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LINEAR SYSTEMS FOR CONSTRAINED MATCHING
PROBLEMS*}

W. COOK{ anp W. R. PULLEYBLANKS

Each polyhedron of full dimension has a unique (up to positive scalar multiples of the
inequalities) minimal defining system and a unique minimal totally dual integral defining
system with integer left hand sides. These two minimal systems are characterised for the
convex hull of the simple b-matchings of a graph. These characterisations are then used to
provide similar characterisations for the convex hull of matchings, »-matchings, and capaci-
tated b-matchings. Each of these characterisations gives a “best possible” min-max relation for
the corresponding combinatorial objects.

1. Introduction. A marching in a graph G is a subset of the edges such that each
node of G is met by at most one edge in the subset. Fundamental results in the theory
of matchings were proven by Tutte [34,35,36]. Tutte’s results provide a min-max
relation for the cardinality of a largest matching in a graph (see Berge [4]). In 1965,
Edmonds [14] found a polynomial time algorithm for the weighted matching problem.
A by-product of Edmonds’ algorithm is a characterisation of a linear system that
defines the convex hull of the (incidence vectors of the) matchings of a graph. Via the
linear programming duality theorem, this result gives a min-max relation for weighted
matchings.

Tutte {35, 36] and Edmonds and Johnson [17] have shown that, by means of a series
of constructions, results on matchings imply results on considerably more general
objects. In particular, Edmonds and Johnson [17] found descriptions of linear systems
which define the convex hulls of these more general objects and hence min-max
relations for these objects (see also Araoz, Cunningham, Edmonds, and Green-Krétki
[2D-

Two ways to improve min-max results that are obtained by finding descriptions of
linear systems which define certain convex hulls are to reduce the number of dual
variables in the linear programming duality equation (that is, to find a smaller linear
system that defines the given convex hull) and to restrict the dual variables to integer
values. We discuss these methods below.

If P is a polyhedron of full dimension, then there exists a unique (up to positive
scalar multiples of the inequalities) minimal linear system that defines P. So, for a
generalisation of matchings whose convex hull is of full dimension, a description of the
unique minimal defining system for the convex hull gives a “best possible” min-max
relation for the generalised matchings. We characterise such a minimal system for the
convex hull of the simple b-matchings of a graph and show that this result implies
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similar characterisations for matchings (Pulleyblank and Edmonds [28]), »-matchings
(Pulleyblank [24]), and capacitated b-matchings.

The second way to improve min-max relations involves totally dual integral systems.
Edmonds and Giles [16] defined a rational linear system Ax < b to be a totally dual
integral system if the linear program min{ yb: y4 = w, y > 0} has an integral optimal
solution for each integer vector w for which the optimum exists. (For results on total
dual integrality see Hoffman [20], Edmonds and Giles [16), Giles and Pulleyblank [19],
Schrijver [29), and Cook, Lovasz, and Schrijver [9].) Thus, integral min-max theorems
can be obtained by finding totally dual integral defining systems for various convex
hulls. These integral min-max theorems often have a nice combinatorial interpretation,
since integer solutions to the dual linear programs often correspond to combinatorial
objects, such as “covers” or “cuts” (for many examples of this see Schrijver [32]).
Combinatorial min-max theorems, generalising the Tutte-Berge Theorem, obtained in
this way for various generalisations of matchings can be found in Schrijver [31].

Min-max theorems arising from totally dual integral systems can be further
strengthened by removing some of the inequalities to obtain a minimal totally dual
integral defining system for the convex hull of the objects in question. Schrijver [29] has
shown that for each polyhedron P of full dimension there exists a unique minimal
totally dual integral system Ax < b with 4 integral such that P is defined by Ax < b
(call Ax < b the Schrijver system for P). So, for a generalisation of matchings whose
convex hull is of full dimension, a second type of “best possible” min-max theorem
can be obtained by finding the Schrijver system for the convex hull. We characterise
such systems for the convex hull of capacitated b-matchings, simple b-matchings,
b-matchings (Cook [6] and Pulleyblank [26]), triangle-free 2-matchings, and matchings
(Cunningham and Marsh [13]).

Some terms and notation that will be used throughout the paper are given below.

Let G be an undirected graph (see Bondy and Murty [5] for standard terminology of
graph theory). The node set of G is denoted by VG and the edge set by EG (we will
assume that each edge has two distinct ends). For each node v € VG, §;(v) denotes
the set of edges of G which meet v, d;(v) denotes |6;(v)|, and N;(v) denotes the set
of nodes in ¥G-{v} which are adjacent to v. For each § C VG, y,(S) denotes the
subset of edges of G having both ends in S, §;(S) denotes the subset of edges having
exactly one end in S, and G[S] denotes the subgraph of G induced by S. We write
3, d, v, to denote 8;, d, v, respectively.

Let P be a polyhedron. A linear system Ax < b defines P if P = {x: Ax £ b}. An
inequality ax < B is valid for P if for each X € P we have ax < B. Suppose that P is
of full dimension. The inequality ax < B is essential for P if some positive scalar
multiple of the inequality must be present in every defining system for P. A well-known
result is that a valid inequality ax < B is essential for P if and only if it is facer
inducing for P (that is, if and only if there exist dimension(P) affinely independent
vectors in P for which the inequality holds as an equality). For an account of
polyhedral theory see the papers of Bachem and Grétschel [3] and Pulleyblank [27] and
the references cited in those two papers.

If x=(x;: i€I)and S C I, where I is a finite set, then x(S) denotes the sum
I{x;: i € S}. If B is a number, then | B denotes the largest integer less than or equal
to B.

2. Matchings and b-matchings. Let G be a graph. A matching M of G will be
identified with its incidence vector x = (x,: e € EG), where x,=1 if e € M and
x, =0 if e € EG-M. The fundamental result in the study of polyhedral aspects of
matching theory was proven by Edmonds [14):
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THEOREM 2.1. The convex hull of the matchings of G is defined by
x,20 Vee EG, (2.1)
x(8(v)) =1 Ve VG,
x(v(8)) = lISI2] VSc VG, |S|odd.

Edmonds proved this result by means of a polynomial time algorithm for the
weighted matching problem. (The weighted matching problem is to maximise wx over
all matchings x of G for a given weight vector w = (w,: e € EG).) A short proof of
this result can be found in Schrijver [30].

A matching M of G is perfect if each node in VG is met by an edge in M. The graph
G is hypomatchable if for each v € VG the graph obtained by deleting v from G has a
perfect matching. (Note that hypomatchable graphs are necessarily connected.) Let V’
be the set of nodes v € VG such that either [N(v)| = 3 or |N(v)| = 2and y(N(v)) = &
or |N(v)| = 1 and v is a node of a two node connected component of G.

Pulleyblank and Edmonds [28] found a description of the unique minimal defining
system for P(G), the convex hull of the matchings of G. Their result is as follows:

THEOREM 2.2. The unique (up to positive scalar multiples of the inequalities) minimal
defining system for P(G) is

x,20 Ve€EG,
x(8;(v)) =1 WeV, (22)

x(v(8)) = |IS1/2] foreach S C VG, |S| 2 3, G[S] hypomatchable with no cusnode.

A short proof of this result due to L. Lovasz can be found in Cormuéjols and
Pulleyblank [11]. The result follows from a more general theorem presented in §3.

Cunningham and Marsh [13] proved that the linear system (2.2) is totally dual
integral, which immediately implies the following result.

THEOREM 2.3. The Schrijver system for P(G) is (2.2).

This result also follows from a more general theorem given in §3.

A short proof of Theorem 2.3, which does not use the result of Pulleyblank and
Edmonds [28], is given in Cook [8], where it is also shown that this theorem is related
to a result of F. R. Giles on a type of separability for graphs. Let k be the maximum
cardinality of a matching of G. Let E, and E, be nonempty subsets of EG with
E, U E, = EG. Let k; be the maximum cardinality of a matching of G contained in
E,i=121f k; + k2 = k, then (E,, E,) is a matching separation of G. The graph G
is matching separable if there exists a matching separation of G and matching
nonseparable otherwise. The following result is due to F. R. Giles.

THEOREM 24. A graph G is matching nonseparable if and only if either G is
isomorphic to K, , for some n or G is hypomatchable with no cutnode.

To see the connection of this theorem to the theorem of Cunningham and Marsh, we
state an easy general result on separability, the proof of which can be found in Cook
[8]. Let E be a finite set and / a finite set of nonnegative integer vectors a = (a.:
eEE) The pair (E, I) is a general independence system if 0 € I and for each a € I
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and nonnegative integral b < a we have b € I (so (E, I) is an independence system if
each a € I is 0-1 valued). The rank, r(A4), of a set 4 C E is the maximum value of
x(A) over all vectors x € I. A set A C E is closed if for each e € E-A we have
r(A U {e}) > r(A). A separation of a set A C E is a pair of nonempty subsets 4,, 4,
of A such that 4, U 4, = A and r(A4,) + r(A,) = r(A). If there exists a separation of
A C E then A is separable (otherwise A is nonseparable). Let C(I) denote the convex
hull of 1. N

LEMMA 2.5. Let (E, I) be a general independence ;system. Suppose that r({e}) = 1
Ve € E and that

x(A) sr(A) VACE, A+ 2, (2.3)

x,z0 VeekE,

is a totally dual integral defining system for C(I). Then an inequality x(A) < r(A) is in
the Schrijver system for C(I) if and only if A + @ is a closed nonseparable set.

This lemma combined with the Cunningham and Marsh resuit gives a proof of the
characterisation of matching nonseparable graphs given in Theorem 2.4. Conversely, it
is not difficult to show that Theorem 2.4, together with Edmonds’ matching algorithm
and the above lemma, yields a quick proof of the theorem of Cunningham and Marsh
(see Cook [8]). We will use Lemma 2.5 in §§3, 4, and 5.

