 4: A graft with a reaching pair.

It follows from the definition that a reaching pair for a graft (G, T ) is also a reaching pair
for all grafts that are equivalent to (G, T ). We say that an equivalence class of representations
R has no reaching pair if none of the grafts in R have a reaching pair.

An even cut matroid is substantial if none of its representations has a reaching pair.
Hence, if an even cut matroid is degenerate, it is not substantial. In particular, substantial
matroids are not cographic. We will see (in Lemma 17) that not being substantial is also a
minor closed property.

It follows immediately from the definition that an even cut matroid M is substantial if,
for every representation (G, T ) of M , the graph G is 3-connected and |T | ≥ 6. Recall that
every representation of R10 is isomorphic to the graft in Figure 3 and the representations of
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R10 partition into 10 equivalence classes. The graft obtained by contracting the bridge in
the graft in Figure 3 is 3-connected and has six terminals, hence it has no reaching pair; it
follows that no representation of R10 has a reaching pair, hence R10 is a substantial even cut
matroid.

We are now ready to present the second main result of the paper.

Theorem 9. Let M be a connected even cut matroid which contains as a minor a connected
matroid N that is substantial. Then the number of equivalence classes of M is at most the
number of equivalence classes of N .

This result implies, in particular, that every connected even cut matroid containing R10 as a
minor has, up to equivalence, at most 10 representations.

2.5 Organization of the paper

Section 3 introduces generalizations of Theorems 7 and 9. Sections 3.3 and 3.4 contain the
proof of these theorems, modulo the exclusion of three key lemmas (namely Lemmas 16,
18 and 19). Lemma 16 is proved in Section 3.2. Lemma 18 is proved in Section 4. In
Section 5 we give a characterization of special pairs of representations of the same matroid.
This characterization is used to prove Lemma 19, in Section 6.

3 The proofs (modulo the exclusion of two lemmas)

If N is a minor of a matroid M then M is a major of N . Consider an even cut matroid M
with a representation (G, T ). Let I and J be disjoint subsets of E(M) and let N := M \I/J .
Then (H,S) := (G, T )/I \ J is a representation of N . We say that (G, T ) is an extension to
M of the representation (H,S) of N , or alternatively that (H,S) extends to M .

The following result implies Theorem 7.

Theorem 10. Let N be a 3-connected non-degenerate even cut matroid. Let M be a 3-
connected major of N . For every equivalence class of representations R of N , the set of
extensions of R to M is the union of at most two equivalence classes of representations.

The“at most two” in the previous theorem is best possible. Consider for instance the example
in Figure 2. Observe that the grafts obtained from (a) and (b) by deleting the edge Ω are
equivalent. However, (a) and (b) are not equivalent.

The following result implies Theorem 9.

Theorem 11. Let N be a connected substantial even cut matroid. Let M be a connected
major of N . For every equivalence class of representations R of N , the set of extensions of
R to M is contained in one equivalence class of representations.

The proofs of Theorems 10 and 11 are constructive. Thus, given a description of the inequiva-
lent representations of N , it is possible to construct the set of all inequivalent representations
of M .
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3.1 Definitions

First an easy observation.

Remark 12. If G1 and G2 are equivalent graphs and I and J are disjoint subsets of E(G),
then G1 \ I/J and G2 \ I/J are equivalent.

Proof. SinceG1 andG2 are equivalent, cut(G1) = cut(G2). Hence, cut(G1)/I\J = cut(G2)/I\
J . As the minor operations on graphs and matroids commute, we have, cut(G1 \ I/J) =
cut(G2 \ I/J). The result now follows from Theorem 3.

Consider a matroid M and let N be a minor of M . If N = M\e for some element e, then
M is a column major of N . If N = M/e for some element e, then M is a row major of N .
A set R of representations of an even cut matroid is closed under equivalence if, for every
(H,S) ∈ R and (H ′, S ′) equivalent to (H,S), we have that (H ′, S ′) ∈ R.

Remark 13. Let R be a set of representations of an even cut matroid N and let M be a
major of N . If R is closed under equivalence, then so is the set R′ of extensions of R to M .

Proof. Let (G, T ) ∈ R′ and let (G′, T ′) be equivalent to (G, T ). We have N = M \D/C for
some D,C ⊆ E(M). Moreover, (H,S) := (G, T )/D \ C and (H ′, S ′) := (G′, T ′)/D \ C are
equivalent (see Remark 12). Since (G, T ) ∈ R′, we have (H,S) ∈ R. As R is closed under
equivalence, (H ′, S ′) ∈ R. Hence, by definition, (G′, T ′) ∈ R′.

Let R be an equivalence class of representations of an even cut matroid N . We say that
R is row stable (resp. column stable) if for all row (resp. column) majors M of N , where M
has no loop and no co-loop and M is not cographic, the set of extensions of R to M is an
equivalence class.

We say that two grafts (G1, T1) and (G2, T2) are siblings if ecut(G1, T1) = ecut(G2, T2)
and the graphs G1 and G2 are not equivalent.

3.2 Column stable equivalence classes

In this section we prove that every equivalence class of representations of an even cut matroid
is column stable. The next result, proved in [4], is an easy consequence of Theorem 3.

Remark 14. Suppose that ecut(G1, T1) = ecut(G2, T2). If any odd cut of (G1, T1) is a cut of
G2, then G1 and G2 are equivalent.

The following result is proved in [5]. We report the proof here for completeness.

Lemma 15. Let (G1, T1) and (G2, T2) be graft siblings and let Ω ∈ E(G1). For i = 1, 2, let
(Hi, Si) := (Gi, Ti)/Ω. Suppose that (H1, S1) and (H2, S2) are equivalent. Then, for i = 1, 2,
either Ω is a loop of Gi or Ti = {vi, wi} and vi and wi are the ends of Ω in Gi. In particular,
Ω is a co-loop of ecut(G1, T1).
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Proof. For i = 1, 2, denote by vi and wi the endpoints of edge Ω in Gi. We prove the
statement for i = 1. Since (G1, T1) and (G2, T2) are siblings, they are not equivalent, so
Remark 14 implies that no odd cut of (G1, T1) is a cut of G2. Since H1 and H2 are equivalent,
cut(H1) = cut(H2). It follows that all odd cuts of (G1, T1) use Ω. Hence, T1 ⊆ {v1, w1}.
Similarly, we have that T2 ⊆ {v2, w2}. If Ω is a loop of G1, we are done. Suppose otherwise.
If T1 = ∅, then there exists an even cut of (G1, T1) using Ω; hence Ω is not a loop of G2 and
T2 6= {v2, w2}. But then T1 = T2 = ∅ and cut(G1) = cut(G2) and it follows by Theorem 3
that G1 and G2 are equivalent, a contradiction. We conclude that T1 = {v1, w1}, completing
the proof.

Lemma 16. Every equivalence class of representations of an even cut matroid is column
stable.

Proof. Let R be an equivalence class of representations of an even cut matroid N . Let M
be a column major of N , i.e. for some Ω ∈ E(M), N = M \ Ω. Suppose moreover that M
has no loops or co-loops. Let R′ be the set of all extensions of R to M . We need to show
that R′ is an equivalence class. For otherwise there exist siblings (G1, T1), (G2, T2) ∈ R′.
For i = 1, 2, let (Hi, Si) := (Gi, Ti)/Ω. Then (H1, S1), (H2, S2) ∈ R. In particular, (H1, S1)
and (H2, S2) are equivalent. Hence, by Lemma 15, Ω is a loop or co-loop of ecut(G1, T1), a
contradiction.

3.3 A sketch of the proof of Theorem 11

The following implies that if a matroid is not substantial then neither are any of its minors.

Lemma 17. If (G, T ) has a reaching pair, so does every minor (H,S) of (G, T ).

Proof. Since (G, T ) has a reaching pair, there exist, for i = 1, 2, a graph Gi equivalent to G
and a path Pi in Gi such that T = Vodd(G[P14P2]). By induction, it suffices to prove the
statement for the cases (H,S) = (G, T ) \ e and (H,S) = (G, T )/e, for some e ∈ E(G).

