ORSA Journal on Computing
Vol. 5, No. 2, Spring 1993

0899-1499 /93 /501-206 $01.25
© 1993 Operations Research Society of America

An Implementation of the Generalized Basis Reduction
Algorithm for Integer Programming

WIiLLIAM COOK / Bell Communications Research, 445 South Street, Morristown, NJ 07960; Email: bico@bellcore.com

THOMAS RUTHERFORD / Department of Economics, University of Western Ontario, London, Ontario N6A 5C2 Canada;
Email: tomr @ uwovax.uwo.ca

HERBERT E. SCARF / Cowles Foundation for Research in Economics, Box 2125, Yale University, New Haven, CT 06520;
Email: scarf-herb@cs.yale.edu

DAVID SHALLCROSS / Bell Communications Research, 445 South Street, Morristown, NJ 07960;
Email: davids@bellcore.com

(Received: October 1991; revision received: July 1992; accepted: November 1992)

In recent years many advances have been made in solution
techniques for specially structured 0-1 integer programming
problems. In contrast, very little progress has been made on
solving general (mixed) integer problems. This, of course, is
not true when viewed from the theoretical side: H.W. Lenstra
(1983) made a major breakthrough, obtaining a polynomial-time
algorithm when the number of integer variables is fixed. We
discuss a practical implementation of a Lenstra-like algorithm,
based on the generalized basis reduction method of L. Lovéasz
and H.E. Scarf (1988). This method allows us to avoid the
ellipsoidal approximations required in Lenstra’s algorithm. We
report on the solution of a number of small (but difficult)
examples, with up to 100 integer variables. Our computer code
uses the linear programming optimizer CPLEx as a subroutine
to solve the linear programming problems that arise.

Much of the computational work on integer linear pro-
gramming has been devoted to solving problems having
0-1 variables. In recent years, the focus has been on the use
of problem-specific cutting-plane methods for various
classes of 0-1 problems. Some spectacular successes in this
area have been achieved by Crowder, Johnson, and
Padberg®] Grétschel, Jiinger and Reinelt®! Padberg
and Rinaldi!'® van Roy and Wolsey,?” and others. In
contrast, very little progress has been make on solving
general (mixed) integer problems. Indeed, most commer-
cially available codes are based on branch and bound
methods that are not particularly well suited for general
integer variables. This specialization to algorithms for 0-1
problems is partly justified by the large number of applica-
tions in which the variables are restricted to assume the
values of 0 and 1. But it is possible that the lack of

Subject classifications: Programming, integer.
Other key words: Integer programming, geometry of numbers.

successful applications of general integer models is due in
part to the absence of tools for solving these models.

In 1983, Lenstral’® made a major breakthrough in the
theory of integer programming, obtaining an algorithm
with running time bounded by a polynomial in the size of
the input when the number of integer variables is fixed.
Perhaps more important than the algorithm itself was
Lenstra’s introduction of results from the geometry of num-
bers into the study of integer programming. These methods
have since been used with great success by Kannan,®]
Kannan and Lovasz!®! Kannan, Lovasz, and Scarf[!¥
Grétschel, Lovasz, and Schrijver”! and others, in treating a
variety of issues in integer programming. Although these
results are all of a theoretical nature, it is clear that the
geometry of numbers provides insights that can be used in
dealing with the practical issue of solving general integer
programming problems. The purpose of this paper is to
describe a first step in this direction.

We present a practical implementation of a Lenstra-like
algorithm, employing the ‘“‘generalized basis reduction”
method of Lovasz and Scarf,['>! and report on some compu-
tational experience with the algorithm. As one could antici-
pate, for 0—1 problems our code was not competitive with
commercially available codes such as LINDO!* and
OSL.I'”] However, for a class of general integer program-
ming problems arising from a network design application
(Sanieel®!), our code successfully solved a series of test
problems that were not tractable by standard branch and
bound techniques.