Let b= (b, v € VG) be a positive integer vector. A b-matching of G is a
nonnegative integer vector x = (x,: e € EG) such that x(8(v)) < b, for each v € VG.
A b-matching of G with b, =1 for each v € VG is a matching. A construction of
Tutte [36] can be used to deduce results on b-matchings from results on matchings:
Replace each node » € VG by the new nodes v,,v,,..., v, and replace each edge
(u, v) € EG by the new edges (u;,v;), i = 1,...,b,, j=1,..., b,. A matching in the
new graph corresponds to a b-matching in the original graph and vice versa. As
presented in Schrijver [31], the total dual integrality of (2.1) for the new graph implies
that the linear system

x,20 Vee€EG, (2.4)
x(8(v)) £b, VvEVG,
x(v(8)) s |6(8)/2] VSc VG, S|z 3.

is a totally dual integral defining system for P(G, b), the convex hull of the b-match-
ings of G. This result is an easy consequence of Edmonds’ [14] b-matching algorithm
(see Pulleyblank [24,25]) and has also been proven by Hoffman and Oppenheim {21]
and Schrijver and Seymour [33].

The analogue of a hypomatchable graph for b-matchings is a b-critical graph. The
graph G is b-critical if for each v € VG there exists a b-matching X of G such that
%(8(v)) = b, — 1 and X(8(w)) = b, for each u € VG-{v). (Again note that b-critical
graphs are necessarily connected.) Let ¥ be the set of nodes v € VG such that
B(N(v)) 2 b, + 2 or b(N(v)) = b, + 1 and y(N(v)) = @ or v belongs to a two node
connected component of G and b, = b, where u is the other node of the component.
Pulleyblank {24] proved the following result.
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THEOREM 2.6. The unique (up to positive scalar multiples of the inequalities) minimal
defining system for P(G, b) is

x,z20 Vee EG, (2.5)
x(8;(v)) b, VeV,
x(v(8)) 5 16(8)/2] foreach S C VG, S| 2 3, G[S]
b-critical with no cutnode v having b, = 1.

This theorem generalises Theorem 2.2. In §4 we will indicate how this result follows
from a more general result given in that section.

Unlike the matching case, (2.5) is not totally dual integral in general. This can be
seen by considering a triangle with b, = 2 for each node v and weight w_ = 1 for each
edge e. Such a triangle is an example of a b-bicritical graph. A graph G is b-bicritical if
it is connected and for each v € VG there exists a b-matching x of G such that
X(8(v)) = b, — 2 and x(8(u)) = b, for each u € VG-{v}. Cook [6] and Pulleyblank
[26] independently proved the following result.

THEOREM 2.7. The Schrijver system for P(G, b) is (2.5) together with the inequalities

x(v(S)) < b(8)/2 foreach S C VG, |S| 2 3, G[S] b-bicritical (2.6)
and b, > 2 for each node v € VG-S which
is adjacent to anode in S.

Since b, 2 2 for each v € VG if G is b-bicritical, this theorem implies the result of
Cunningham and Marsh on matching systems. We will also indicate later how this
theorem follows from a resuit given in §4.

We close this section by presenting a fundamental theorem on b-matchings due to
Tutte [34, 35). This theorem will be used in §3. A b-matching X of G is perfect if
X(8(v)) = b, foreachv € VG. If S C VG, let

€°(S) = {v € VG-S: G[{v}] is a connected component of G[VG-S]} (2.7)

and let

€'(S) = {R C VG-S: |R| 2 2, b(R) is odd and G[R] 23)
is a connected component of G[VG-S]}.

Tutte’s b-matching theorem is as follows.

THEOREM 2.8. A graph G has a perfect b-matching if and only if for each S C VG,
b(S) Z b(¥°(5)) + |€'(S)}.

The total dual integrality of (2.4) can be used to prove this theorem by setting
w, = 1 for each ¢ € EG.

3. Simple b-matchings. We will now consider a constrained variation of b-match-
ings. Throughout this section, let G be a graph, possibly with multiple edges, and
b = (b,: v € VG) a positive integer vector. A simple b-matching of G is a subset M of
EG such that each node v € VG meets at most b, edges in M. A perfect simple
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b-matching (that is, a simple b-matching which meets each node v € VG in exactly b,
edges) is often called a “b-factor”. Again, we indentify a simple b-matching M with its
incidence vector x = (x;: j € EG).

Given a vector w = (w,: e € EG) of edge weights, the simple b-matching problem
is to maximize wx over all simple b-matchings of G. Tutte [36] described the following
construction, which reduces a simple b-matching problem to a b-matching problem.
For each edge e = (u, v) of G (although G may have multiple edges, for simplicity
edges will still be referred to as unordered pairs of nodes) add nodes u, and v, to VG
and replace e by the edges (u,u,), (u,,0,), (v, ). Also, for each e € EG let
b, =b,=1and w, ,),=W,_ ,)=We,. =W, The maximum weight of a b-
matching in the new graph is exactly Z(we: e € EG} greater than the maximum
weight of a simple b-matching of G. As presented in Araoz, Cunningham, Edmonds,
and Green-Kr6tki [2] and Schrijver [31], this construction, together with the total dual
integrality of (2.4), implies the following result, which is an easy consequence of a
theorem of Edmonds and Johnson [17].

THEOREM 3.1. A totally dual integral defining system for the convex hull of the simple
b-matchings of G is

0<x,£1 Ve€EG, (3.1)
x(8(v)) £b, Vv E VG,
x(v(S)) + x(J) s [(b(S) +17))/2] VS VG, Jcb(S).

If H is a subgraph of G, then for each v € VH let b = min{b,, d,(v)}. The
largest simple b-matching of G is of cardinality at most [b%(VG)/2]. Let 5 be the
set of all connected subgraphs of G which have at least 3 nodes. Theorem 3.1 implies
that

O0sx,g£1 Ve€EG,
x(8;(v)) s b, Vv€EVG, (3.2)
x(EH) < |b#(VH) /2| VH e #,

is a totally dual integral defining system for S(G, b), the convex hull of the simple
b-matchings of G. By a series of results in this section, the unique minimal subset of
these inequalities which defines S(G, b) and the Schrijver system for S(G, b) will be
characterised.

We begin with a variation of Tutte’s b-matching theorem. As presented in Schrijver
[31], to determine if G has a perfect simple b-matching, the above transformation of
Tutte can be applied to G to obtain a new graph G’ and then Tutte’s b-matching
Theorem can be applied to G’. Suppose that S C VG and T C VG-S. Let

o(s,T) = z{bv —dge.s(v): v E T} (3.3)

and let GT(VG-S) be the graph obtained from G[VG-S] by taking each node v € T
and splitting it int0 d gy 5,(v) nodes, cach with b, = 1 (that is, replace v by the nodes
Uy, - .-, Uy, Where k = dgiy.51(v), and replace the edges (uy, 0), (15, 0), ..., (%, V) by
the edges (v, 0), i=1,...,k, andlet b, = 1,i=1,..., k). Let 2,(S, T) denote the
set of odd connected components of G'(VG-S) which contain at least two nodes. (A
connected component G, of GT(VG-S) is odd if b(VG;) is odd.) Notice that each
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connected component of GT(VG-S) corresponds to a subgraph of G[V'G-S). Using
Tutte’s b-matching Theorem, the following result can be proven.

THEOREM 3.2. There exists a perfect simple b-matching of G if and only if ¥S C VG
and VT C VG-S: b(S) 2 Q(S,T) + |28, T)}

PROOF. Suppose that G has a perfect simple b-matching M and let § C VG and
T ¢ VG-S. Let M’ = M N y(VG-S). Since M’ corresponds to a simple b-matching of
GT(VG-S) of cardinality |M’|, we have b(VGT(VG-S)) — 2|M’| 2 |2,(S, T)}. Since
b(VGT(VG-S)) = b(VG-S) — Q(S, T), this implies that b(VG-S) — 2|M'| must be at
least Q(S,T) +|2,(S,T). Now since M is a perfect simple b-matching of G,
b(S) 2 b(VG-S) — 2IM'| 2 Q(S, T) + |19,(S, T)}.

Conversely, suppose that G does not have a perfect simple b-matching. Let G’ be the
graph obtained from G by replacing each edge e = (u, v) € EG by the edges (u, u,),
(u,, v,), (v,, v) and adding u, and v, to VG with b, = b, = 1. Since G does not have
a perfect s1mple b-matching, G’ dm not have a perfect b-matching. So, by Tutte’s
b-matching theorem, there exists a set X C VG’ such that b(X) < b(¥°(X)) +
|€Y(X)} Let X be such a subset of ¥G’ and let S = {v € VG: v € X}. It may be
assumed that for each edge e = (w,v) of G, if u€ S and v € S then u, € X and
v, € X. It may also be assumed that for each edge ¢ = (u,v) € EG, if u € § and
v € S then neither ¥, nor v, is in X. Furthermore, it may be assumed that for each
edge e = (u,v) € EG, if u & S and v € S then u, € X only if u, € X for each edge
f=(u,q)such that g € VG-S. Let T = {v € VG-S: v € ¥°(X)}, that is, T is the set
of nodes v € VG-S that are isolated in G'[VG’-X]. Since b(X) < b(€°(X)) + |€}( X)),
we have b(S) < Q(S,T) + |2:(S.T)| =

We will use this theorem to prove some results on simple b-matching separability. A
simple b-separation of G is a partition of EG into nonempty subsets E, and E, such
that if k; is the cardinality of a largest simple b-matching of G contained in E,, for
i = 1,2, then k, + k, is the cardinality of a largest simple b-matching of G. If G has a
simple b-separation then G is simple b-separable (otherwise G is simple b-nonseparable).
These definitions are analogous to those for matching separability given in the previous
section.

