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LINEAR SYSTEMS FOR CONSTRAINED MATCHING
PROBLEMS*t

W. COOK:* AND W. R. PULLEYBLANKf

Each polyfaedron of full dimemion has a unique («q> to positive scalar multiples of the
inequalities) minimal defining system and a unique minimal totally dual integral defining
system with integer left hand »des. These two minimal systems are characterised for die
convex hull of the simple 6-matd>ings of a graph. These diaracterisations are then used to
provide similar characterisatifflis for the convex hull of matchings, j>-matdiings, and capaci-
tated ^matdiings. Eadi of tiKse characterisations gives a "best possible" min-max relation for
the corresponding combinatorial objects.

1. IntroAMdkMi. A matching in a gr^h G is a subset of the edg^ such that each
node of Cr is met by at most one edge in die subset Fundamental results in the theory
of matchings were proven by Tutte [34,35,36]. Tutte's results provide a min-max
relation for the canUnality of a largest matching in a graph (see Bei^e [4]). In 1%3,
Edmonds [14] found a polynomial time algorithm for the weighted matcbii^ problem.
A by-product of Edmonds' algorithm is a characterisation of a linear system diat
defines the convex hull of the (incidence vectors of the) matdiings of a graph. Via the
linear prc^amming duality theorem, this result gives a min-max relation for weighted
matchings.

Tutte [35,36] and Edmonds and Johnson [17] have shown that, by means of a series
of constructions, results on matchings imply results on considerably more general
objects. In particular, Edmonds and Johnson [17] found descriptions of linear syst^ns
which define the convex hulls of these more general objects and hence min-max
relations for these objects (see also Araoz, Cunningham, Edmonds, and Green-Kr6tki
[2]).

Two ways to improve min-max results that are obtained by finding descriptions of
linear systems which d^ne certain convex hulls are to reduce the number of dual
variables in the linear prc^amming duality equation (that is, to find a smaller linear
system that defines the given amvex hull) and to restrict the dual variables to int^er
values. We discuss these methods below.

If P is a polyhedron of full dimension, then there exists a unique (up to positive
scalar multiples of the inequalities) minimal linear system that defines P. So, for a
generalisation of matchings whose convex hull is of fuU dimension, a description of die
unique minimal defining ^ t e m for the convoc hull gives a "best possible" min-max
relation for the generalised matchii^ We charactoise sudi a minimal system for the
convex hull of the single 6-matchings of a graph and show that this result implies
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similar diaracterisations for matchings (Pulleyblank and Edmonds [28]), ^matchings
(Pulleyblank [24]), and c^adtated fr-matchings.

The second way to improve min-max rdations involves totally dual integral systems.
Edmonds and Giles [16] defined a rational linear system ^jc ^ Z> to be a totally dual
integral system if the linear program min{ yb: yA = w, ^ ^ 0} has an integral optimal
solution for each integer vector w for which the optimum exists. (For results on total
dual integrality see Hofifman [20], Edmonds and C^es [16], Giles and Pulleyblank [19],
Schrijver [29], and Cook, Lov^sz, and Schrijver [9].) Tlius, integral min-max theorems
can be obtained by finding totally dual i n t^a l defining systems for various convex
hulls. These integral min-max theorem often have a nice combinatorial interpretation,
since int^er solutions to the dual linear programs often correspond to combinatorial
objects, such as "covers" or "cuts" (for many examples of this see Schrijver [32]).
Combinatorial min-max theorems, generalising the Tutte-Berge Theorem, obtained in
this way for various generalisations of matchings can be foimd in Schrijver [31].

Min-max theorems ariang from totally dual integral systems can be further
strengthened by rotnoving some of the inequaliti^ to obtain a Tninimal totally dual
integral defining system for the convex hull of the objects in question. Schrijver [29] has
shown that for eadi polyhedron P of full dimension there exists a unique minitnai
totally dual i n t ^a l system Ax ^ b with A integral such that P is defined by Ax ^ b
(caU Ax ^ b the Schrijver system for P). So, for a generalisation of matchings whose
convex hull is of full dimensicm, a second type of "best possible" min-max theorem
can be obtained by finding the Schrijver system for the convex hull. We characterise
sudi systems for the convex hull of c^adtated ^matchings, simple ^matchings,
fr-matdiin^ (Cook [6] and Pulleyblank [26]), triangle-free 2-matchings, and matchings
(Cunningham and Marsh [13]).

Some terms and notation that will be used throughout the paper are ^ven below.
Let G be an undirected gr^h (see Bondy and Murty [5] for standard terminology of

grf^h theory). The node set of G is denoted by VG and the edge set by EG (we will
assume that eadi edge has two distinct ends). For each node v € VG, SQ(V) draiotes
tbe set of edges of G whidi n^et v, d^iv) denotes |S(;(v)|, and N(;(o) denotes the set
of nodes in VG-{o) winch are adjacent to v. For each S c VG, y^iS) denotes the
subset of edges of G bavii^ both aids in S, S^(5) draotes the subset of edg^ having
exactly one end in S, and G[S] denotes the subgnqph of G induced by S. We write
8, d, y, to denote Sg, d^, Yc req)ectivdy.

Let P be a polyhedron. A linear system Ax ^b defines P ii P = {x: Ax ^ b). An
inequality cu: ^ ^ is valid for P if for eadi jc e P we have ax ^ p. Supp<»e that P is
of full dimension. Hie inequality ax ^fi is essential fc»r P if some positive scalar
multiple of the inequality must be present in every defining syston for P. A wdl-known
result is that a valid inequality ax^fi is essential for P if and only if it is facet
inducing for P (that is, if and only if there exist dimensicHi(P) aflBndy independent
vectors in P for which the inequality holds as an equality). For an account of
polybedral theory see iht papas of Bachem and Grdtscbel [3] and PuUeyblank [27] and
tbe refo^ices dted in those two piq>ers.

If X = ixf. I £ / ) and S Ql, where / is a finite i»t, thai x(S') doiot^ the sum
E{jCj: { € S}. If iS is a numbo", then [/3J denotes the lai^est integer less than or equal

aad ft-auisc^^s. Let (r be a gr^pb. A nuitdiing M cA G mil be
idoitified wiih its iiuadoice vecttw x == (x,: e e EG), wboe aĉ  = 1 if e e Af and
X, >" 0 if « € EQ-M. I t e fin^aniQital result in the stuc^ of polyhedral a^ects of

tdui^ iheoty was i»ovea by EdoKmds {14}:
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THEOREM 2.1. The convex htdl of the matchings ofGis defined by

x,^Q VeeEG, (2.1)

LIS1/2J VSCFG, \S\odd.