First, suppose that (H,S) = (G, T )/e. For i = 1, 2, define Hi := Gi/e and let Qi be the
(possibly empty) path in Hi obtained by removing all the cycles from Hi[Pi − e]. As H and
Hi are equivalent, every cycle of Hi is a cycle of H, hence Vodd(H[Pi− e]) = Vodd(H[Qi]). As
P14P2 is a T -join of G, (P14P2) − e is an S-join of H. Hence S = Vodd(H[Q14Q2]), and
the statement follows.

Now suppose that (H,S) = (G, T )\e. If e is an odd bridge of G, then S is empty and the
statement is trivially true (taking as reaching pair (H, ∅), (H, ∅)). If e is not an odd bridge of
(G, T ), then S = T . If e is an even bridge of (G, T ), then (G, T )/e is equivalent to (G, T ) \ e
(joining the two components of G \ e on the endpoints of e is a Whitney-flip). It follows (by
the first part of the proof) that (G, T ) has a reaching pair. Thus we may assume that e is
not a bridge of G.

For i = 1, 2, let vi and wi be the ends of Pi in Gi and Hi := Gi\e. Let Qi be a (vi, wi)-path
in Hi (Qi exists, as e is not a bridge of G, hence e is not a bridge of Gi). Then Pi4Qi is
a cycle of Gi, hence a cycle of G. It follows that Vodd(G[Pi]) = Vodd(G[Qi]), for i = 1, 2.
Therefore T = Vodd(H[Q14Q2]) and (H1, Q1), (H2, Q2) is a reaching pair for (H,T ).

12



We postpone the proof of the following result until Section 4.

Lemma 18. Equivalence classes of representations without reaching pairs are row stable.

Proof of Theorem 11. Let N be a connected non-degenerate even cut matroid. Let M
be a connected major of N . Then (see [1, 10]) there is a sequence of connected matroids
N1, . . . , Nk, where N ∼= N1, M = Nk and, for all i ∈ [k − 1], Ni+1 is a row or column major
of Ni. In particular, Ni has no loops or co-loops, for any i ∈ [k]. Since N1 is substantial,
it is not cographic, hence neither are N2, . . . , Nk. Let R be an equivalence class of N which
extends to M and, for every j ∈ [k], define Rj to be the set of extensions of R to Nj. It
suffices to show that, for all j ∈ [k], Rj is an equivalence class. Let us proceed by induction.
As N1 = N , the result holds for j = 1. Suppose that the result holds for j ∈ [k − 1]. By
Lemma 17, Rj does not have a reaching pair. Therefore, by Lemma 16 and Lemma 18, Rj

is row and column stable. It follows that Rj+1 is an equivalence class.

3.4 A sketch of the proof of Theorem 10

We postpone the proof of the following result until Section 6.

Lemma 19. Let N be an even cut matroid and letR be an equivalence class of representations
of N that is non-degenerate. Let M be a row major of N . Suppose that N and M are 3-
connected and suppose that the set R′ of extensions of R to M is non-empty. Then R′
is either an equivalence class of representations or the union of two equivalence classes of
representations R1 and R2, each without reaching pairs.

Proof of Theorem 10. Let N be a 3-connected non-degenerate even cut matroid. Let M
be a 3-connected major of N . It follows (by [11]) that there is a sequence of 3-connected
matroids N1, . . . , Nk, where N ∼= N1, M = Nk and, for every i ∈ [k − 1], Ni+1 is a row or
column major of Ni. In particular, Ni has no loops or co-loops for any i ∈ [k]. Since N1 is
non-degenerate, it is not cographic, hence neither are N2, . . . , Nk. Let R be an equivalence
class of N that extends to M . For every j ∈ [k], define Rj to be the set of extensions of R
to Nj. It suffices to show that, for all j ∈ [k], Rj is either

(a) an equivalence class, or

(b) the union of two equivalence classes without reaching pairs.

Let us proceed by induction. As N1
∼= N , the result holds for j = 1. Suppose that the result

holds for j ∈ [k− 1]. Consider the case where Nj+1 is a column major of Nj. If (a) holds for
Rj, then Lemma 16 implies that (a) holds for Rj+1. If (b) holds for Rj, then Lemma 16 and
Lemma 17 imply that either (a) or (b) holds for Rj+1. Consider the case where Nj+1 is a
row major of Nj. If (a) holds for Rj, then Lemma 19 implies that either (a) or (b) holds for
Rj+1. If (b) holds for Rj, then Lemma 18 implies that either of (a) or (b) holds for Rj+1.

The rest of the paper is devoted to prove Lemmas 18 and 19. Lemma 18 is proved in
Section 4, while Lemma 19 is proved in Section 6.
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4 Row extensions and reaching pairs

Before we proceed with the proof of Lemma 18 we establish some preliminaries in Sections 4.1
and 4.2.

4.1 Even cycle matroids

Given a graph G, we denote by cycle(G) the set of all cycles of G. Since the cycles of G
correspond to the cycles of the graphic matroid of G, we identify cycle(G) with that matroid
and say that G is a representation of that matroid. A signed graph is a pair (G,Σ) where
Σ ⊆ E(G). We call Σ a signature of G. A subset B ⊆ E(G) is Σ-even (respectively Σ-odd)
if |B ∩Σ| is even (respectively odd). When there is no ambiguity we omit the prefix Σ when
referring to Σ-even and Σ-odd sets. Given a signed graph (G,Σ), we denote by ecycle(G,Σ)
the set of all even cycles of (G,Σ). It can be verified that ecycle(G,Σ) is the set of cycles of
the even cycle matroid. We identify ecycle(G,Σ) with that matroid and say that (G,Σ) is a
representation of that matroid.

Given a signed graph (G,Σ), we say that Σ′ is obtained from Σ by a signature exchange
if Σ4Σ′ is a cut of G (where 4 denotes symmetric difference). Every set Σ′ which may be
obtained from Σ by a signature exchange is a signature of (G,Σ).

We will make repeated use of the following result (which is proved in [4]).

Theorem 20. Let G1 and G2 be inequivalent graphs on the same edge set.

(1) Suppose that there exists a pair Σ1,Σ2 ⊆ E(G1) such that ecycle(G1,Σ1) = ecycle(G2,Σ2).
For i = 1, 2, if (Gi,Σi) has no Σi-odd cycle, define Ci := ∅; otherwise let Ci be an odd
cycle of (Gi,Σi). Let Ti := Vodd(Gi[C3−i]). Then ecut(G1, T1) = ecut(G2, T2).

(2) Suppose that there exists a pair T1 ⊆ V (G1), T2 ⊆ V (G2) (where |T1| and |T2| are even)
such that ecut(G1, T1) = ecut(G2, T2). For i = 1, 2, if Ti = ∅ let Σ3−i = ∅; otherwise
let ti ∈ Ti and Σ3−i := δGi

(ti). Then ecycle(G1,Σ1) = ecycle(G2,Σ2).

Moreover, if it exists, the pair Σ1, Σ2 is unique (up to signature exchange) and, if it exists,
the pair T1, T2 is unique.

4.2 Clip siblings

We now introduce an operation on grafts which preserves even cuts. Consider a pair of
equivalent graphs H1 and H2. Suppose that Pi ⊂ E(Hi) is a path in Hi, for i = 1, 2. For
i = 1, 2, let Gi be the graph obtained from Hi by adding an edge Ω with endpoints the ends
of Pi. Since H1 and H2 are equivalent, Theorem 3 implies that cut(H1) = cut(H2) and hence
that cycle(H1) = cycle(H2). Thus,

ecycle(G1, {Ω}) = cycle(H1) = cycle(H2) = ecycle(G2, {Ω}).

Theorem 20 implies that there exist T1 ⊆ V (G1) and T2 ⊆ V (G2) such that ecut(G1, T1) =
ecut(G2, T2). If G1 and G2 are inequivalent, such pair is unique (again by Theorem 20); in
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this case we say that the tuple T = (H1, P1, H2, P2) is a clip-template and that (G1, T1) and
(G2, T2) are clip siblings which arise from T. An explicit characterization of clip siblings is
given in Section 5. Such characterization is needed to prove Lemma 19.

Remark 21. Let T = (H1, P1, H2, P2) be a clip-template and let (G1, T1) and (G2, T2) be clip
siblings that arise from T. Then, for i = 1, 2, we have Ti = Vodd(Gi[P1∆P2]).