As in the b-matching case, critical graphs play an important role here. If G is
connected and |VG| > 3, then G is simple b-critical if for each v € VG there exists a
matching of cardinality | /°(V'G),/2| which contains exactly b — 1 edges which meet v
(that is, for each v € VG there exists a perfect simple b’-matching of G where
b, =5%—1 and b, =b¢ for all u € VG-{v}). The graph given in Figure 1 is an
example of a simple b-critical graph with b, = 2 for each node v. (Note that in this
example bZ = 1 for all nodes of degree one and b¢ = 2 for all other nodes.) We have
that if G is simple b-critical then b°(VG) is odd If G is connected, |VG| Z 3, and
bS(VG) is even, then G is simple b-bicritical if for each v € VG there exists a simple
b-matching of G of cardinality (b°(VG)/2) — 1 which contains exactly b¢ — 2 edges

Ficure 1
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which meet v. The complete graph on four nodes with b, = 2 for each node v is an
example of a simple b-bicritical graph. Notice that this example of a simple b-bicritical
graph has a perfect simple b%-matching. We will use Theorem 3.2 to show that every
simple b-bicritical graph has this property.

LemMa 3.3.  If G is a simple b-bicritical graph then G has a perfect simple b®-match-
ing.

PROOF. Suppose that G is simple b-bicritical. Let S € VG and T C VG-S. by
Theorem 3.2, it suffices to show that 5°(S) > QY(S, T) + |2£(S, T)|, where Q%(S, T)
and 28(S, T) are Q(S, T) and 2,(S, T) with respect to h°. Suppose that S # & and
let v € S. Let b, = bC — 2 and b, = b for all u € VG ~ {v}. Since G has a perfect
simple b’-matching, b'(S) 2 Q'(S, T) + |21(S, T')|, where Q'(S, T) and 2{(S, T) are
Q(S,T) and 2,(S,T) with respect to b’. Now b%(S)=b'(S)+2, Q'(S,T)=
Q9Y(S, T), and D}(S, T) = DE(S, T). So b%(S) = QS, T) + |2£(S, T)|. Now sup-
pose that S = @, If T = VG then QY9(S, T) < 0 and |2£(S, T)| = 0, which implies
that 59(S) = QY%S, T) + |28(S, T)|. Suppose that VG — T+ & and let v € VG ~
T. Define b’ as above. Again, Theorem 3.2 implies that 5'(S) 2 Q'(S, T) + |2(S, T)}
Since b'(S) = b%(S) =0, Q(S,T) = Q%S, T), and D{(S,T) = DZ(S, T), we have
b9(S) 2 Q%S, T) + |2{(S.T)|. =

The following lemma gives the relationship between simple b-separability and the
notions of criticality defined above.

LEMMA 34. A connected graph G with \VG| 2z 3 is simple b-nonseparable only if it is
isomorphic to K, ,, for some n (with multiple edges allowed) or simple b-critical or simple
b-bicritical.

PrOOF. Since (3.2) is a totally dual integral defining system for S(G, b), Lemma 2.5
implies that G is simple b-nonseparable if and only if x(EG) < r(EG) is in the
Schrijver system for S(G, b), where r(EG) is the cardinality of a largest simple
b-matching of G. Suppose that G is simple b-nonseparable and that G is not
isomorphic to K, , for some n. By the above comment, we must have r(EG)
= |b9(VG) /2|, since x(EG) < r(EG) must be present in the system (3.2). We will
deal with the cases where b%(¥V'G) is odd and where b°(VG) is even separately.

Case 1: b°(VG) is odd. We must show that G is simple b-critical. Suppose that
u € VG is a node such that there does not exist a perfect simple »’-matching, where
b,=b¢ -1 and b, = bC for each v € ¥G-{u}. (If no such node exists then G is
simple b-critical.) We will use Theorem 3.2 to show that G has a simple b-separation.

By Theorem 3.2, there exists S C VG and T € VG-S such that

b(8) < Q'(S,T) +19:(S,T)| (34

where Q'(S,T) and 2{(S,T) are Q(S,T) and D,(S, T) with respect to b’ and G.
(Note that since b'(VG) is even, either S # & or 2{(S,T) # @ for any sets S C VG
and T C VG-S for which (3.4) holds.) Let § and T be such subsets of ¥G (it may be
assumed that if v € VG-S and dgy6.5(v) = 0, then v € T). The inequality (3.4)
implies that

b°(S) £ Q9(S,T) +19{(S, T) (35)

where Q9(S, T) and 2£(S, T) are (S, T) and 2,(S, T) with respect to b° and G.
Let 2 be the set of all connected components of G'(V'G-S). Each connected compo-
nent H of G'(VG-S) corresponds to a subgraph H of G. Note that if H is in 9 then
bH(VH) < b°(VH).
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From the definition of Q¢(S, T) and 9 the following equality holds
be(VG) = bS(S) + QY(S,T) + b%(2) (3.6)
where b%(2) = L{bS(VH): H € D). The inequality (3.5) implies that
bO(VG) 2 b°(VG) + b%(S) — Q°(S,T) — |128(S, T)|. (3.7)
Combining (3.6) and (3.7) gives

bS(VG) = 25(S) + bS(D) — |95(S, T))- (3.8)
It follows that
[69(VG) /2] 2 b9(S) + (b%(2)/2) — (12:(5.T)\/2) (39

which is equivalent to

[66(VG) /2] 2 bS(S) + {|p°(VH) /2|: He 2}. (3.10)
This inequality implies that
[66(VG) /2] 2 b9(S) + T{|6%(VH)/2|: He 2}. (3.11)

(Note that each edge in EG is either in §;(v) for some v € S or in EH for some
He 2)If S # @, then (3.11) gives that (8;(v), EG-85(v)) is a simple b-separation of
G forany veE S. If S= &, then |2| 2> 2 (since 2;(S,T) # &) and, thus, (3.11)
implies that (EH, EG-EH) is a simple b-separation of G for any H € 2.

Case 2: b°(VG) is even. In this case we must show that G is simple b-bicritical.
Suppose that u € VG is a node such that there does not exist a perfect simple
b’-matching of G, where b, = b — 2 and b, = bF for each v € VG-{u}. (If no such
node exists then G is simple b-bicritical.) If b¢ = 1, then (85(u), EG-8;(u)) is a simple
b-separation of G, since G has a perfect simple b°-matching. So it may be assumed
that b, > 0. Let S € VG and T C VG-S be sets such that

b(S) < Q'(S,T) +12:(S.T)] (3.12)
holds. This inequality implies that
b°(S) < Q°(S,T) +|DE(S,T)| + 1. (3.13)

Now since H®(VG) is an even integer, (3.6) implies that b%(S) + QY(S,T) +
|DE(S, T)| is an even integer. So (3.13) implies (3.5). Thus, a simple b-separation of G
can be foundasinCase1l. =

If G is a simple b-critical graph and G has a cutnode v with b, = 1, then it is easy to
see that G is simple b-separable. (Let G, be a connected component of G[VG-{v}].
Since G is simple b-critical and b, = 1, b9(VG,) is even and bS(VG-VG,) is odd.
Thus, (Y(VG, U {v}), Y(¥G-VG),)) is a simple b-separation of G.) However, unlike the
matching case (see Theorem 2.4) and the b-matching case (see Theorem 2.7 and Cook
[8]), it is not true that if G is simple b-critical and G has no cutnode v with b, = 1 then
G is simple b-nonseparable. Consider the graph H given in Figure 2 with b, = 2 for
each node v. ‘
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It is easy to check that H is simple b-critical (due to symmetry, H has essentially only
four different types of nodes). However, H has a simple b-separation as indicated by
the bold-faced edges in Figure 2. (Letting E; be the set of bold-faced edges,
(E,, EH-E,) is a simple b-separation of H.)

If G is a simple b-critical graph and M is a simple b-matching of G of cardinality
|9(VG) /2], then M is a near-perfect simple b-matching of G. For each near-perfect
simple b-matching of G there exists a unique node v € VG such that M is deficient at
v (that is, M contains exactly 5S — 1 edges which meet v). An edge e = (u, v) is full
with respect to node u if e is contained in every near-perfect simple b-matching of G
deficient at u. Notice that the edge ( p, ¢) indicated in the graph given in Figure 2 is
full with respect to p, when b, = 2 for each node v of the graph.

THEOREM 3.5. A simple b-critical graph G is simple b-nonseparable if and only if
bZ = d;(v) for each node v € VG which meets an edge (u, v) € EG that is full with
respect to u and the graph G'(VG), where T = (v € VG: bf = d(v)}, is connected
with no cutnode q having b, = 1. (Recall that G™(VG) is obtained from G by replacing
each node v € T by the nodes v,,...,v,, where k = d (v), and replacing the edges
(43, ), ..., (1, v) by the edges (uy, v,),...,(u,, v,) and letting b,=1i=1,...,k)

PrOOF. Let G be a simple b-critical simple b-nonseparable graph. Suppose that
edge e = (¥, v) € EG is full with respect to u and that b < d(v). Let G’ be the
graph obtained from G by adding a new node v’ to ¥G with b, = 1 and replacing
e = (u, v) by the edge e’ = (u, ). Since bF < dy(v), bS(VG’) = bS(VG) + 1, which
is an even number. If M’ is a perfect simple b-matching of G’, then ¢’ € M’ and
M = M’-{e’} is a near-perfect simple b-matching of G deficient at u which does not
contain the edge e. So G’ has no perfect simple b-matching and hence, by Lemma 3.3,
is not simple b-bicritical. So Lemma 3.4 implies that G’ has a simple b-separation
(Ej, E;). We may assume that ¢’ € E{ and e’ € E;. Let E; = (E{-{e'}) U {e)} and
E, = E;. Since the cardinality of a largest simple b-matching of G’ is equal to the
cardinality of a largest simple b-matching of G, (E,, E,) is a simple b-separation of G,
a contradiction. So b¢ = d(v) for each node v € VG which meets an edge (u, v) € EG
that is full with respect to u.

