TR

Chapter 7

A Computer Implementation of the Blossom Algorithm

In this chapter we discuss a computer implementation
of the blossom algorithm we described in Chapter 3. The
Program was written in PL/1l; the reader is assumed to have
some knowledge of this programming language. (See [I2] for
the language specifications). The design of the program
waslinfluenced somewhat by BLOSSOM I (Edmonds, Johnson,
Lockhar£ [E7]), a FORTRAN implementation of a generalization
of the blossom algorithm. A special acknowledgement is due
to Professor Ellis L. Johnson, whe has contributed to both
the design and the details of this computer code.

In the nex£ three sections we describe the data
structure used and discuss the way the program handles such
problems as manipulating trees and blossoms and shrinking
subgraphs. Following this we discuss fhe code itself and
in the last section of the thapter we discuss storage
requirements and experimental results obtained concerning
the algorithm. The program itself is listed in the Appendix.

Throughout the chapter, we refer to statements in the
program by means of the PL/] statement numbers. T and F
are bit strings of length one having the values.'l'B
and '0'B respectively and are used as logical constants

having the values "true" or "false".

7.1. Storage of the Graph.

NEDGE and NNODE are binary full words that hold the

number of edges and nodes respectively of the graph G. They



7.2

Particular they do not reflect the shrinking of subsets of
nodes or the Creation of Pseudonodes, The edge set of the
graph is the set of integers 1, 2,...,NEDGE; the node set
of the graph is a set of NNODE pointer variables which
point to the structures holding the information about the
nodes,

The graph is represented by anp array of edges. EDGES
(Statement 4) is an array of NEDGE structures which contain
the following information for each edge 7,

C(J) 1is a single precision floating point variable
which holds the current ‘"reduced cost", That is, it holds
the value ¢y —yW()) - y(QO(J)) where C; is the cost
assigned to edge J and ¥y 1is the current dual solution.
Determining the equality subgraph and computing the bound
for a dual variable change are facilitated by having this
value stored. Initially C€(J) should simply be the cost

of the edge J; the program (Statements 333 to 346) subtracts

X(J) 1is a binary halfword that holds the current
value of the matching for the edge J,

STATUS(J) is a set of 16 one bit switches avéilable
for recording the status of edgé J. Only four are used
by the algorithm, they are:

EQJ) =T or F according as J does or does not

belong to the current equality subgraph;

SHRNK (J) = T or F according as J has or has not

been shrunk in forming a pPseudonode;




4
§

S i . g

7:3
FRST(J) = T or F according as J does or does not

belong to the alternating forest or to some component of

G+(X);

ZER(J) allows the edge J to be omitted from consideration
during execution of the program. Any edge J for which
ZER(J) = T will be completely ignored, any edge J for
which ZER(J) = F will be processed normally. This feature
is intended to facilitate Processing of subgraphs of the

graph G,

ENDS(J, #) and ORIGENDS (J, *) are arrays consisting
of two pointers. ORIGENDS holds pointers representing the
nodes of G with which J is incident and does not change
throughout the exXecution of the algorithm. ENDS reflects
any pseudonodes that have been formed. Thus, where R is
the nested family of sets described in Chapter 3, if
J € E(G x R) then ENDS holds pointers to the nodes of G x R
with which J ig incident. If 3 ¢ E(G x R) then the
pointers in ENDS point to the pseudonode corresponding to
the minimal member of R which contains p(J).

The variables for the real nodes of the graph are stored
in an array NODELST (Statement 3). However they are
teferred to by means of the baseé Structure NODE (Statement
6). Handling the nodes 1in this way simplifies the treatment
of pseudonodes while at the same time allows the algorithm
to be as economical with Storage as possible.

For each node P, real or pseudo, we have the following

values,




bl e b

+ e

7.4

P -> DEF 1is a binary halfword holding the deficiency
of the current matching at the node P, that is, it holds
the value bP - x(8(P)) where bP is the degree constraint
of P and x is the current matching. If P is contained
in a pseudonode, this value may be too large or too small
by 1 however this situation is corrected when we expand the

pseudonode or correct the matching within it.

'P -> STATUS 1is a set of 16 one bit switches which reflect

the status of node P. Nine of these are actually used.

P -> REAL = T or F according as P is a real node

or a pseudonode.

P -> CONSTEQ = T if the degree constraint for node P
is an equation, P -> CONSTEQ = F if the degree constraint
for node P is an inequality. Thus P -> CONSTEQ = T or

F according as P ¢ v or VS.

P -> DEFIC = T or F according as P does or does

not belong to the alternating forest.

P -> 0DD = T if P is an odd node of the alternating

forest, otherwise P -> QDD = F.

P -> YRTO = T if P belongs to the alternating forest
<

and the tree containing P 1is rooted at a real node 1 & V™

for which Vg * 0 or at a pseudonode containing a node

ie VS for which y. = 0,

P -> BLOS = T if the components of G+(x) containing

P contains an odd polygon, otherwise it is false.

P -> DCHNG, P -> INPATH and P -> EXPANDED are all

used by the algorithm and will be discussed later.




P ->Y 1is a single precision floating point variable

used to hold the current dual variable of the node P. If
P is a pseudonode, then it holds the dual variable of the

subset of the nodes of G which form the pseudonode.

P -> TREE, P -> EDGEDN and P -> STACKUP are used for
;i representation of the trees and blossoms of the algorithm

and their use is described in the next two sections.

- 7.2. Tree Handling.

The manipulation of trees and forests is an important
part of the blossom algorithm. There are three properties
which we wish our data Structure which represents trees to
satisfy. First it should provide an easy means of finding
the path in the tree from any node of the tree to the root,
second it should provide a reasonable means of examining all
the nodes and edges of a tree and third it should make
coﬁvenient éuch operations as rerooting trees, growing trees
and removing portions of trees. The structure used is the
"triply linked tree" developed by Johmson [J2]. A description of
this structure also appears in Knuth [K3], p. 352.

We are actually storing a planar representation of the
tree. We think of a tree being rooted "at the bottom" and
consisting of various "levels" of nodes accordfng to their
distance from the root (see Figure 7.1).

For any node P of the tree other than the root,

P -> DN is the node adjacent with. P in the level
immediately below P, P -> EDGEDN 1is the

edge of the tree joining P and P -> EDGEDN. If P is

the root of a tree then P -> DN = NULL and P -> EDGEDN = 0.

-_— . - T . -



T

7.6

P -> UP is the leftmost node adjacent with P
in the tree belonging to the level of the tree immediately
above the level containing P, if such a node exists.

Otherwise P -> UP = NULL.
P -> RT is the first node Q to the right of

P in the level of the tree containing P which satisfies

P -> DN

Q -> DN. If no such node Q exists, then

P -> RT NULL. Observe that if P is the root of a tree

then P «> RT = NULL.

o

EDGEDN

NULL POINTER:¢

Figure 7.1 Triply Linked Tree




¥l

We now describe some of the procedures used by the

Program in manipulating trees,

ADDON(Ql, Q2, J) (Statements 195-202) wuses the edge J

which joins nodes Q1 and Q2 to attach a tree rooted at
Q2 to the tree containing Ql. It also sets FRST(J) = T

to indicate that J is now an edge of the forest.

REMOVE (P1) (Statements 158-175) does the following. Pl

is a node. belonging to some tree, REMOVE removes Pl and
the portion of the subtree above Pl from the tree, thereby
creating a new tree rooted at Pl. 1If Pl 1is already a
‘root, it simply returns having done nothing. Otherwise it
finds the other pointers equal to Pl and modifies them
appropriately. It sets Pl -> DN = NULL and sets

FRST(P1 -> EDGEDN) = F, indicating this edge is no longer

part of the forest.

REROOT(P1) (Statements 176 <194 ) rercots the tree containing

Pl at Pl. This it does by travelling down the path in the
tree from Pl to the root, successively removing the portion
of the tree above each node in the path and adding that

portion to the portion previously removed.

UPSCAN(Pl, UPCALL, SUBRUB, DNCALL, SUBRDN) (Statements

203- 234) is a routine which scans through all the nodes of
the tree containing Pl which are above Pl. These nodes
are scanned according to the following rule: UPSCAN always
tries to move up the tree; if it cannot do this, it tries to

go to the right and then continue moving up; if it cannot




i |

i

EesSESeL e e

7.8

do this it goes down and then tries to gc to the right, For
example, it would encounter the nodes of the tree of

Figure 7.1 in the following order: 1, 2, 5, 8, 35 25 8, 4,
6, 7, 4, 1, UPCALL and DNCALL are one bit strings, if
UPCALL = T then the first time each node is encountered,
UPCALL calls the Procedure SUBRUP Passing it a pointer

to the node. If DNCALL = T then the last time each node
is encountered the Procedure SUBRDN 1is called and passed
48 a parameter a pointer pointing to the node.

Thus depending on the Procedures SUBRUP and SUBRDN,
UPSCAN can perform a great many functions. The Procedures
described in Statements 235-324 are all used by means of
UPSCAN. We describe the Purpose of these pProcedures in
Section 7.5 when describing the main procedure.

The final procedure we discuss in this section is
more thanm just a tree manipulating subroutine. It performs
augmentations and at the same time (opticnlly) helps construct
the new alternating forest.

AUGMENT(PI,Rl,DELTAX,DESTROY,ODDB) (Statements 40-59)

alternately subtracts and add DELTAX to the value of

X(Ql -> EDGEDN) for each node Ql # Rl in the path from

Pl to Rl in the tree containing these nodes. The pointers
Ql -> DN are used to trace down_the path. If ODDB (BIT(1))
equals F then the Procedure starts with a subtraction,

if T then it starts with an addition,

If DESTROY (BIT(1)) = T then eéverytime an edge becomes




i

7.9

zero, the portion of the tree above that edge is removed and
broken into nonzero components. This is done by using UPSCAN,
passing it the procedure NONDEFIX which is called the last
tine each node is encountered. If DESTROY = F then none

of this is done.

NONDEFIX(P1) (Statements 250-258) updates the indicators

for the node Pl1. If there is an edge J down from Pl
in the tree such that X(J) = 0 then Pl is removed from

the tree.

7.3. Blossoms, Shrinking and Pseudonodes.

One of the central problems éncountered in implementing
the blossom algorithm is the problem of shrinking. It has
even been suggested (Balinski B[1] p. 232) that the amount
of storage required to handle this process would make
computer implementation of the blossom algorithm impractical.
As was shown by BLOSSOM I and as is shown again by the
program of this chapter, such is not the case. An upper
bound on the amount of storage required to hold all the
information necessary for whatever amount of shrinking is
done by the algorithm is only slightly greater than half
the amount of storage used to store the information required
for the real nodes; iq practise we generally require
considerably less.

A blossom consists of a special type of alternating
tree together with an edge J which forms an odd polygon;

this is how it is stored. There is one node R 1in a




£ oo sy

blossom at which the current matching restricted to the

edges of the blossom is deficient, the tree is rooted at

this node. Since R is the root of a tree, we normally
have R -> EDGEDN = 0. When representing a blossom we
let R -> EDGEDN = J. Thus storing a blossom is no more

difficult than storing a tree,
(Components of G+(X) containing an odd polygon are

also stored in this fashion, the only difference being

that the root of these components is not deficient.

P -> BLOS=T for every node P in such a component, )
Now we describe the way in which the nested family

of shrinkable sets is represented. For each member P

of the nested family we have allocated (in Statements

508-516) a structure P --» PSEUDO. The first seven words

of P -> PSEUDO are used in the same waj as the seven words

of NODE are used. (The maximal members of the noted family

7.10

are the current pseudo nodes.) However there is in addition
i

an eighth word P -»> ROOT which is the root of the blossom

associated with P, that is, the node at which the matching

restricted to the edges of the blossom is deficient.
For any real node Pl, Pl «» STACKUP is a pointer

to the structure associated with the minimal member of thg

nested family containing Pl if such a set exists, otherwise

Pl -> STACKUP = NULL. For any member P of the nested

family, P -> STACKUP is a pointer to the structure associated

with the minimal member of the family properly containing P,



| il

7.11
if such a set exists, otherwise p -> STACKUP = NULL.

(See Figure 7.2).

Figure 7.2 ©Nested Family Representation

7N\

)member of nested family

S

pseudonode representing Leb)
member of nested family I\

T STACKUP pointer

¢ NULL pointer

nested family containing a node P, that is, the current
pPseudonode containing P.

SURF(P) (Statements 13-25) returns the value of the
pointer correspondiné to the maximal member of the nested

family containing P, if such a set exists. If no such set



o R i

o o

B .

7.12
exists it simply returns P. 1In Statements 17-22 it searches
up the chain of STACKUP pointers Starting with p -»> STACKUP
until a null pointer is found. It uysges PNEST to count the
number of members of the nested family which contain P,

This value is not used by the algorithm itself, but the
maximum "depth of nesting" is stored ip RUNSTAT(3) to
provide one indication of the amount of work doné by the
algorithm. |

We now describe the operations performed by the program
in shrinking a blossonm (Statements 506-558). Figure 3.7
may help to clarify this process. J is an edge joining
nodes P1 and P2 which are both €ven nodes (or in some cases
odd nodes) of the same alternating tree, R3 is the first
common node of the paths in the tree from Pl and P2 to
the root of the tree, R2 is the last node belonging to

the blossom in the Path in the tree fronm R3 to the root of

‘the tree. (These nodes have been determined earlier in

the program.) We call the path from R3 to R2 the stem of
the blossom. The blossom consists of the polygon plus
the stem plus any components of G+(X) containing a node
of the polygon or stem,

In Statements 508-51¢ wve allocate the Pseudonode P
for the blossom and initialize most of its variablés. In
Statements 519-534 we "mark" the Polygon and the stem of

the blossom by letting P3 - > INPATH = T. This is to make

it possible to identify all the nodes of the blossom. Then




R L warr

7.13

in Statement 537 we call UPSCAN, passing it the routines
UPBLOSS and DNBLOSS. These routines (Statements 296-329)
do two things. UPBLOSS set Pl -» STACKUP = P for every
node of the blossom. DNBLOSS removes any portions of the
tree above the blossom and adjpins them to P. These
routines rely on the order in which UPSCAN scans the nodes.
SHRNKNG is a one bit switch which is T or F according as
the next node to be scanned can or cannot be expected to
be part of the blossom. Thus whenever UPBLOSS detects a
node Pl not in the polygon or stem for which X(P1->EDGEDN) =0,
PX is set equal to Pl and SHRNKNG is set equal to F. From
then on nothing is done to successive nodes until DNBLOSS is
passed the node PX. Then the subtree rooted at PX is removed
from the blossom and adjoined to P, SHRNKNG is set T and
the process continues.
If SHRNKNG=T then when UPBLOSS is passed a node of
the polygon‘or stem or a node Pl for which X(pP1 -> EDGEDN) # 0
it sets P1 -> STACKUP = P, indicating that this node is
part of the blossom.
When UPSCAN has completed its scan the program removes
the blossom from the tree and replaces it with the pseudonode P,
together with any portions of the tree that DNBLOSS may
have adjoined to P (Statements 538-543). Finafly, R2 -> EDGEDN
is set equal to J and the blossom 1is represented completely,
Now all that remains to be done is to update ENDS to

reflect the new pseudonode. This is done in Statements

545-556. At the same time SHRNK(le is set equal to T




7.14

for any edge such that ENDS(J1,1) and ENDS(J1,2) are nodes

of the blossomn.