The paper is organized as follows. In Section 1 and 2 we
briefly present the background of the algorithm. In Section

Copyright © 2001 All Rights Reserved

207

Generalized Basis Reduction Algorithm

3 we describe our implementation and in Section 4 we
present some computational results. We assume the reader
is familiar with integer programming methods. For a treat-
ment of this area see the books of Nemhauser and Wolsey!'®!
and Schrijver.??

1. Branching on Hyperpianes
In our discussion, we consider the integer programming
feasibility problem: Given a system of linear inequalities
Ax < b, with A a rational m by n matrix and b a rational
m-vector, does there exist an integral vector h satisfying
Ah < b? In other words, given a polyhedron P = {x: Ax <
b}, is P N Z" nonempty? (The set of n-dimensional integral
vectors is denoted by Z".) In Section 3 we indicate how to
deal with an objective function and the possibility of hav-
ing continuous variables. We will assume throughout the
paper that the entries of A and b are rational, so that P is a
rational polyhedron.

The key to Lenstra’s integer programming algorithm is
the following “‘Flatness Theorem’’ due to Khinchine "]

Theorem 1. Let P C R" be a bounded, rational polyhedron.
Then either P N Z" # § or there exists w € Z" \ {0} such that

max{wx : x € P} — min{wx: x € P} < v,

where vy, is a constant depending only on the dimension n. W

This result states that either P contains an integral vector
or there exists an integral direction in which P is “flat.” To
date, the best known upper bound for v, is cn?, where ¢ is
a universal constant (Kannan and Lovész®)).

Lenstral'3 showed that if the dimension # is fixed, then
in time polynomial in the size of Ax < b, one of the two
alternatives in Theorem 1 can be found for a certain choice
of v, This was improved by Grotschel, Lovasz, and
Schrijver”] who showed that for y, = (n)n + 1)2 "* one of
the two alternatives can be found in polynomial time even
for varying n. In both cases, a polynomial-time algorithm
to solve the integer programming feasibility problem can
be derived as follows. First, by intersecting P with a large
enough box if necessary, we may assume that P is a
bounded polyhedron (see Schrijverl??l). Next, applying one
of the above algorithms, we either find an integral vector in
P or we find a flat direction d; € Z". In the later case, for
each integer t; such that [min{d;x:x € PH <t <
Imax{d,x: x € P}] we test if the polyhedron P N {x:
d,x = #;} contains an integral vector. Since d, is a flat
direction and n is fixed, there are only a constant number
of these subproblems. Moreover, it is easy to ensure that
the dimension of each of the polyhedra P N {x:d;x = t;}
be less than the dimension of P. So, applying the above
procedures to each of these polyhedra, we build a search
tree (as in Figure 1) that is at most n deep. This means that
the tree has only a constant number of nodes (since n is
fixed). It follows that we have a polynomial-time algorithm
for solving the original feasibility problem.1

This type of algorithm can be described as ““branching
on hyperplanes.” The flat directions are used to keep the

t; = [min{d,z z € P}] t; = |max{d\z ‘-z € P}}

13 = |max{d;z z € Pdiz = t1}]
t; = [min{dyz z € Pdyz =1,}]

t3=[min{dsz z € P,dyz =t),daz = t3}] 13 = max{dsz z € P,

diz = ty,d;z = 13}

Search tree.

Fgure 1.

search tree from getting too large. To find these directions,
both Lenstra'® and Grétschel, Lovész, and Schrijverl’) start
off by computing a pair of ellipsoids E, and E, that
approximate P in the following sense: E, C P C E;, E, and
E, are concentric, and E, arises by blowing up E; by a
factor of o,, where o, is a constant depending only on #.
Notice that if we find a flat direction for E,, then this is also
a flat direction for E, (and hence also a flat direction for P).
So with this ellipsoidal approximation in hand, we can
temporarily ignore P and concentrate on the inside ellip-
soid E,. This is precisely what Lenstra and Grotschel,
Lovasz, and Schrijver do, using a “basis reduction” algo-
rithm of Lenstra, Lenstra, and Lovéasz('? to either find a flat
direction for E, or show that E, contains an integral vector.