Edmonds proved this result by means of a polynomial time algorithm for the
weighted matching problem. (The weighted matching problem is to maximise wx over
all matchii^ x of G for a given weight vector w = iwy. e G .EG).) A short proof of
this result can be foimd in Schrijver [30].

A matching M of G is perfect it each node in VG is met by an edge in M. The graph
G is hypomatchable if for each i; e FG the graph obtained by deleting v from G has a
perfect matching. (Note that hypomatchable graphs are nec^sarily connected.) Let V
be die set of nodes oe^VG such diat ddier |Ar(t;)| ̂  3 or |A^(i;)| = 2 and y(iV(i;)) = 0
or \Niv)\='\ and v is a node of a two node connected component of G.

Pulleyblank and Edmonds [28] foimd a description of the unique minimal defining
sjrstem for PiG), the convex hull of the matchings of G. Their result is as follows:

THEOREM 2.2. The unique iupto positive scalar multiples of the inequalities) minimal
defining system for PiG) is

X, ^ 0 Ve G EG,

x{8civ))^l VoGF, (2.2)

l|S|/2] for each S c VG, \S\ ̂  3, G[S] hypomatchable with no cutnode.

A short proof of this result due to L. L o v ^ can be found in Comu6jols and
Pulleyblank [11]. The result follows from a more general theorem presented in §3.

Cunningham and Marsh [13] proved that the linear system (2.2) is totally dual
int^ral, which immediately implies the following result.

THEOREM 2.3. The Schrijoer system for PiG) is (2.2).

This result also follows from a more general theorem given in §3.
A short proof of Theorem 2.3, which does not use the result of Pulleyblank and

Edmonds [28], is given in Cook [8], where it is also shown that this theorem is related
to a result of F. R. Giles on a type of separability for graphs. Let A: be the maximum
cardinality of a matching of G. Let Ei and £2 ^ nonempty subsets of EG with
£1 U £2 - ^^- Let fc, be the Twaicimum canlinality of a m a t d ^ of G contained in
Ej, i = 1,2. If ki + k2=' k, then (£1, £2) ^ ^ matching separation of G. Ihe graph G
is' mtudhing separable if there exists a matching sq>aration of G and matching
nemseparable otherwise. The following result is due to F. R. Giles.

THEOREM 2.4. A graph G is matddng nonsepardble if and <mfy if either G is
isomorphic to Ki^ „ for seme norGis hypmnatchable with no cutnode.

To see tl)» connecticm of this iheotem to the thecntran of Cunningham and Marsh, we
state an easy general Rsult on s^arability, the proof of wlash can be found in Cock
[8]. Let £ be a finite set and / a finite set of nonn^itive i n t ^ ^ wctors a - (a,:
e e £) . The pair (£ , / ) is a general iiukpen^nce system if 0 e / and for eadi a e /
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and ncnmegative integral b ^a we have 6 e / (so (£, / ) is an indqpendence system if
each a e / is 0-1 valued). The rank, riAX of a set 4̂ c £ is tiie maximum value of

) over all vectors x & I. A set A Q E is closed if for each e e E-A we have
i U {e}) > riA). A separation o f a s e t y 4 c £ i s a pair of nonempty subsets Ai, A2

of A sudi that Ai^A2 = Aan6 riAi) + riA2) = riA). If there exists a sepaxation of
AQE then A is separable (othCTwise A is nonseparable). Let C(/) denote the convex
huflof/.

LEMMA 2.5. Let (£, I) be a general independence system. Suppose that ri{e}) ^ 1
yfeeE and that

x(A) ^ r(A) \IAQE,A^0, (2.3)

w a totally dual integral defining system for Cil). Then an inequality xiA) ^ riA) is in
the Schrifver system for Cil) if and only if A * 0isa closed nonseparable set.

This lemma combined with the Cunningham and Marsh result gives a proof of the
characterisation of matdiing ncms^arable graphs ^ven in TTieorem 2.4. Converedy, it
is not di£Bicult to show that Hieorem 2.4, together with Edmonds' matching algorithm
and the above lemma, yields a quidc proof of the theorem of Cunningham and Marsh
(se* Cook [8D. We will use Lemma 2.5 in §§3, 4, and 5.

Let b = (i^: v e VG) he a p<»itive int^er vector. A b-matching of (7 is a
nonn^ative integer vector x = ix/. e e EG) such that xiSiv)) g b^ for each v G VG.
A ^matehing of G with b^=l for each p e FG is a matching. A construction of
Tutte [36] can be used to deduce results on fr-matchings from results on matdiings:
R)q)lace each node p G FG by the new nodes Vi, 02. • • • > f^b, *̂ <i replac* eaxh edge
iu, v) G EG by the new edges (a,., 0,), / == 1,.. . , *„, y = 1,. °., b^. A matching in the
new ^aph corresponds to a 6-matching in the odpnal graph and vice versa. As
presoited in Schrijver [31], the total dual integrality of (2.1) for the new graph implies
that the linear system

x.^O \fe&EG, (2.4)

) \fveVG,

\ V5 CFG, 151^3.

k a totally dual int^ral <kfinii^ syston f<H: P(G, b), the convrac hidl <rf the 6-matdi-
in^ of G. Hus result is an easy con^queice of EdmcHids' [14] ^matchii^ algcsithm
(see Pullt^blank [24,25^ aiul has also heen proven by Hĉ &nan and Oppraiheim [21]
and Sdirijver and SeyoMHir [33].

The analogjK of a I^pomab^ble g n ^ for fr-matchings is a 6-critical grt^h. Tlie
gnq)h G is b-aitiaU if for eadi c G FG theae exists a fr-B^itdni^ x of G sxxh titot
x(8(v)) = ftp - 1 and x(8(u)) - b^ for eadi u e FG^{o}. (Again iK>te that ft-<aitical

toe necrasadfy cooaected.) Let F" be tlie set of iKxies i; £ FG mck that
„ + 2 <r Hff(o)) - *„ + 1 aiHi y(Nio)) = 0 «•» beka^ to a two d

eatepommt otGmAb^'^b^ vAtax ukthe (ribsx wxie of the
JM^Uaok {24} i»oved the
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THEOREM 2.6. 7 ^ unitpte iup to positive scalar multiples of the inequalities) minimal
defining system for PiG, b) is

x,^Q y/e^EG, (2.5)

x(y{S)) g [biS)/2\ for each S c VG, \S\ ̂  3, G[S]

b-critical with no cutnode v having bg = \.