Tl Parameters Passed and Returned,

In this section we describe the parameters passed
and returned when using this code. It should be pointed
out that this program is designed to be used by other Programs
ds a subroutine and consequently there is no provision
for card input or Printer output (except for the trace
feature). Thus unlike BLOSSOM 1 this progranm requires a
suitable driver pProgram to prepare its data and output

its results if we simply want to solve matching problems.

Parameters Passed.

*NEDGE (BINARY FIXED (16)) holds the number of edges
of the graph.

*NNODE (BINARY FIXED (16)) holds the number of nodes
of the graph.

*NODELST is an array of NNODE structures having the
format described in NODE (Statement 6). Each structure is
seven words long and holds the following information. Let
Te{1,2, ..., NNODE} and let p = ADDR(NODELST(I)).

= P -> DEF(BINARY FIXED (15)) holds the degree
constraint of the node P. -

ol CONSTEQ(BIT(1)) should be T or F according
as the constraint at node P is an equation or an inequality.

- P -> REAL, P -> DEFIC (BIT(1)) should be set

equal to T initially,




- P -> DCHNG, YRTO, INPATH, EXPANDED, ODD and BLOS
(BIT(1)) should initially all be set equal to F,

- P => Y (DECIMAL FLOAT (SHORT)) holds the indtial
dual variable of the node. This dual solution must be
feasiblé. If P => Y is set equal to half the absolute
value of the largest edge cost for every node P then this
starting dual solution is feasible.

- P => TREE.UP,RT,DN and STACKUP (POINTER) should
all be set equal to NULL.

- P =-> EDGEDN (BIN FIXED(16) should be initially zero.

*EDGES is an array of NEDGE structures, each six full
words long holding the following information. Let J € {1,2,...,
NEDGE}.

- C(J) (DECIMAL FLOAT (SHORT)) is the cost of edge J
(not the "reduced cost; this is computed by the algorithm).

- X(J) (BINARY FIXED(15)) should be set to zero,

~ ZER(IY, EQ(J), SHRNK(J) and FRST(J) should all be
initially set to F.

- ENDS(J,*), ORIGENDS (J, *) (POINTER) should be the nodes
of the graph with which J is incident,

* RUNSTAT (Statement 5) is an array of 10 binary
halfwords. The only entry used for input is RUNSTAT(10).

A trace of the execution of therprogram is or‘is not printed
out according as RUNSTAT(10) = 1 or 0. This trace, if obtained,
Prints a message concerning each edge used by the algorithm

together with the values of the matching and the dual solution

any time they are changed.




7.16

The main use of RUNSTAT is to return statistics
concerning the problem solved to the Pregram which invoked
BLOSSOM.

These input specifications were based upon the assumption

that we were using the zero matching as g starting solution.

Parameters Returned.

The parameters are returned 1in the following state.
Let P be any node, real or pseudo.

=P -> DEF is the deficiency of the current matching
X at the node P,

= B == STATUS is set to Feflect the status of P
at termination.

- P => TREE, EDGEDN holds the tree and blossonm
structure of the final solution.

- P => STACKUP points to the pseudonode representing
the minimal member of the nested family containing P, if
such a set exists, otherwisevit is null.

= P => Y is the final dual variable of the node P if
P is real, or the final dual variable of the corresponding
member of the nested family if P is a pseudo node.

Notice that the invoking program is returned both the
optimal dual solution and the final nested family. (This
was desired in Chapter 6.)

Let J be any edge of the graph.

- €C(J) is the final reduced cost of the edge J.

- X(J) is the paximum matching, that is, the answer

to the problen.




2l
- STATUS(J) reflects the status of edge J at

termination,

- ENDS(J,#*),0RIGENDS(J,*) are both as they were
originally, the nodes of the graph met by J.

*RUNSTAT (BINARY FIXED (15)) (Statement 5) is an
array of ten indicators showing the amount of work done in
solving the problem. The values returned are as follows:

- RUNSTAT(1l) is the number of dual variable changes;

- RUNSTAT(2) is the number of times a blossom was
shrunk;

- RUNSTAT(3) is the deepest nest of pseudonodes formed
(or equivalently, the longest chain of STACKUP pointers);

- RUNSTAT(4) is the number of times pseudonodes were
expanded (in Step 9e of the blosson algorithm);

- RUNSTAT(5) is the number of times the forest was
grown without making an augmentation (Steps 3a and 7 of
the blossom algorithm);

- RUNSTAT(6) is the number of two tree augmentations
(Step 4 of the blossom algorithm);

- RUNSTAT(7) is the number of one tree augmentations
(Step 5b of the blossom algorithm);

- RUNSTAT(8) is the number of times a component of
G+(X) containing an odd polygon‘was added to t%e forest
(Step 3c of the blossom algorithm);

- RUNSTAT(9) is the number of so called "pseudo
augmentations'", augmentations which move a deficiency to
a nodei of V° for which y; =0 (Steb 72 of the blossom

algorithm);




e s i . o o,

e

& - B 5 o 5

e S R il v e

VS S St s e

= RUNSTAT(10) is returned with the value zero or one
according as the matching returned is or is not feasible,
if RUNSTAT(10) = 1 when returned then the algorithm

terminated with a Hungarian forest,

7 5.5 The Main Procedure.

Now we describe the main Procedure itself. The code
follows fairly closely the description of the blossom

algorithm given in Section 3.8.

Statements 325-349 are for initialization, reduced

costs are computed and EQ(J) is set for each edge J
reflecting whether or not the edge belongs to the equality

subgraph. A procedure FN(J) (Statements 26-39) is used in

computing reduced costs. It calculates the sum of the dual

variables of the ends of J and of all members of the nested

family which contain both ends of .J.
Statements 350-634 constitute the "edge processing"

loop of the program. JCNT is used to cycle through the edges,

Anytime we finish considering an edge, whether or not we

have been able to make use of it, we go to ENDA (Statement 633)

where JCNT is set equal to 1 + MOD(JCNT,NEDGE).
Whenever we are able to use the edge JCNT (to augment,

grow the forest or shrink), LASTJ is set equal-to JCNT.

If JCNT ever "cataches up" with LASTJ then we have made a

complete cycle through the edges without having been able

to do anything so we go to Statement 636 and attempt to

change the dual variables.




I
|

7.19

Statements 35(G-372 test each edge JCNT to see if it
belongs to the equality subgraph, has not beer shrunk, is
not in the forest and meets an even node Pl of the alternating
forest Fl. If JCNT violates any of these criteria we go
to ENDA. If the other end P2 of JCNT is an odd node of Fl
then it is of no use to us and we go to ENDA, if P2 is an
odd node of FO then we go to ODDGROW (Statement 581).
Otherwise we se; J=JCNT and go to POLYSTEP(Statement 566),
GROWSTEP(Statement 559) or DXCALC(Statement 382) depending
on the status of P2.

DXCALC: (Statement 382) J joins even nodes Pl and P2
of the forest F, in Statements 382-400 we determine whether
they belong to the same or to different trees. At the
Same time we compute D1 and D2, bounds on the amount of
augmentation that can be made. INPATH is used to mark the
nodes in the paths from Pl and P2 to the roots of their
respective trees. If Pl and P2 belong to different trees
then Rl and R2 are the roots'of the two trees. 1If Pl
and P2 belong to the same tree then Rl is the root of the
tree and R2 is the first common node of the two paths,

If P1 and P2 belong to different trees, then we go to

TWOTREE (Statement 401) where we perform the augmentation

new forest and go to ENDA.
If P1 and P2 belong to the same tree then we go to
ONETREE (Statement 427). There we determine whether or not

dan augmentation is possible. 1If not we go to DEFBLOSS



~I!
58]
]

(Statement 506) where we shrink. If we can make an augmen-
tation we do so, update the tree and then update the
forest. At this point we may have to shrink, if so we go
to DEFBLOSS where we do so. We may have created a compomnent
of G+(Xj containing an odd polygon and no deficient node.,
If so (Statements 497-505) we find the root R2, store the
polygon forming edge J as R2 -»> EDGEDN and call UPSCAN
passing it the procedure BLOSSIND. BLOSSIND (Statements
259-264) simply sets the node STATUS indicators correctly.
We have already discussed the shrinking procedure in
Sectdon 7.3,
GROWSTEP: (Statements 559-565) J joins an even node
Pl of the forest to a node P2 not in the forest. We simply
grow the forest. ADDFIX (Statements 235-244) sets the
STATUS indicators for the nodes added to the forest. (This
corresponds to Step 3b of the blosson algorithm.)
POLYSTEP:(Statements 566-580) J joins an even node
Pl of the forest to a node P2 of a component of G+(X)
which contains an odd polygon. First we find the root of this
component and hence the polygon forming edge J1. Then we
add this component (minus J1) to the forest just as in
GROWSTEP. Then we replace J with J1, Pl and P2 with the
ends of J1 and go to DXCALC(Statément 382). (£his corresponds
to Step 3c of the blossom algorithm.)
ODDGROW: (Statements 581-632). Edge J meets an even
node Pl of F1 and an odd node P2 of FO. Statements 585-597
add a suitable portion of the tree cﬁntaining P2 to the

tree containing Pl. SETYRTO is a procedure used by UPSCAN



¥ 5

to set P -> YRTO = YROOTO for all nodes scanned. Thus
we first set YROOTO correctly. (This corresponds to Step 7
of the blossom algorithm.)

We may now have a tree in the forest containing two
deficieﬁt nodes Pl and P2. If this is the case, we make
a8 so called "pseudo augmentation" to remedy this (Statements
599-632). These steps also update the forest. (This portion
of the code corresponds to Step 7a of the blossom algorithm.)

This completes the description of the main edge
processing loop. If we make a complete cycle through
the edges without being able to make use of any edge then
Ve go to DUALCHNGE(Statement 636) where we attempt to change
the dual variables. FAIL is a one bit switch which is used
to indicate whether or not we have an optimal feasible
matching. Initially FAIL=F, if we discover a node in a
tree of F1 then FAIL is set equal to T.

In Statements 637-665 we compute EPS2, a bound imposed
by the nodes on the amount of dual change that can be made.
(EPS2 equals the minimum of €35 €, of Step 9a of the blossom
algorithm.)

If FAIL=F, thus the current matching is feasible, we
80 to CORRECTION(Statement 925) where we correct the matching
in the pseudo nodes. 1If EPS52=0 then we need make no dual
variable change; we g0 to NODEBND(Statement 786) where
we either reroot a tree or expand an odd pseudonode of the
forest. =

Otherwise (Statements 670-705) we Ccompute EPS1, the



R N N S
7 .22

bound on the amount of dual change determined by the dual
constraints corresponding to the edges. (ESP1l equals the
minimum of €15 €4 of Step 9a of the blossonm algorithm.)

Then we let EPS = MIN(EPS1, EPS2). If EPS = 10'0 (infiniey
for our purposes) then the forest is Hungarian, no feasible
matching exists, we go to CORRECTION and terminate. Other-
wise (Statements 706-780) we make a change of dual variables
and update the reduced costs accordingly, (For any pseudo
node P, P -> DCHNG is used to ensure that we only change
its dual variable once.) If the bound on the dual change
was imposed by a constraint corresponding to an edge JX then
weé can now immediately make use of the edge; we set JCNT
equal JX and return to the start of the edge processing
loop. (Statement 350).

If the bound on the dual change was imposed by a
constraint corresponding to a real node PX of the forest,
then we now:have PX -> Y = Q. 1If PX is the root of
the tree, we simply reset YﬁTO for the nodes of the tree.
Otherwise we go to AUG(Statement 599) and make a pseudo
augmentation. This process corresponds roughly to Step 9d
of the blossom algorithm, although in the computer code
we do not insist that all trees of Fl rooted at nodes i £ V-
for which y; = 0 be moved to FO; we simply handle one each
time.

If the bound on the dual change was imposed by a
constraint correqunding to a pseudonode PX, then PX -> Y = 0

and PX is an odd pseudonode of the forest that has to be




7:23

expanded. This we do in Statements 797-92¢4,

The first thing done is to call EXPAND, a procedure
(Statements 60-145) that first updates ENDS so as to no
longer reflect the existence of pseudonode P and then
"corrects" the matching within the blossom corresponding
to P so that it is compatible with the matching of the graph
containing P. This procedure also forms the nucleus of
the final matching correction step (corresponding to Step 12
of the blossom algorithm). Notice that for any calls to
AUGMENT in EXPAND we have DESTROY = F, thus the blossom
does not have its structure destroyed.