Proof. As Pi ∪ Ω is an odd cycle of (Gi, {Ω}) for i = 1, 2, by Theorem 20 we have Ti =
Vodd(Gi[P3−i ∪ Ω]) = Vodd(Gi[P3−i])∆Vodd(Gi[Ω]). As Ω and Pi have the same ends in Gi,
we have Vodd(Gi[Ω]) = Vodd(Gi[Pi]). It follows that Ti = Vodd(Gi[P3−i])∆Vodd(Gi[Pi]) =
Vodd(Gi[P1∆P2]).

We illustrate this construction in Figure 5. The dashed lines indicate 2-separations. H2 is
obtained from H1 by doing a Whitney flips on each of the 2-separations. White vertices
represent terminal vertices T1 in G1 and T2 in G2.

H1

H2

(G1, T1)

(G2, T2)
P2

P2

P1

P1

Ω

Ω

Figure 5: Clip siblings.

4.3 Proof Lemma 18

The following easy observation is the analogue to Remark 14 for the case of even cycle
matroids (see [4] for a proof).

Remark 22. Suppose that ecycle(G1,Σ1) = ecycle(G2,Σ2). If any odd cycle of (G1,Σ1) is a
cycle of G2, then G1 and G2 are equivalent.

We define minor operations on signed graphs as follows. Let (G,Σ) be a signed graph and
let e ∈ E(G). Then (G,Σ)\e is defined as (G\e,Σ−{e}). We define (G,Σ)/e as (G\e, ∅) if
e is an odd loop of (G,Σ) and as (G \ e,Σ) if e is an even loop of (G,Σ); otherwise (G,Σ)/e
is equal to (G/e,Σ′), where Σ′ is any signature of (G,Σ) which does not contain e. Observe
that (see [8] for instance),

Remark 23. ecycle(G,Σ) \ I/J = ecycle
(
(G,Σ) \ I/J

)
.
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In particular, this implies that being an even cycle matroid is a minor closed property.
The following result is the analogue to Lemma 15 for even cycle matroids. This result is

proved, for example, in [5]; we report the proof here for completeness.

Lemma 24. Consider signed graphs (G1,Σ1) and (G2,Σ2) such that ecycle(G1,Σ1) = ecycle(G2,Σ2)
and G1 and G2 are inequivalent. Let Ω ∈ E(G1). For i = 1, 2, let (Hi,Γi) := (Gi,Σi) \ Ω.
Suppose that H1 and H2 are equivalent. Then, for i = 1, 2, Ω is either a bridge of Gi or a
signature of (Gi,Σi). In particular, Ω is a co-loop of ecycle(G1,Σ1).

Proof. We prove the statement for i = 1. Remark 22 implies that no odd cycle of (G1,Σ1) is
a cycle of G2. Since H1 and H2 are equivalent, cycle(H1) = cycle(H2). It follows that all odd
cycles of (G1,Σ1) use Ω. Hence, after possibly a signature exchange, Σ1 ⊆ {Ω}. Similarly,
we may assume that Σ2 ⊆ {Ω}. If Ω is a bridge of G1, we are done. Suppose otherwise. If
Σ1 = ∅, then there exists an even cycle C of (G1,Σ1) using Ω; hence Ω is not a bridge of G2

and Σ2 6= {Ω}. But then Σ1 = Σ2 = ∅ and cycle(G1) = cycle(G2), so cut(G1) = cut(G2). It
follows by Theorem 3 that G1 and G2 are equivalent, a contradiction.

Lemma 25. Let N be an even cut matroid that is not cographic and let R be an equivalence
class of representations of N . Let M be a row major of N with no loops or co-loops. Suppose
that the set R′ of extensions of R to M is non-empty. Then R′ is either an equivalence class
or the union of two equivalence classes R1 and R2 and any (G1, T1) ∈ R1 and (G2, T2) ∈ R2

are clip siblings.

Proof. We may assume thatR′ is not an equivalence class. Hence, there exist siblings (G1, T1)
and (G2, T2) in R′. Let Ω denote the unique element in E(M) − E(N). Then (G1, T1) \ Ω
and (G2, T2) \ Ω are in R. By Theorem 20, there is a unique (up to resigning) pair of
signatures Σ1 and Σ2 for G1 and G2 such that ecycle(G1,Σ1) = ecycle(G2,Σ2). For i = 1, 2,
let (Hi,Γi) = (Gi,Σi) \Ω. As H1 and H2 are equivalent, Lemma 24 implies that, for i = 1, 2,
either Ω is a bridge of Gi or a signature of (Gi,Σi). If the latter case occurs for both i = 1
and i = 2, then (G1, T1) and (G2, T2) are clip siblings and we are done. Now suppose that Ω
is a bridge of Gi, for i = 1 or i = 2. Then every cycle of Gi is a cycle of Hi, hence a cycle of
H3−i (as H1 and H2 are equivalent). It follows that every cycle of Gi is a cycle of G3−i. By
Remark 22, every cycle of (Gi,Σi) is even. Therefore Σ′i = ∅ is a signature of (Gi,Σi). By
Theorem 20, T3−i is empty and M is cographic, a contradiction.

It remains to show that R′ can be partitioned into at most two equivalence classes.
Suppose, for a contradiction, that this is not the case. Then there exist, for i = 1, 2, 3,
(Gi, Ti) ∈ R′, where G1, G2 and G3 are pairwise inequivalent. For i = 1, 2, 3, let Σi := Ω. It
follows from the argument in the previous paragraph that ecycle(G1,Σ1) = ecycle(G3,Σ3).
Similarly, we have ecycle(G2,Σ2) = ecycle(G3,Σ3). For i = 1, 2, let Ci be an odd cycle of
(Gi,Σi); note that, by the definition of Σi, we have Ω ∈ Ci for i = 1, 2. Theorem 20 applied
to the pair G1, G3 implies that T3 = Vodd(C1). Similarly, Theorem 20 applied to the pair
G2, G3 implies that T3 = Vodd(C2). Therefore Vodd(G3[C1∆C2]) = T3∆T3 = ∅, i.e. C1∆C2 is
a cycle of G3. Moreover Ω /∈ C1∆C2, as Ω ∈ C1 ∩ C2. By definition Σ3 = {Ω}, so C1∆C2

is an even cycle of (G3,Σ3). As ecycle(G1,Σ1) = ecycle(G3,Σ3), the set C1∆C2 is a cycle
of G1. Hence C2 = (C1∆C2)∆C1 is a cycle of G1. Remark 22 implies that G1 and G2 are
equivalent, a contradiction.
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We are now ready for the main result of this section,

Proof of Lemma 18. Let R be an equivalence class of representations of an even cut ma-
troid N without reaching pairs. Let M be a row major of N which is not cographic and has
no loops or co-loops. Let Ω be the unique element in E(M)−E(N). Suppose by contradic-
tion that the set of extensions of R to M is non-empty and is not an equivalence class. By
Lemma 25 the set of extensions of R to M is the union of two equivalence classes R1 and
R2 and any (G1, T1) ∈ R1 and (G2, T2) ∈ R2 are clip siblings that arise from some template
T = (H1, P1, H2, P2) where, for i = 1, 2, Hi = Gi \ Ω. Moreover, (Hi, Ti) ∈ Ri, for i = 1, 2.
Remark 21 states that Ti = Vodd(Gi[P1∆P2]), for i = 1, 2. Hence (Hi, Ti) ∈ R, for i = 1, 2.
It follows that (H1, P1) and (H2, P2) form a reaching pair of (H1, T1), a contradiction.

5 A characterization of clip siblings

We only need to prove Lemma 19 to complete the paper. One ingredient will be Lemma 25.
The other ingredient is a theorem (namely Theorem 35) that gives a structural characteriza-
tion of clip siblings.

5.1 Connectivity

Let M be a matroid with rank function r. Given X ⊆ E(M) we define λM(X), the connec-
tivity function of M , to be equal to r(X) + r(X̄)− r

(
E(M)

)
+ 1. The set X is a k-separation

of M if min{|X|, |X̄|} ≥ k and λM(X) = k. M is k-connected if it has no r-separations
for any r < k. Let G be a graph and let X ⊆ E(G). The set X is a k-separation of G
if min{|X|, |X̄|} ≥ k, |BG(X)| = k and both G[X] and G[X̄] are connected. A graph G is
k-connected if it has no r-separations for any r < k.