This theoron generalises Theorem 2.2. In §4 we will indicate how this result follows
from a more goieral r^ult giv«i in that section.

Unlike the matdiing case, (2.5) is not totally dual int^ral in general. This can be
seen by considering a triangle with b^ = 2 for each node v and weight tv, = 1 for eadi
edge e. Such a triangle is an example of a Z>-bicritical graph. A graph G is b-bicritical if
it is connected and for each o&VG there exists a fe-matching 3c of G such that
xi&iv)) = *„ - 2 and ic(«(«)) = b^ for each u e VG-iv). Cook [6] and PuUeyblank
[26] independendy proved the following result.

THEOREM 2.7. The Schrijver system for PiG, b) is (2.5) together with the inequalities

x{yiS)) ^ b{S)/2 for each S c VG, \S\ ̂  3, G[S] b-bicritical (2.6)
ond b^^2for each node v G VG-S which
is adjacent to a node in S.

Since b^^2 tor each o e VG it G is d-bicritical, this theorem implies the result of
Cunningham and Marsh on matching systems. We will also indicate later how this
theorem follows from a result given in §4.

We close this section by presenting a fundamental theorem on ^matchings due to
Tutte [34,35]. This theoron will be used in §3. A 6-matching 3c of G is perfect if
xiSiv)) = *„ for each u G KG. If 5 c VG, let

«'°(S) = {D € VG-S: G[{o)] is aconnected component of GiVG-S]} (2.7)

and let

« 'HS)= {RQ FG-S: | /? |^2, *(/?)isoddandG[A] (2.8)
is a connected conqwnent of G [ VG-S ]}.

Tutte's ^matchir^ thecnon is as follows.

THEOREM 2.8. A graph G has a perfect b-matching if and only if for each S c VG,

llie total dual integrality of (2.4) can be used to prove this theoron by setting
, = 1 for eadb e e £G.

We will iiow conade' a ccmstrained variatitm of
^ g thk sectkm, tet G be a ^ ^ h , posably with mul^te edg^, and

b *= {bgi V € VG) a poative i n t ^ ^ vector. A single b-mauJimg of G is a subset Af of
EG mtdi that each so^ o £ KG uuets at most b^ ec^es in Af. A pofect



102 W. COOK & W. R. PULLEYBLANK

2>-matchiiig (that is, a simple 6-matching which oieets each node v e VG in exactly b^
edg^) is often called a "Mactor". Again, we indentify a simple b-matclang M with its
incidence vector x = {xy. j e .EC?).

GivMi a vector w = {w/. e e EG) of edge weights, the simple t-matching problem
is to maxitni7e wx over all simple ft-matchings of G. Tutte [36] described the following
construction, which reduces a simple fr-matching problem to a fr-matching problem.
For each edge e — {u, v) of G (although G may have multiple edges, for simplidty
edges will still be referred to as unordered pairs of nodra) add nodes M, and v^ to VG
and rqplace e by the edges (u,«,), («„ vj, {v^, v). Also, for each e e EG let
b^^ = 6p = 1 and »'(„„) = ^{u,.v.) = ̂ (v ,v) = ^e- T^^ maximum weight of a 6-
matchir^ in the new graph is exactly Lfw^: e e EG} greater than the maximum
weight of a simple ^-matching of G. As presented in Araoz, Cunningham, Edmonds,
and Green-Kr6tki [2] and Sdbrijver [31], this construction, together with the total dual
integrality of (2.4), implies the following result, which is an easy consequence of a
theorem of Edmonds and Johnson [17].

THEOREM 3.1. A totally dual intend defining system for the convex hidl of the simple
b-matchings of Gis

Q^x^^l \feeEG, (3.1)

xi8(v)) ^b, Vu G VG,

x{yiS)) + xiJ) i [(bis) + \J\)/2\ V5 c FG, / c 8{S).

Ii H is a subgraph of G, then for each u e Kff let b^ = min(6^, dff{v)}. The
largest simple 6-matchii^ of G is of cardinality at most [b'^(VG)/2\. Let J(f be the
set of all ccmnected subgraphs of G which have at least 3 nodes. Theorem 3.1 implies
that

{8G{V))^K VOGKG, (3.2)

x{EH) ^ [ \

is a totally dual int^ral defining system for S{G, b), the convrac hull of the simple
6-matchings of G. By a series of results in this section, the unique minimal subset of
thesie inequalities which d^nes S{G, b) and the Schrijver system for S{G, b) will be
characterised.

We b^in with a variatiim of Tutte's 6-matching tl^orem. As presented in Schrijver
[31], to ^teamine if G has a perfect sinqile ^-matching, the above transformation of
Tutte cam be applied to G to obtain a new graph G' and tteai Tutte's 6-matdiing
Tbecnem can be ̂ ^lied to G'. Suppose that S c FG and F g VG-S. Let

and ^ G\VG-S) be the grsq)h obtained fatan G[VG-S\ by takktg each node VBT
^littmg it into (^0{f«.5](v) QOt^ eadi with bf'^l (that is, xq»laoe o by t te nodes
. . , Ojt, 'RdMae k - dg^ye-siv), and Kfdace the e c ^ (HI, O), <«2> «).•••. («*«») '>y

» » («„ o,X » - 1 . ••.*. and tet ̂ ^ = 1, i « 1, . . . . fe). Let ^ i (S , r ) denote the
s^ <rf odd con^c^ed (XM^pcâ iits d G (VG^) wUcb ocmtem at least two mxles. (A
ccauwcled cffl&|K8)ait G, (rf G^(FG-5) is odd if b{VGi) is odd.) Notice that ^ : i i
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connected component of G^VG-S) corresponds to a subgraph of G[VG-S]. Using
Tutte's 6-matcbing TTieorem, tbe foQowing result can be proven.

THEOREM 3.2. There exists a perfect simple b-matching of G if and only if VS c VG
andVTc VG-S: biS) ^ QiS, T) + |^i(S, T)\.