EXPAND set JIN equal to the edge J of the graph
incident with P for which X(J) = 1 and sets BROOT equal
to the node of the blossom met by JIN. If P -> EDGEDN = JIN
then we have the easier case, JIN is the unique edge of the
forest meeting P. This case is handled in Statements 803-842.
Otherwise two edges of the forest meet P, this case is
handled in Statements 843-924,

ADDBLOS,DEFFIX(Statements 265-295) are routines called
by UPSCAN to "unshrink" a blossom and update the status
indicators. Their operation is similar to that of UPBLOSS,
DNBLOSS. 1Initially SHRNKNG(BIT(l)) = T. For each node P1
that ADDBLOS is passed, it sets Pl -> STACKUP = NULL,
thereby removing the reference to the pseudonode. Then
it proceeds, setting the status of each node to indicate
that it belongs to the forest, until it finds a node P1

which would have become an even node of the forest for which




s

”

724
X(r1 EDGEDN) = 0. When this happens PX is set equal

to Pl and SHRNKNG is set equal to F. From then on the
status of each node encountered is set to indicate that
the node does not belong to the forest., DEFFIX breaks the
blossom‘up at edges J for which X(J) = 0. When DEFFIX is
passed the node PX it sets SHRNKNG = T and the process
continues.

The final part of the program is the step (Statements
925-945) where we correct the matching in the pseudo nodes
prior to terminating. For each pseudonode P, P =-> EXPANDED
is used to ensure that we do not try to correct the matching
for the pseudonode more than once,

This completes the description of the program.

7.6. Experimental Results

This program was compiled under version 5.2B of the
0S/360 PL/1 F level compiler, OPT=1 and was tested on a
large number of contrived graphs. Then a series of tests
on "random graphs" was run to obtain the experimental results
described here.

The random graph generator accepted as input the number
of nodes and edges desired in the graph together with a
range for the degree constraints and a range fbr the edge
costs (integers were used for edge costs in these tests).

It generated the graph by successively joining each node
of the graph to some other node until sufficient edges
had been created. —Thus the test graphs had multiple edges

but no loops. The random graph generator also accepted

e Ve e e e R R e



g

7.25
a8 parameter specifying the desired probability of a node
belonging to '

An option of the random graph generator was to create
a file containing the information about each graph in a
form suitable as input to BLOSSOM I, the earlier Fortran
implementation of the matching algorithm. This enabled
comparative tests to be run between the two programs.

The driver program then invoked BLOSSOM to solve the
matching problem. Following this a test was made of the
matching and dual solution returned by BLOSSOM to ensure that
they were feasible solutions satisfying the complementary
slackness conditions for optimality,

The results of these tests are listed in Table fs1
They were run on an IBM/360 model 75 at the University of
Waterloo. Thirty two graphs were run on both BLOSSOM I and
the code described here, two random graphs were generated
with each set of specifications. We required the degree

constraint be satisfied with equality at each node. In addition,

six "large" graphs were run on the code of this chapter.

One of the most striking observations is that even
though the value of the edge costs do not enter into our
theoretical bound, the number of_ different edge costs
drastically affects the run time of the code. The reason
for this seems to be that the more different edge costs we
have, the more dual. variable changes that have to be done

to obtain an optimal solution, and dual variable changes

are practically (although not theoretically) time consuming.



L}

i

726

A second observation is that the number of pseudos
formed during the course of execution of the code tends to
be relatively small. The entries in the table give the total
number formed during the execution of the code, the number
present at termination is often considerably smaller.

The BLOSSOM program of this chapter does run faster than
BLOSSOM I (The ratio of its execution time to that of
BLOSSOM I seems to decrease as the number of edges of the
graph increases). This is not surprising, however, for
BLOéSOM I treats directly a more general form of the matching
problem than is treated by the code of this chapter. These
more general problems can be reduced to problems solvable -
with the code of this chapter;however this involves
significantly, though algebraically, increasing the number of
edges and nodes.

The BLOSSOM procedure itself requires 33K bytes of
storage. Storage of the graph requires 28 X v + 24 x e + 32 x P
bytes of storage, where v is the number of nodes, e is the
number of edges and p is the maximum number of pseudonodes
present at any one time in the execution. The various PL/1 library
routines required to run BLOSSOM add to these storage
estimates however. When run with the random graph generator
and driver, the [100 node-1000 edge] graphs required 148K
bytes of storage, the [1000 node-4000 edge] graphs required
238K bytes of storage.

Since the computer code uses fixed word arithmetic, it

may not be able to solve a problem if the number of significant

digits of some of the values used becomes too large.



The degree constraints gnd values of the matching are
integers stored as binary halfréords and so can be no larger
than 32767. The value X(J) for any edge J can never be
larger than the smaller degree constraint of its ends, so as
long as the degree constraints range from 1 to 32267 we will
have no difficulty handling these values.

The edge costs and dual variables are stored as hexadecimal
(base 16) floating point numbers having six significant
hexadecimal digits. Any edge costs stored by the computer are
rational numbers. If we multiply all edge costs by a positive
constant we do not affect the solution set of the problem.

Hence we can assume that the edge costs have been multiplied

by a large enough number so that they are all integer. As was
shown in the proof of (3.10.7) if our starting dual variables
are integer valued then all dual variables computed during

the execution of the algorithm will be integer or half integer
valued. If the degree constraint of every node is an inequality
(that is, V = ¢ and VS = V) then all dual variables are
nonnegative and so no dual variable needs to be larger than

the largest edge cost. Thus if the edge costs are integers

from the range - 1,048,576 to 1,048,576 then the dual variables
will be integers and half integers from the same range.

These numbers are represented exéctly by six hé%adecimal digits
80 we can be sure that the computer code will‘solve such
problems.

In the case that V # ¢ , and consequently some dual
variables are allowed to become negative, we may in fact require
dual variables considerably larger than the largest edge cost.

Consequently the establishment of a bound on the magnitude of

277

e — e S—



b

W

the dual variables is more complicated, For an analysis of gz
situation of this sort, see Edmonds, Johnson, Lockhart [E7].

If higher precision were required for some problem it
would be a straightforward matter to replace all binary half
words with full words and all floating point numbers with
double precision floating point numbers. Then degree constraints
could range from 1 to 2,147,483,648 and if the edge costs
were integers from the range -4 x 1015 to 4 x lO15 we could

guarantee a correct solution.




7:2 9

" A UT S3pouU ITRY Y3ITM uny 4
3

L T

.Mb T sapou TT® y3tnm uny g
PT YT Xl 8 %8T°G ¢EnT 0T-1 -1 000% 000 T}«
Sg T9°9¢ YULLT'Z w8 BB B i T 0006 006G frx
9¢¢ 8Z°T¢ PUREETONLET 0TI-T L 0006 006 Jex
L‘g 0‘0 6°T1€“8°9¢ '8T°G 0¢C 0T-1 00T 00ST 00¢
0£°89 0°0 6°CLT %781 9 EET I°EET 00T-T z 00ST 00¢
EToRT of i Y TIT°9'201 € IS0 HY 6I-1 LL-i 00ST 0o0¢g
LiET 9 ‘1T 8°6€°6°¢9 9*TE*T'BE 0T~T T 00ST 00¢€
HET*8ET L TT 8°€5°€" 79 I ALY 6666-T -1 00¢ 00T
6T°0T €ET‘8 L*9T % g1 S IT‘L"6 0T-T 0ST-06 0o0¢ 00T
$‘6 9 ‘97 6°ST L %¢ 8'8 ‘€0z 0T-T =T 000T 00T
R BT L LEL ¥z '8 ‘9°071 0TI~1 =1 00€ 00T
9996 9°T1T S 6T‘v 67 L9188 €7 6666-T 0T-T 002 0¢
8T‘0T S0 b L ‘8°% L*E *gg OT~T 00T-T 002 0¢
L9 ‘g 2°TI1°0°21 8°G6 ‘g-g 0I-1 0I-1 006 0¢
ST 0T €4y 29 ‘¢*¢ gt BLEE 01~T 0T-T 002 0¢
S22 ‘9 T°Z€‘0°2¢ 0°%2°6°¢z2 006-T L1 00§ 0€
€€6¢ €¢ 96T %67 0°6T‘9°2¢ 00S-T1 LaT 00§ 0¢
£*Z 00 €T “1*% LY *E*0 =1 T 06T o€
6€°87 AT "985 76 ‘gng "038 6°9 ‘g ¥ 000T-T T 06T 0¢
e3ueyn SWTL r T
9TqeTies  s3urjyurayg pasdeTq sutg & q sadpg SapoN
Teng jJo "oy Jo I wossolg pasdeTyg Jo 28uey Fo 28uey Fo *oN FJo -oN

1




APPENDIX

/*THE BLOSSOM ALGNORITHM: MAIN PROCFDURF, 16=03=73 x/

STMT LEVEL NEST
ZATHE ELOSSOM ALGORTTH'":

MATK PROCFDURE, 16=03=7% */

] BLOSSOM: PRDC(EFDGF,HHDDE,HUDELST,FDGES,RUHSTAT):

/*Ai***liAﬁ***!xx*t*ii**i**iin*#k*******tﬂi**t*i*htti***xi*
KARAARAA A Ak k& VARTARLE DECLARATIONS

AAXAARAKR A AR AX AN R A &

*********t******k****ii**!**li‘k**tAaiﬁ**ﬁﬁ*!*******t***t*i/

P4 1 DCL  (4FNGE,N%OPE) RIN FIXEDC(16);
3 1 DCL 1 MODFLST (% saMmObERy), /* ACTUAL STORAGE FOR NODF VARS 7

2 FILL(?) BIN FIXED(16);
l 1 DCL 1 ENGES(* /*NEDGE=x /),

2 C FLear,

2 X BIM FIXED(1S),

2 STATUS,

3 FILL BIT(12),

(3 ZER,
3 EN,
3 SHRNK,

3 FRST) BIT(1),

(2 ENDS(2),
2 ORIGFuRS(P))

PTR;

b 1 DCL RUNSTAT(10) B8IN FIXED (15):
e RUHISTAT(1)=10,0F DUAL CHANGES,

RUNSTAT(2)=40,

OF SHRIMNKINGS,

RUNSTAT(3)=NDFEPEST NEST nF PSEURONODES FORMED,

RUNSTAT(4)=ND,
RUNSTAT(S)=tn,
RUNSTAT (6)=H0,
RUNSTAT(7)=MO,
RUNSTAT(A)=ND,
RUNLSTAT(9)=Hn,
RUNSTAT(10)= o

1
RUNSTAT(10) IS

OF EXPANSTONS,

OF TIMIS FORFST GROWN,

OF T TRFF AUGMENTATIONS,

0OF ONE TREE AUGMFHTATINNS,

OF TIMES POLYGON ANRED TO THE FORE
OF PSEURND AUGMEKTATIONS,

IF MATCHING IS FFASIRLF,

TE MATCHING IS5 MOT FEASIRLE,
PASSED WITH VALUE 0 IF nO TRACF 15

WITH VALUE 1 IF A TRACE IS REGUIRED,

[ 1 DCL 1 NODE BASENCP),
2 BASICS,

3 DEF BIN FIXEDC(15),

3 STATUS,

4 FILL BITC 7),
(4 REAL,

S opD> s

DCHNG,

YRTO,
1MPATH,
EXPAYDED,
CONSTFQ,
obo,

DEFI1C,
BLOS)BIT(1),
3 Y FLOAT,

ST,

DESIRED,
*/




i |

’F

/*THE BLOSSOM ALGORITHI: MAIN PROCEOURE, 16=-03=73 */
STMT LEVEL NEST
3 TREE,
(4 up,
4 RT,
4 DBN) PIR,
3 EDGEDN RIN FIXED(16),
3 STACKUP PTR;
7 i DCL 1 PSENRD BASED(P),
2 RASTCS(7) RIN FIXED (16),
2 ROOT PTR:
8 1 DCL((EPS,FPSJ'EPSE,Z) FLOAT, JX BIN FIXED(1&)) STATTIC:
9 - CCL SURF ENTRY RETURNS(PTR)
10 1 DCL ((P,PI.P2,P3,”t,RE,PB,PX.HROUFFQI:G?f03)PT”:

(I,J,Jl,JE,K,JCHT,LASTJ.JIN,JGN) BIN
DELTAX BIN FIXED(15),
(D1,D02,D3) RIM FIXED(15))STATIC:

FIXED(16),

11 1 OCL (T INIT ('1'H), F IunIT ('0'B)) STATIC RIT (1),
(oppn |, POLYBIT,SHRHKHG,YRDDTO,TRACE,FRG“EX,NCCHEEK,FA!LJ

STATIC BITC(1);

12 1 FMT: FD?MAT[SK!P,A.F(&J,A): /% USED FOR TRACING %/

/**ttﬁ*****t****t*k*tt*i*itii*tt*ti*tkt!*
Xrrxsxrtkrr  GFLERAL PURPUSE SUBROUTINES

AR A KA XA RK AR R A KA A K
AAXAARFI R R A AA KA XA &

l*t!i***ﬁ*t****t*kti***#iiA*iitx**ak*****k#*iRitt***!i**tk*/

13 1 SURF: pROC (P) RETURNS(PTR);

/* PROCEDRURF TO FIND HIGHEST LEVFL PSEUDO &

/* PLEST 18 USED T0 COUHT STACK DEPTH, =/

14 2 DCL (P,P1 STATIC) PTR;
15 2 DCL PNEST RIN FIXED(1S) STATIC;

16 2 PHEST=0;

17 2 Pl=p;

18 2 DO WHILE (P1=>STACKUP =~=NyLL);

19 2 1 P1=P1=>STACKUP;

20 2 1 PNFST:PNEST*I:

21 2 t END:

22 2 IF PNFST > RUNSTAT(3) THEN RUNSTAT(3)=PNEST;
24 2 RETURN(P1) 3

25 2 EMD SURF;

ODE CONTAINING P,

*/




STMT LEVEL NEST

26

41

42

q
45
46

49
50

52

51
55
56
57
58
59

/*THE BLOSSN' ALGORITHH: MATN PROCEDURE, 14-03-73 */

1

NNNNNMNNNN - NNNI‘UNNP\JNNT\JN o

NN NN

AV VI ¥ T

- g

FN:PROC(EDGE)
/*  THIS PROCFDURE EVALUATES THE SUM OF THE
O EACH FND OF AN EDGE 4MD AN ODD SETS
THE ENGF, 4/
DCL (P1,P2) STATIC PTR, EDGE BIN FIXED(16),

PJ:DPIGEwnS(EDGE,i):
Pe=ORIGENDS(FDGE,2) ;
SUMzPla>Y 4 PRa>y,

IF ~SHREK(EDGF) THEN GO TO END:

PL1=ENDS(EDGE, 1) ;

DO WHILE (P1-zNULL);
SUM=S1M4PL=>Y;
P1=Pl=>STACKUP;