The graph G is simple b-nonscparable if and only if G'(VG), where T = {0 € VG:
be = G(v)}, is simple b-nonseparable. Clearly, G™(VG) is connected. Since
b5 YYGH(VG)) is odd and GT(¥G) is simple b-nonseparable, Lemma 3.4 implies
that G*(V'G) is simple b-critical. Thus, G'(VG) has no cutnode g with b, = 1, since
every simple b-critical simple b-nonseparable graph has this property.
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Conversely, let G be a simple b-critical graph such that bS = d;(v) for each node
v € VG which meets an edge (u, v) € EG that is full with respect to ¥ and such that
the graph GT(VG), where T = {v € VG: b = d(v)}, is connected with no cutnode g
having b, = 1. If e = (4, v) € EG is contained in every near-perfect simple b-match-
ing of G then e is full with respect to ¥ and full with respect to v and, hence, forms a
connected component of GT(VG). Since GT(VG) is connected, no such edge exists.
This implies that G'(VG) is simple b-critical and also that GT(V'G) has no separation
of the form ({e}, EGT(VG) — {e}) for some e € EGT(VG). From the condition on
full edges of G, if (u, v) € EGT(VG) is a full edge with respect to u in G'(VG) then
b, = 1. We will show that G(VG) is simple b-nonseparable, which implies that G is
also simple b-nonseparable.

To simplify the notation, let G’ denote the graph GT(VG). Suppose that G’ is simple
b-separable. Let E,,..., E, be nonempty subsets of EG’ such that

() E,V - - VE, = EG, (3.149)

(ii) for i = 1,..., k the graph G, with edge set E; and node set {v € VG’: v meets
an edge in E,} is simple b-nonseparable, and

(iii) if 7, is the cardinality of a largest simple b-matching of G,, i = 1,..., k, then
r, + -+ +r, is the cardinality of a largest simple b-matching of G'.

Since G’ is simple b-critical, G’ does not have a simple b-separation of the form
(85(v), EG'-8¢/(v)) for some v € VG'. Thus, for j = 1,..., k, G, is not isomorphic to
K, , for some n. So Lemma 3.4 implies that for each j € {1,..., k}, G; is either
simple b-critical or simple b-bicritical.

Claim 1: For each j € (1,...,k}, bS% = b, for each v € VG,

Suppose that the claim is not true for the graph G,. Let v € VG; be a node with
b% < b, and let e = (u,v) € EG, be an edge which meets v. If G, is simple
b-bicritical, then ({e}, EG,-{e}) is a simple b-separation of G,. So G, must be simple
b-critical. Now, by (3.14)iii), if M’ is a near-perfect simple b-matching of G’ then
M’ N E, is a near-perfect simple b-matching of G,. So if M’ is a near-perfect simple
b-matching of G’ deficient at u, then e must be contained in M’. So e is full with
respect to u and b, = 1, contrary to the assumption that 5% < b,, which proves the
claim.

So bS(VG,) = b(VG;) and r,= |b(VG;)/2] for each j € (1,..., k). Since G’ is
simple b-separable, k must be at least 2.

Claim 2: b(VGy) + --- +b(VG,) 2 b(VG’) + k.

Since b(VG’) is odd, this claim implies that (3.14)(iii) is not satisfied, a contradiction.
To prove the claim, define a graph H with nodes ¢#,,..., ¢, and an edge (¢, ;) for all
i + j such that VG, N VG; # @. Since G’ is connected, the graph H is connected and
|EH| 2 k — 1. Since b(VG,) + --- +b(VG,) 2 b(VG') + |EH|, we may assume that
|EH| =k — 1. Let ¢, be a node of degree 1 in H and let /; be the node in VH that is
adjacent to 7, Since G’ has no cutnode ¢ with b, =1, b(VG, N VG;) 2 2, which
completes the proof of the claim and the proof of the theorem. =

REMARK 3.6. This theorem yields a polynomial time algorithm for testing whether
or not a graph G is a simple b-critical simple b-nonseparable graph. Indeed, using
Edmonds’ [14, 15) blossom algorithm and a “scaling” argument, similar to the one used
by Edmonds and Karp [18] to solve min-cost flow problems, Cunningham and Marsh
(see Marsh [23]) developed a polynomial time algorithm for the b-matching problem.
(A different polynomial time algorithm for the b-matching problem has been found by
Anstee {1]. Anstec’s algorithm uses a polynomial time min-cost flow algorithm as a
subroutine and thus avoids a separate “scaling” argument.) Using the construction of
Tutte mentioned earlier, this algorithm can be used to solve simple b-matching
problems in polynomial time, which implies that it is possible to test whether or not G
is simple b-critical in polynomial time. This simple -matching algorithm can also be
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used to check that b¢ = d;(v) for each node v € VG which meets an edge (4, v) € EG
that is full with respect to u. It only remains to check that G(V'G) is connected with
no cutnode g having b, = 1, which can be done easily in polynomial time.

Using Theorem 3.5, we will show that simple b-critical simple b-nonseparable
subgraphs of G produce a class of essential inequalities for S(G, b). The proof
technique used here is a generalisation of one used by L. Lovasz to give a short proof
of the corresponding result for matching polyhedra. (This short proof of L. Lovasz can
be found in Cornuéjols and Pulleyblank [11] and Lovasz and Plummer [22a}.)

LEMMA 3.7. Let H be a subgraph of G with VH| =z 3. If the inequality
x(EH) < |b*(VH) /2] (3.15)

is not x(8(v)) < b, for some v € VG, then it is essential for S(G, b) if and only if it is
simple b-critical and simple b-nonseparable and there does not exist an edge e = (u,v) €
EG-EH with u,v € VH and dy(u) 2 b, and dz(v) > b,.

PrOOF. Let H be a connected subgraph of G with [VH| 2 3 such that (3.15) is not
x(85(v)) < b, for some v € VG. Suppose that (3.15) is essential for S(G, b). Clearly,
H is a simple b-nonseparable graph and has a simple b-matching of cardinality
|6¥(VH)/2). By Lemma 3.4, H is simple b-critical or simple b-bicritical. If H is
simple b-bicritical, then (3.15) can be obtained by summing the valid inequalities
x(84(v)) s b for each v € VH and dividing the resulting inequality by 2. So H must
be simple b-critical and simple b-nonseparable. If there exists an edge e = (¥, v) €
EG-EH with u,v€ VH and dy(u)2 b, and dgy(v) 2 b,, then x(EH) + x,
< |p#(VH) 2] is a valid inequality for S(G b). So no such edgc exists.

Conversely, suppose that H is simple b-critical and simple b-nonseparable and that
there does not exist an edge as described in the statement of the lemma. Let .# be the
set of all simple b-matchings of G for which x(EH) = |b¥(VH)/2|. Suppose that
ax < a is a valid inequality for S(G, b) and that ax = a for each X € .4 and that a is
not the vector of all zeros. We will show that a, = 0 for all e € EG-EH and that for
some number A >0, a,= A for each e € EH. This implies that (3.15) is facet
inducing for S(G, b) and hence essential for S(G, b) (see, for example, Pulleyblank
27).

Suppose that e = (u, v) € EG-EH. To show that a, = 0 it suffices to show that
there exists a simple b-matching M € .# such that ce M (since M-{e} is also a
member of .4, which implies that a + a, = a). If neither u nor v is in VH, then
clearly such an M exists. Ifexactlyoncofuand v, say v, is in VH then let M be a
neax-perfect simple b-matching of H deficient at v and let M = M U {e}. If both u
and v are in VH, then at least one of « and v, say v, must have dy(v) < b,. In this
case, let M be a near-perfect simple b-matching of H deficient at w andlet M = M U
{e}.

Since ax < a is valid for S(G, b) and since each edge e € EH is in a near-perfect
simple b-matching of H (as H is simple b-critical), we have that a, > 0 for each
e € EH. So a, > 0 for some edge / € EH. Suppose that it is not true that g, = g, for
each e € EH.

Let H’ denote the graph H'(VH), where T = {v € VH: dy(v) = bF }. By Theorem
3.5, H' is simple b-critical and connected. So there exist a node v € VH’ and edges
P Z € 85.(v) such that a, # g,. (We identify edges in EH’ with their corresponding
edges in EH.) Let ﬂum{a e € 8,.(v)). Let J = {e € 85(v): a,= B} and let
K = 84(v)J.
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Claim. There exist an edge e = (s, v) € K and a near-perfect simple b-matching M
of H’ deficient at s such that e & M and M NJ + 2.

Once the claim is shown, the proof will be complete, since if f € M NJ then both M
and (M-{f}) U {e} are members of .#, which implies that a, = a;, a contradiction
(since a,= B and a, > B).