PROOF. Suppose that G has a perfect simple ^-matching M and let S c FG and
T c VG-S. Let M' = M n y{VG-S). Since M' corresponds to a simple fe-matchii^ of
G^(VG-S) of cardinality \M'\, we have b(VG^(VG-S)) - 2\M'\ ^ |^i(S, T)\. Since
biVG^(VG-S)) = biVG-S) - Q(S, T), this impUes that b(VG-S) - 2\M'\ must be at
least QiS, T) + |^i(S, T)\. Now since M is a perfect simple 6-matching of G,
biS) ^ b{VG-S) - 2|M'| S Q{S, T) + \^,iS, T)\.

Conversely, suppose tbat G does not have a perfect simple ^matching. Let G' be the
gcaph obtained from G by rq)ladng each edge e == (u, v) € EG by the edges (u, u,),
(«e> "«)> (̂ e» '^) "̂"̂  adding «, and D, to FG with 6̂ ^ = b^^ = 1. Since G does not have
a perfect simple Z>-matdiing, G' does not have a perfect ^matching. So, by Tutte's
6-matcbing theorem, there exists a set A" c KG' such that biX) < biV\X))+
\'(f\X)\. Let Jf be such a subset of KG' and let S ={i ; e KG: u e X). It may be
assimied that for each edge e = (u, u) of G, if « G S and v € S then u^€ X and
Vg £ X. It may also be assumed that for each edge e = (u, v) £ EG, if u e S and
V e S then ndther «, nor y, is in X. Furthermore, it may be assumed that for eacb
edge e = (M, V) G EG, if ui S and v € S then u^e X only if Uf^ X for eacb edge
/ = («, q) such tbat q G VG-S. Let T = (D G VG-S: v G 'V\X)}, that is, T is the set
of nodes v G VG-S that are isolated in GIVG'-X]. Since ft(X) < fe(«'°( A")) -I- \V\X)\,
we have ft(S') < Q(S, T) + \9^(S, T)\. m

We will use tbis theorem to prove some results on simple fr-matdung separability. A
sirryple b-separation of G is a partition of EG into nonempty subsets E-^ and E2 sudi
tbat if kf is tbe oirdinality of a largest simple ^matching of G contained in £,, for
i = 1,2, then Ar̂  -f- ^2 is tbe cardinality of a largest simple 2>-matcliing of G. If G bas a
ample 6-separation thai G is simple b-separable (otherwise G is simple b-nonseparable).
Tbese definitions are anal<^ous to tbose for matching sq)arability given in tbe previous
secticm.

As in tbe ^matching case, critical graphs play an important role here. If G is
connected and |KG| ̂  3, then G is single b-critical ii for eacb u G KG there exists a
matching of cardinality l6''(KG)/2] which contains exactly 6f - 1 edges which meet v
(tbat is, for eacb v G VG there exists a perfect simple ^'-matching of G wbere
6̂  = i f - 1 and b^ = 6f for all « G VG-[v}). The graph ^ven in Figure 1 is an
example of a simple /̂ -critical graph witb &„ °= 2 for eacb node v. (Note tbat in this
example b^ — 1 for all nodes of d ^ e e one and b° = 2 for all other nodes.) We have
tbat if G is mnp]e 6-critical thai b^iVG) is odd. If G is connected, |KG| ^ 3, and

is even, tl^n G is sir^le b-bicritical if for eadi v e VG there exists a sin:q)le
of G of cardinality (i''(KG)/2) — 1 which contains ecactly 6f - 2

FlOUItE 1
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which n^et v. The complete graph on four nodes with b^ = 2 for each node i; is an
example of a simple fr-bicntical gr^h. Notice that this example of a simple 6-bicritical
graph has a perfect simple 2> -̂matching. We will use Theorem 3.2 to show that every
simple 6-bicritical griq)h has this pr(q)erty.

LEMMA 3.3. If G is a simple b-bicritical graph then G has a perfect simple b^-match-
ing.

PROOF. Suppose that G is simple 6-bicriticaI. Let S QVG and T c VG-S. by
Theorem 3.2, it suffices to show that b°(S) ^ Q^(S, f) + \9^(S, T)\, where Q.^(S, T)
and 9^(S, T) are Q(S, T) and 9i(S, T) with respect to b^. Suppose that S # 0 and
let u G 5. Let 6̂  = 6f - 2 and 6;; = ftf for all « e FG - {v}. Since G has a perfect
simple ^'-matching, b'(S) ^ Q'(S, T) + \9'i(S, T)\, who-e Q'(S, T) and 9'i(S, T) are
Q(S, T) and ^ i (S, T) with respect to b'. Now b°(S) = b'(S) + 2, Q'(S, T) =
Q^(S, T), and ^[(S, T) = 9^(S, T). So ft«(S) ^ Q''(S, T) + | ^ f (S, r ) | . Now sup-
pose that 5 = 0 . If r = FG thai Q<^(S, T) g 0 and |Sf(S, r ) | = 0, which impUes
that b^(S) ^ e<'(S, T) + | ^ f (S, r ) | . Suppose that KG - T # 0 and let u e FG -
r . Define b' as above. Again, Theorem 3.2 implies that bXS) ^ Q'(S, T) + \9'i(S, T)\.
Since b'(S) = 6< (̂S) = 0, Q'(S, T) = Q<^(S, T), and ^ i (S, T) = ^ f (5, T), we have

The following lemma gives the relationship between simple ^separability and the
notions of criticality defined above.

LEMMA 3.4. A connected graph G with \VG\ ^3 is simple b-nonseparable only if it is
isomorphic to Ki „ for some n (with multiple edges allowed) or simple b-critical or simple
b-bicritical.

PROOF. Since (3.2) is a totally dual in t^a l defining system for S(G, b). Lemma 2.5
implies that G is simple />-nonsq)arable if and only if x(EG) ^ r(EG) is in the
Schrijver system for S(G, b), where r(EG) is the cardinality of a largest simple
^matching of G. Suppose that G is simple fr-nonseparable and that G is not
isomorphic to JSTJ „ for some n. By the above commoit, we must have r(EG)
= [6^(FG)/2j, since x(EG) ^ r(EG) must be present in the system (3.2). We will
deal with the cases where b^(VG) is odd and where b^(VG) is even separately.

Case 1: b^(VG) is odd. We must show that G is simple ^criticaL Suppose that
u e FG is a node such that there does not exist a perfect simple ^'-matching, where
bl^ b^ - 1 and b^ = fef for each v e VG-{u}. (If no such node exists then G is
simple fr-critical.) We will use Hieorem 3.2 to show that G has a simple Z>-s^aration.