END;
END:RETURN(SUM) 5
END FN;

AUGMENT:PRDC(PI,R],DELTAX,UESTHOY,ODDB):

/%  THIS PROCEDBURE AUGMFNTS AL QNG THF PATH FROM P1 TO THF RooOT
BY A*OunT DELTAX, TF DESTROY = T THEN THE TREE GETS BROKEN
v IF PESTROY = F

UP AT ERGES J FOR WHICH THE MNE® X(J)Y = ¢
THEN T1H1S DOES MOT HAPPTMN,  WE START AUG
ADDTTION OR A SURTRACTION DEPENDING O

PCL (P1,RY) PTR,DFLTAX RIH FIXEC(15), (DESTRO
(R1,N02) STATIC PTR;

Q1=P1;
DO WHILE (ni=zR1);
Q1=>INPATH=F,;
J1=01-> ENGEDM;
N2=01->nn;
IF ODDH THEN x(J1)=X(J1)+0ELTAX:
ELSE no:
X(Jl):x(Jl)-DFLTAx;
IF DESTROY THFY
TF X(J1)=0 THEN caLL UPSCAN(QY,F, M
/%  THIS REMDYELS FYERYTHING AROVE aND 5
INTO ITS POSITIVE COMPONFNTS,
END 3
01=02.
0D0B=-nhDB;
END;
Rln)INPATH:F;
END AUGHENT:

PUAL VARTABLES
COLTAINMING

SUM STATIC FLOAT;

MENTING WITH A%

R1

HETHER OND = T QR F ay

UNDFFIX,T,HOHDEFTX):

PLITS TREE
*/



/ATHE BLOSSONM ALGORTTHM:  mMaAIN PROCEDUGE, 16=03=73 x/

STMT LEVEL MEST

60 1 ExpPaun:PrOC (P),
/% THTS PROCEDURF EXPANDS A PSEUDONCDE,
SPECIFICALIY IT
1) CPRPFCTS EDGE ENDS SO THAT THFY NO | ONGER REFLECT
EXISTFNCE OF PSFLIDONNDE
2)  AUGMENT S0 THAT MATCHTHNG CORRFCT BUT STACKUP STI|L
ACKNOSLEDGES PSEUDONODF */

61 2 bcL P PIR, NESTRDY BIT(I),((PI,PE) PTR, (I,J) RIN FIXED(]bJ, IN BIT(1))

STATIC:
62 4 DESTRNY=F;

/* CORRECT ENGF ENDS =y
63 2 JIN=Qs /% JUST IN CASE THERE 15 NO ENDGE IN wWITH X(J) =1, %/
64 2 DO J=y 1O NEDGE
65 P4 1 IN=F; /=x INQICATES PARITY OF NO, OF EDGE ENDS IN P, %/
66 2 1 IF ENDS(J,1)~zp THEN GO TO P2TEST;
68 2 | IN=T;
69 2 1 SHRNK (J)=F;
70 2 1 . P1=ORTGENDS(J,1);
71 2 1 LEPPY: TF Pl ws STACKUP=P THEHN DO;
73 2 2 EHDS (J,1)=P1; GO TO P2TEST;
75 2 2 EMND:
76 2 1 P1=P1 - STACKUP; 0 To LPP1:
78 2 1 P2TEST: IF ENDS (J,2} 5=P THEN 6O TO LPEND;
80 2 1 IN=~IN;
B 2 1 P2=0RTGENDS (J,2):
82 2 1 LPP2: IF P2 => STACKUP=P THEN po;
84 2 2 ENDS (J,2)=Pp:
a8s l 2 GO TO LPEND; END:
87 2 1 P2=P2—>STACKUP; GO 10 LPP2;
89 2 1 LPEND: IF IM THEN
90 2 1 IF X(J)=1 THEN /% THIS 1S THE EDGE INTO THE ABLOSSOM2
91 2 1 JINzJ,
92 2 1 END 2
93 2 IF JIM=0 THEN DO; /*CHECK FNR <= KODE WITH Y=0 %/
95 2 « 1 pNI =170 NHODE ;
96 2 2 P]:ADD”(HDHELST(IJJ:
97 2 2 IF P1=>CONSTEN THEN GO TO ELDSCH:
99 2 2 IF Pl=>Y == p TugEny GO TO ENDSCH;

/% OTHERWISE WE SFE IF P1 IS CONTAINED IN P, %/
101 2 2 BRNOT=Py;
o2 2 2 no HHILt(BRUﬂT-)STACKUP m= NULL):
103 2 3 1F P:ﬂRﬂGT~>STACKUP THEM GO TO LART7;
/* BROOT 1S A SUITAKLE NODF FOR RECEIVING A DEFICIENCYxy/
105 2 3 ENODT=BPUUT->STACKUP;
106 2 3 END 2 -
107 2 2 ENDSCHIFND; )
/* P CONTAINS NO <= NODE WITH Y=0, S0 CURRENT MATCHING O K %/

108 2 i RETURN;




L

/*THE BLNSS0M ALGORITHM: MAIN PROCEDURE, 16~03-73 */

STMT LFVEL NEST

109 2 { LABRT :R1=P=>RN0T;
110 2 1 IF BPFNOT=RY THEN RETURNg /% CURRENT MATCHING 1S CORPECT
§ )2 2 | R1=>DFF=0:
113 2 1 PROOT=>DEF=1:
114 2 | P1=BROOT:
115 2 1 GN TO AGMNT: /% MATCHING CORRECTION SET UP =/
116 2 1 END:
/% OME END OF JIN HAS STACKUP=P, THE OTHFR DOFS NOT,. LFT
P{ BE THAT NODE *x/
117 .2 P1=ENDS (JIM,1); IF Pl=> STACKUP=P THEN
119 2 P2=ENDS (JINM,2):
120 2 FLSF DO; P2=P1;: PI=ENDS (JIM,2); END:
/% HOW Pl IS THE SURPLUS NODFE &/
124 2 BROOT=P1 /* VARIABLES RETURHNED TOD BLOSSOM ay/
125 2 R1=P=3>PN0OT;
126 Z R1=>DEF=0; /x WE WILL CLEAR UP THIS DEFICIFNCY =&/
127 2 1F P1 = R1 THEMN RETURN;
129 2 AGMNT ¢
DELTAX=1;
130 2 ODPA=Fs /% START KITH SUBTRACTION &/
134 2 CALL AU@HtNT (P{,Rt,DELTAX,CESTROY,ONDR) ;
132 2 IF-~0DDNB THEN /% WE WEMT CORRECT DIR'M ARCUND POLYGON =/
133 2 RPETURN:
134 2 J=R1=>ENGENHN;
135 2 P1=FhDS (J,1);
136 2 PP=FNDS (J1,2):
137 2 0DNB=F; /x HORMAL CASE &/
138 2 IF P1~->0GDD THEN DPDR=T: /% ARNDRMAL CASFE i/
140 2 CALL AUGMENT (P1,R1,DELTAX,DESTROY, (ODDB)Y)
141 2 CelL AUGHEMT (P2,R1,0ELTAX,LESTROY, (CDDRB));
142 2 X(J)=X(J)+DELTAX;
143 2 TF ODDAR THEN X(J)=X(J)=22DELTAX; /x CORRECT A BAD GUESS x/
145 2 END:
146 1 XOUT:PROC: /% PPINTS CURPRENT SOLUTION %/
147 2 PUT EDITC'*xRLOSS =~ CHRRENT MATCHING $')(SKIP,A);
148 2 PUT EDIT(X)(SKIP,20 F(S)):
149 2 EMD XOUT;
150 1 YOUT:PROC: /* PRINTS CURRENT DUAL NODFE VARS »/
151 2 PUT EDIT('xBLOSS = CURRENT NODE DUAL VARIABLES :')(SKIP,A):
152 2 PUT SKIP:
153 2 NO 1Y = 1 TO NNODFEs
154 2 1 P=ADDR(NODELST(IY));
155 2 1 PUT EDIT(P=>Y)(F(10,2));
156 e 1 END g . “
157 2 END YOUT:

x/



/*THE BLOSS50Y ALGORITHM: MATN PROCEDURE, 16=03-73 */

STMY LFEVFEL MEST

SRARARAKARRRIKAAKRARR AR AR R AR AR AR R R AR AR AR R A AR AR A AR A AR A AR AAARK AR AR h ok
Ak kokkokokk Ak CENERAL TREE HANDLING ROUTINES A2 A A XA AAX*x AAAARARKAAK
AR A AX KA KA AA AR A AKX A KRR AKX AR AR AR AR XN AR KA ARK A A AR A ARA AR AR A A AR AR R A AR kAR R/

158 1 REMOVE: PROC (P1)g :
/* SURROUTINE TO REMOVE P1 FROM THE TREE COGHNIATHING IT, =/

159 2 ecL (P1,(P2,P3) STATIC) PIR;
160 2 P2=P[=>DN;
161 2, TF PP2=hULL THEN GD TO RET /% FOR Pl IS THE ROOT OF ITS TREF x/:
163 2 P3=zP2~>UP;
161 2 IF P3=P| THEN GO TO EASY;
166 2 DO WHILE (P3=>RT -=P1);
167 2 1 P3=P3=>RT;
168 2 1 END:
/Jx  MNOW WE HAVE FOUMD Pi 2y
169 2 PI=>RT=P}=>RT:
170 2 GO TO RET;
171 2 EASY:P2=>11P=P1=3>RT;
{172 2 RET: Pi=>RT=nULL:
173 2 P1=>DN=HULL;
174 2 FRST(P1=>EDGFDN)=F;
175 2 END REMOVE;
176 i RFROOT: PROC (P13
/% SUPROUTINF WHICH REROOTS THE TREE CONTAINING P{ AT P1, =/
177 2 DCL ((P2,P3,PX) PTR,(J,J3) BEIN FIXER(16)) STATIC, Pl PIR:
178 rd P2=P1=->DN;
179 2 IF P2=tULL THEN RETURN /% FOR P1 IS ALFEADY A ROOT, */;
181 2 J=P1=>EDGEDN?
182 2 Px=ri:
183 2 CALL RFMOVE (P1):
184 2 LP: P3=P2=>DN;
185 2 J3=P2->EDGEDN;
186 2 CALL REYMOVE (P2):
187 2 CALL ARDOM (PX,P2,J):
188 2 IF P3=tULL THEN RETURN /% FOR P2 WAS THF ROOT, %/
190 2 PX=P2;
191 2 P2=P3,
192 2 J=J3;
193 2 GO TO LP;
194 2 END RFRDQT:



/*THE BLNSSOM ALGORITHM: MAIN PROGCEDURE, 16-~03=73 ®/

STHMT LEVEL NEST

195 1 ADDOMN:IPROC(DL,02,0);
/% ADDOM ATTACHES THE TREE RONTED AT Q@2 TO NODE Q1 BY MEANS
0OF EDRE J, 1T REGUIRFS THAT 62 RE THE RCNT OF A TRFE, &/

196 2 ncL (nt,nN2) PTR, J BIN FIXFD{16);

197 2 NP=>RT1=N1=>UP;

198 2 ne=>Ni=n1;

199 2 A2=>ENGEDH=J

200 2 01=>Up=n2;

201 2 FRST(JI=T;

202 2 END ADDOM:

/*t*t{tt**ti****iilt****iti**i*t****i*lt*tt*ﬁit*i‘!t****i**k**kﬂi**

AhARAKA AR XA K kA& THE UPSCAN ROUTIMES  AAARF R AR R kAXARAAKRAARARARR
AKAKKARAKAKAR KR AR KRR AR KR A K KR RAR P AR KA K ARKAAFAARARK R AR AR ARK AN RA KA KR/

203 1 UPSCAN:IPRQC(P1,UPCALL,SUBRUP,DNCALL,SUBRDN);

/x  UPSCAN GOES THROUGH ALL THE NODFS ABOVE P{ IN THE TREE
CONTAINING P1 AND IF UPCALL=T THEN CALLS SUBRUP FOR
FACH NODE IN TdE TREE AS IT ®FACHES [T COMING UP,
IF DHcall = T THEN SuURRD: IS CALLED FOR EACH MODE AS
TT 1S ENCOUNTERED COMING DOWH, x/
204 2 DCL (P1,(Q1,72) STATIC ) PTR, (UPCALL,DNCALL) BITC(1),
(SUBRUIP,SUBRNDN) ENTRY:

205 2 IF UPCALL THFN CALL SUBRUP(P1):
207 2 N1=P1:

208 2 MVUP:N2=01=>UP;

209 2 IF Q2-=4ULL THEN nO;

211 2 1 CALLUP: IF UPCALL THEN CALL SUBRUP(R2);
213 2 1 01=02:

214 2 1 GN TO0 MYUP;

215 2 1 END3:

216 4 ENDTST: IF Qi=P| THEHW DO;

218 2 IF DHCALL THEN CALL SUGRDN(Q1):
220 e 1 RETURN:

221 2 1 END;

222 2 Q2=01->RT;

2el b4 IF Q2-~=HULL THEN DO

225 2 1 IF DNCALL THEN CALL SUHRDN(OI):
227 2 1 GN TO CALLUP;

228 2 1 END;

229 2 02=01:

230 2 Q1=01=->DN;

231 2 IF DNCALL THEN CALL SUBRDM(GR): %
233 2 GO TD EHNDTST;

234 2 END UPSCAN:

e



’l‘

/*THE BLOSSOM ALGORITHM:  MAIN PROCEDURE , 16-03=-73 x/

STMT LEVEL NEST

238 i ADDFIX: PRuoC ()
/A THIS PROCEDURE SETS ODD,DEFIC AS APPROPRIATE FOR THE NODE
1. TIT DEPEWDS ON Q1=>TREE,DN, =y

236 4 PCL (n1,02 STATIC) PTR;
237 2 f1=>A105,01->INPATH=F;
238 2 N2=R1=>DN;
239 P Dl~>DFFIC:Q2->DEFTC:
240 2 Ci=>YRT0 = 02->YRTO;
241 2 TF =01=->DEFIC THEwW A1=>00D=F;
243 2 ELSE Qt->ODD=ﬂQ2->ODD;
244 2 END ADDFIX;
248 1 POLYFIX: PROC(P1):
/*  PROC CALLED RY UPSCAN TO