This ellipsoidal approximation is very convenient, but in
practice you do pay a price since a good deal of informa-
tion is lost in the approximation step. Also, although the
pair of ellipsoids can be found in polynomial time
(Grotschel, Lovasz, and Schrijver(”)), the method makes use
of the ellipsoid algorithm for linear programming, which is
known not to work well in practice.

In the next section we describe a generalized “basis
reduction” algorithm of Lovasz and Scarf!®! that we use to
find a flat direction by working directly on the polyhedron
P. The disadvantage of this method is that it involves
considerably more computation than the algorithm of
Lenstra, Lenstra, and Lovész.'?! It would be interesting to
compare an efficient implementation of Lenstra’s algorithm
with the results reported in this paper.

2. Generaitzed Basis Reduction

Let P ={x: Ax < b} be a bounded rational polyhedron.
For w € R", we define F(w) to be max{wx — wy: Ax < b,
Ay < b}, that is the width of P in the direction w (see
Figure 2). Notice that the function F is convex, symmetric,
and homogeneous of degree 1. To implement the “branch-
ing on hyperplanes” strategy, we need to find a nonzero
integral vector having a small F(-) value. Our approach
will be to find a representation of Z" that will give us this
good direction.

Copyright © 2001 All Rights Reserved

Cook et al.

Fw)=s-t

wx =t
Agurs 2. Width of polytope.

WX =S§

A basis for the integer lattice Z" is a collection of linearly
independent vectors b', ..., b" such that every w € Z" can
be written as A;b! + -+ +A,b" for some choice of integers
Ay ..., A,. We define a family of functions Fi(),..., F,(*)
with respect to the polyhedron P and a given basis
b,...,b" letting

F(w) = min F(w + oyb; + -+ +a,_,b'" ")

6]

with the minimum taken over all choices of rational num-
bers ay,..., a;_;. Note that Fi(*) is just the width function
F(). Using linear programming duality, one can easily
show that foreach i=1,...,n,

F(w) = max{wx —wy: Ax < b, Ay < b, (
blx —bly=0,...,b" 'x = b~y = 0).

So F(w) can, therefore, be computed by solving a single
linear programming problem.

To see the connection between the functions F(:) and
our problem of finding a good direction, consider the
following simple result.

2)

Theorem 2. Suppose b',...,b" is a basis such that F(b') <
F)(b®) < -+ < F(b™). Then b, achieves the minimum value of
F(-) over all nonzero vectors in Z".

Proof. Let w € Z"\ {0}. Since b',...,b" is a basis, we
can write w = A\,b' + -+ 4+ A, b" for some integers
A1 -+, Ay Let k be the greatest index such that A, # 0. We
have

Fy(w) > F(w)=F(Ab*) = |\ F(b¥) > Fy(b").

The result follows, since F;(*) is identical to F(-).

Although we cannot usually achieve the conditions given
in Theorem 2, we can find a basis that satisfies the weaker
condition

Fa(6'"1) > ((1/2) — €)E(b") (3

forall i=1,...,n—1, where 0 < e < 1/2 is a fixed con-
stant.
To this end, we call a basis b',...,b" reduced if the

following two conditions hold forall i =1,...,n — 1
F(b'*' + ub') > F(b™*') forallintegers u (4)
F(b'"1) > (1 - e)F(b'). (5)

These simple conditions on pairs of the basis vectors imme-
diately suggest an algorithm for computing a reduced

basis, as we indicate below. But first, note that a reduced
basis does indeed satisfy (3) (Lovéasz and Scarf(!%)).

Theorem 3. Let b',..., b" be a reduced basis. Then (3) holds
foralli=1,...,n -1

Proof. From the definition of F(-), we have the identity
Fi o(b'*1) = min{F(b*! + ab'):all rationals a}.

Now since the rational « that achieves the minimum in the
right hand side of this equation is within 1/2 of an integer,
we know that the right hand side is at least

min{F;(b"*! + ub'):all integers u} — (1/2)F(b').

Using the conditions (4) and (5), the result follows. ®

Combining this with the proof of Theorem 2, we have
the following result of Lovész and Scarf.!"®

Theorem 4. Let b,..., b" be a reduced basis and let A be the
minimum of F(w) over all nonzero w € Z". Then A >
F(B'X1/2)-e)" ' =

It follows that a reduced basis gives us a direction that is
not too far away from the minimum width of the polytope
P.