Given a separation X of G, we define the interior of X in G to be IG(X) = VG(X) −
BG(X).We say that X is a k-(i, j)-separation of a graft (G, T ), where i, j ∈ {0, 1}, if the
following hold:

• X is a k-separation of G;

• i = 0 when T ∩ IG(X) is empty and i = 1 otherwise;

• j = 0 when T ∩ IG(X̄) is empty and j = 1 otherwise.

Lemma 26. Let (G, T ) be a graft, where T is non-empty and G is connected. Let M :=
ecut(G, T ). For every k-(i, j)-separation X of (G, T ), we have λM(X) = k + i+ j − 1.

Proof. Let N = cut(G) with rank function r. As the dual of N is cycle(G), we have:

λN(X) = r(X) + r(X̄)− r
(
E(N)

)
+ 1 = k. (?)

As T is non-empty and G is connected, a basis for M consists of the complement of the edge
set of a spanning tree plus an edge forming an odd cut with this set of edges. Hence, the
rank of M is one larger than the rank of N . To compute the rank of X for N we delete the
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elements X̄ of N (i.e. we contract the edges X̄ of G) and consider the size of the complement
of a spanning forest in this new graph. To compute the rank of X for M we contract the
set of edges in X̄ (in G) and consider the size of the complement of a spanning forest plus
possibly an edge forming an odd cut with this set of edges. Hence, if T ∩IG(X) is non-empty,
then the rank of X in M is one more that in N , otherwise the rank of X is the same in both
matroids. A similar argument holds for X̄. Thus the rank of X in M is r(X) + i and the
rank of X̄ in M is r(X̄) + j. The result follows from (?).

Recall that a pin of a graft (G, T ) is an odd bridge of G incident to a vertex of degree one
and pin(G, T ) denotes the set of all pins of (G, T ).

Lemma 27. Suppose that ecut(G, T ) is 3-connected. Then:

(1) | pin(G, T )| ≤ 1;

(2) G/ pin(G, T ) is 2-connected;

(3) if G has a 2-separation X then T ∩ IG(X) and T ∩ IG(X̄) are both non-empty.

Proof. Let M := ecut(G, T ). We may assume that G is connected as we can identify vertices
in distinct blocks of G without changing the even cut matroid. (Moreover, as we will prove
that G/ pin(G, T ) is 2-connected, this implies that originally, G/ pin(G, T ) was connected.)
As M is 3-connected, it has no loops, no co-loops and no parallel elements. We may assume
that T is non-empty, for otherwise M = cut(G) and G is 3-connected. (1) There do not
exist distinct pins e, f of G, for otherwise {e, f} would be an even cut of G and e, f would
be in parallel in M . (2) Suppose that X is a 1-(i, j)-separation of (G, T ). By Lemma 26,
λM(X) = 1+i+j−1 ≤ 2. As M is 3-connected, X is not a 2-separation; hence either |X| = 1
or |X̄| = 1. The single element in X (or X̄) is not a loop of G, for otherwise it is a co-loop
of M . Hence X or X̄ is a pin of G. (3) Suppose that X is a 2-(i, j)-separation of (G, T ). As
M is 3-connected, λM(X) ≥ 3. By Lemma 26, 2 + i+ j − 1 ≥ 3, hence i = j = 1.

5.2 Types of clip siblings

In this section we define two types of clip siblings. This will require several preliminary
definitions. By a sequence (X1, . . . , Xk) we mean a family of sets {X1, . . . , Xk} where Xi

precedes Xj when i < j. We say that S = (X1, . . . , Xk) is a w-sequence of G if, for all
i ∈ [k], Xi is a 2-separation of the graph obtained from G by performing Whitney-flips
on X1, . . . , Xi−1 (in this order). We denote by Wflip[G,S] the graph obtained from G by
performing Whitney-flips on X1, . . . , Xk (in this order). If S consists of a single set X,
then we write Wflip[G,X] in lieu of Wflip[G,S]. If G and G′ are equivalent graphs that are
2-connected, then G′ = Wflip[G,S] for some w-sequence S of G. Consider a clip-template
(H1, P1, H2, P2) where H2 = Wflip[H1,S] for some w-sequence S of H1. We slightly abuse
terminology and call the tuple (H1, P1, H2, P2,S) a clip-template.

We say that two sets X and Y are crossing if the sets X − Y , Y −X, X ∩ Y, X̄ ∩ Ȳ are
non-empty. We say that a w-sequence is non-crossing if no two sets in the w-sequence are
crossing. A sequence (X1, . . . , Xk) is nested if Xi ⊂ Xi+1 for all i ∈ [k−1]. When considering
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a nested w-sequence (X1, . . . , Xk), we will always assume that Xi and Xi+1 have distinct
boundaries, for all i ∈ [k − 1]. If this is not the case, we could just remove the sets Xi and
Xi+1 from the sequence.

If a w-sequence is nested then it is non-crossing. If a w-sequence is non-crossing the graph
obtained by performing the Whitney-flips on this sequence does not depend on the order in
which the Whitney-flips are performed.

Remark 28. Suppose that H2 = Wflip[H1,S] for some non-crossing w-sequence S of H1. Then
for any sequence S′ obtained by reordering S we have that, for i = 1, 2, S′ is a w-sequence of
Hi and H3−i = Wflip[Hi,S′].

We leave the proof of this last result as an exercise.

5.2.1 Basic twins

Consider a clip-template T = (H1, P1, H2, P2,S). If S = ∅ (that is H1 = H2) then T is
a basic-template and (G1, T1) and (G2, T2) arising from T are basic twins. By Remark 21,
Ti = Vodd(Hi[P14P2]), for i = 1, 2. As P1 and P2 are both paths in H1 and in H2, this implies
that |T1|, |T2| ≤ 4. Therefore:

Remark 29. Basic twins are degenerate.

We say that (G1, T1) and (G2, T2) are basic siblings if, for i = 1, 2, there exists (G′i, T
′
i )

equivalent to (Gi, Ti) such that (G′1, T
′
1) and (G′2, T

′
2) are basic twins.

5.2.2 Nested twins

We say that a clip-template T = (H1, P1, H2, P2,S) is a nested-template if the following hold:

(A1) S = (X1, . . . , Xk) is a nested w-sequence for H1 (where k ≥ 1);

(A2) for i = 1, 2, Pi has one endpoint in IHi
(X1) and one endpoint in IHi

(X̄k);

(A3) P1 and P2 have no common endpoint in both H1 and H2.

Moreover, if e ∈ pin(Hi, Ti) for i = 1, 2 and pi denotes the endpoint of e that is not the head
of e in Hi, then

(A4) e ∈ P1 ∪ P2, pi /∈ Ti and either pi ∈ IHi
(X1) or pi ∈ IHi

(X̄k).

In this case we say that the grafts (G1, T1) and (G2, T2) arising from T are nested twins.
Note that Remark 28 implies that (A1) is equivalent to the statement that S is a nested
w-sequence for H2. An example of nested twins is shown in Figure 5.

We say that (G1, T1) and (G2, T2) are nested siblings if, for i = 1, 2, there exists (G′i, T
′
i )

equivalent to (Gi, Ti) such that (G′1, T
′
1) and (G′2, T

′
2) are nested twins.

In the case of nested twins we can give an explicit characterization of the set of terminals.
This is stated in Lemma 32, at the end of the section. First we need some tools to deal with
sequences of Whitney-flips.
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A caterpillar is a tree obtained by taking a path and adding edges which have exactly
one endpoint in common with the path. Let G be a graph and let S = (X1, . . . , Xk) be
a nested w-sequence for G. We denote by Cat(G,S) the graph defined on the vertex set
∪ki=1BG(Xi) with edge set {e1, . . . , ek}, where the endpoints of ei are the vertices in BG(Xi).
Note that Cat(G,S) is a vertex-disjoint union of caterpillars. An example of nested twins
is given in Figure 6: grafts (a) and (b) are nested twins arising from some clip-template
T = (H1, P1, H2, P2,S). White vertices are terminals, dashed lines represent the nested 2-

v1

w1

v2

w2

v1

w1

v2

w2

Ω

Ω

(a)

(b)

Figure 6: Nested twins.

separations X ∈ S. Then Cat(H1, S) is the graph in (a) where edges correspond to dashed
lines. We will see in Lemma 32 that the odd degree vertices in that graph together with
the vertices v1, v2, w1, w2 form the the set of terminals in graft (a). Similarly for (b) the odd
degree vertices of Cat(H2, S) together with v1, v2, w1, w2 form the set of terminals.