1) SET P1=>STACKUP = NuLL,

2) SET Pl=>INPATH = Fe */
che6 2 OCL P1 PTR;
247 2 P1->STACKUP=HULL;
248 2 P1=>IMNPATH=F;
249 2 END POLYFIX;
250 1 NONDEFIX: PROC (P1):

/% THIS IS & PROCERURE DESIGNED TO RE CALLFD BY UPSCAN “HICH CORRFCTS
THE STATUS INDICATORS AND SPLITS A TREE WITH NON=DEFICIENT ROQT
INTD POSITIVE COMPONENTS */
251 2 DCL P1 PTR;
252 2 Pl => DEFIC, P1 «=> DD = Fe
253 2 Pl => BLOS = f;
251 2 Pl <> YRTQ = Fs
/% INDICATORS NNA CORRECT 7

255 2 IF P1 => DNA=NULL /2 I.E. 1T EXISTS =/
256 4 THEN IF X(Pl->EDGEDN):0 /* 1,E, WFE HAVE PLACF FOR

CETACHING =%/
257 2 THEN CALL REHDVE(P1);
258 2 END NONDEFIX:




gl

L]

/*THE BLOSSNMN ALGORITHM:  Mapn PROCEDURE, 16=-03-73 x/

STMT LEVFL NEST

259 1 BLOSSINN:PRNC (P13
/* PROCFDURE T TMDICATE THaT P1 15 A nORF IM A NON=DFFTCTENT

BLOSSNM, aAnD THE EDGE noww IS 1M A SIMILAR STATE =,

260 e nCL Py PTR;

261 Fd FRST (P1 a> FﬁGFDN):T:

262 2 Pl <> 0DD, P => DEETE, Fl->INPATH = Fq
263 2 Pl => BLOS=T;

264 2 ENDg

265 1. ADDBLOS:P”GC{PI]:

/* PROCEDURF CALLED WHEH EXPANDED BLOSSOM Has BEFN ADDED

D A DFFIC TREE, IT SETS NCD UNTIL A ZERD EVEN FOGE

% 1S Fouup, WHEN IT SETS THINGS UP For DEFFIX 7o SPLIT
THINGS INTQ NONZERO CO“POHENTS. HOCHFCK Is USED TO avnorlp
TRYIMNG TO SET DEFIC aup opn For THE ROCT WHEN UPSCAN 15§

266 2 OCLCPL,P2 STATIC)PTR;
/* PX AND SHRNKNG ARE USED AS EXT, VARS, a,

267 2 P1=>STACKUP=NULL ;
268 2 P]—>HLGS,P1->[NPATH:F:

269 2 IF NOCHECK THEN Do;

271 2 1 NDCHECKzF; RETURN; END;

274 2 IF SSHRNKNG THEN g TO LABY:

276 2 PE:P]-)DN;

277 2 IF P2os0np THEN

278 2 IF X(P1=>EDGERNY=g THEL DO; sa DETACH =y
280 4 1 SHkaunzF;szpi,

282 2 1 LAH}:P1->DEFIC,P|—>ODD = F;

283 2 1 RETURN;

284 2 1 FLDs

285 2 P]~>DEFIC=P2->DEFIC:

286 2 Pl->ODD=ﬂPQ->OﬂD:

287 2 RETURN;

288 2 DEFPIX:F&THY(PI);

289 2 IF SSHRuKHG THFEMN /APOSSIRLF DETACHMENT x/
290 2 IF X(PI-)EDGFDV)zo THEM CALL REMDVE(PIJ:
292 2 IF Pi=PX THEN SHRNKNG=T;

294 e PETURU:

295 2 END ADDRLOS




/*xTHE RLOSSOM ALGORTTHM:  MAIN PROCFDURE, 16-03=73 s/

STMT LEVEL NEST

296 1 UPBLOSS:PROC (P1):
/x UPRLOSS AND DHALDSS DO MOST OF THE wORK REQUIRED TO0
SHRINK A BLOSSO™, WE USE PX (PTE) AAD SHRMEKFG (BIT(1)) AS
DEFTNED T8 RLOSSOHM,  ¥F ASSIIME THAT R2 I8 THF ROOT NF THE
BLOSSOM AND P IS THE PSEUDDHNODE BEING CREATED, */

297 2 DCL P1 PTRy
298 2 TF = SHRNKNG THEN RETURN;
300 2 IF Pi=r2 THEN GO TO BFIX2
302 2 IF 2 P1 «> INPATH THFN
303 2 IF X(P1 => EDGERN)=0 THFM D0;
305 2 1 SHRNUKNG=F 3 /& STOP SHRINKING *x/
306 2 1 PX=P1 /% SAVE NODE FOR DNBLOSS=/;
307 2 1 RETURM;
308 2 1 END:
309 rd BFIX: P) => STACKUP=P;
310 2 RETURN;
311 2 ONBLOSS:ENTRY (P1):
312 2 Pi=>INPATH=F; /*x TURN CFF PATH IMDICATOR */
313 2 IF P15=PX THEN /% NO SNIPPING TO BF DONE, SO ay
314 2 RETURN:
315 2 K=P| «> EDGENN:
316 2 CALL RFHOVE (P1);
317 2 CALL ADDON (P,P1,K);
318 2 SHRMNKNG=T; /%  RESUMC SHRINKING x/
319 2 RETURMN
320 e Fhb:
321 i SETYRTO: PRNC(Py) s
fx  PROCEDUIRE CAL{£ED RY UPSCAN TO SET P1=>YRT0Q FQUAL TO
THE GLOBAL VARIARBLE YRO0To, x/
322 2 DCL P1 PTIR;
323 2 P1 => YRT0=YRODTO;
324 2 END SETYRTo0;




/*THE BLOSSOM ALGORITHM? MAIN PROCEDURE, 16=-03=73 %/

STMT LEVEL NEST

/*t**it**ttt**ii**ttﬁt***tltt*ti*t**tt*t#*ixa*tttt****t*itk
At A Ak AR A K & & INMITIALIZATION tit**x*ittttx*ntitik*tt*t***k
i*tt***t*x*k**ia*xttt*!ktx***ti*titttx**ti)gii*iﬁittt****#/

325 1 IF RUMSTAT(10)=1 THEN TRACE=T; ELSE TRACE=F;
328 1 IF TRACE THFEN DO;
330 i 1 CALL x0oUT; CALL YOUT; END;

/x GENERATE THE INITIAL EQUALITY SUBGRAPH, =&y

333 1 IF TRACE THE! DO;
315 1 1 PUT EDIT('+5L0OSS = EDGES IH EQUALITY SUBGRAPH:')(SKIP,A);
336 1 1 PUT SKIP; EHD;
318 1 DO J=3 TO MFPGE:
339 1 1 COJ) = CCJ) = FN(J); /a CALCULATE RFDUCED COST =2/
340 1 1 IF C(J) = 0 THEN EQCJ)=T; ELSE EQ(J) = Fq
343 1 1 IF TRACE THEN IF EG(J) THEN PUT EDITCJI(F(S));
346 1 1 END:
/x  END OF FOUALITY SURGRAPH GEMERATION &y
347 1 RUMSTAT=0;
348 1 MOCHECK,FROMEX = F3
349 1 JCHT,LASTU=1;
350 i Az
/t*it*ﬁ*!i*ti**k**tttiklA***tt**************itiii**t!**tt*k*
AXXA AR KAk & A & FIRST LEVEL EDRGE ANALYSIS AARK KA R KA A XA R £ & k &
*t*tt**l**tAittttik**i***tﬁ**ﬂ*t*t!t*!***t*i*:tkiti**t*:t**ltf
351 1 IF SEQUJCHT) THEN GO T0 EnpA;
352 1 TF ZER(JCHT)Y THEN GO TO Frpag,
354 1 IF SHRAK(JCHT) THEM 60 TO ENMDAS
356 1 IF FRST(JCNT) THEN GO TO ENDA:
/%
OTHERWISE WE HAVE AN EDGE WHICH IS IN THE EQUALITY SUB=-
GRAPH WHICH CAN TAKE ON A NONZERD VALUE AMD SN FAR HAS
NOT BFFN SHRUNK AND IS NOT IN THE FORFST, x/
/* :
HE NOW AMALYZE THE EpGE, TN ORDFR FOR IT TO Rg USEFUL
ONE END MUST HE AM EVEN NODE OF A DEFICIENT TREE IN THE
FOREST FOR WHICH THF RONT IS NOT A <= NODE WITH Y=0, A/
358 1 P1=ENDS (JCNT, 1) P2zENDS (JCNT,2)
360 1 IF P1=>DEFIC THEN
361 1 IF =P1«>YRTO THEN
362 1 IF SP1=->00D THEYN GO TU DFFOUT;
364 | IF ~P2->DEFIC THEN GO TO ENDA;
366 1 IF P2->0DD THEN GO TO FMDA S
368 1 IF P2->YRTn THEM GO TO EMNDA:
370 1 P3=pPp. P2=py., P1=P3; /x IMTERCHANGE POINTFRS FOK P2 DEF, OUT ND, 2/
373 1 DEFOUT: s+ IF THE OTHER ENND OF THE EDGE 1S AN ODD NORE OF

THE FOREST THEN THE EDGE IS OF MO USF To us, 2
UNLESS IT IS IN A TREE WHOSE ROQT IS <= WITH Y = 0, 4y
IF P2-50ND THEN
374 1 IF “P2->YRT0 THEM GO TOD ENDA;
376 | ELSE GO TO ODDGROW;




B

/*THE BLOSSOM ALGNRITHM: MAIN PROCEDURF 16=03=-73 */

STMT LEVEL NEST

377 i JsLASTI=JCHT /% FOR WF ARE ABOUT T0O ACCOUMPLISH SOMETHINGR/
378 1 TF P2=>HLNS THEN G0 T9 POLYSTEP;
380 1 TF ~P2=>NtFIC THEN GO TO GRCWSTEP;

/% OTHERAISF FRGE(JY JOINS TkO EFVEN NODES CF THE FORFST &/

/% FIRST WF SEE IF THEY ARF 1IN TREES wITH pPISTINCT ROCTS,
IF S0 WE CAN SIMPLY AUGMENT, OTHERATSE WE MAY HAVF TO
SHRINK. AT TiHF SAME TI1%F WE COMPUTE HOW MUCH THE VALUFS
Oiv THE PATH CAHN BE CHANGED A/

/***t**t*t*t*k*it*!t*it*i*k**ii*i**i*ik*it#*s*iﬁt****ittﬁ*k*
hkkk Ak £ 2 A A kR SECOND LEVEL EDGE AMNALYSIS  SaAasAxatkkixakat

. ti***ii*t'&txn*iiitti*1**titit**tt*t*h***xaatalii R'A‘Ai****i**[
3182, i DXCALC: D1,D2,D3232767;
/* NOW FIND PATH FROM Pl TO THE ROOT#/
383 1 R1=P1y
381 1 Ri=>INPATH=T;
385 1 DO WHILE (R1=>DN ~= NULL);
386 1 1 IF "R{1=>00D THEN Di = MIN(D1,X(R1->EDGEDN));
388 1 1 R1=R1~->DN3
189 1 1 Ri{=>INPATH=T;
390 1 1 END3
/% SIMILARLY, FIND PATH FROM P2 TO ITS ROOT R2: IF A
POLYGON IS FORMED, R2 WILL BE THE ROOT OF THE POLYGOMN, =%/
391 1 R2=P2; .
392 1 DO WHILE(-R2=->T1!PATH);
393 1 1 R2=>INPATH=T
394 | 1 IF P2->DNzHULL THEMN sx WE ARE AT THE RONT &/ GO TO TWOTREE:
396 1 i IF =R2->0DND TKEM DE:HI“(CZ,X(RZ->EDG[GN3]:
398 1 1 R2=Re=>DNg
399 1 1 END:
/% WE MUST HAVE A COMMON ROOT TO THE TWO TRLES SO WE %7
400 1 GO TO ONETREE;



/*VTHE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16-03-73 x/

STMT LEVEL NEST

/*tti*kikﬁiti*#iﬁ**lt***!ii***i*t**t%lti**t*ilikﬁii**!iki*tl

KhkAR KA h 2k & & Twl TREF AUGHMFUTATION KAKAAAK AR AA R KR AA KA A A & &
*t****tkttt**t*tki*ﬁ&tt*ttl***k**ttiﬁt**tit*tiAi!iitttiik*k/
401 1 TWOTREE:

/% IF WE MADE IT TN HERE, R] AMD P2 ARE DIFFERENTY S50 WE
AUGMENT BY AMOUNT A/
RUMSTAT(6)=RUNSTAT(6) +1:

102 b DELTAX:“Iﬂ(DI,ﬂE,PI->DEF¢P2->DFF);
03 1 CAlLL AUGMFWT(PI,Q1;DFLTAX,T.(F));
404 1 CALL AUGMEMT (P2, R2,DELTAX, T, (F)):
408 1 X(JI=X(J)+DFLTAX:
006 1 R1=>DEF=R1=>NDEF - DELTAX;
407 1 R2=>DEFzRP2->NEF = DELTAX;
uos 1 IF TRACE THEWN DO
410 1 1 PUT EDTT('aBLNSS = EDGE '+Js? USED FOR 2 TREE AUGMENTATION)
(R(FMT));
411 1 1 CALL xourTy END;
/% NOW CORRECT STAaTUS INDICATORS IN THE TREEx/
413 1 IF R1<>DEF = 0 THEN CALL uPscnutﬁl,F.wOnDrFIx,T,NUHDFFIX);
415 i IF R2=>DEF = 0 THEN CALL UPSCAN(RE-F,hOhDFFIX,T,NONDEFIX):
/%  FIMALLY THCORPORATE J IuTO THE FOREST ay
a17 1 JADD: TF P1->DEFIC THEN /x P2 CANNOT BE IN A DEFICIFNT TREE, ADD
418 1 ON TO P1A/DU;P3:92;P2:P1;P1=P3;an;
023 1 CALL RFRONDT(P1):CALL ADDOM(P2,P1,J);
425 1 CALL UPSCAM (P{,T,ADDFIX,F);
426 1 GO TO ENDA;
/*tt****ti*tti***!i.l!’!ci*tittt**i**kti*ttt*tit*tii**ﬂ*ikk*#*t
REkkkxxkxkkxx  SINGLE TREE AUGMENTATION AAARRARRRA KA R kAR Aok &
*ﬁtti*t**i*tt*t*ttittt*!ktt*i*rttt*t*tl!i*iiii***tﬂ**tit*i*/
427 1 ONETREF: /% FItD BOTILEMECK IN STEM OF BLOSSOM &/
RI=R2.
428 1 DO WHILE (R2=>DHN=zNyLL):
429 1 1 IF "R2->0NDD THEN DO
431 1 2 IF X(R2->EDGFDN) = | THEN /4 WE HAVE FOUND THE
432 | 2 START OF A BLOSSOM, S0x/ GO TO DEFBLUSS:
433 1 2 D3:HINIDS.X(R2->EDGEDN)):
434 ! 2 END;
a3s 1 1 R2=R2=>NN};
436 1 1 END;