By TTieorem 3.2, there exists S Q VG and T c VG-S such that

b'{S) < Q'{S, T) + \2'iiS, T)] (3.4)

where Q'(S, T) and ^[(S, T) are Q(S, T) and 9i(S, T) with respect to b' and G.
(Note Uiat since b'(VG) is even, dther S # 0 or ^[(S, T) ¥= 0 tm my sets S Q VG
and T c FG-5 for which (3.4) holds.) Let S and T he such subsets of VG (it may be
assumed that if » e VG-S and <?C(KC-SJ(") = 0, then v e T). The inequality (3.4)
implies that

b%S) ^ Q'^iS, T) + l^f (S, r ) | (3.5)

where Q°{S, T) and 9^(S, T) are Q{S, T) and 2i(S, T) with respect to 6*' aiKi G.
Let ^ b e tbe set of ^ connected o(nnp<Hii»its of G^VG-S). Eadi ccHmectni (xmpo-
mmi H of G\VG-S) corresponds to a subgr^h H of G. Note that if .fî  is in ^ theai
b"{VH) s °
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From the definition of Q'^iS, T) and Q the following equality holds

b'^iVG) = b%S) + Q^iS, T) H- b^iS) (3.6)

wbere b^i9) = Z{6°(Kff): .H" e ^ } . The inequality (3.5) implies tbat

b^iVG) ^ b^iVG) + b^iS) - e^(S, T) - \S^iS, T)\. (3.7)

Combining (3.6) and (3.7) gives

b^VG) ̂  2b^iS) + b^i^) - l^^iS, T)\. (3.8)

It follows that

t6<^(KG)/2j ^ ft«(5) -H ib^i^)/2) - (|^i(5, r) | /2) (3.9)

which is equivalent to

lZ>'̂ (KG)/2j ^ b^iS) -\- Z{[b^iVH)/2\: H&S). (3.10)

This inequality implies that

1*̂ (KG)/2j ^ b%S) + i:{[b"iVH)/2\\ H&9]. (3.11)

(Note that eacb edge in EG is dther in ^Qiv) for some i; G S or in EH for some
H e^.)lf S ¥= 0, then (3.11) gives that (5c(u), EG-S^i")) is a simple fe-separation of
G for any u G S. If S = 0 , then | ^ | ^ 2 (since ^J(S, T) t̂ 0 ) and, tbus, (3.11)
implies that iEH, EG-EH) is a simple ^sq)aration of G for any H ̂  B.

Case 2: b^(VG) is even. In tbis case we must show that G is simple fe-bicritical.
Suppose that u G KG is a node such that there does not exist a perfect sinq)le
^'-matching of G, wbere b[, = b° -2 and b'^ = b° for each v e KG-{«}. (If no such
node exists then G is simple 6-bicritical.) If b^ = 1, then (5c(«), EGSdu)) is a simple
Z>-separation of G, since G has a perfect simple Z> -̂matclung. So it may be assumed
that 6;; ̂  0. Let S c KG and r c VG-S be sets such that

b'iS) < Q'iS, T) -I- \^[iS, T)\ (3.12)

holds. TMs inequality impli^ tbat

(2^(5, T) + l^f (S, T)\ -J-1. (3.13)

Now mice b°iVG) is an even int<^er, (3.6) impUes that b%S) + Q°(S, T) +
\^iiS, T)\ is an evai int^er. So (3.13) implies (3.5). Tbus, a simple ^sq)aration of G
can be found as in Case 1. •

If G is a simple fr-critical graph and G has a cutnode v with b^ = 1, then it is easy to
see that G is simple b-^paiable. (Let Gx be a connected conq)onait of G[VG-{v}].
Since G is wa^le A-critical and *„ = 1, b'^iVGi) is evm and 6'= (̂KG-KGi) is odd.
Tiius, (y(KGi U {»}), yiVG-VGJ) is a ample b-separation of G.) However, unlike the
matching case (see Tbeoron 14) and the &-matdiing case (see Tlieorran 2.7 and Cook
[8]), it is iu>t true that if G is sinqile d-criti<^ and G has no cutnode v with b^= 1 then
G is simpk ^nc»isq)arid)]e. Omsida tbe ^ r^b H given in F%ure 2 with b^ = 2 for

node v.
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FlGUKE 2

It is easy to check that H is simple b-mticsA (due to symmetry, H has essentially only
four different types of nodes). However, H has a sinqile 6-separation as indicated by
the bold-faced edges in Figure 2. (Letting ^^ be the set of bold-faced edges,
{El, EH-Ei) is a simple ^s^aration of H.)

If G is a simple Znaitical graph and Af is a simple 6-matdiing of G of cardinality
[ ft'^(FG ) /2 j , then M is a neixr-perfect simple b-matching of G. For each near-perfect
simple Z>-matching of G there ensts a unique node v G VG such that M is deficient at
V (that is, M contains exactly 6f - 1 edge vMck meet v). An edge e = («, v) is full
with respect to node u if e is contained in every near-pofect sinq}le ^-matching of G
defident at u. Notice that tbe edge {p, q) indicated in the graph given in Figure 2 is
full with r^pect to p, when bg=' 2 for ^ch node v of the graph.

3.5. A simpk b-critiad graph G is simple b-nonsepa-dble if and only if
*f = <'c(») for «K* ««fc v^VG which meets an edge (a, v) ^ EG that is full with
respect to u emd the graph G\VG), where T^ [ve^VG: bf = </c(«')}, is connected
with no cutnode q having b^ = 1. {Recall that G\VG) is obtained from G by replacing
each node ve^T hy the ruod^ f j , . . . , 0*, where k = «/<;(»), and rephmng the edges
{ui, v),...,(«4, v) by the edges («i, DJ), . . . ,{U^,V^) and letting *„ = 1, / = 1, . . . , k.)