To aid the discussion in the next section, we state the
generalized basis reduction algorithm that follows from the
conditions (4), (5) given above. (The “‘generalized” refers to
the fact that this algorithm generalizes the basis reduction
method given in Lenstra, Lenstra, and Lovéasz!'?.) The
algorithm starts off with a basis b, ..., b" (for example, the
standard basis where each b' is the ith unit vector) and
moves through a sequence of bases as follows: Starting
with i =1 and continuing until i = n, carry out the two
steps

® Replace b'*' by b'*! + ub’, with u the integer that
minimizes F(b'*! + ub").

o If F(b'*") < (1 — €)F(b'), swap b’ and b'*! and set i to
the maximum of 1 and i — 1. Otherwise, set i to i + 1.

Lovész and Scarf('”) show that this algorithm runs in poly-
nomial time for fixed n. (It is not known whether the
running time is polynomial for varying n.) For a further
discussion of reduced bases we refer to the reader to the
paper of Lovasz and Scarf!'?l.

3. Implementation

Carrying out the generalized basis reduction algorithm
involves the solution of many linear programming prob-
lems. Several important observations help to cut down on
this computational effort.

To start off, how do we find the integer u* that mini-
mizes F(b'*! + ub')? This could be done with a line search,
but there is a more direct method. Since F,,(b*')=
min{F(b'*! + ab'):all rationals a}, it follows that the ra-
tional a* that minimizes F(b'*! + ab') is the dual variable
associated with the equation b'x — b'y = 0 in the linear
programming problem used in the calculation of F,, (b'*).
Since F(b'*! + ab') is a convex function in a, we know
that u* is either [a*] or la*).

Copyright © 2001 All Rights Reserved

Generalized Basis Reduction Algorithm

Using the above approach, at level i of the basis reduc-
tion algorithm we will compute the functions

F (b)), F(b*! + p,b"), F(b') (6)

where p, is the integer that minimizes F(b'*' + ub),
together with a;, the dual variable associated with the
equation b,x — b’y = 0 in the linear programming problem
for F,,(b'*!). Finding these data in direct manner will
require the solution of either two or four linear program-
ming problems, depending on whether or not] is an
integer. Some of this work can be saved, however, by
simply avoiding the solution of problems that we have
already solved, as we indicate below.

Suppose that we are at level i and are about to decrease
the level to i — 1. In this transition we first replace b'*' by
b"*1 4 u,b' and swap this latter vector with b’, obtaining
the basis

bl, bz,.“,bt—llbwl + I“lell b - b",

The first of the three linear problems that we must solve at
this level involves the evaluation of F(b'*' + ub'), and
the third the evaluation of F,_;(5""1).

The first observation to make is that F,_(b'~') has
already been evaluated at the last time that we were at
level i — 1, since we have not changed the vectors b’,
b%,...,b" ! in any of the basis reduction steps at levels
greater than i — 1. Therefore, all that we need in order to
evaluate this function is a list of its past values.

Secondly, the function F(b'*' + w,b') is precisely the
same as the middle function in (6) at level i, and therefore
need not be revaluated. We can also obtain «,_, from this
same evaluation. (Note that if we did not have to evaluate
the middle function at level i, because «, was an integer,
then «,_; is the dual variable associated with the con-
straint b'~'x — b~y = 0 in the evaluation of F,, (b'*").)

So, if a,_; is an integer, which it is in many cases, then
there are no new linear programming problems to solve at
this level. If o, , is not an integer, then we need to solve
two linear programming problems, in order to get the
middle function in (6). More generally suppose that the
dual variables «,_;,..., a,_, are all integral. Then the first
function in (6) stays constant, and the middle function is
not evaluated, for the next k iterations, as long as the index
is decreasing.