/x AT THIS POINT, AN AUGHFNTATION IS POSSIALE, SINCE NO EVEN
EDGE IN THE STEM HAS Xz=1, UNLESS Rl=>DFF = 1,4/
437 i IF R1->DEF = { THEN GO 10 DEFHLOSS;
/* OTHFPATISE ITS AUGHENTATION TIFME , &/

439 1 RUNSTAT(7)=RUNSTAT(7)+1;

449 { DtLIAx:PIH(D},DE,FLODR(PI—>DEF/2):FEOOP(DE/23):
441 1 ODDB=F; /x MNORMAL CASE a/

442 1 IF P1<>00D THEN DO /* ABMORMAL CASE &/
444 1 1 OpoB=T; DELTAX=MIN(DELTAX,X(J)); END;

—_“s
_— T = A . ——



STMT LLEVFL NEST

447
448
449
ns50
452
453
asq
455
ns7
458
459
460
462
463
465

466
467

468
470

472
473
a7s
476
477
478
479
481

485
n87
488
489
4990
191
g2
493
491
495
496
498
500
501
502
503
504
505

/*THE BLOSSOM ALGORITHM:  MAIN FROCEDURE, 16=03=-73 &/

1
1
1
1
1
1
1
1
i
1
1
1
1
!
1

—

Bl el ek et et b et

—nu-m.-t—.—..h—t—.u—nnm—.—*'—

AR NN N MNAY e .

—— et et . e

CALL AUGHEHT(PlpRE.DELTAX,T,(UHDH)):
CALL AUGMEHT(PP.RS,DELTAX,T,(ODDB));
X(J):Y(JJ+HFLTAX;
IF 00ODPR THFN X(J) = x(J) =2*DELTAX: /x CORRECT A RAD GUESS =&y
POLYRIT=F;
IF P1=>0FFIC THEN
IF P2~>NFFIC THENM
IF X({J)y>0 THFY POLYRIT=T:/%x WE HAVE A NONZERN POLYGOMN =2/
DFLTAX:DELTAX+DELTA£; /% STEM GETS DNUBLE AUGMENTATION &/
Ri=>DEFzR1=5NEF = DELTAX:
opNB=F;
IF R3->00D THEN ephB=T;
CALL AUGPENT(PB,PI,DELTAX,T,IUDDBJ):
IF TRACE THEN pO;
PUT EDIT('xB1.055 = EDGF ',J,"' USED FOR 1 TREE AUGME“TATIUN')
(R(FMT))
CALL Xxour;
END;
/* DISASSEMBLE THE TRFE IF RODT HO LOMGER DEFICIENT, %/
IF Ri->DEF = 0 THEN CALL HPSCAM(R],F,hDhDEFIX,T,NUWﬂEF[X):
ELSE IF FROMEX THEN 00; /& kE HAVE EXPANDED PSEUNUO 0OnHp HODE
AMND MUST ENSURE THAT TREE IS CORRECT, %/
NOCHECK=T; /= IGMNORE rROOT, SET F Ky ADDBLOS, x/
Px=rULL SHRNKNG=T; s+ GLORALS FOR ADDBLOS=DEFFIX ay
CALL UPSCAH(RI,T,ADDBLDS,T,DEFFIX);
EMND;
FROMEX=F;
IF ;POLYBII THFYS /=% INCORPORATE J INTO THF FOREST %/
IF X(J)>0 THEN GO TO JAnp,
ELSE DO: FRST(J)=F: GD TO0 ENDA END
/* OTHERWISE WE HAVE A POLYGNN WITH MONZERQ EDGES %/
IF R3 => DEFIC THEN DO;
R2=R3;
DO WHJILF (PE~>DHﬂ=NULL);
IF "R2 «> QDD THEMN
IF X(R2~>ENGEDMN)=1
THEN GO TOD DEFBLOSS;
R2=R2->DN;
EMND;
ch T0 DEFBLOSS; /* ROOT OF TREFE ROOT OF BLOSSOM =/
END:
ELSE p0; R2:=R7;
LBf: IF Rp->pN = NULL THFN GO TO Le2;
R2=R2=>NMN;
GO TO LB1; ~
LB2: R2-> ECGENN=J;
CalLl upscau (PB,T,BLUSSINO,F):/* SHOW A NONZERD COMPOMNENT 27
GO TO ENDA; /% CONTAINING AN onn POLYGGON x/

END;




"

STMT LEVEL NEST

506

507
508
509
510
511
312
513
514
515
516
517

519
520
521
524
525
526
527
530
531
532
535
536
537
538
540
541
543
544

545
546
548
550
551
552
553
554

/XTHE BLOSSOM ALGORTTHM: MAIN PROCEDURE, {6=03~73 */

— e

L

-t et et e et T s et e et e

-t e bt s s e

bt e bt e s s s

/*!it!*il*it*t*t**t**!it*t*i*tﬁiiAi**tt*i**i*i**iil*tt****l
LR Y PSEUpO MODE CREATION A AR I KA XA KA AR AR XK AKAAR % & &
*ii!i*iittik*iatkhttktltt*ﬁ*t**i*it:tﬁtiitwtitktttttit*tiif

DEFFLDSS: /% HERF Py AND P2 ARE THE Th0 ENDS OF THE

FOGE J WHICH FORMS A 3L08s0M, RrP 1S THE RCOT OF THE STFH
AND R3 IS THE ROOT JF THE POLYGON, ALL WE MNEED 0O IS
SERINK IT %y
PUUSFAT(E):PUHSTAT(2)+1;
FRO“EX=Fy s+ 1M CASE IT waAS SFT T BY PSFUDO EXPANSION */
ALLOCATE PSEUDO; /* CREATE A PSEIUDO NODE =a/
DEF=1,
REAL:IH9ATH,OHD,HLCS,EXPANDED=F:
CONSTEQ,DEFIC=T;
Y=0EQ:
STACKUP=MULL ;
ROOT=R?:
UP,RT,DN=NLLL:
YRTO=RE->YRTO:
IF TRACE THEN PUT EDIT('*BLDSS - EDGE "1Js ! FORMS PSEUDCNODE !,
UNSPEC(P))(SKIP.A,F(b);A;F(lOJJ:
/* INDICATE MODES IX PATHS FROM P2, P1 1O R2 %/
P3=py,
DO WHILE (P3-=R2):
P3 => INPATH = T: P3=P3->nH; END:
R2=>1NPATH=T:
P3=pp.
DO WHILE (§P3->1NPATH);
P3 <> INPATH = T; P3=P3-5>DN; END:
/% TURN OFF TMPATH IN UNUSED PART OF STEM =%/
P3=R2a5DN;
PO AHILE(P3S=NULLY;
P3->1NPATH:F; PI=P3aspN; END:
SHIPNKNG=T; /2 WE ARE SHRINKING x/
PX=tU(L: /& PREP, FOR CALL OF UPSCAN &/
CALL uPsSCAvN (Pe,T,UPBLGSS,T,DNBLOSS):
K=R2=>FDGEDN; P3=R2->DMN;
CALL REMOVE (R2):
IF P3 == NULL THEN CALL ADDON (P3,P,K):
FLSF P=>FRGEDRN = 0;:
P2->ENGEDMN=J; /2 THIS IS THE EDGE THAT FORMED THE BLOSSOM:
hOw FIX ALL EDGES SO THAT ENDS IS CORRFCT =y
DO Ji=zt TO LNEDGE ;
IF SHRMNK(JD) THEN GO T FHDC ¢
P1=ENDS(J1,1): PP=ENDS (J1,2):
IF Pl—>STACKUP:HULL THEN /% NGO CHANGE =/
GO TN ENDXR;
SHRNK(J1)=T; ~
ENDS(J1,1)=P;
ENDXB e IF PE-)STACKUPw:NULL THEN




/*THE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16-03-73 */

STMT LEVEL NEST

555 1 1 ENDS(J1,2)=P:
556 | | ELSE SHRNK(J1)=F3;
557 1 1 ENDC: END:
/% HOW SHRINKING IS COMPLETE +/
558 1 GO TO FnDAg

/*A***t*t**t**k***ki*ttt***i**init*tt***ﬁ*i*i*:att**t*****t
AAkxk Ak xxa A NORMAL FORFST GROWTH AXFAARATARR AR AARAAR A Rkt k &
ktti*i*i*g**tt**tittt***it*iik*t*iiA***ttii*iﬁ****inii*iik/

559 1 GROWSTEP: /% WE GROW TREE BY USING J TO ADpD A NONDEFICIENT
TRFE */
RHNSTAT(SJ:RUHSTAT(S)+1:
560 1 TF TRACE THEMN PUT EDIT(**pLOSS = EDGE ',J,' USED TO GROW FOREST!')

(R(FMT)):

562 1 CALL RERNODT(P2):

563 1 CALL ADDON(PL,P2,J):

564 1 CALL UPSCAN (P2,T,ADNFIX,F);

565 1 GD T0 EiDAs )
/***ii***t**ltlititt**t!ttkitit#t**t**iiiiiit*k#si*t*ﬁ**t*t
Exkxaxk A2 A%k ADJUNCTION OF POLYGON TO THE FUREST Axixkatanxs

*ttttt**i*ttﬂ#t*ti***titt*ti*A*A#i**tk****it#kk:\ik’**tkli!/
S66 1 POLYSTEP:  /* FIMND RNDOT OF COMPONENT 7
RUNSTAT(B)=RUNSTAT(B)+1;

S67 1 IF TRACC THEN PUT EDIT('#BLOSS - EDGE 'yJ,' USED TO ADD NONZERO PO
LYGON TO THE FOREST')(R(FMT));

569 1 P3I=pP2.,

570 1 DO WHILE (P3=>DMN-=NULL);

571 1 1 P3I=P3.>DN;

S72 1 1 END;

573 1 JI=P3->ENGEDN: /2J1 1S THE EDGE WHICH FORMED THE POLYGON &/

S74 1 CALL RFROOT (P2):

/* RERODT THE COMPONENT AND ADD IT TO TREF %/

S75 1 CALL aDDOA (P1,P2,J)s

576 1 CALL UPSCAN (P2,T,ADOFIX,F);

S77 1 PI=ENDS(JL,1);

578 1 P2=ENDS(J1,2);

579 1 J=J1:

580 1 GO TO DXCALC:



’

/*THE BLOSSUY ALGORITHH: MAI! PROCEDURE, 14=03=73 x/

STMT LFVEL NEST

/*‘*‘*****t***ktti!i**t***ttk*Atl*i*kit***titt*li***t*ttk*k

581 1 ODDGHE: /9 AN EDGF J HAS BEEN FOUND JOINING PY IN F1 To P2 IN EOay
RuhsrAT(S):nuusTnT(S)+1;
582 1 JeLASTY = genTe

583 1 IF TRACE Tuen PUT EDIT('"+#3L08S - EDGE '+J,' USED FOR PSEUDN FOREST
GROWTHY ) (R(FMTY ), :
/% FIND FIRST MODE [N PATH FrOY P2 TO ITS FOOT HAVING A 7ERD
DOWN EDRGE, OR IF NO SUCH EDGE EXISTS, THEN WE FIND ThE
ROOT OF THE TRFE CONTAINING PP, &y

585 1 R1=P2;
586 1 DO WHILE(R1=>DN == wuyLL);
587 1 1 IF X(R1=>EDGEDN)=0 THEN GO TO ROOTADD;
589 1 1 RI=R1=>DN;
590 1 1 END;

/* R1 IS THE RODT, ALL EDGES IN PATH HAVE X>0, =/
591 1 ROOTADD:

Q3=R{=>DN;
592 i CALL RE“OVE(R1):
593 1 CALL RFROOT(P2);
594 1 CaLL ADDGN(PI,PE;J): /* TREES NOwW CONSOLIDATED %/
595 1 YROOTQ = F,
596 1 CALL UPSCAN(P2,T,SETYRTQ,F);
597 1 IF 93 o= MULL THEN /2 WE HAD & ZERO FPGF 4/G0 TD EMDA;

/x NOW AUGMENT SO AS TO GFT DEFICIFNCY I0 THE ROOT =x/ .

/% 01 WILL BF THE LAST NMODE FOR WHICH THE pOwM EDGE BFCOHES n ay
599 1 AUG: D1=32767,
600 1 RUNSTAT(Q}:RUNSTAT(Q)+1;
601 1 R2=R1 s
602 1 DO WHILE (R2=->DH 4= NULL) ¢
603 1 1 IF ~R2->0nP THEN DO;
605 1 2 J1=R2=>EDGEDN;
606 1 2 TF X(J1) <= D1 THEN DO:
608 1 3 Di1=X(J1);
609 1 3 Q1=R2;
610 1 3 END;
611 1 2 END
612 1 1 R2=RP2->DN;
613 1 1 END;
614 1 DELTAX:NIN(Dj,Q2—>DEF);

/* MOW WE AUGMENT %/

615 1 CALL AHGHFMT(PI,RQ'DFLTAX.F,(F}J:
616 1 R2=>DEF = R2a>DEF = NDELTAX:
617 1 R1=>DEF=R{->NEF + DELTAX; /% WE INCREASE DEF AT THIS NOUE, &/
618 1 IF TRACE THEN DO
620 1 1 PUT EDIT('xRLOSS - PSEUDO AUGMENTATION'J(SKIP,A);
621 1 1 CaLL xourT;
622 1 1 END;




/*THE BLOSSOM ALGORITHM: MAIN PROCFDURE, 16-03-73 */

STMT LEVEL NEST

623 1 TF D1 > DELTAX THEN ga NO EDGE IMN PATH BFCAME ZFRO xy

624 GO TO TADD;
/* ELSE FVERYTHING ABOVE Q1 GETS REMNVED AMD REROOTED AT R1 x/

F.