Casel: b,= 1. Let H" be the graph obtained from H’ by splitting the node v in the
following way: Replace v by the nodes v’, v”” with b, = b,. = 1 and replace each edge
(t,v) € J by (1,v") and each edge (¢, v) € K by (¢, v”). Suppose that H” does not
have a perfect simple b""-matching. By Lemma 3.4, H” has a simple b-separation.
Since the cardinality of a largest simple b-matching in H” is equal to the cardinality of
a largest simple b-matching in H’, this implies that H’ is simple b-separable and hence
that H is simple b-separable, a contradiction. So there exists a perfect simple
b# -matching M of H". Letting e be the unique edge in M which meets the node v”
and letting M = M-{e}, the conditions in the claim are satisfied. (Again, edges in
EH" are identified with the corresponding edges in EH’).

Case 2: b, 2> 2. By Theorem 3.5, there is no edge (u, v) € 8.(v) that is full with
respect to u in H'. Let f'!'=(u,v)€J and let M! be a near-perfect simple
b-matching of H’ deficient at u such that f!'& M!. Choose edge f?>€ K and
near-perfect simple b-matching M2 of H’ such that

(i) M? is deficient at ¢ and f2 & M? (where q is the end of f2 which is not v) and

(3.16)

(ii) of all edge, near-perfect simple b-matching of H’ pairs which satisfy (i),
IM' N M?|is as large as possible.

If M2NJ+ &, then M= M? and e = f? satisfy the conditions of the claim.
Similarly, if M' N K # @, then any e € M' N K and M = (M'~{e}) U { f!} satisfy
the conditions of the claim. So we may assume that M! N K= @ and M’ NnJ = 2.

Since M! is deficient at u and M? at ¢, there exists a trail T = ue,v,e,0;, - €,,9
in H' such that {e,,e;,...,€,,_ 1} S M, — M, and {e,,¢,,...,e,,} S M, — M,. (A
trail is defined as in Bondy and Murty (5}, thatis e, € EH fori = 1,...,2k, v, € VH'
for i=1,...,2k—1, e;#¢; for i+, el—(u vy), ez—-(vl,vz), s €y =
(V2x—1> 9)- To sec that such a trail T exists, consider M A M2, the symmetric difference
of M! and M%) Let ET = {e;, e,,.. e2k}

Suppose that |[ETNJ| < 1. Let M (M'-{ey, eq,..., 5, U {elv €355 €1}
Since {e}, €3,..., €51} N M = @ and {e,, e,,...,€,,} € M', M is a near-perfect
simple b-matching of H’ deficient at g¢. Since b, z 2 and M1 N K= @, we have
IM'NJ|2 2 and hence M NJ # @. So M and e-—f2 satisfy the conditions of the
claim.

Now suppose that |[ET N J| 2 2. We must have v, = v and v; = v for some i, j in
{1,2,...,2k -1}, i<j. If e,€ K then ¢, € M2~ M" and hence M’--(M1
{es€4s...,€6,_1 DU {ey€5,...,€,_,} is a near-perfect simple b-matching of H’
deficient at v;_, which does not contain e, = (1,_,, v) € K. Since |M> N M!| > |M?

N MY}, this contradicts the choice of the pair f2, M2 So we may assume that ¢, € J
and thate,,, € K (since M2NJ = @ and M' N K = 2). Bythesamcargument we
may also assume that ¢; € J and ej+l € K. Notice that ve, (v, €., *-* ;0 is a trail
from v to v with {e,H, 435+ 1} EM?— M and {e;,,,€,,...,¢ } c M -
MZ So M3 = (M {el+l’ i+3r°> }—1}) U {el+2’ Cirdreer € } isa nea.r—pcrfect sim-
ple b-matchmgofH’deﬁcxentat g. Since f%2 € K and iMan; 2, f? is not in
M? and hence not in {e,,5, €144,--., &;). S0 f2 & M>. However, |M* N M| > |M?
nM‘],aeontradicﬁon,whxchcompletestheproofofthelemma. .

ReMARK 3.8. It is possible to prove a structural result for simple b-critical simple
b-nonseparable graphs similar to Lovasz’ [22] result on ear-decompositions of hypo-
matchable graphs (see also Cornuéjols and Pulleyblank [12]). This structural result can
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be used to prove Lemma 3.7 by constructing |EG]| affinely independent simple
b-matchings of G which satisfy (3.15) with equality. However, at present, our proof of
these statements is tedious and has therefore been omitted in favor of the proof of
Lemma 3.7 given above.

A consequence of Lemma 3.7 and Theorem 3.1 is that

(i) 0 s x,51Ve € EG, 317

@) x(85(v)) < b, Vv € VG, -

(iii) x(EH) s |b"(VH)/2] for each simple b-critical simple b-nonseparable sub-

graph H of G,

is a defining system for S(G, b). Thus, to prove that an inequality is essential for
S(G, b) it suffices to exhibit a vector X which does not satisfy the inequality but does
satisfy each of the other inequalities in (3.17). This technique will be used to
characterise which inequalities in (3.17)i) and (3.17)X(ii) are essential for S(G, b).

LEMMA 3.9. For each e € EG, x, 2 0 is an essential inequality for S(G, b).

PROOF. Let e € EG and let x, = —1 and x, = 0 for each f € EG-{e}. The vector
x does not satisfy x, > 0 but it does satisfy each of the other inequalities in (3.17). =

LeMMA 3.10. Let e € EG. The inequality x, < 1 is essential for S(G, b) if and only if
e does not meet a node v with b, = 1 and d(v) > 1.

ProoF. If e meets a node v with b, = 1 and d;(v) > 1, then x(8(v)) < 1 implies
the inequality x, < 1. Suppose that e does not meet such a node v. Let x, = 2 and
x,= 0 for each f € EG-{e}. The vector x does not satisfy x, < 1 but it does satisfy
each of the other inequalities in (3.17). =

LemMMA 3.11. Let v € VG and let b, = min{b,|6(u) N 8(v)|} for each node u €
N(v). The inequality x(8(v)) < b, is essential for S(G, b) if and only if one of the
following conditions holds:

(i) b’ (N(v)) = b, and (ii) v belongs to a connected component of G (3.18)
which contains exactly two nodes and (iii) if d;(v) < b, then b, = 1. ’

@) b'(N(v)) = b, + 1 and (ii) there is no edge (v,, v,) € Y(N(v)) such (3.19)
that b, = b, and b, = b, :

P(N(v)) 2 b, + 2. (3.20)

PrROOF. Suppose that b’(N(v)) < b, and that (3.18) does not hold. The inequality
x(8(v)) < b, is implied by the inequalities x, < 1 for each ¢ € §(v) and x(8(u)) < b,
for each u € N(v). Now suppose that (3.18) holds. Let x, = 1 for each e € §(v) (if
dg(v) = 1let x, = 2 for e € 8(v)) and let x, = 0 for each e € EG-§(v). The vector x
does not satisfy x(8(v)) < b, but it does satisfy each of the other inequalities in (3.17).
So x(8(v)) < b, is essential for S(G, b).

Suppose that '(N(v)) = b, + 1 and that (3.19) does not hold. Let ¢’ = (v,, ;) €
¥(N(v)) be an edge such that b, = b and b, = b] . The inequality x(§(v)) + x. 5 b,
is valid for S(G, b) and implies x(8(v)) 5 b,. Now suppose that (3.19) holds. For each
u € N(v) select b, edges from 8(ux) N 8(v) and let J be the collection of these edges.
Let x, = 1 for each e € J and x, = 0 for each e € EG-J. The vector x does not satisfy
x(8(v)) < b, but it does satisfy each of the other inequalities in (3.17). So the
inequality x(8(v)) < b, is essential for S(G, b).

Suppose that b'(N(v)) 2 b, + 2. Let J be a collection of b, + 2 edges in §(v) such
that |J N 8(u)| 5 b, for each u € N(v). Let X, = b,/(b,+ 1) for cach e € J and
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X, = 0 for each e € EG-J. The vector X does not satisfy x(8(v)) < b, but it does
satisfy each of the other inequalities in (3.17)i) and (3.17)ii). Let ax < B8 be an
inequality in (3.17)iii). Let S be a proper subset of J. If |S| < b,, then X(S) < |S|and
S is a simple b-matching of G. If |{S|= b, + 1, then X(S) = b, and S contains a
simple b-matching of cardinality b,. So if a, # 1 for some e € J then X satisfies
ax < B. On the other hand, if a, =1 for each e €J then B must be at least
(b, + (b, + 2))/2] = b, + 1. Since X(J) < b, + 1, if @, =1 for each e € J then X
satisfies ax < B. So X satisfies all other inequalities in (3.17), which implies that
x(8(v)) £ b, is essential for S(G, b). =

Using these lemmas, the minimal defining system for S(G, b) can be described.

THEOREM 3.12. The unique (up to positive scalar multiples of the inequalities)
minimal defining system for the convex hull of the simple b-matchings of G is

() x,= 0Ve € EG. (321
(ii) x, £ 1 for each e € EG such that e does not meet a node v with b,=1 and
dg(v) > 1.

Gii) x(8(0)) < b, for each v € VG for which either (3.18), (3.19), or (3.20) holds.

(iv) x(EH) < |b"(VH) /2| for each simple b-critical simple b-nonseparable subgraph
H of G such that there does not exist an edge e = (u, v) € EG-EH with u,v € VH and
dy(u) 2z b, and dy(v) 2 b,

Proor. This follows from Lemma 3.7, Lemma 3.9, Lemma 3.10, Lemma 3.11 and
the fact that linear system (3.2) is a defining system for S(G, b).

By setting b, = 1 for each v € VG, this theorem, together with the characterisation
of simple b-critical simple b-nonseparable graphs given in Theorem 3.5, implies the
characterisation, of Pulleyblack and Edmonds {28}, of the minimal defining system for
the convex hull of the matchings of G given in Theorem 2.2.

REMARK 3.13. In virtue of the characterisation of simple b-critical simple b-nonsep-
arable graphs given in Theorem 3.5, it is possible to test in polynomial time for a given
graph G and inequality ax < B whether or not ax < B is in the system (3.21) (see
Remark 3.6).