There is also a savings that can be made if we move
from level i to level i + 1. In this case, the new basis is

b, b L, bt b, b

Now the last of the functions in (6) to be evaluated at level
i+1is F, (b*! + pu,b). But this value is the same as
F,,(b'*1), which we have already evaluated at the previ-
ous level. Again, this can be continued for any sequence of
increasing indices.

In our implementation, rather than working with a gen-
eral basis b',...,b", we perform unimodular transforma-
tions of the space so that our basis is always the standard
basis (with b' the ith unit vector). This makes the computer
code somewhat simpler, since we know beforehand the
form of the equations b'x — b'y = 0 that must be added to

the linear programming problems. Note, however, that we
must maintain the inverse transformation, B~', to bring
any integral vector we find back to the original coordinate
system. To describe the necessary transformations, let
al,...,a" denote the columns of the matrix A. Then replac-
ing b'*! by b**! + ub' is accomplished by replacing a' by
a' — pa'*!, and swapping b’ and b'*! is accomplished by
swapping a' and a'*!. To update our inverse transforma-
tion, we perform these same operations on the columns of
B~!. (A potential disadvantage of this method is that it
might lead to a greater increase in the number of non-zeros
than had we appended the reduced basis explicitly. We
have not, however, encountered extensive fill-in with any
of the test problems which we have examined.)

The basis reduction algorithm is the core of our integer
programming method. As we outlined in Section 1, our
code proceeds as follows (keeping in mind that we always
work with the standard basis). We have a recursive func-
tion SEARCH(k, t,, t,,...,t_,), where k and ¢,
ty, ..., ty_, are integer inputs. When SEARCH(k, t,,
ty, ..., t,_y) is called, the first k — 1 variables have been
fixed at the integer values ¢, t,,..., ,_;, and the function
will search for integer values for the remaining variables. If
k happens to be equal to n + 1, then the function simply
records the integral solution (¢, ..., t,) (after transforming
it back to the original coordinate system) and terminates
the program. Otherwise, the variable x, is maximized and
minimized over the current polyhedron (the transformed
original polyhedron, intersected with the hyperplanes x; =
ty,..., X1 = k1), giving us two numbers, u and [(the
optimal values of the two linear programming problems). If
lu] < [1], then we know that the current polyhedron con-
tains no integral vectors, so we return 0. If |u} =[], then
we fix x, at this value, and return the output of
SEARCH(k + 1, t;, t5,..., t,_1, LluD. If [u] > [1], then there
is more than one possibility for x,. So we call the basis
reduction routine (with the parameter k, that tells the
routine only to perform the basis reduction on the basis
vectors b¥,..., b"), to transform the problem in an attempt
to cut down on the number of possible values for x,. We
than recompute u and . If [u] < [!1 or |u] = [1], we pro-
ceed as above. Otherwise, for each integer t, between [/]
and |u] we set x,=1t, and call SEARCH(k + 1, ¢,
by, b,). If each of these calls returns 0, then
SEARCH(k, t1, t,,...,t,_,) also returns the value 0.

This procedure solves the integer programming feasibil-
ity problem; it either finds an integral solution (and termi-
nates) or SEARCH(1, #) returns the value 0, in which case
we can conclude that the polyhedron contains no integral
vectors. But since many practical problems will have an
associated objective function that must be maximized, that
is, they will- have the form max{wx: Ax < b, x integral},
we need to deal with this possibility in our code.

One straightforward method is to simply add the con-
straint wx < T to our system Ax <b, and use binary
search on the value of T (solving the feasibility problem at
each step) to obtain the optimal solution. This has the
disadvantage that we repeatedly search the same region of
the polyhedron on each call to the feasibility procedure.

Copyright © 2001 All Rights Reserved

210

Cook et al.

Another approach is to continue the search when we find
an integral solution (xy,..., x,) by raising the value of
T to a small amount greater than the objective value
wyx; + -+ + w,x, (so we limit the further search to inte-
gral solutions having greater objective value). This allows
us to avoid revisiting parts of the polyhedron, but its
performance depends on having a good initial value of T.
It is easy to adapt either method to stop whenever we are
within a certain percentage, p, of optimality. In the latter
case, rather than increasing T by a small amount, we can
increase by (p/100)T|.