625 1 CALL RFMOUVE (@1);:

626 1 YROUTp=Fg

627 1 CALL UPSCAN(PR'I,SFYYRTO;F);

628 1 IF R2->DEF=0 THEN

629 1 CALL UPSCAH(REpF;HﬂNOEle,T.HONDEFIXJ; /* ALS0O SETS YTRO=F #/

630 1 TADD: capL RERDOT(R1);

631 1 YROOTo = Ty

632 T CALL UPSCAN(PI,YrSFTYRTOpF):
/***ﬁi****ii*****it*k***A**i*********it*****ii*i**it**kit*t

Kkkxdrkxk  FND OF MAIN PROCESSING LUOP AAXRAX R AR AR AR KR A K &

**#ktikit:ﬂ*t**t**li**At*t*!**ik*t**i*i*i***iit*t*#ti**#*l/

633 1 ENDA:JCHT=Y + HODCJCHT , HEDGF ) ¢

634 1 IF JCNT"=LASTJ THEN /* CONTIMUE PROCESSTHNG 4/ GO T0 A

/* HHENEVER AN EDGE IS MApRF USE OF IN THE MAIN LOOP, LASTJ

IS SET EQUAL TO THE IMDEX OF THE EDGE. IF JCNT FVFR 'CATCHES
UP' MITH LASTJ THEN wE HAVE MADE A COMPLETE CYCLE T1:ROUGH THE
ECGES WITHOUT FINDING ANY ENGES WHICH WE CAN USE SO WE PROCEFD
TO ATTEMPT A CHAMGE OF DUAL VARIABLES, =#/




/*THE BLOSSOM ALGURITHM: HATN PROCEDURE, 16=03=73 4/

STMT LFVFL NEST

/tt***t*titt*tiit****it*ttiti*t*i#tn**t*tiii**ltti**t!**k*
Kkkkkakransk DAL VARTABLE CHAMGE POUTINE 2Axk kA hhastadsnss
tﬁii***t*ti**k*ii*tattltt*ttitt1*t*aitt***tkit*tt**ttai**/
636 1 DUALCHMNGE ¢
/x  NO4 EXAMINE NODES, IF 1O SURFACE NODE IS IN A DFFIC TREF
THFN WFE ARE DONE, FAIL IS SET TRUE IF WE DISCOVER THAT
TH1IS IS hDT THE CASE, %/
FAIL=F:
637 1 FPS],EPSE=1ElO:/*RIDICULUUSLY LARGF VALUESay
/ﬁk#*i****nﬁk*2***&**t*tki*ittii*i*tiiAtA*it*tikitx*ttﬂ*iA
Akk kR Afdxa DETERMINATION OF NONE BQUND EXRARKAA KK A AR A AR
it***ttttxtttittitk*tt*itt****ttittﬂ!***ttittt*txi***tt**/

638 1 PX=uUL L ;

639 1 LF: DO I = 1 TO NNCDE:

6uQ 1 | P1=ADDR(NODELST(I))

60} 1 1 P2=SURF (P1)3/% HIGHEST LEVEL PSEUDONODE COMNTAINING Py x/

642 { 1 IFP2->DEFIC THEN GO TO FNGF;

64y 1 1 IF P2->YRTO THEN GO TO ENDF:
/* ELSF WE HAVE NOT YET GOT A FEASIBLE MATCHING, #/

bUb 1 1 FAIL=T:

6u7 i 1 IF SP2->0DD THEN

648 1 1 IF =P1=>CONSTFAQ THEN

609 1 1 IF Pl->Y < FPS2 THEM DO;

651 1 2 PX=P{;

652 1 2 EPS2=P1l=>Y;

653 1 2 END:

654 1 | IF P2->REAL THEN /x HOT IN A PSEUDO NODE %/ GO TO ENDF,
/% OTHERYISE CHECK THE PSEURO NODE */ ’

656 1 1 P2->DCHNG=F; /% NO DUAL CHANGE MADE YET ON THIS NODE x/

657 1 i TF=P2->0DD THEN GO TO  ENDF:

659 | 1 2=P2=>Y s 2E0:

660 1 1 IF Z<EPS2 THEN DO;

662 1 2 PX=P2;

663 1 2 EPS2=2Z;

661 1 2 . END:

665 1 1 ENDF: FEND LF;

666 1 IF AFATL THEN /% WE ARF FINISHED %/ GO TO CORRFCTION:

1 IF EPS2= 0 THEN GD TO NODEB'D:/% NO MNFED 10 CHECK EDGES,

668
: WE ALREADY HAVE OUR BOUMD, 4/




/*THE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16=03~73 r/

STMT LFVEL NEST

FEARAF A AR RRRA KRR R KRR AR AR AR AR AR R AR R R AR A AR R AR R AR R A A AR R AR A R A &
trxxkrkiiiis DETERMINATION OF FDGE RUUNLD AXXAAAXRA XK A AR LR
AAAAARR KA A A A A XA AR R A AR A A AR A Ak R & AAKA XXX RR K AR RARRAAARK AR AR/

/% NO4 CHECK FDGES FOR A BDUND ON EPS &/

670 1 Jx=03
671 1 LD: DO J=y TO MNEDGE:
672 1 1 IF EG(J) THEN GO TO FNDD; /% IGNORE EDGES IN EQ SUBGRAPH &/
671 1 1 IF SHRMK(J) THEN GO TO ENDD:
676 1 1 1F ZER(J) THEN GO TO FMDD:
678 1 1 P1zELDS(J,1);
679 1 1 IF =~P1=>DFFIC THEN GO T0 TRY2;
681 1 1 IF P1=>YRTO THEN GO TO TRY2:
683 1 1 =ENDS(J,2 )
6814 1 1 IF -~P1~>0DD THEN GO TO TESTP2:
686 1 1 TRY2:P1=FNNS(J,2);
687 i 1 IF =P{=>DEFIC THEN GO TO ENDD
&89 1 1 IF P1=>YRTN THEN GO TO ENDD;
691 1 1 P2=ENDS(J,1);
692 1 1 IF P1=>0DD THEX GO Tn ENDD;
/* AT THIS POINT Py IS AN EVEN NODF OF A DFFIC TREE, AS LONG
AS P2 1S5 NOT AM ©DD MNODE YE HAVE FOUMD AN EDGE OF ILTEREST %/
691 1 1 TESTP2:IF P2=->0DD THEN
695 1 1 IF =P2=->YRT0D THEN GO TO ENDD;
697 1 1 I== C(J):
698 1 1 IF P2=~>DEF1C THEN
699 1 i IF SP2=->YRTO THFN 2=7/2E0;
/* FLSE J HAS JUST ONE END IN THE FORESTa/
701 1 1 IF Z>=EPS1 THEN GO T0 ENDD;
703 1 1 Jx=J;
704 1 1 FPS1=7:
705 1 1 ENDD: END LD
/*ii*ti‘ﬁ**1*t***i_*kt#1*!******1*********&!**t***a*tii%*i*t

KrxkrAtkidsx  MAKE ACTUAL CHANGE IN DUAL VARS, *A2xxaxtixitnk

**ili*****tR***ti*ﬁ***!kt**ti**it*ﬁt****itiittixtl***at*ﬁ/
706 1 EPS=MIN(EPS],EPS2);
707 1 IF EPS=1F10 THEHN /* FOREST IS HUNGARIAN 2/ DO:
709 i 1 RUNSTAT((0)=1;
710 1 1 GO TO CORRECTION; END

/* HERE WE GO ON A CHANGE OF DUAL VARIAELES%/

712 1 IF TRACE THEN PUT EDIT('*RLOSS = DUAL VARIASBLE CHANGF')(SKIP;A3.
714 1 LG ¢ DO 1=y TO HMNODE:
715 1 1 PI=ADDR(NODFLST(I));
716 1 1 P2=SURF (P]):
717 t 1 IF ~P2->PEFIC THEN GO TO ENDLG:
719 1 1 IF P2«>YKTn THEN GO TO ENDLG:
721 1 1 IF P2->00D THEN DO; -
723 1 2 P1=>Y=P1=>Y + EPS;
724 1 P IF ~P2=>REAL THEM
125 1 2 IF SP2=->DCHNG/%P2=>Y HAS NOT YET BEEN CHANGFD #/ THEN bo;




/*xTHE BLOSSOM ALGNORITHM: MAIN PROCEDURE, 16=03-73 &/

STMT LOVIL NFST

727 1 3 P2e>Y=P2=>Y=2E0 =x EPS:
728 1 3 P2=>DCHUG=T;
729 i 3 IF TRACE THEN PUT ERITCY PSEUDOD YYUNSPEC(P2)Y,
' obuap VAR.';P2->Y)(SKIP:A,F(lo).A,Ftlu.1)):
731 1 3 ERD
732 1 2 END:
733 1 | ELSE /% P2 15 AN EVEN NODF x/ DO;
734 1 & P1=>Y=Pl=a>Y - EPS;
73S | 2 IF -~P2=>RFAL THFHN
736 1 2 IF ~P2->DCHNG THEN DO;
738 1. 3 P2=>Y=P2=->Y 42F0 % EPS:
739 1 3 P2=>DCHG=z T
740 1 3 IF TRACE THEN PUT EDIT(? PSEUDOD ',UNSPEC(P2),
' DUAL VAR.'oP2~>Y)(SKIP;A.F(IDJ,A,F(IOpI)J:
T2 1 3 END; ’
743 | 2 END;
741 1 1 ENDLG: EMND LG:
745 1 RUNSTAT(I)zRUHSTAT(1)+1?
746 1 IF TRACE THEN CALL YCUT: :
748 1 IF TRACE THEN PUT EDIT('+RLOSS =~ EDGES IN EQUALTITY SUBGRAPH!')
(SKIP,A):
/% NOW CALCUL ATE MNEW REDUCED COSTS #/
750 1 DO J=1 TO MEDGE:
791 1 1 IF SHRNK(J) THEN GO TO MSG;
753 1 1 TF FRST(J) THEN GO TO MSG3s
755 1 1 IF ZER({J) THEN GO TO ENDX;
757 | 1 PI=ELDS(J,1); P2=ENDS(J,2);
759 1 1 IF P1->DEFIC THEN
760 1 1 IF ~P1=>YRTQ THEN nn:
762 1 2 IF P1=>0DD THFN C(J)=C(J)=EPS;
7614 1 e FELSE C(J)=C(J)+EPS:
765 1 2 EMND:
766 1 1 IF P2«>DEFIC THEN
767 1 1 IF =P2->YRT0 THEN DO
769 1 2 IF P2->0DD THEN C(J) = C(J) = EPS:
771 1 2 ELSE C(J)=C(J) + EPs:
772 1 2 END;
773 1 1 MSG: IF C(J)=0 THEN pO;
775 1 2 EQ(C))=T;
776 1 2 IF TRACE THFN PUT EDITCJI)(F(5));
778 1 2 END
779 1 1 ELSE FO(J)=F:
780 1 1 FHDXsENDY
781 1 IF EPS) = EPS THENM 00;JCHT,ILASTI=JX,
784 1 1 GO TO A: s RETURN TO MAIN LOOP AND ACCCMPLISH SOME w
_ THING, =/
785 1 1 FHND;




/#THE BLOSSOM Al GORITHM: MAIN PROCEDURF, 16=03=~73 */

STMT LEVEL MEST

/*t*iti*ti*:i***x***ttkitt*****ttit*i*t**t****tkt**tik**t**
Rrxxxxxxina REROOT A TREF S0 ROGT HAS Y20  ktxdxakrttxansn
*****R*t*ﬂiiﬂil*tk***it********titt***iiﬂ*i*i*!**ii***ki**/
786 1 HODERMD
787 1 IF =SPx => REAL THEN GO 10 PSFIIDOE X
/* OTHERWISE PX IS A RFAL <= EVEN NODE =&/

788 | IF TRACE THEN PUT EDIT('4BLOSS ~ RERNDOT A TREE') (SKIP,A);

790 1 R1=SURF (PX);

791 1 JONT,LASTI=1

792 1 IF R1->DM=zNULL THEN GO To AUG; /* FOR R1 1S NOT A ROOT,
OTHERWISE RY IS A ROOT, =&/

794 1 YROOT) = T

795 1 CALL uPsSCan (R1,T,SETYRTO,F);

796 1 GO TO A;

/t*i***it!it****t**t*t**tik*t%*i*t*ik**tiitit!**it!tt’t**ik
‘AXERAARKAR PSEUDD NODE EXPANSION ROUTINE &A%k xaxttakkkhd
*t*tt**t*i*ﬁ*t**xt*xt**ti*it*t*tki*t*i*ﬁ*Rt!**i******t**!#!