Next we need to specify the way we relabel vertices in graphs when doing Whitney-flips.
Let G be a graph and let X be a 2-separation with BG(X) = {u1, u2}, let G′ be obtained
from G by doing a Whitney-flip on X, i.e G′ is obtained by (i) identifying vertex u1 of
G[X] with vertex u2 of G[X̄]; and (ii) identifying vertex u2 of G[X] with vertex u1 of G[X̄].
Throughout the remainder of the paper we will use the convention that the resulting vertex
in (i) is labeled u1 and that the resulting vertex in (ii) is labeled u2 (i.e. vertices of G′ in
BG′(X) are labeled according to G[X]). Given a graft (G, T ) and a w-sequence S for G, we
denote by Wflip[(G, T ), S] the graft (G′, T ′), where G′ = Wflip[G,S] and (G, T ) and (G′, T ′)
are equivalent.

Remark 30. Let (H,T ) be a graft and let X be a 2-separation of H with BH(X) = {u1, u2}.
If |IH(X̄) ∩ T | is odd, then for (H ′, T ′) = Wflip[(H,T ), X] we have T ′ = T4{u1, u2}.

Proof. Let J be a T -join of H. Since H[J ∩ X̄] has an even number of vertices of odd degree,
and since by hypothesis there are an odd number of such vertices in IH(X̄), exactly one
of the following sets has odd cardinality: δH(u1) ∩ J ∩ X̄ or δH(u2) ∩ J ∩ X̄. Thus J is a
T4{u1, u2}-join of H ′.
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Lemma 31. Let H be a graph and let S = (X1, . . . , Xk) be a nested w-sequence for H. Let
v ∈ IH(X1), let w ∈ IH(X̄k) and let (H ′, T ) = Wflip[(H, {v, w}), S]. Then T = {v, w} ∪
Vodd

(
Cat(H ′, S)

)
.

Proof. For all r ∈ [k], let Sr = (X1, . . . , Xr) and let (Hr, Tr) = Wflip[(H, {v, w}),Sr]. By
induction we will show that for all such r we have Tr = {v, w} ∪ Vodd

(
Cat(Hr,Sr)

)
. The

result holds for r = 1 by Remark 30. Suppose now that the result holds for r < k. Let u1, u2
denote the vertices in BHr(Xr). Then

Tr+1 = Tr4{u1, u2}
= {v, w} ∪ Vodd

(
Cat(Hr,Sr)

)
4{u1, u2}

= {v, w} ∪ Vodd
(
Cat(Hr+1,Sr+1)

)
,

where the first equality follows from Remark 30 (as {w} = IHr(X̄r)∩T ), the second equality
follows by induction, and the third equality follows from the fact that Cat(Hr+1,Sr+1) is
obtained from Cat(Hr,Sr) by adding the edge u1u2.

Lemma 32. Let T = (H1, P1, H2, P2,S) be a nested-template where S = (X1, . . . , Xk) and,
for i = 1, 2, let vi denote the endpoint of Pi in IH1(X1) and wi denote the endpoint of Pi in
IH1(X̄k). Let (G1, T1) and (G2, T2) be the nested twins arising from T. Then, for i = 1, 2,

Ti = {v1, v2, w1, w2} ∪ Vodd
(
Cat(Hi,S)

)
.

Proof. Remark 21 implies that Ti = Vodd(Gi[P14P2]) = Vodd(Gi[P1])4Vodd(Gi[P2]). Since Pi

is a path of Gi with endpoints vi, wi, Vodd(Gi[Pi]) = {vi, wi}. Finally, Lemma 31 implies
that Vodd(Gi[P3−i]) = {v3−i, w3−i} ∪ Vodd

(
Cat(Hi,S)

)
and the result follows by (A3) in the

definition of nested templates.

5.3 Characterizing clip siblings

Let G be a graph and P a path in G. We say that a Whitney-flip on a 2-separation X
preserves P if P is a path of Wflip[G,X]. Note that this occurs if and only if the endpoints
of P are both in VG(X) or both in VG(X̄). We say that a w-sequence S of G preserves P if
P is a path in Wflip[G,S]. The next result is proved in [8, Proposition 5.4].

Proposition 33. Let H1 and H2 be equivalent 2-connected graphs and let P be a path in H1.
Then there exists a graph H such that:

(1) H = Wflip[H1,S1], for some w-sequence S1 of H1 which preserves P , and

(2) H2 = Wflip[H,S2], for some nested w-sequence S2 of H, where no X ∈ S2 preserves P
in H.

Lemma 34. Let H1 and H2 be equivalent 2-connected graphs with paths P1 and P2 respec-
tively. Then there exist graphs H ′1 and H ′2 and a nested w-sequence S of both H ′1 and H ′2 such
that, for i = 1, 2:
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(1) H ′i is equivalent to Hi and Pi is a path of H ′i, and

(2) H ′2 = Wflip[H
′
1, S] and no X ∈ S preserves path Pi of H ′1.

Proof. Proposition 33 implies that there exist H ′1 equivalent to H1 where P1 is a path of H ′1
and a nested w-sequence S2 ofH ′1 such thatH2 = Wflip[H

′
1,S2] where noX ∈ S2 preserves path

P1 of H ′1. Because of Remark 28, we can partition S2 into S and S′ such that H ′2 = Wflip[H2,S′]
where P2 is a path of H ′2 and H ′1 = Wflip[H

′
2,S] where no X ∈ S preserves path P2 of H ′2.

Because of Remark 28 we may assume that S is nested, and it is a w-sequence of both H ′1
and H ′2.

Theorem 35. Let M be a 3-connected even cut matroid with representations (Gi, Ti) for
i = 1, 2. Suppose that (G1, T1) and (G2, T2) are clip siblings arising from a clip-template
T = (H1, P1, H2, P2), where ecut(H1, T1) is 3-connected and is not cographic. Then (G1, T1)
and (G2, T2) are either basic siblings or nested siblings.

Proof. First we consider the case where (H1, T1) and (H2, T2) have no pins. It follows from
Lemma 27 that H1 and H2 are 2-connected. Hence, H1, H2, P1, P2 satisfy the hypothesis of
Lemma 34. Let H ′1, H

′
2 and S be obtained as in that lemma. Then properties (1) and (2)

of the lemma imply that T′ = (H ′1, P1, H
′
2, P2,S) is a clip-template. Let (G′1, T

′
1), (G

′
2, T

′
2) be

the clip siblings arising from T′. Claim 1 and Claim 2 will imply that (G1, T1) and (G2, T2)
are basic siblings or nested siblings.

Claim 1. For i = 1, 2, (Gi, Ti) and (G′i, T
′
i ) are equivalent.

Proof. Let i ∈ [2]. Let Ω denote the edge in E(Gi)− E(Hi). By construction,

cycle(Gi) = span
(

cycle(Hi) ∪ {Pi ∪ {Ω}}
)

cycle(G′i) = span
(

cycle(H ′i) ∪ {Pi ∪ {Ω}}
)
.

By Theorem 3, cut(Hi) = cut(H ′i) or equivalently, cycle(Hi) = cycle(H ′i). It follows that
cycle(Gi) = cycle(G′i), or equivalently, cut(Gi) = cut(G′i). Hence, by Theorem 3, Gi

and G′i are equivalent. Since Gi and G′i are equivalent, for some set of terminals Ri, the
grafts (Gi, Ri) and (G′i, T

′
i ) are equivalent. Since (G′1, T

′
1) and (G′2, T

′
2) are clip siblings,

ecut(G′1, T
′
1) = ecut(G′2, T

′
2). Hence, ecut(G1, R1) = ecut(G2, R2). Since (G1, T1) and (G2, T2)

are clip siblings, ecut(G1, T1) = ecut(G2, T2). It follows from Theorem 20 that Ti = Ri for
i = 1, 2. ♦

Claim 2. T′ = (H ′1, P1, H
′
2, P2,S) is either a basic-template or a nested-template.