Finally, we need to describe how to handle mixed inte-
ger programming problems. This is particularly simple: the
basis reduction is carried out only on the vectors corre-
sponding to integer variables. Thus, the only effect of the
continuous variables is to increase the sizes of the linear
programming problems that we need to solve.

4. Computational Resuits

Our computer code is written in the C programming lan-
guage and uses the linear programming optimizer CPrex!
to solve the linear programming problems that arise. Exten-
sive use is made of CPLEX’s Callable Library, to modify the
constraint matrix A and to add and delete the equations
b'x -~ b'y = 0 during the course of the algorithm. Also,
since the linear programming problems that must be solved
are closely related to one another, we make use of CPLEX's
ability to begin with the optimal (LP) basis from one
problem to “jump start” the solution of the next problem.

Due to the complexity of the generalized basis reduction
algorithm, our code is suitable only for problems having
not too many more than 100 integer variables (and any
number of continuous variables). Moreover, since even a
single run of the basis reduction algorithm involves the
solution of a large number of linear programming prob-
lems, our code should be used only if simple branch and
bound techniques have difficulty on the particular instance.
We report on a set of eight such problems in the tables
below. The first four were provided by Ellis Johnson, and
are part of a set of problems collected at IBM’s Watson
Research Center. The remaining four problems are in-
stances of a network design problem at Bellcore, described
by Saniee,*!] and studied in Bienstock,!"?! and Pochet and
Wolsey.['”! Six of the eight problems (Iseu, p0033, and the
four bell problems) are contained in the MIPLIB library of
test problems collected by Bixby, Boyd, and Indovina.!
(These problems can be obtained by sending email to
softlib@rice.edu with the message send catalog.)

Some information about the problems is presented in
Table 1. The “Variables” column is the total number of
variables in the problem and the “Integer”” column is the
number of integer variables. All eight instances are formu-
lated as minimization problems, and all problems contain
variables that can take on general integer values. (The first
four problems were originally presented as 0-1 problems.)

The solution times for four versions of our code are
given in Table II. The first variant, “Short,” stops the basis
reduction whenever it returns to level 1. This cuts down on
the running time of the basis reduction algorithm, but may

Table I. Test Problems

Problem Variables Integer Rows LP Opt MIP Opt
Iseu 89 89 28 662.97 953
p0033 33 33 16 1734.18 2455
ip.5 353 31 272 2690.01 2691.69
ip.6 74 74 38 ~638.57 —540
bell3a 133 71 124 862578.64 878430.32
bell3b 133 71 124 11404143.86 11786160.62
bell4 117 64 106 1798477591 18541484.20
bell5 104 58 92 8608417.95 8966406.49

produce inferior branching hyperplanes. In the second ver-
sion, “Full,” we allow the basis reduction to run to comple-
tion. In ““Fractional,” we allow the basis reduction to run to
completion, but we only carry out the basis reduction
algorithm on the vectors corresponding to the fractional
values in the current linear programming solution. In each
of these three instances, we search for an optimal solution
with the straight search method described in the previous
section (that is, we do not use binary search). In the fourth
version, “Binary Search,” we again use “’Short” basis re-
duction, but, in this case, binary search on the objective
value is used until we reach a polyhedron that contains no
integral vectors, then we switch to a straight search from
the objective value of the best solution we have found up
to that point.

The final column of Table II reports the solution times of
a straightforward, depth-first-search branch and bound code
we implemented for comparison purposes. (Again, this
code uses CPLEX as a linear programming solver.) In two
instances (belinet3b and bellnet4), we were unable to solve
the problems with “BRANCH.” The times reported for
these instances are the points where we stopped the code.

Each test reported in Table II began with the bound
listed in the “Bound” column. For the first four problems,
these bounds are the objective values of the solutions
found by an integer programming heuristic that we imple-
mented. (The heuristic failed to find a solution to problem
ip.5). For the four network problems, starting with the
optimal value of the linear programming relaxation, we
tried increasing the bounds in increments of 100000 (or
10000 in the case of bellnet3a) until a feasible solution was
found. (When the bounds were set too low, the infeasibility
of the problem was detected very rapidly.)