PROOF. Let G be a waple ^-critical ample 6-nonseparable graph. Suppose that
edge e = («, i>) e £G is full with req>ect to u and tiiat bf < d(;{v). Let G' be the
graph obtained £rcMn G by adding a new node v' to VG with b^, » 1 and rq>lacing
e = (M, V) by the edge e' = («, oO- Snce ftf < d^v), b°{VG') = b%VG) + 1, which
is an even number. If M' is a perfect mxrsplt ^matdiing of G', thai e' e M' and
M = M'-{e'} is a near-pofect single fr-matdiing of G d^dent at u whidi does not
contain tlw edge e. So G' has no pertt&. siio|de d-matdiii^ amd toice, by Lenuna 3.3,
is not single ^bicdtical. So Losuna 3.4 iiiq)lies that G' has a maple &-sq>arati<m
(£{, E^). We may assunK that e' e £{ asA e' ^ £^. Let ^^ = iE[-{e')) U {e) and
£2 "̂  ^2- Since the cradinaUty of a laigest sinq^ b-ms&dtia^ of G' is equal to tlw

d l i ^ of a faagest anqrie fr-matdung of G, (£1, £2) » a anqde d-^>mati(»i of G,
f »> </G(I>) fta-ewA nocfe 0 e FG «^iidtnwets an e ^ ( u , v) e £G

diat is MI with respect to «.

The g n ^ O is siaq^ h-iamaegmai^ if uid (mfy if G\VG), wbeste T'^ [v^VG:
f h wa^ tHOome^iakics. Cteofy, G^iVG) is ccsmocted. Snce

is odd a ^ G^(VG) n stnqde b-nameprnMe, Lamna 3.4 impfies
tfiat G'^iVG) is msfie fr^aitbaL Tims, G^(FG) has no tattaode q with b^ » 1, sisce
evoy anqik fr<adtical a0q>te fr-nonsei^aUe gnqrii has das { H O ^
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y, let G be a simple 6-critical gr^h such that b^ = d(;(v) for each node
V e VG whidi meets an edge (u, v) € EG that is fiill with respect to u and such that
the graph G^(VG), where J = { o e FG: 6f = </c(")}. is connected with no cutnode q
having 6̂  »= 1. If e »= (u, o) c EG is contained in every near-p^ect simple 2>-match-
ing of G th«i e is full with respect to u and full with respect to o and, hence, forms a
connected compooient of G^(VG). Since G^(VG) is connect^ no such edge exists.
This inq>li^ that G^(VG) is simple 6-critical and also that G^(VG) has no separation
of the form ({e}, EG^(VG) - {e}) for some e G EG^(VG). From the condition on
full edges of G, if («, o) e EG^(VG) is a full edge with respect to a in G^(VG) then
bg = 1. We will show that G^(VG) is simple 6-nonsqparable, which implies that G is
also simple fr-ncmseparable.

To sinq>lify the notation, let G' denote the graph G\VG). Suppose that G' is simple
6-sqparable. Let Ei,...,Ei^ be nonempty subsets of EG' such that

(i) ^1 U • • • U^t = EG', (3.14)
(ii) for i = \,...,k the gr^h G, with edge set £, and node set {t; e VG': v meets

an edge in £,} is sinqile ^nonsqiarable, and
(iii) if r̂  is the cardinality of a largest simple fr-matching of G,, i = 1,..., k, then

ri + •• • + r;̂  is the cardinality of a largest simple ^matching of G'.
Since G' is simple 6-critical, G' does not have a simple ^separation of the form

(8(;.(v), EG'Sc,(v)) for some v e VG'. Tbas, for j = 1, . . . , k, Gj is not isomorphic to
Ki^ for some n. So Lemma 3.4 impli^ that for each y e {l,...,k}, Gj is either
sinaple !>-critical or simple 6-bicritical.

Claim 1: For each j e {1 , . . . , A:}, b^t = *„ for each v e VGj.
Suppose that the daim is not true for the graph G .̂ Let v & VGi be a node with

6f 1 < b^ and let e = (u, v) e EGi be an edge whidi meets v. If Ĝ  is simple
6-bicritical, then ({«}, EGi-{e}) is a simple 6-sq>aration of G .̂ So Ĝ  must be simple
6-criticaL Now, by (3.14Xiii), if M' is a near-perfect sinqile ^matching of G' then
M' r\ Ei\s& near-pofect simple ^matching of G .̂ So if 3 / ' is a near-perfect simple
6-matchLag of G' defidrait at u, then e must be contained in M'. So e is full with
respect to u and £>„ = 1, contrary to the assumption that 6f > < b^, which proves the
daim.

So b°J(VGj) = b(VGj) and rj = [b{VGj)/2\ tta each > e {1 , . . . , *:}. Since G' is
simple 6-separable, k must be at least 2.

C&um 2: b(VGi) + ••• +b(VG^) ^ b(VG') + k.
Siace b(VG') is odd, this daim implies that (3.14Xiii) is not satisfied, a contradictk)n.

To prove the claim, define a graph H with nodes / j , . . . , ^̂^ '̂̂ ^ ^'^ ^ S ^ ('<' ^j) ^^ ^
{ # J such that FG, n VGj * 0 . Since G' is connected, the graph H is connected and
l^tfI ^ * - 1. Since b(VGi) + ••• +b(VGt) ^ b(VG') + \EH\, we may assume that
\EH\ = k — \. Let /j be a node of d^ree I'm. H and let fy be the node in VH that is
adjacent to I,. Since G' has no oitnode ^ with £>, = 1, 6(FG, n FG )̂ ^ 2, which
completes the proof of die daim and the proof of the h

3.6. This theorem yidds a pdynomial dnw algtmthm tor testii^ whether
(X not a g i ^ h G is a an^>k ^-critical sinq>le 6-nonsq>arable gr^h. Imleed, using
Ecbminds' [14,15] î >ss<Hn algcnithm and a "scaling" ai^uneat, similar to the cme used
by EdoKiads and Karp [18] to scdve min-cost flow prc^lesos, Cunningham and Marsh
(see M m ^ [23]) devdcped a pcdynomial time alginitlim ICH' the ^matching problon.
(A diffei«it p<dyiKMnial tin^ al^nithm toec the fr-matdiii^ problem has beoi found by
Aostee (lj. Ajistee's aJgcnithm uses a pdynomial ^sat mhi-cost flow algorithm as a

and thus avoids a separate "scaling" a^gnmoit) Uang the constniction of
BKittkned eazUer, this algtmthiB can be used to scdve siis^le

{ in pc^yafHoM time, «4ikii iss^^es that it is po^Me to t ^ w l ^ t e ' <» mA G
k siaqde fr-ociticad in pcdyiKHBial time. "Dm an^de fr-maldHng a^pcithm can also be



108 W. COOK & W. R. PULLEYBLANK

used to check that ftf = ddv) for each node » G KG which meets an edge («, v) G EG
tbat is full witb respect to u. It only remains to check that G^VG) is connected witb
no cutnode q having b^ = 1, wbidi can be done easily in polynomial time.