Proof. If S = ∅ then by definition T′ is a basic-template. Thus we may assume that S =
(X1, . . . , Xk) for some k ≥ 1. Property (2) of Lemma 34 implies that, for i = 1, 2, Pi has
one endpoint in IHi

(X1) and the other in IHi
(X̄k). Thus properties (A1) and (A2) of nested-

templates are satisfied. Suppose for a contradiction that (A3) does not hold, i.e. P1 and P2

have a common endpoint in Hi for some i ∈ [2]. Up to relabeling we may assume that P1

and P2 have the same endpoint v ∈ IH1(X1). By Remark 21, T ′1 = Vodd(G
′
1[P14P2]), hence

22



v /∈ T ′1. It follows from Lemma 27 that X1 is a 2-separation of ecut(H ′1, T
′
1). By Claim 1,

ecut(H ′1, T
′
1) = ecut(H1, T1), a contradiction as this matroid is 3-connected. As by hypothesis

(Hi, Ti) has no pins for i = 1, 2, property (A4) is vacuously true. ♦

It remains to consider the case where (H1, T1) and thus (H2, T2) has a pin e.

Claim 3. We may assume e ∈ P1 − P2 and P1 6= {e}.

Proof. Let h denote the head of the pin e in H1. Suppose for a contradiction that e ∈ P1∩P2

or that e /∈ P1 ∪ P2. By Remark 21, T1 = Vodd(G1[P14P2]). Thus h /∈ T1, a contradiction as
e is a pin of (H1, T1). Thus we may assume that e ∈ P1 − P2. Suppose for a contradiction
that P1 = {e}. Remark 21 implies that T2 = Vodd(G2[P14P2]). Hence, the only terminals in
(H2, T2) are the endpoints of path P2 and the endpoints of P1 = {e}. It follows that the graft
obtained from (H2, T2) by moving the pin e to an endpoint of P2 has exactly two terminals.
Hence, by Remark 8, ecut(H2, T2) is cographic, contradicting the hypothesis. ♦

For i = 1, 2 let (Ĥi, T̂i) = (Hi, Ti)/e and let P̂1 = P1 − {e}. Claim 3 implies that T̂ =
(Ĥ1, P̂1, Ĥ2, P2) is a clip-template. Proposition 33 implies that Ĥ1 and Ĥ2 are 2-connected.
Thus we can now apply the previous argument to T̂. At the end we uncontract the pin e.
It suffices to observe that as property (A2) holds before uncontracting e, property (A4) will
hold after uncontracting e.

6 Row extensions and non degenerate matroids

The goal of this section is to prove Lemma 19.

6.1 The proof (modulo the exclusion of one lemma)

A graft (G, T ) is nice if there exist an edge Ω that is not a bridge of G and a nested w-sequence
S = (X1, . . . , Xk) of H = G \ Ω such that the following hold:

(B1) there exist v1, v2 ∈ IH(X1) ∩ T and w1, w2 ∈ IH(X̄k) ∩ T ;

(B2) T = {v1, v2, w1, w2} ∪ Tc where Tc ⊆
⋃k

i=1 BH(Xi) and v1, v2, w1, w2 are all distinct;

(B3) Ω has endpoints v1, w1;

(B4) (H,T ) := (G, T ) \ Ω is non-degenerate;

(B5) H is 2-connected.

Lemma 36. Suppose that (G1, T1) and (G2, T2) are siblings arising from a nested-template
T = (H1, P1, H2, P2,S), where (H1, T1) is non-degenerate and ecut(H1, T1) is 3-connected and
not cographic. Then, for i = 1, 2, (Gi, Ti) contains as a minor a nice graft.
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Proof. We may assume i = 1. Let Ω denote the element in E(G1)−E(H1). T satisfies prop-
erties (A1)-(A4) of nested templates (see Section 5.2.2). (A1) states that S = (X1, . . . , Xk)
is a nested w-sequence for H1 (k ≥ 1). (A2) implies that for i = 1, 2, path Pi has an end-
point vi ∈ IH1(X1) and an endpoint wi ∈ IH1(X̄k). By (A3), v1 6= v2 and w1 6= w2. Thus
v1, v2, w1, w2 are all distinct. Lemma 32 implies that T1 = {v1, v2, w1, w2}∪Vodd

(
Cat(H1, S)

)
.

Hence, (B1) and (B2) hold for (H1, T1). Moreover, since the endpoints of P1 are v1, w1, (B3)
holds as well. By hypothesis (H1, T1) is non-degenerate, i.e. (B4) holds for (H1, T1) as well.

Lemma 27 implies that H1 is 2-connected except for a possible pin e of (H1, T1). If there
is no pin e, then H1 is 2-connected and (H1, T1) satisfies (B1)-(B5), i.e. is the required
nice graft. Thus we may assume that there exists a pin e. Clearly, H1/e is 2-connected.
Hence, to show that (H1, T1)/e is a nice graft, it suffices to verify that (B1)-(B4) hold for
(H1, T1)/e. (B1)-(B3) follow from the fact that (H1, T1) satisfy (B1)-(B3) and the fact that
T satisfies (A4). Finally, it can be readily checked that contracting a pin in a graft preserves
non-degeneracy, i.e. (H1, T1)/e satisfies (B4).

Let (G, T ) be a graft and let X be a 2-separation of G where BG(X) = {u1, u2}. We say that
X is simple if IG(X) = {v}, v ∈ T and either X = {u1v, u2v} or X = {u1v, u2v, u1u2}. A
graft (G, T ) is nearly 3-connected if G is 2-connected and for every 2-separation at least one
of X or X̄ is simple.

Remark 37. In a nearly 3-connected non-degenerate graft (G, T ) no pair of 2-separations
X1 and X2 cross.

Proof. Suppose for a contradiction that X1 and X2 cross. Then there exist series edges e, f, g
with X1 = {e, f} and X2 = {f, g}. Since (G, T ) is nearly 3-connected E(G) − (X1 ∪X2) is
simple. It follows that (G, T ) is degenerate, a contradiction.

Lemma 38. Nearly 3-connected grafts with a reaching pair are degenerate.

Proof. Suppose that a nearly 3-connected graft (G, T ) has a reaching pair (G1, P1) and
(G2, P2). By Remark 37 we may assume that any two 2-separations of G are non-crossing. In
particular, simple separations of G are simple separations of G1 and G2 (and vice versa) and
G1 and G2 are nearly 3-connected. Hence, G1 and G2 are 2-connected, and G2 = Wflip[G1,S]
for some w-sequence of G1. Let X ∈ S; we may assume (by possibly swapping X with its
complement) that X is simple. Denote by u the vertex in IG(X) = IG1(X) = IG2(X). By
Remark 28 we may assume that X is the first element in the sequence S. Thus we may
assume that X does not preserve P1 for otherwise we may replace G1 with Wflip[G1, X]. This
implies that u is the endpoint of P1 in G1, hence in G. Similarly, applying the argument
for G2, we deduce that u is the endpoint of P2 in G. Since T = Vodd(G[P14P2]), u /∈ T , a
contradiction as X is simple. Hence S = ∅, P1 and P2 are paths of G, and |T | ≤ 4.

We will postpone the proof of the following key lemma until the next section.

Lemma 39. Every nice graft has a minor that is a nearly 3-connected nice graft.
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Proof of Lemma 19. Let N , M , R and R′ be as in the statement of the lemma. We may
assume that R′ is not an equivalence class. By Lemma 25, R′ is the union of two equivalence
classesR1 andR2 and any (G1, T1) ∈ R1 and (G2, T2) ∈ R2 are clip siblings. By Theorem 35,
(G1, T1) and (G2, T2) are either basic or nested siblings, however the former is not possible
because basic siblings are degenerate (Remark 29). Since R1 and R2 are equivalence classes,
we can choose (G1, T1) ∈ R1 and (G2, T2) ∈ R2 so that they are nested twins arising from a
template T = (H1, P1, H2, P2, S).