As can be seen, our basis reduction code (“’BIRCH"’) was
competitive with BRANCH, and was significantly better on
the network design problems. One factor that distinguishes
these problems from the first four is that the optimal
mixed-integer solutions take on values significantly greater
than 1 (which is not the case in the other problems, perhaps
due to the fact that they were originally modeled with 0-1
variables).

The advantage of using basis reduction is shown more
clearly in Table III, where the number of nodes in the
search trees for BIRCH (with the ““Short” basis reduction)
and BRANCH are presented. In this case, BIRCH was

Copynght © 2001 AlRights Reserved

211

Generalized Basis Reduction Algorithm

Table II. CPU Seconds on an IBM R6000 Model 530
Binary
Problem Bound Short Full Fractional = Search BRANCH
Iseu 1153 7180.6 9274.2 5027.6 10605.7 393.8
p0033 3089 79.9 95.0 42.6 118.0 387.1
ip.5 none 12796.4 29662.1 6213.9 22449 1743.3
ip.6 493 3312.6 3441.6 4157.7 4850.4 1409.4
bell3a 880000 66.8 66.9 346.6 100.1 7034.0
bell3b 11800000 6723.8 8244.7 7486.4 7052.1 + 50 hours
bell4 18600000 6880.9 7041.2 39868.8 7051.2 + 25 hours
bell5 9000000 1346.4 1376.2 2454.7 1516.9 1698.1
Table III. Node Counts like to thank Ellis Johnson, George Nemhauser, Iraj Saniee and
Laurence Wolsey for providing us with sets of test problems, and
Problem BIRCH BRANCH Best Branch to thank David Applegate for providing an implementation of gray
codes that we used in our integer programming heuristic, Bob
Iseu 10797 45765 25480 Bixby for his help in using thegCPfEXgCallablegLibrary, Judith
p0033 375 89541 6591 Bender for her work on an early version of the code, and Dicky
ip.5 3066 28279 21725 Yan for carrying out the test of LINDO. This research has been
ip.6 2910 113849 9036 supported by the Program on Discrete Mathematics at the Cowles
bellnet3a 113 248011 103748 Foundation. Research of the second author supported under oper-
bellnet3b 5312 + 750000 265096 ating grant T306A1 from the Canadian Natural Science Research
bellnet4 15003 + 500000 K K Council, and the third author supported under National Science
bellnet5 1577 111845 44166 Foundation grant SES-8807167.

significantly better than BRANCH in all instances. More-
over, BIRCH also has lower node counts than a “Best
Branch” branch and bound algorithm that we imple-
mented. In this algorithm, for each fractional value x} in
the current linear programming relaxation we compute the
width of the current polyhedron in the direction of x,, and
we branch on the variable having minimum width. This is
a "‘best possible” strategy for getting a small search tree,
when we restrict our branching hyperplanes to the unit
directions. (This algorithm is very time consuming, and is
only interesting from the node count perspective.)

We should remark that the poor performance of
BRANCH on the network design problems is not only due
to its simple design. The much more sophisticated commer-
cial branch and bound codes, LINDO!"*! and OSL Version
1.1%7! failed to solve any of the four test instances. In the
case of LINDO, attempts to solve each of the four problems
terminated after 40 hours on a VAX 780 without finding a
feasible solution. Using OSL’s integer programming solver,
each run exceeded the 220 megabyte allocated workspace
(and terminated) before finding a feasible solution.

The success of BIRCH on the network problems, as well
as the improved node counts on the first four problems,
suggests that some variant of generalized basis reduction
may be a useful tool in approaching classes of difficult
general integer programming problems.

Acknowledgments

We would like to thank Imre Barany, Ravi Kannan, and Laslé
Lovasz for many useful conversations and suggestions. We would

References

1. D. BIENSTOCK, 1992. A Lot-Sizing Problem in Trees, Related to
Network Design, in E. Balas, G. Cornuéjols, and R. Kannan
(eds.), Integer Programming and Combinatorial Optimization—
Proceedings of a Conference, Carnegie Mellon University,
Carnegie Mellon University Press, Pittsburgh, pp. 421-434.