Linear system (3.21) is not, in general, totally dual integral. (Consider the example of
a simple b-bicritical graph given earlier, the complete graph on four nodes with b, = 2
for each node v, with each edge receiving weight 1.) However, the following result
shows that if G is connected then either (3.21) is totally dual integral or, if not, the
addition of a single valid inequality to the system makes it totally dual integral.

THEOREM 3.14. The Schrijver system for the convex hull of the simple b-matchings of
G is (3.21) together with

x(EH) < b"(VH)/2 for each connected component H of G such that H (.22)
is a simple b-bicritical simple b-nonseparable graph. ™"
Proor. Since linear system (3.2) is a totally dual integral defining system for
S(G, b), Lemma 2.5 implies that the Schrijver system for S(G, b) is x, 2 0 for each
e € EG and x(J) s r(J) for each J ¢ EG, J + @ which is closed and nonseparable
for the general independence system (EG, I), where I is the set of simple b-matchings
of G and r(J) is the cardinality of a largest simple b-matching contained in J.
- A set {e) for some e € EG is closed if and only if ¢ does not meet a node v with
b, = 1 and dg(v) > 1. So the inequality x, < 1 is in the Schrijver system for S(G, b) if
and only if it is in (3.21)(ii).
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A set 8(v) for some v € VG contains a simple b-matching of size b, if and only if
b'(N(v)) 2 b,, where b, = min{b,, |8(u) N 8(v)|} for each u € N(v). So the in-
equality x(8(v)) < b, is in the Schrijver system for S(G, b) if and only if »'(N(v)) = b,
and 8(v) is closed and nonseparable. This implies that x(8(v)) < b, is in the Schrijver
system for S(G, b) if and only if it is in (3.21)(iii).

By the form of system (3.2), any inequality in the Schnjver system for S(G, b) that is
not of the form x, < 1 or x, 2 0 for some e € EG nor of the form x(8(v)) 5 b, for
some v € VG must be of the form

x(EH) [b”(VH)/Z] (3.23)

for some connected subgraph H of G with [VH| = 3.

Let H be a connected subgraph of G with |VH| > 3. The inequality (3.23) is in the
Schrijver system for S(G, b) if and only if EH is closed and nonseparable and H has a
simple b-matching of cardinality |b¥(VH)/2]. So, by Lemma 3.3 and Lemma 3.4, if
(3.23) is not of the form x(8(v)) < b, for some v € VG then it is in the Schrijver
system for S(G, b) if and only if EH is closed and either H is simple b-critical simple
b-nonseparable or H is simple b-bicritical simple b-nonseparable.

If H is a simple b-critical simple b-nonseparable graph then EH is closed if and
only if there does not exist an edge ¢ = (u,v) € EG —~ EH with u,v € VH and
dy(u) 2 b, and dy(v) 2 b,. It follows that if b¥(VH) is odd and (3.23) is not of the
form x(8(v)) < b, for some v € VG then (3.23) is in the Schrijver system for S(G, b)
if and only if it is in (3.21)(iv).

Suppose that h is simple b-bicritical and simple b-nonseparable. By Lemma 3.3,
there exists a perfect simple b"”-matching of H. It follows that d,(v) > b, for each
v € VH (since if dy(v) < b, then ({e}, EH-{e}) is a simple b-separauon of H for
each e € 8,(v)). If H is not a connected component of G then there exists an edge
e € EG-EH which meets a node in VH. If e is such an edge then r(EH U {e}) =
r(EH). So EH is closed if and only if H is a connected component of G. Thus, if H is
a connected subgraph of G with [VH| > 3 such that b#(VH) is even and (3.23) is not
of the form x(8(v)) < b, for some v € VG, then (3.23) is in the Schrijver system of
S(G, b) if and only if it is in (3.22). =

Notice that Theorem 3.12 is not used in the above proof.

This theorem can be used to obtain the characterisation of the Schrijver system for
the convex hull of the matchings of G, given in Theorem 2.3, due to Cunningham and
Marsh {13], by setting b, = 1 for each v € VG. (Any simple b-bicritical graph must
have b, = 2 for each node v, so if b, =1 for each node v then G has no simple
b-bicritical subgraph.)

‘We complete our discussion of simple b-matchings by characterising simple b-bicriti-
cal simple b-nonseparable graphs. For each edge e = (4, v) € EG, let G, , denote the
graph obtained from G by replacing v by the nodes v, v” with b, = 1 and b,. = b,,
replacing e = (u, v) by the edge (u, v"), and replacing each edge f = (1, v) in 85(v)-{e}
by (2, v"). (The edges in G, , will be identified with their corresponding edges in G.)

THEOREM 3.15. A simple b-bicritical graph G is simple b-nonseparable if and only if
Jor each e = (u, v) € EG the graphs G, , and G, , are simple b-critical simple b-nonsep-
arable graphs.

ProoF. Suppose that G is a simple b-bicritical simple b-nonseparable graph. Let
e = (u,v) be an edge of G. If b%+(VG, ,) = bS(VG), then dy(v) < b, and thus
«r) EG-{f})masxmpleb-@m&onofG for each f € §;(v) (since G hasaperfect
simple 5-matching). So %+(VG, ,) = b(VG) + 1, which implies that b%-(VG, ,)
is odd. Thsxmphwﬁ:atthecardmahtyofa!argwtmmpleb—matchngofﬁv is equal
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to the cardinality of a largest simple b-matching of G. Therefore, any simple b-sep-
aration of G, , would be a simple b-separation of G. Thus, G, , is simple b-nonsep-
arable and, by Lemma 3.4, also simple b-critical.

Now suppose that G is simple b-bicritical and that for each e = (u, v) € EG the
graphs G, , and G, , are simple b-critical and simple b-nonseparable. Let E,, ..., E,
be subsets of EG which satisfy the conditions given in (3.14), where G’ = G. Smoe G, “
is simple b-critical, no set E, i € {1,...,k}, can be of the form {e} for some
e = (u, v) € EG. Also, since G is simple b-bicritical, no set E,, i € {1,..., k}, can be
of the form 8(v) for some v € VG. So, by Lemma 3.4, for i = 1,..., k, the graph G,
(as defined in (3.14)) is simple b-critical or simple b-bicritical. Thus,

|69(VG,) /2] + --- +|b%(VG,) /2] < |b6(VG)/2].

If for some i € {1,...,k} and v € VG, we have d;(v) = b%, then (E,, EG-E) is a
simple b-separation of G,,, for any e € 85 (v). So for each i € (1,.. k}, we have
bS(VG,) = b(VG,). 1 k z 2thenforeachz € {1,..., k} there exists a ] e{l,...,k},
J # i, such that VG, N VG; #+ @. Since b, ;2foreachv€VG,ifkg3thenthis
implies that b(VGl) + e +b(VGk) > b(VG) + k + 1 and hence that (3.24) is not
satisfied. So & is at most 2. Suppose that & = 2. By (3.24), we must have that
b(VG, N VG,) = 2. Thus ¥G, N VG, = {v} for some v € VG and b, = 2. Now since
G is simple b-bicritical, G has a simple b-matching X such that x(8(v)) =0 and
X(8(u)) = b, for each u € VG-{v}. So b(VG,) and b(VG,) are even numbers, which
implies that (3.24) is not satisfied. So k = 1, which implies that G is simple b-nonsep-
arable. =

REMARK 3.16. Using this characterisation of simple b-bicritical simple b-nonsep-
arable graphs and the characterisation of simple b-critical simple b-nonseparable
graphs given in Theorem 3.5, it is possible to test in polynomial time whether or not a
given graph G is a simple b-bicritical simple b-nonseparable graph (see Remark 3.6).
Thus, it is possible to test in polynomial time for a given graph G and inequality
ax < B whether or not ax g B is in (3.21) or (3.22). Also, Lemma 2.5, Theorem 3.5,
Theorem 3.14, and Theorem 3.15 together imply that it is possible to test in polynomial
time whether or not a given graph G is simple b-nonseparable.

4. Capacitated b-matchings. Capacitated b-matchings are a generalisation of sim-
ple b-matchings and b-matchings. Let G be a graph, possibly with muitiple edges,
b= (b,: v € VG) a positive integer vector, and ¢ = (c.: e € EG) a positive integer
vector of edge capacities. A ¢-capacitated b-matching of G is a b-matching x such that
X, 5 ¢, for each e € EG. We abbreviate “c-capacitated b-matching” by “(b, ¢)-match-
ing”. If ¢, = 1 for each e € EG then a (b, c)-matching of G is a simple b-matching of
G.If B = max{b,: v € VG} and ¢, = B for each e € EG then x is a (b, c)-matching
of G if and only if x is a b-matching of G.

A (b, c)»-matching problem can be reduced to a simple b-matching problem by
replacing each edge e € EG with c, edges, each of which has the same end nodes as e.
However, from an algorithmic point of view it is better to use Tutte’s construction for
reducing simple b-matching problems to b-matching problems to reduce (b, c)-match-
ing problems directly to b-matching problems as follows: Suppose that w = (w,:
e € EG) is a vector of edge weights. For each edge e = (u, v) of G add nodes u, and
v, to VG and replace e by the edges (u, u,), (4., 0,), (v,, ). For each e € EG let
b =b, =c, and w, ,,= “'(u.,v,) Wio 0)= W 'Ihemaxmmmwaghtofa b-
matchmgmthenewgmphrs E_‘,{w,c¢ eeEG}gwaterthanthemammum
weight of a (b, c)-matching of G. Again, as presented in Araoz, Cunningham, Edmonds,
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and Green-Krotki [2] and Schrijver [31], Tutte’s construction and the total dual
integrality of (2.4) together imply the following result, which follows from a theorem of
Edmonds and Johnson [17].