Let i ∈ [2]. We need to show that (Gi, Ti) has no reaching pair. By Lemma 36, (Gi, Ti)
has a minor (Ĝ, T̂ ) that is nice. By Lemma 39, (Ĝ, T̂ ) has a minor (Ĝ′, T̂ ′) that is nice
and nearly 3-connected. In particular, since it is nice, it is non-degenerate. It follows by
Lemma 38 that (Ĝ′, T̂ ′) has no reaching pair. Since (Ĝ′, T̂ ′) is a minor of (Gi, Ti), Lemma 17
implies that (Gi, Ti) has no reaching pair.

6.2 A few observations about 2-separations

For a graph H, we say that a sequence F = (B1, . . . , Bt) with t ≥ 2, where B1, . . . , Bt is a
partition of E(H), is a flower if there exist distinct u1, . . . , ut ∈ V (H) such that,

• H[Bi] is connected, for every i ∈ [t], and

• BH(Bi) = {ui, ui+1}, for every i ∈ [t] (where t+ 1 denotes 1).

For i ∈ [t], Bi is a petal with attachments ui and ui+1. We say that the flower is maximal if
for no petal B, the graph H[B] has a cut-vertex separating its attachments. For all i ∈ [t],
petals Bi and Bi+1 are consecutive. Maximal flowers correspond to generalized circuits as
introduced by Tutte in [14]. The term flower was introduced to describe crossing 3-separations
in matroids (see [7]).

Lemma 40. Let (H,T ) be a graft and F = (B1, . . . , Bt) be a flower of H with attachments
U . Suppose that T = Ta ∪ Tb where Ta ⊆ U , Tb ∩ U = ∅, |Tb| ≤ 4, and no two vertices of Tb
are contained in the same petal of F. Then (H,T ) is degenerate.

Proof. |T | = 2k for some integer k and we may choose a T -join J = P14 . . .4Pk where
P1, . . . , Pk are pairwise vertex-disjoint paths of H. Let B = {B ∈ F : B∩Pi 6= ∅, for some i ∈
[k]}. Let H ′ be obtained from H by rearranging the petals of F so that the petals in B are
consecutive in H ′. After possible Whitney flips on some of the petals in H ′ we may obtain a
graph H ′′ where J is the union of at most two paths. Let T ′′ := Vodd(H

′′[J ]). Then |T ′′| ≤ 4
and (H ′′, T ′′) is equivalent to (H,T ).

We leave the following observation as an exercise,

Remark 41. Let H be a 2-connected graph and let X and Y be crossing 2-separations of
H. Then there exists a partition Z1, Z2, Z3, Z4 of the edges of G such that X = Z1 ∪ Z2,
Y = Z2 ∪ Z3 and either,

(1) (Z1, Z2, Z3, Z4) is a flower of H, or
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(2) BG(Zi) = BG(X) = BG(Y ) for all i ∈ [4].

Let (G, T ) be a graft where G is 2-connected. Let X be a 2-separation of G and denote
by u1, u2 the vertices in BG(X). We say that X is a Type I separation if IG(X) ∩ T = ∅,
i.e. if X is a 2-(0, i) separation for some i ∈ {0, 1}. Suppose now that there exists a unique
vertex v in IG(X) ∩ T . We say that X is a Type II separation if v is a cut-vertex of G[X]
separating u1 and u2. We say that X is a Type III separation if v is not such a cut-vertex,
i.e. if there exists a (u1, u2)-path of G[X] avoiding v.

Consider a graft (G, T ) with a 2-separation X with BG(X) = {u1, u2}. Suppose that X
is a Type I separation. Let (H,T ) be obtained from (G, T ) by replacing X by an edge u1u2.
We say that (H,T ) is obtained from (G, T ) by a Type I simplification. Suppose that X is a
Type 2 separation where v is the vertex in IG(X) ∩ T . Let (H,T ) be obtained from (G, T )
by replacing X by edges u1v and vu2. We say that (H,T ) is obtained from (G, T ) by a Type
II simplification. Suppose that X is a Type 3 separation where v is the vertex in IG(X)∩T .
Let (H,T ) be obtained from (G, T ) by replacing X by edges u1v, vu2 and u1u2. We say that
(H,T ) is obtained from (G, T ) by a Type III simplification. In all three cases we say that
(H,T ) is obtained by simplifying separation X of (G, T ).

Lemma 42. Let (G, T ) be a graft where G is 2-connected, and let (H,T ) be obtained from
(G, T ) by simplifying a separation. Then

(1) (H,T ) is a minor of (G, T ) and

(2) if (G, T ) is non-degenerate then (H,T ) is non-degenerate.

Proof. (1) Let X be a 2-separation of G with BG(X) = {u1, u2}. Suppose that X is a Type
I separation. Since G is 2-connected, there exists a (u1, u2)-path P in G[X]. Then we obtain
a Type I simplification by contracting all but one edge of P . Suppose that X is a Type II
separation. Since G is 2-connected, there exists a (u1, u2)-path P in G[X] using vertex v.
Then we obtain a Type II simplification by contracting all edges of P that are not adjacent
to v. Suppose that X is a Type III separation. Since G is 2-connected, there exists a (u1, u2)
path P in G[X] using vertex v. Since v is not a cut-vertex of G[X] separating u1 and u2,
there exists a (u1, u2)-path Q in G[X] avoiding v. For i = 1, 2 let zi be the last vertex of Q in
the subpath P (ui, v) starting from ui. Then we obtain a Type III simplification by deleting
all edges of X outside P ∪ Q(z1, z2) and by contracting all edges in P (u1, z1) ∪ P (u2, z2),
all edges in P (z1, z2) not incident to v and all but one edge of Q(z1, z2). (2) follows from
the fact that (H,T ) and (G, T ) have the same set of terminals and every 2-separation of H
corresponds to a 2-separation of G. Hence, if there exists a sequence of Whitney-flips that
transforms the graft (H,T ) into a graft with at most four terminals, then the corresponding
Whitney-flips on (G, T ) would transform (G, T ) into a graft with at most four terminals.

6.3 The proof of Lemma 39

We are now ready to prove the last lemma of the paper.
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Proof of Lemma 39. Let (G, T ) be a nice graft and let Ω, H = G \ Ω, S = (X1, . . . , Xk),
v1, v2, w1, w2, and Tc be as in the definition of nice grafts (see section 6.1). By choosing a
minor minimal example, we may assume that no minor of (G, T ) is equivalent to a nice graft.
Throughout this proof we will use the fact that (by (B5)) H is 2-connected and, since Ω is
not a bridge, G is also 2-connected.

We need to show that (G, T ) is nearly 3-connected. Suppose for a contradiction this is
not the case i.e. there exists a 2-separation Y of (G, T ) with Ω /∈ Y where neither Y , nor
Ȳ is simple. We will show that for some (G′, T ′) equivalent to (G, T ) and for some Y ′ ⊆ Y
that is a non-simple 2-separation of G′, the following properties hold:

(P1) Y ′ is a non-simple separation of (G′, T ′) of Type I, II, or III; and

(P2) the graft obtained from (G′, T ′) by simplifying the separation Y ′ is equivalent to a
nice graft.

Then (P1) and (P2) will contradict the fact that no minor of (G, T ) is equivalent to a nice
graft.

Note that we may swap the role of X1 and X̄k, as we may replace S by (X̄k, X̄k−1 . . . , X̄1).
Throughout the proof we will make repeated use of this symmetry.

Claim 1. We may assume that IG(Y ) ∩ T 6= ∅.

Proof. For otherwise Y is a Type I separation and let (G′, T ) be obtained from (G, T ) by
simplifying Y . Lemma 42 implies that (G′, T ) is a minor of (G, T ) and that (G′, T ) is non-
degenerate. It is easy to verify that properties (B1)-(B5) are preserved for (G′, T ′). Hence,
(P1) and (P2) hold as required. ♦

By hypothesis, Ω = v1w1 /∈ Y . By (B1), v1 ∈ IH(X1), and w1 ∈ IH(X̄k). Thus, X1 − Y 6= ∅
and X̄k − Y 6= ∅. In particular one of the following three cases must hold.

Case 1: Y ⊆ X1 or Y ⊆ X̄k.