Using Theorem 3.5, we will sbow that simple 6-criticaI simple ^nonseparable
subgraphs of G produce a class of essential inequalities for S(G, b). The proof
technique used here is a generalisation of one used by L. LovAsz to give a short proof
of the corresponding result for matching polyhedra. (IMs short proof of L. Lovasz can
be found in Comudjols and Pulleyblank [11] and Lovisz and Plummer [22a].)

LEMMA 3.7. Let H be a subgraph of G with \VH\ ^ 3. / / the inequality

xiEH) 5 l6"(K^)/2j (3.15)

is not xiSiv)) ^ bg for some v G VG, then it is essential for iS'(G', b) if and only if it is
simple b-critical and simple b-nonseparable and there does not exist an edge e = iu,v) ^
EG-EH with «,« G VH andd^{u) ^ &„ and dg{v) > b^.

PROOF. Let /f be a connected subgrqjh of G witb \VH\ ̂  3 such that (3.15) is not
xiSciv)) ^ b^ for some v G VG. Suppose that (3.15) is essential for SiG, b). Qearly,
H is a simple ^nonsq)arable grapb and has a simple 6-matciung of cardinality
[b"iVH)/2\. By Lemma 3.4, H is simple fe-cdtical or simple ^bicriticaL If H is
simple 2>-bicritical, then (3.15) can be obtained by summing the valid inequalities
x(.Si,(v)) ^ b" for eacb v G VH and dividing tbe resulting inequality by 2. So .ff must
be simple fr-oitical and simple ^nonseparable. If there exists an edge e = (u, v) G
EG-EH witb a, w G Kff and dgiu) ^ &„ and dgiv) ^ b^, then xiEH) + x^
^ \b"iVH)/2\ is a valid inequality for SiG, b). So no such edge exists.

Conversely, suppose that H is simple ^-critical and simple Z>-nonseparable and that
there does not racist an edge as described in tbe statement of tbe lemma. Let JK heiht
set of all ample i-matdiings of G for which x{EH) = [b"iVH)/2\. Suppose that
ax ^ a is a valid inequality for 5(G, b) and tbat ax = a for eacb x ^Jl and that a is
not the vector of all zeros. We will show that a, = 0 for all e G EG-EH and that for
some number X > 0, a^ = X for each e G EH. This implies that (3.15) is facet
indiuang for SiG, b) and hence ^sential for S{G, b) (see, for example, Pulleyblank
[27]).

Siq>p<»e tbat e = (u, v) £ EG-EH. To sbow tbat a, =^ it suffic^ to sbow that
there exists a dnq)le fr-matching M BJf such that e G M (since M-{e} is also a
monber of Jf, wiiidi in^lies that a + a^^ a). If ndth^ u nor o is in VH, then
clearly sucb an M exists. If exactly one of u and v, say v, isjn VH then let M be a
near-perfect anq)le b-matdmg of H d^dent at v and let M °= M U (e). If both u
and (7 are in VH, then at least one of » and v, say v, must have dgiv) < ^ . In this
case, let M be a near-perfect simple fr-matdiing of H de&arait at u {u») let M = M U
{e}.

Snce ax ^ a is \^did for SiG, b) and ance each ei%e e G EH is in a nrar-pofect
dmpte fr-matdung of if (as Ĥ  is ample 6-aiticaI), we have that a« ^ 0 f(»r »cb
e £ EH. So a,> Of<a SCHIW edgs I € EH. Suppose fliat it is not true tbat a, =« a, for
eadi e £ EH.

Let H' dmoie ti» p ^ h H\VH), whae T » { D £ Kff: rf^(o) = fef}. By Thsmem
3.5, H' k d o p k b-caiksA and cooi^c^d. So t toe edst a node v £ VH' aad e^es
p,ze Sjr(f) ^ ^ thtt a , # a^. (We idaitify edges in EH' with tisar (XHteiq)caida^

d ^ in ££f.) Let /3 <- smfa^: e £ £jr(i')}- L^ / » {e £ d^(o): a^ »= jS} sM let
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Claim. There exist an edge e = is^^o) e K^ and a near-perfect simple ^matdiing M
ot H'de&aent a.t s such th&t e € M and M nJ ¥= 0. _ _

Qnc^the claim is shown, the proof will be complete, since itfeMnJ then both M
and (Af-{/}) U {e} are m e m t ^ of Jf, which implies that a, «* a^, a contradiction
(since a^ = /S and a, > /8).

Case 1: b^ — l. Let H" he the graph obtained from H' by splitting the node v in the
following way: Replace v by the nodes v', v" with b^. = b^., = 1 and replace each edge
it, u) e / by it, v') and each edge it, v) e K by (t, v"). Suppose that H" does not
have a perfect simple 6^"-matching. By Lemma 3.4, H" has a simple 6-separation.
Since the cardinality of a largest simple 6-matching in H" is equal to the cardinality of
a largest simple 6-matching in H', this implies that H' is simple ^separable and hence
that H is simple ^sq>arable, a contradiction. So there ocists a perfect simple
fe*"-matching_M of H". Letting e be the unique edge in M which meets the node v"
and letting M — M-{e}, the conditions in the claim are satisfied. (Again, edges in
EH" are identified with the corresponding edges in £^^0-

Case 2: b^ ^ 2. By Theorem 3.5, there is no edge («, v) e 8^-(i;) that is full with
respect to M in H'. Let /^ = (u, u) e / and let Af ̂  be a near-perfect simple
6-matching of H' deficient at u such that /^ S M^. Choose edge f^eK and
near-perfect simple Z>-matclung M^ of H' such that

(i) M^ is deficient at q and /^ ^ Af ̂  (where ^ is the end of /^ which is not v) and
(3.16)

(ii) of all edge, near-perfect simple b-matching of H' pairs which satisfy (i),
\M^ n Af ̂ 1 is as large as possible.

If M^ f\ J * 0, then M = M^ and e = / ^ satisfy_tiie conditions of the claim.
Similarly, itM'^CsK* 0 , then any e e Af̂  n i^ and M = (A/^-{e}) U {/^} satisfy
the conditions of the claim. So we may assume that Af ̂  r\ K= 0 and M^ C\J ~ 0.