THEOREM 4.1. A rotally dual integral defining system for the convex hull of the
(b, c)-matchings of G is
0<sx,s¢, Ve€EG, (4.1)

x(8(v)) < b, Vve VG,
x(v(8)) + x(J) < [(6(S) + ¢(1))/2] VS VG,JTcb(S).

If H is a subgraph of G, let b{#-9 = min{b,, c(8,(v))} for each v € VH. Again, the
size of a largest (b, c)-matching of G (that is, the maximum value of x(EG) over all
(b,c)-matchings of G) is at most | bC-}(VG)/2). So, since for each S C VG, J C 8(S)
the set of edges y(S) U J is the edge set of a subgraph of G, Theorem 4.1 implies that

0<x,sc, VeeEG, (4.2)
x(8;(v)) b, VveE VG,

x(EH) < |b*(VH) /2| for each connected subgraph
Hof G with |VH| 2 3,

is a totally dual integral defining system for P(G, b, c), the convex hull of the
(b, c)-matchings of G. We will use this result and the results on simple b-matchings
given in the previous section to describe the minimal defining system and the Schrijver
system for P(G, b, c).

We generalise the notions of simple b-matching criticality, bicriticality, and sep-
arability as follows. If G is connected then G is (b, ¢c)-critical if VG| > 3 and for each
v € VG there exists a (b, c)-matching X of G such that ¥(8(v)) = b9 — 1 and
X(8(u)) = bl for each u € ¥G-{v}. If G is connected and |VG| 2 3 then G is
(b, c)-bicritical if for each v € VG there exists a (b, c)-matching X of G such that
Z(8(v)) = b{% — 2 and X(8(u)) = b{%°) for each u € VG-{v}. A (b, c)-separation
ofGlsapmr(El,Ez)suchthat EI,E2CEG E,UE,=EG, E, # @ +# E,, and if,
for i = 1,2, k; is the size of largest (b, c)-matching of G such that x, = 0 for all
e € EG-E,, then k, + k, is the size of a largest (b, c)-matching of G. A (b, ¢)-match-
ing x of G is perfect if x(8(v)) = b, for each v € VG.

Throughout the remainder of this section, let G’ denote the graph obtained from G
by replacing each edge e € EG with edges e;, ..., €., each of which has the same end
nodes as e. Each subgraph H of G corresponds to a subgraph H’ of G’ (that is
VH' = VH and EH' = U{{e,,...,e_}: e € EH}).

LeMMA 4.2. If G is (b, c)-bicritical then G has a perfect (b'%' 9, c)-matching.

PROOF. Lethea(bc)-bxcntwalgraph.ByLemma33 the graph G’ has a
perfect simple b®-matching x’, since G’ is simple b-bicritical. Letting X, = L{x,:
i=1,. ,c}foreacheEEGwehavcaperfect(b(G"c)—matchmgofG .

LeMMa 4.3. A connected graph G with |VG| 2 3 is (b, c)-nonseparable only if G is
isomorphic to K, ,, for some n (with multiple edges allowed) or G is (b, c)-critical or G is
(b, c¢)-bicritical.

PROOF. Let G be a graph with |[V'G| > 3 that is not isomorphic to X , for some n.
Suppose that G is neither (b, c)-critical nor (b, c)-bicritical. It follows from this
assumption that G’ is not isomorphic to K, , for some n nor simple b-critical nor
simple b-bicritical. In the proof of Lemma 3.4, a simple b-separation ( E], E3) for such
a graph is constructed. This simple b-separation has the property that, for i = 1,2, if
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e; € E/ forsome e € EG and j € (1,...,c.}, thene, € E/ foreach k € {1,...,¢c,}.
So (E,, E,) is a (b, c)-separation of G, where, for i =1,2, E;= U{{e,,...,e_}:
ecE} =

Using these lemmas we can describe the Schrijver system for P(G, b,c). Let
V2 C VG be the set of nodes v for which one of the following conditions holds, where
b, = min{b,,X{c,: e € 8(u) N 8(v)}} for each node u € N(v).

b(N(v)) = b, and v is in a two-node connected component of G and (4.3)
if ¥{c,: e € 8(v)} = b, then d;(v) = 1. .

b'(N(v)) = b, + 1 and there does not exist an edge e = (v, 1,) € (4.4)
Y(N(v)) with b = b, and b, =b,, :

Y(N(v)) 2 b, + 2. (45)

A subgraph H of G is edge maximal if there does not exist an edge (u, v) € EG-EH
with 4, v € VH and with b{¥-9 = b, and b{#:9) = b,.

THEOREM 4.4. The Schrijver system for the convex hull of the (b, ¢)-matchings of G is

(i) x, = 0Ve € EG, (4.6)

(ii) x, g ¢, for each e € EG such that e does not meet a node v € VG with b, < c,
nor one with b, = ¢, and d;(v) 2 2,

(iii) x(8,(v)) < b, Yo € V7,

(iv) x(EH) < |b\HXVH) /2] for each edge maximal, (b, c)-critical, (b, c)-nonsep-
arable subgraph H of G.

V) x(EH) < b (VH)/2 for each edge maximal, (b, c)-bicritical, (b, c)-nonsep-
arable subgraph H of G such that there does not exist an edge (u,v) € EG-EH with
u € VH, v &€ VH and either ¢, ,,= lor b, = 1.

PrROOF. Let (EG, I) be the general independence system with I the set of (b, ¢)-
matchings of G. It follows from Lemma 2.5 and the fact that (4.2) is a totally dual
integral defining system for P(G, b, c) that the Schrijver system for P(G, b,c)is x 2 0
and x(J) s r(J) for all J C EG, J # @, J closed and nonseparable for (EG, I),
where r(J) is the size of a largest (b, c)-matching of G such that x, = 0 for each
e € EG-J. Using Lemma 4.2 and Lemma 4.3, it is straightforward to check, as in the
proof of Theorem 3.14, that this system is identical to (4.6). (Note that if H is an edge
maximal, (b, ¢)-bicritical subgraph of G, then EH is closed if and only if there does
not exist an edge satisfying the conditions given in (4.6)(v).) =

If ¢, = 1 for each e € EG, then P(G, b, ¢) is equal to the convex hull of the simple
b-matchings of G and linear system (4.6) is identical to the linear system consisting of
(3.21) and (3.22). So Theorem 4.4 implies Theorem 3.14. If 8 = 2 - max{b,: v € VG}
and ¢, = B for each e € EG, then P(G,b,c) is equal to the convex hull of the
b-matchings of G and it is straightforward to check that linear system (4.6) is identical
to the linear system consisting of (2.5) and (2.6). So Theorem 4.4 can also be used to
prove Theorem 2.7.

It is clear that not every inequality in (4.6) is essential for P(G, b, ¢), since if H is a
(b, c)-bicritical subgraph of G then x(EH) < b'*9/2 is implied by the valid inequali-
ties x(8,(v)) < (-9 for each v € VH. It will be shown that removing the inequali-
ties (4.6)(v) from (4.6) gives the minimal defining system for P(G, b, c). We begin by
characterising (b, c)-critical (b, c)-nonseparable graphs.

LemMA 4.5. A (b, c)-critical graph G is (b, c)-nonseparable if and only if G’ is a
simple b-critical simple b-nonseparable graph.
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PrROOF. Let G be a (b, c)-critical graph. Clearly, G’ is simple b-critical. If (E,, E,)
is a (b, c)-separation of G, then (E|, E}) is a simple b-separation of G’, where
E! = U{{ey,...,e. }: e€ E]} for i=1,2. So if G’ is simple b-nonseparable then G
is (b, c)-nonseparable.

Suppose that G’ is simple b-separable. Let E,,..., E, be subsets of EG’ which
satisfy the conditions given in (3.14). If for each i € {1,..., k} there exists an edge
e € EG’ such that E, = {e}, then (F, EG-F) is a (b, c)-separation of G where
F={f..., [} for any f € EG. So it can be assumed that |E,] > 2. It may also be
assumed that E, is closed with respect to the general independence system (EG, I') for
each 1 € {1,..., k}, where I is the set of simple b-matchings of G'. If E; is equal to
85/(v) for some v € VG’, then (85(v), EG-8;5(v)) is a (b, c)-separation of G. So it may
be assumed that E, is not of the form 8.(v) for some v € VG'. So G, is either simple
b-critical or simple b-bicritical and r(E,) = |b“*(VG,)/2). Suppose that G, is simple
b-bicritical. Since G, is simple b-nonseparable, d; (v) > b, for each v € VG,. So if
e, € E, forsome e€ EGand t€ {1,...,c.}, thene € E, foreach s€ {1,...,c.}.
This implies that (v;(VG,), EG-y;(VG),)) is a (b, c)-separation of G. So it may be
assumed that G, is simple b-critical and that for some e € EG and i, j€ {1,...,¢,}
we have e, EEI, e; € E,and e, & E, foreach t # 1. Let u,v € VG, betheendsof
e,. Since El is closed and e, GEEI, we must have dg; (v) < b, or dg(u) < b,. So we
may assume that dg(v) < b Since G, is simple b—nonseparable we must have
bCt=b, Let gbea node in VG1 {u, v} such that Gt = b, (such a node must exist
since a s:mple b-critical graph cannot be isomorphic to K, , for some n). Let M be a
near-perfect simple b-matching of G’ deficient at g. Since (E,, EG'-E,) is a simple
b-separation of G, we must have that M N E, is a near-perfect simple b-matching of
G,. So |8; (u) N M| = b,, which implies that e; & M. Thus, ({¢;}, EG’-{¢;}) is not a
simple b-separanon of G’ and there does not exist a ¢ such that E {e;}. So we may
assume that e; € E, and that |E;| 2 2. Bytheaboveargumcntswemayalsoassume
that G, 1ssmple b-critical with either d; (v) < b, or dg (u) < b, (since e; & E,). If
dg (v) < b, then b{* = b,, which implies that |M N 8, (u)] < b‘;z and |M N 8;,(v)|
< bGZ(smoe bl = dG(v) and e; & M). Soif dg(v) < b then(Ez, EG'-E,) is not a
simple b—separauon of G, whlch contradicts the choice of E,...,E. Soit may be
assumed that d;(u) <b, This implies that b2 = b, Now since MNE, is a
near-perfect s1mple b-matching of G, deficient at g, we have e; € M. So, once again,
we have |M N 8; (v)| < bZ? and |M N §;(u)| < b2, a contradiction. So we must
have that G is (b, c)-separable. =