Since we can interchange the role of X1 and X̄k, it suffices to consider the case where Y ⊆ X1.
Then v1 /∈ IH(Y ) as the edge Ω is incident to v1. By Claim 1, T ∩ IH(Y ) is non-empty.
(B1) and (B2) imply that T ∩ I(X1) = {v1, v2}. It follows that T ∩ IH(Y ) = {v2}. If v2 is
a cut-vertex of G[Y ] separating BG(Y ) then Y is a separation of Type II, otherwise Y is a
separation of Type III. Hence, we proved (P1). Simplify Y by a simple separation Y ′, and
let X ′1 = (X1 − Y ) ∪ Y ′. Using Lemma 42 it is easy to verify that properties (B1)-(B5) are
preserved, using X ′1 instead of X1. Thus (P2) holds as required.

Case 2: Y ⊆ Xk −X1.

By Claim 1, there exists x ∈ IH(Y ) ∩ T . By (B2), x ∈ BH(Xp) for some p ∈ [k]. Note that
p 6= 1, k, as x ∈ IH(Y ) and Y ⊆ Xk −X1. As x ∈ IH(Y ), the sets Xp ∩ Y and Y −Xp are
non-empty. Moreover, X1 ⊂ Xp and Y ∩X1 is empty, so Xp − Y is also non-empty. Finally
X̄k is contained in both X̄p and in Ȳ , hence X̄p ∩ Ȳ is non-empty. It follows that Y and
Xp cross. Therefore there exists a partition Z1, Z2, Z3, Z4 of E(H) such that Xp = Z1 ∪ Z2,
Y = Z2 ∪ Z3 and by Remark 41 one of the following occurs:
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(α) BH(Zi) = BH(Xp) = BH(Y ), for every i ∈ [4], or

(β) (Z1, Z2, Z3, Z4) is a flower of H.

However, (α) does not occur, as x ∈ BH(Xp)−BH(Y ); therefore (β) occurs. Since Y = Z2∪Z3,
Z2 and Z3 are consecutive petals with common attachment x. In particular, we have shown
that every vertex in IH(Y ) ∩ T is a cut vertex of H[Y ] separating the vertices in BH(Y ).
Applying this last result to each vertex in IH(Y )∩T it follows that Y can be partitioned into
sets B1, . . . , B`, for some ` ≥ 2, such that (Z1, B1, . . . , B`, Z4) form a flower. Moreover, the
attachments of consecutive petals of B1, . . . , B` are in T and, for all i ∈ [`], IH(Bi) ∩ T = ∅.
It follows by Claim 1 (applied to each Bi) that, for all i ∈ [`], Bi consists of a single edge,
say ei, and that e1, . . . , e` are series edges. Since Y is not simple, ` ≥ 3. Let (G′, T ′) be
obtained from (G, T ) by a Whitney flip on {e1, e2}. In (G′, T ′) (see Remark 30) e2 and e3
are series edges and the vertex common to these edges in not in T ′. Hence, Y ′ = {e2, e3} is
a non-simple separation of Type I of (G′, T ′) and (P1) is satisfied. Proceeding as in Claim 1
we prove that (P2) holds as well.

Case 3: Y crosses X1 or Y crosses X̄k.

Since we can interchange the role of X1 and X̄k, it suffices to consider the case where Y
crosses X1. Therefore there exists a partition Z1, Z2, Z3, Z4 of E(H) such that X1 = Z1∪Z2,
Y = Z2 ∪ Z3 and, by Remark 41, one of the following occurs:

(α) BH(Zi) = BH(X1), for every i ∈ [4], or

(β) (Z1, Z2, Z3, Z4) is a flower of H.

As X1 = Z1 ∪ Z2 and Ω = v1w1 /∈ Y , we have v1 ∈ VH(Z1) and w1 ∈ VH(Z4).

Claim 2. Case (α) does not occur.

Proof. Suppose for a contradiction that case (α) occurs. We first claim that IH(Z3)∩T 6= ∅.
Suppose that this is not the case; then, because of Claim 1, Z3 consists of a single edge. As
we obtained a contradiction in Case 1 for non-simple 2-separations, Z2 is a simple separation
or consists of a single edge. By Claim 1, H does not have parallel edges. Thus Y = Z2 ∪ Z3

is simple, a contradiction.
Suppose that k ≥ 2, i.e. there is a 2-separation X2 in S with X1 ⊂ X2. We may assume

that X1 and X2 have distinct boundaries. Let {a1, a2} denote the vertices in BH(X2). As
X1 ⊂ X2, a1, a2 ∈ VH(Z3 ∪ Z4). If a1, a2 ∈ VH(Z4), then Z3 ⊂ X2 − X1 and T ∩ IH(Z3) is
empty, a contradiction. Hence, we may assume a1 ∈ IH(Z3); then (as we are in case (α) and
since H is 2-connected) there exists a (v1, w1)-path in H \ {a1, a2}, a contradiction. Thus
k = 1, i.e. S = (X1); hence, by (B2), T ⊆ {v1, v2, w1, w2} ∪ BH(X1). As |T | ≥ 6 (by (B4)),
we have T = {v1, v2, w1, w2} ∪ BH(X1). By Remark 30, it follows that Wflip[(H,T ), X1] has
four terminals, contradicting (B4). ♦

Thus we may assume case (β) occurs.

Claim 3. Y does not cross X̄k.
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Proof. Suppose for a contradiction it does. Then, by a similar argument to the one above
(applied to X̄k), there exists a flower (W1,W2,W3,W4) of H with X̄k = W1 ∪W2 and Y =
W2 ∪W3. Let F be the maximal flower that is a obtained from the flower (Z1, Z2, Z3, Z4) by
partitioning the petals Zi into as many petals as possible and let F′ be the maximal flower
that is a obtained from the flower (W1,W2,W3,W4) by partitioning the petals Wi into as
many petals as possible. As Y crosses both X1 and X̄k, we have F = F′. Hence F is a flower
of H and X1 and X̄k are each the union of at least two petals of F. We may assume that
H[X1] does not partition into sets U1, U2, where v1, v2 ∈ IH(U1) and (U1, U2, X̄1) is a flower
of H, as otherwise we may redefine X1 to be U1 (by adding U1 to the sequence S). The
analogue statement holds for X̄k. It follows that v1 and v2 are not in the interior of the same
petal of F. Similarly, w1 and w2 are not in the interior of the same petal of F. Moreover, as
we obtained F from (Z1, Z2, Z3, Z4), v1 and w1 are in distinct petals of F. For every X ∈ S,
the vertices in BH(X) are attachments of F, as there is no (v1, w1)-path in H − BH(X).
Hence Tc is contained in the set of attachments of F. By Lemma 40, (H,T ) is degenerate, a
contradiction to (B4). ♦

Thus Y does not cross X̄k. Hence, Y ∩ X̄k = ∅ and thus Z3 ⊆ Xk − X1. As we obtained
a contradiction in Case 2 for non-simple 2-separations, Z3 either consists of a single edge e,
or Z3 is simple. If Z3 is simple, the vertex in T ∩ IH(Z3) is a cut-vertex of H[Z3], because
of condition (B2). Therefore either Z3 consists of a single edge e or it consists of two series
edges, say e, f incident to a vertex x ∈ T . If Z2 consists of a single edge, say g, then, as
Y is non-simple, Z3 = {e, f}. It follows that e, f, g are three series edges and we obtain a
contradiction as in the proof of Case 2.

Thus we may assume that |Z2| > 1. Because of Claim 1, IH(Z2) 6= ∅. As we obtained a
contradiction in Case 1 for non-simple 2-separations, Z2 is simple, hence it is a Type II or
Type III separation. We may assume that e has an endpoint y in BG(Z2).

If y /∈ T , then, by Lemma 42, properties (P1) and (P2) hold as required. Hence we may
assume that y ∈ T . Let (G′, T ′) = Wflip[(G, T ), Z2]. Denote by y′ the endpoint of e that is
in BG′(Z2) in G′. Since Z2 is a Type II or Type III separation, |IG(Z2) ∩ T | = 1. Thus, by
Remark 30, y′ /∈ T ′. It follows that Z2 ∪ {e} is a Type II or Type III separation of (G′, T ′).
Thus property (P1) holds. A Type II or Type III simplification will replace (G′, T ′) by
(H,S) = (G′, T ′)/e. Observe, that Wflip[(H,S), Z2] = (G, T )/e. Using Lemma 42 it follows
readily that (G, T )/e is nice, hence property (P2) holds as required.
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