797 1 PSEUDDEX:
P=pPX:
798 1 RUMSTAT (4)=pUNSTATCU) #1;
799 1 IF TRACE THEN PUT EDIT('*BLOSS =~ EXPAND PSEUDONODE "ZUNSPEC(P))
(SKIPIA:F(]O));
801 1 CALL EXPAND(PY: /% EXPAND THE PSEUDOLODE &y

/® R1 IS THE RONT OF THE BLO0SSOH,
JIN IS THE EDGE FOR wWHI1CH X(JIN)Y~=0,
BRFOOT IS THE FNGE NF JIW I THE RLOSSOM, =/
8o2 1 J=R1=>EDGEDH: /% BLOSSOM FORMING EDGE &y

/*i**iii**ttlﬁfi**!*ﬂ*tl**#t**iﬁ********li*ﬁi*lt***i!li*ﬂ**
Arxxxxxx  CASE 1@ | EOGE INTO PSEUDU MODE Ak Ax*x ARk dkada
llt!*k**!**k!*i******lIti*tt*ti*ittt*kiii*RA****#****iit*i/

803 1 EX1: TF P=>EDGENN = JIN THEN DO; /s EASY CASE, ONE ENGE INTO P 2/

805 1 1 CALL RFRODT(BROOT);

806 1 1 Pi=P=sph;

807 1 1 CALL REMOVE (P);

808 1 t CALL ADRON (P1,BRO0T,JIN);

809 1 1 PX=MULL ; SHRNKNG=T; /% GLORAL VARS FOR ADDBLOS, DEFFIX &/

811 1 1 CALL LUPSCAM(RROOT,T,ADDBLOS,T,DEFFIX);

812 1 1 FREE P->PSEUNO;

813 | 1 JIST: /% CAN WE TREAT J IN A NORMAL FASHION?
JCNT, I ASTI=J;

814 1 1 IF X(J)=0 THEN GO T0 a;

816 1 1 PI=EMPS(J, 1)  P2=ENDS(J,2):

818 1 1 IF P1->DEFIC THEN

819 1 1 IF P2->DEFIC THEN /% BOTH ENDS [N DEF1C TREE %/

820 1 1 GO TO DXCALC:

821 1 1 ELSE /= P2 %OT DFFIC %/ GO 10 GROWSTEP

/* FELSE P1 IS MOT IN A DEFICIENT TREE ay/




STMT LEVEL NEST

822
8en
827
828

829
830
831
833
B34
835

837

839
840
841
842

843
844
845
8uo

848

849
850

851
852
853
851
855
857
859
860
861
862

863
865
866
869

el I S,

/ATHE BLOSS0M ALCORTTHM: MAINM PROCEDURE, 16=03=73 *x/

— et et

- b

R E™

—

—

Bt A ek s et h e s ed m

—h e s

TN e e ) e e NN Y e

s g

- et ek

IF P2=>DEFIC THEN DO; /% SWITCH POINTERS #/
P3=P2;P2=P1;P1=pP3;
GO TO GROWSTFP;
EKND;
/* OTHERWISE MEITHER IS IN A DFFICIENT TREE, ARE THEY
IN DIFFERENT NONZERO COMPONENTS? #/
P3=P1;
DO HHILE(P3a>NhaznULL) ;
P3=P3->DNy END;
R3=pP2;
DO WHTLE (R3=->DN == NULL);
R3=R3=>Dn2 END;
IF R3-z=P3 THEM /a DIFFERENT CMPNTS */ GO TO GROWSTEP;
/* ELSE WE INDICATE A HOMNDEFIC BLOSSOM */
R3«>FNGENNzJ:
caLL UPSCAN(R3,T,BLOSSIND,F);
GO TO £ENDA:
EMD; /x OF EASY CASE %/

/**i**tiai*:tik*tt*i****ttktit*i***it****#ti*iit**ikt*itt**
¥xrkkkxx  CASE 2: 2 EDGES INTO PSEUDU NODE k& xAxxakskkaks
t*ttkfxttﬁ**********x*t***1*1*g*gt,aa:t***xa*aw***t*ﬁi*atw/

/*  NODW HARRER CASE ¢ WE HAVE A DOwN EDGE AND AN UP EDGE a/
JDN=P~>FDGEDN;

Q3zP=>NH; ‘

RI=FNDS(JDN,1): /% FIND ENGE OF JUN IN THF BLOSSOM a/

IF 83 = G1 THEN G1=ENDS(JIDN,2)

/* 0) IS TO HE THE WEW ROOT OF THE RLOSSOM 4/

CALL RFROOT(N1);

/% REMOVE TOP PART OF TREE x/

02=P=>iP;

CALL REMOVE(R2);

/% ADD BLOSSOM T0 THE TREE =/

CALL REMOVE(P);

FRFE P=>PSEUDOD:

CALL ADDON (R3,01,J0N);

CaLL UPSCAMN(RL,T,ADDFIX,FY:/% LAREL NODES ODD AND EVEN i/
IF BROOT=>0DD THEN D0: /% THINGS AORK DUT EASILY =&/

SIMPFIN: PX=NULL: SHRNKNG=T; /*GLOBAL VARS FOR ADNBLOS=DEFFIX, */

CALL UPSCAN(31,T,ADDRLOS,T,DEFFIX);
CALL ADDODN(RROOT,02,JIH); s+ ADD THE TOP OF THE TREE =&/
GO TO JTST; /* CONTINUE AS IN FASY CASE, %/
END
/* OTHFRWISE WE MAY HAVE A POLYGON IN THE PATH, OR KWE MAY
JUST MFED J IN THE PaTH, FIRST LABEL NODES IN POLYGON ay
PI=ENDS(J,1); P2=£NDS(J,2); ) '
DO WHILE (P1-=03);
P1=>INPATH=T: P[=P{=>DN; END;
DO WHILE(-~P2=>INPATH);



STMT LEVFL NEST

B70
B73

874
875

878
879
880
881-
8s2
883
884
885

887
888
889
890
892
893
894
895
896

897
898
899
300
901
902
903
904
905

906
909
911
912
913
916
917

/*THE BLOSSOHM ALGORITHM: MAIN PROCFDURE, 16~03-73 */

1
1

1

b Pk b et bt ph s h b m et ph e bk i fat et ek bt s b ek b

el Py

i

Pt b s

N Y e

F.1Ng

PP=>INPATH= 1;:P2=P2->DY; END;
Ri=P2; /% ROOT OF THE POLYGOMN &/
/*  TURN IMNPATH OFF [N STEM =y
0O VHILE (P2=>NDN-z=03);
PP=P2.>Dty  P2->IHPATHzF; FEND;
/% MOE P=>T4PATH = T IFF P IS IN THF POLYGON x/
/*  IF KROOT IS LARELLED EVEN, AND THE PATH FROM BROOT
TO @1 cCNTAINS AT MOST ONE POLYGON NODE THEN POLYGON
IS It PATH, OTHERWISE K0T, %/
P1=BRO0OT;
DO WHILE(=P{=>TNPATH);
PL=P1a>DH;
IF P1=01 THEN /x AT MOST ONE PGON NODE IN PATH A/
GND TO POLYCASE;
END;
P2=P1->DH:
IF SP2->INPATH THEN GO T0O POLYCASE;
/* OTHER=1SE ALL “E HAVE TD DO IS REMOVE P1=->EDGEDN
FROM POLYGON AND REPLACE IT WITH J AND WE CAMN TREAT AS
SINMPLE CASFE %/
P2=ENDS(J,1);
P3=zP2; /* SEE IF P2 IS END WE WANT FOR ADDON 2/
DO WHILE(P3I=>INPATH);
IF P3=P{ THEN /% CORRECT, SO %/ 0DO;:
R3I=ENDS(J,2);
GO TO FiINi:
FHND;
P31=P3.>DN;
FRD: :
/* OTHERWISE WE HAD IT BACKWARDS #/
R3IZENDS(J, 1)
P2=ENDS(J,2):
J1=P1=>EDGEDN;
CALL REMOVE(P1)3
CALL REROOT(P2):
CALL ADPON (R3,P2,J):
J=Ji:;
GO TO SIMPFIN:

POLYCASE: s+ HERE WE MHAVE A POLYGON IN PATH, LAREL PATH FROH

RROOT TO POLYGNM 0OR STEM CORRFCTLY,
FIRST YMARK NODES IM STEM, a/

DO wHILE(Ry==03):

R1=>INPATH=T; R{i=R1->DN: ENDy
IF BROOT=>THPATH THEMN /% NO FIXING NECESSARY %/ GO TO WINDUP;
P1=RRDOT;
DO WHILE (=P1=>TNEATH): ~

P2=Pl;: P1=P1=>DN; EMND;
P1=>0DD=P{=>C00;
CALL UPSCAM(PE,T,ADOFIX;F):




/*THE BLOSSNM ALGCRITHM: MAIN PROCEDURE, 16=03=73 */

STMT LEVEL KEST

918 ! P{=>0ND="P1=>0DD;
919 1 WINDIP: CALL ADDGM (RROOT,N2,JIN);
920 1 PIZENDS(J,1): P2=E4DS(J,2);
/% SET UP FOR RETURN TO NMALN LOOP, %=/
922 1 CALL UPSCAN(NL,T,POLYFIX,F);
923 1 FROPEX=T;
924 1 GO TO DYCALC:

/***i****iti**ﬁt**tt****i***#*it*tl*i***i***!**i*%**ltiltikt
XKk ARR A X FINAL CUORRECTION OF MATCHING IN PSELDOS AkR kA kk*k
KAAAKKRERAKAXARAKRKRAKAAARKAAR R AR A AR KRR AR KR AKARA R AR KR ARAAKX K &/ :
CURRFCTION: TIF TRACE THEN PUT EDIT('2BLOSS = (CCGRRECT MATCHING IMN PSEULDO

925 1
HODES')(SKIP,A) s

927 . 1 1F TRACE THEN CALL X0UT;

929 1 DD I=1 TO NNODE;

930 1 i P1l=ADCR(MODFLST(1));

9351 1 1 EXP1: IF P1=>STACKUP=NULL THEN GO TO EXPEND:

933 1 1 PP=Pl=>STACKUP;

934 1 1 IF P2-> EXPANDED THEN GO TO EXPEND;

936 1 1 P3=P2=>STACKLP;

937 | 1 DO WHILE((P3-=NULL)I&(~ P3=->EXPANDED));

938 1 P4 P2=P3; P3=P3=>STACKUP;

940 1 2 END:

q41 1 i CALL EXPAND (P2); /% EXPAND AND KEEP THE BLOSSOM &y

9ap 1 1 P2=->FXPANDEN=T;

943 1 1 G0 TO EXPY;

94n 1 1 EXPEND:  EHND;

945 1 FND BLODSSOH:

/*Ak*tk***t!***gktt*t*!*iltl*****i*ttt*i*t*ﬁ***i*i*taﬂ**xit*ﬁ*a‘gt*tii/
AR ERKLRKA XA RRIRAAR END OF BLOSSOH ALGORTITHir AARKRAAARAARCRARKR KA KA K/
/********ix*!*#ta**i*****a*ii**i*ti**t******ti**a**ktaxﬁ*iﬂﬁﬂkt*a*ik*t/




[B1]

[B2]

[B3]

[B4]

[B5]

[Cc1]

[D1]

[E1]

[E2]

[E3]

References

M.L. Balinski, K. Spielberg, "Methods for Integer

Programming: Algebraic, Combinatorial, and

A\

Enumerative", in Progress in Operations Research

Vol. TII, J. Aronofsky (ed.), Wiley, New York,
N.Y. 195-292 (1969).

C. Berge, "Sur le couplage maximum d'un graph", C.R.
Acad. Sci. Paris 247, 2@@}-259 (1958).

-C. Berge, The Theory of Graphs and Its Applications,

Methuen, London, England (1962).

G. Birkhoff, S. MacLean, A Survey of Modern Algebra,
Third ed., Macmillan, New York, N.Y. (1965).

R.G. Busacker, T.L. Saaty, Finite Graphs and Networks,
McGraw-Hill, New York, N.Y. (1965).

C. Carathéodory, "Uber den Variabilitdtsbereich der
Koeffizienten von Potenzreihen, die gegebene Werte

nicht annehment", Math. Ann. 64, 95-115 (1907).

G. B. Dantzig, Linear Programming and Extensions,

Princeton University Press, Princeton, N.J. (1963}.

J. Edmonds, "Paths, Trees and Flowers", Canadian J.

Math. 17, 449-467 (1965).

J. Edmonds, "Maximum Matching and a Polyhedron with
0, l=vertices", J. Res. Nat. Bur. of Standards

69B (Math. and Math. Phys) No. 1, 125-130 (1965).

J. Edmonds, "An Introduction to Matching" Notes on

lectures given at Ann Arbor, Michigan (1967)




[E4]

[E5]

[E6]

[E;]
[61]
[H1]
[H2]
[1I1]
[12]
[J1]

[J32]

[K1]

J. Edmonds, "Optimum Matchings", in manuscript.

J. Edmonds, E.L. Johnson, "Matching: A Well-Solved
Class of Integer Linear Programs", preprint:

Summary appears in Combinatorial Structures and

their Applications, Gordon and Breach, New York,

N.Y. 89-92 (1970).

J. Edmonds, E.L. Johnson, "Matching, Euler Tours and

the Chinese Postman", I.B.M. Research Report

RC 3783 (1972), to appear in Math. Programming.

J. Edmonds, E.L. Johnson, S§. Lockhart, "Blossom I:

A Computer Code for the Matching Problem", to appear.

B. Grinbaum, Convex Polytopes, Interscience, London,

England (1967).

G. Hadley, Linear Programming, Addison-Wesley, Reading,

Mass. (1962).,

F. Harary, Graph Theory, Addison-Wesley, Reading, Mass.
(1969).

E. Isaacson, H. Keller, Analysis of Numerical Methods,

John Wiley and Sons, New York, N.Y. (1966) .

I.B.M. Systems 1360 Operating System, PL/1(F) Language
Reference Manual, C28-8201 (1970) .

Eail Johnsdn, "Programming in Networks and Graphs",
Univ. of Calif., Berkely Research Report ORC 65-1
(1965).

E.L. Johnson; "Networks and Basic Solutions", Operations
Research 14, 619-623 (1966).

V. Klee, C. Witzgall, "Facets and Vertices of Transportation
Polytopes", Boeing Scientific Rsch. Lab. Doc.

D1-82-0662, (1967).




[K2]

[K3]

[R1]

[s1]

[21]

[T2]

[T3]

D. Konig, Theorie der endlichen und unendlichen Graphen,

Acad. Verl. M.B.H., Leipzig (1936). Reprint,
Chelsea Publishing Company, New York, H.Y. (1950},

D. E. Knuth, The Art of Computer Programming, Vol. 1,

Fundamental Algorithms, Addison-Wesley, Reading,

Mass. (1968).

R.T. Rockafellar, Convex Analysis, Princteon University

Press, Princeton, N.J. (1969).

J. Stoer, C. Witzgall, Convexity and Optimization in

Finite Dimensions I, Springer-Verlag, Berlin,

Heidelberg (1970).

W.T. Tutte, "The Factorization of Linear Graphs", Jdi

London Math. Soc. 22, 107-111 (1947).

W.T. Tutte, "The Factors of Graphs", Canadian J. Math.
4, 314-328 (1952).

W.T. Tutte, "A Short Proof of the Factor Theorem for
Finite Graphs", Canadian J. Math. 6, 347-352
(1954).