This lemma and Theorem 3.5 together imply the following result, where (b, c)-full
edges and near-perfect (b, c)-matchings of (b, c)-critical graphs are defined in a way
analogous to the simple b-matching case and G'7*Y(VG) for T C VG is the graph
obtained from G by replacing each node v € T by the nodes v,,...,v;, where
k = dg(v), and replacing the edges e; = (4;,0),..., e, = (u;,v) by the edges
(43, 09),-..,(4;, v,), and letting b, = ¢c, fori=1,..., k.

THEOREM 4.6. A (b, c)-critical graph G is (b, c)-nonseparable if and only if b{% 9 =

d(v) for each node v € VG which meets an edge (u,v) € EG that is (b, c)-full with
respect to u and the graph GT-)(VG), where T = {v € VG: b =dy(v)}, is
connected with no cutnode q having b, = 1.

REMARK 4.7. Using the construction of Tutte to reduce a (b, ¢)-matching problem
directly to a b-matching problem, (b, c)-matching problems can be solved in poly-
nomial time (see Remark 3.6). So the above theorem provides a method to test in
polynomial time whether or not a graph G is a (b, c)-critical (b, c)-nonseparable graph.
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The following lemma allows us to take advantage of the fact that we know, via
Theorem 3.12, the essential inequalities for the convex hull of the simple b-matchings
of G'.

LemMMA 4.8. Let H be a subgraph of G. If x(EH’) < a is an essential inequality for
S(G’, b) then x(EH) < a is an essential inequality for P(G, b, c).

PROOF. Suppose that x(EH’) < a is essential, and hence facet inducing, for
S(G’, b). Let A’ be a collection of |EG’| affinely independent simple b-matchings of
G’ for which x(EH") < a holds as an equality. For each simple b-matching x’ in 4’
let X be the (b, c)}-matching of G obtained by setting X —Z{x ii=1,...,c,)} for
each e € EG. Consider the set of (b, ¢)-matchings .# = {X: x’ E.l’} Each (b, ¢)-
matching in # satisfies x(EH) < a with equality. Furthermore, since .#’ is an
affinely independent set of vectors, .# contains |EG] affinely independent vectors. So
x(EH) < a is facet inducing, and hence essential, for P(G, b,c). =

THEOREM 4.9. The unique (up to positive scalar multiples of the inequalities) minimal
defining system for the convex hull of the (b, c)-matchings of G is (4.6Xi), (ii), (iii), (iv).

PROOF. Since linear system (4.6) defines P(G, b, c) and since we have already
observed that the inequalities (4.6)X(v) are not essential for P(G, b, c), it suffices to
prove that each inequality in (4.6)(i), (ii), (iii), (iv) is essential for P(G, b, c).

Let e € EG and let x, = —1 and x;= 0 for each f € EG-{e}. The vector x does
not satisfy x, > 0 but it does satisfy each of the other inequalities in (4.6). So each
inequality in (4 6)(1) is essential for P(G, b, c). Suppose that e does not meet a node
v € VG with b, < ¢, or one with b, = ¢, and d(v) 2 2. Let X, = c, +1andxf-0
for each f € EG—{e} The vector % does not satisfy x, < c,, but it does satisfy each of
the other inequalities in (4.6). So each inequality in (4 6)(ii) is essential for P(G, b, ¢).

Let v € VG and suppose that either (4.3), (4.4), or (4.5) holds for v (that is,
v € V2). If either (4.4) or (4.5) holds for v, then Lemma 3.11 and Lemma 4.8 together
imply that x(8;(v)) < b, is essential for P(G, b, c). Suppose that (4.3) holds for v. If
X{c: e€d;(v)} > b, let x,=c, for each e € §;(v) and let x,=0 for each
e € EG-8;(v). If X{c,: e € 85(v)} = b,, let x_ = ¢, + 1 for the edge e which meets v
and x,= 0 for each f€ EG-{e}. In cither case, x satisfies each inequality in (4.6)
other than x(8;(v)) < b,. So each inequality in (4.6)(iii) is essential for P(G, b, ¢).

Let H be a (b, c)-critical (b, c)-nonseparable subgraph of G such that there does not
exist an edge (u, v) € EG-EH with u,v € VH and with b{#-9 = b, and b{#:9 = p,
(that is, H is edge maximal). By Lemma 4.5, H’ is a simple b-critical simple
b-nonseparable subgraph of G’. So, Lemma 3.7 and Lemma 4.8 together imply that
x(EH) g | b YVH)/2] is essential for P(G, b, c). So each inequality in (4.6)iv) is
essential for P(G, b,c). =

Theorem 3.12 can be obtained from the above result by setting ¢, = 1 for each
€ € EG. Letting ¢, = B for each e € EG where B = 2 - max{b,: v € VG} and using
the characterisation of (b, c)-critical (b, c)-nonseparable graphs given in Theorem 4.6,
one obtains Theorem 2.6 (which is due to Pulleyblank [24]).

REMARK 4.10. Using the characterisation of (b, c)-critical (b, c)-nonseparable
graphs given in Theorem 4.6 and a polynomial time (b, c)}-matching algorithm (see
Remark36andRemark47),itispossibletotwtinpolynomialﬁmeforagivengraph
G and inequality ax < B whether or not ax < B is in (4.6)i), (ii), (iii), iv). Note
however that, unlike the simple b-matching case, we have not found an algorithm to
check in polynomial time for a given graph G and inequality ax < B whether or not
ax 5 B is in the Schrijver system for P(G, b, c) (that is, whether or not it is in system
(4.6)). The problem is in testing whether or not a (b, c)-bicritical graph is (b, c¢)-non-
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separable. (The analogue of Lemma 4.5 for (b, c)-bicritical graphs is not true, as can be
seen by considering the graph with nodes v;, v,,v;, v, and edges e, = (v,, v,),
€, = (02’ 03)’ ey = (03’ vl)’ €4 = (vl’ 04) with bvl = bv = bv, = 4’ bv. = 2’ cel = ce; =
c,=4and c, =2)

2

5. Triangle-free 2-matchings. A 2-matching of a graph G is a b-matching with
b, = 2 for each v € VG. Motivated by the fact that the 2-matching problem is a
relaxation of the travelling salesman problem, Cornuéjols and Pulleyblank [10] consid-
ered a constrained variation of 2-matchings which they named triangle-free 2-match-
ings. A 2-matching x is a triangle-free 2-matching if x(T) < 2 for each triple of edges
T = {e,, e,, €5} C EG which form the edges of a triangle of G. (A triangle is a circuit
of length 3.) Cornuéjols and Pulleyblank found a polynomial time algorithm for
solving the triangle-free 2-matching problem. A consequence of their algorithm is the
following result:

THEOREM 5.1. A totally dual integral defining system for the convex hull of the
triangle-free 2-matchings of G is
x,20 Vee EG, (5.1)
x(8(v)) £2 Y eVG,
x(ET) £2 V trangle Tof G,
x(v(S)) <IS| VS VG,|S|2 4.

The following result of Cornuéjols and Pulleyblank [10] follows easily from this
theorem.

THEOREM 5.2. The unique (up to positive scalar multiples of the inequalities) minimal
defining system for the convex hull of the triangle-free 2-matchings of G is

x,20 Vee€EG, (52)
x(8(v)) =2 for eachv € VG such that either d ;(v) 2 3 ordgz(v) = 2
and v is not a node of a triangle or d;(v) = 1 and v is
in a two-node connected component of G,
x(ET) <2 VY triangle T of G.

If G is a circuit of length 5, then (5.2) is not totally dual integral. Such a circuit is an
example of a triangle-free-bicritical graph. If x is a triangle-free 2-matching such that
x(8(v)) = 2 for each v € VG, then x is a perfect triangle-free 2-matching. If G is
connected and |VG| 2 4, then G is triangle-free-bicritical if for each v € VG the graph
obtained by deleting v from G has a perfect triangle-free 2-matching. A triangle Tof a
connected graph G is a pendent triangle of G if T contains a cutnode of G and T
contains two nodes v,, v, with dg(v,) = d;(v,) = 2. Using Lemma 2.5 and Theorem
5.1, the following result can be proven (for details see Cook {7]).

THEOREM 5.3. The Schrijver system for the convex hull of the triangle-free 2-match-
ings of G is (5.2) together with

x(v(S)) g|S| foreach S C VG such that G| S} is triangle-free- (5.3)
bicritical and contains no triangle T which is a
pendent triangle of G[S].
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REMARK 5.4. Using the triangle-free 2-matching algorithm of Cornuéjols and
Pulleyblank [10}, it is possible to test in polynomial time for a given graph G and
inequality ax < B whether or not ax < 8 is in (5.2), (5.3).
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