2. D. BIENSTOCK, 1992. Computational Experience with an Effec-
tive Heuristic for Some Capacity Expansion Problems in Local
Access Networks, Technical Report No. 17, Department of
Industrial Engineering and Operations Research, Columbia
University, New York.

. RE. Bixsy, E.A. BoyD and R. INDOVINA, 1992. MIPLIB: A Test
Set of Mixed Integer Programming Problems, SIAM News 25.2,
16.

. CPLEX, 1992. Cplex Optimization Incorporated, Incline Village,
NV.

. H. CrOwDER, E.L. JOHNSON and M. PADBERG, 1983. Solving
Large-Scale Zero-One Linear Programming Problems, Opera-
tions Research 31, 803—-834.

. M. GROTsCHEL, M. JUNGER and G. REINELT, 1984. A Cutting
Plane Algorithm for the Linear Ordering Problem, Operations
Research 32, 1195-1220.

. M. GROTSHCEL, L. LovAsz and A. SCHRIVER, 1988. Geometric
Algorithms and Combinatorial Optimization, Springer-Verlag,
Berlin, 1988.

. R. KANNAN, Minkowski’s Convex Body Theorem and Integer
Programming, Mathematics of Operations Research 12, 415-440.

. R. KaNNAN and L. LovAsz, Covering Minima and Lattice-

Pomnt-Free Convex Bodies, Annals of Mathematics 128, 577-602.

R. KanNaN, L. LovAsz and H.E. Scarr, 1990. The Shapes of

Polyhedra, Mathematics of Operations Research 15, 364-380.

A. KHINCHINE, 1948. A Quantitative Formulation of Kronecker’s

Theory of Approximation (in Russian) Izvestiya Akademii

Nauk SSR Seriya Matematika Akad. Nauk. SSSR, Ser. Mat. 12,

113-122.

10.

11.

Copyright © 2001 All Rights Reserved

212

12.

13.

14.
15.

16.

17.
18.

Cook et al.

AK. LENSTRA, HW. LENSTRA and L. LovAsz, 1992. Factoring
Polynomials with Rational Coefficients, Mathematics Annalen
261, 513-534.

H.W. LENsTRA, 1983. Integer Programming with a Fixed Num-
ber of Variables, Mathematics of Operations Research 8, 538-548.
LINDO, 1992. Lindo Systems Incorporated, Chicago, IL.

L. LovAsz and H.E. SCARF, 1992. The Generalized Basis Reduc-
tion Algorithm, to appear.

G.L. NeMHAUsER and L.A. WOLSEY, Integer and Combinatorial
Optimization, Wiley, New York, 1988.

OSL, 1992. International Business Machines (IBM), Dallas, TX.
M. PADBERG and G. RINALDI, 1991. A Branch-and-Cut Algo-
rithm for the Resolution of Large-Scale Symmetric Traveling
Salesman Problems,” SIAM Review 33, 60-100.

19.

20.

21.

22.

Y. PocHET and L. WoLsEY, 1992. Network Design with Divisi-
ble Capacities: Aggregated Flow and Knapsack Subproblems,
in E. Balas, G. Cornuejols, and R. Kannan (eds.), Integer Pro-
gramming and Combinatorial Optimization— Proceedings of a Con-
ference, Carnegie Mellon University, Carnegie Mellon Univer-
sity Press, Pittsburgh, pp. 150-164.

T. J. vaN Roy and L.A. WOLSEY, 1987. Solving Mixed Integer
Programming Problems Using Automatic Reformulation, Oper-
ations Research 35, 45-57.

I Sanieg, 1991. Economic Capacity Expansion of the Local
Access Network,” Technical Memorandum TM-TSV-018565,
Bell Communications Research.

A. SCHRUVER, 1986. Theory of Linear and Integer Programming,
Wiley, Chichester.

Copyright © 2001 All Rights Reserved

Copyright of ORSA Journal on Computing is the property of INFORMS: Institute for Operations
Research and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.