Since Af ̂  is deficient at u and M^ at q, there exists a trail T ~ ueiOie2V2 • •
in H' such that {e^,e^,...,e2jfc_i} c Af2 - Af̂  and {^2.̂ 45• • •.«2*} £ -^l ~ ^2-
trail is defined as in Bondy and Murty [5], that is e, e £if' for j = 1,. . . , 2k, u, e
for i = \,...,2k-\, e^^ej for i # y , ^i = («, DJ), ej = (Ui, Ua). • • •. «2t =
(''2/t-i» 4f)- To see that such a trail Texists, consider M^AM^, the symmetric difference
of M^ and M^.) Let ET= {ei,e2. —.«2*}-

Suppose that | £ r n / | g 1. Let Af = (Af^-{e2,e^,...,Cj*}) U {e^,ej,...,e2*-i}-
Since {ej, e j , . . . , e2*-i} n Af̂  = 0 and {cj. ̂ 4» • • •. ̂ 2*} £ -*^̂  -^ is a near-perfect
simple 6-matdiing of .ff'_defident at q. ^nce &„ ^ 2 and Af ̂  n Â  = 0 , we have
|Af̂  n / | k 2 and hence M r\J i' 0 . So Af and c = /^ satisfy the conditions of the
claim.

Now siq>p(»e that \ET O / | ^ 2. We must have o, = v and Vj = 0 for some i, y in
{ l ,2 , . . . ,2 fc -1} , i<j. If e.eA^ then e, G Af̂  - Af̂  and hence Af' = (Af̂ -
{e2,e4,...,e,...i}) U (cj,e3,...,e,_2} is a near-pwfect simple ^-matching of H'
deficient at o,_i ^lich does not contain e, = (PJ-X, 0) e K. Since |Af' n Af ̂ | > |Af ̂
n Af ̂ 1, this amtradicts die choice of the pair /^, td^. So we may assume that e, e /
and thiat e,+i e K (since M^ n / = 0 and M^ Ct K=' 0). By the same argument, we
may also assume that ej e / and e^+i e JŜ . Notice that o«,M.i»,M.ie,+2 • • • ê D is a trail
from vtxiv with {«,+i, e.+j,.. . , c,_j} c M^ - M^ and {e,+2. «< .̂4.• • •, «y} £ Af̂  -
Af 2. So Af' = (Af2-{e,.,i, e,+3,..., ej_i)) U {e,+2, e..+4,..., e,} is a near-perfect sim-
pk 6-matdiii% of H' defidoit at q. Snce f^eKand \M^ nK\= 0, f^ is not in
M^ and tewx n(rt in {e,+2, ̂ ^^.4,..., e^}. So /^ « Afl Howev«3-, |Af' n Af*| > lAf̂
n Af ̂ 1, a contradiction, wfaidi con^lel^ the pnxtf of the lonma. •

3.8. It is p(»abfe to prove a stnictund te^t tac ample ^-caitical anq>le
p §ta|dis amilar to Lovisz" [22] result on ear-^c(»npo»ti<His of h^>o-

aaatdiaUe graphs (see also CtmmijcAs and Pidleyblank [12]). This structural r^ult can
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be used to prove L^nma 3.7 by ccHistnicting \EG\ affindy indq)endait ample
^matdiings of G \tdudi satisfy (3.15) with ecyiality. However, at present, our proof of
tbese statements is teditws and bas thoefore beoi omitted in favor of the proof of
Lemma 3.7 given above.

A umsequence of Lemma 3.7 and Theoron 3.1 is that
(i) 0 ^ JC, ^ 1 Ve G EG, (3.17)
(u) xiSciv)) ^ *„ Vo G VG,
(iii) xiEH) ^ [b"iVH)/2\ for eadi ample 6-critical simple 6-nonseparable sub-

graph H of G,
is a d in ing system for SiG, b). Thus, to prove tbat an inequality is essential for
S(G, b) it suffices to exhibit a vector x wMdi does not satisfy tbe inequality but does
satisfy each of the other inequalities in (3.17). Tliis technique will be used to
characterise wbicb inequalities in (3.17Xi) and (3.17Xii) are essential for SiG, b).

LEMMA 3.9. For each e £ EG, x^^O isan essential inequality for SiG, b).

PROOF. Let e G £ G and let x, = - 1 and jC/ = 0 for eadi / £ EG-{e}. Tbe vector
X does not satisfy x^^O but it does satisfy each of tbe other inequalities in (3.17). •

LEMMA 3.10. Let e G EG. The inequality x^^lis essential for 5(G, b) if and only if
e does not meet a node v with 6̂  = 1 and ddv) > 1.

PROOF. If e meets a node v with fe^ = 1 and ddv) > 1, then X(8(D)) ^ 1 implies
the inequality x^ <, 1. Suppose that e does not meet sudi a node v. Let x, — 2 and
x^=0 for eacb / G EG-{e}. The vector x does not satisfy x^^l but it does satisfy
each of tbe otber inequalities in (3.17). •

LEMMA 3.11. Let v & VG and let b'^ - min{6 |̂fi(M) n 8(«)|} for each node u G
Niv). The inequality ac(8(o)) ^ b^ is essential for S(G, b) if and only if one of the
following condititms holds:

(i) b'iNiv)) = bg and (ii) v belongs to a ccmnected component of G /- ĝ-j
which contains exactly two noda and (iii) ifd^iv) ^ b^ then *„ = 1.

(i) b'iNiv)) == dp -H am/ (ii) there is no edge iv^, V2) G Y(JV(P)) such

) ^b, + 2. (3.20)

PROOF. Suppose that b'iNiv)) ^ *„ and that (3.18) does not bcdd. The inequality
xiSiv)) ^ fep is imtp^ed by tbe inequalities ac, ̂  1 for each e G fi(u) and Jc(8(tt)) ^ *„
for eadi u £ Niv). Now si^K»e tbat (3.18) hdds. Let ac, = 1 for each e £ 5(i;) (if
dciv) = 1 let X, = 2 fcBT e £ 8(i>)) and let x , = 0 for each e £ EG^iv). Tte vector x
does not satisfy xiSiv)) ^ b^ but it does satisfy eadi of the othat inequalities in (3.17).
So xiSiv)) ^b^is ess«atial fOT 5(G, b).

Siq>pc»e that b'iNiv)) = 6, -1-1 and tfiat (3.19) does not hdd. Let e' » (»i, DJ) £
yiNiv)) he an e<^ aidi that 6^ - 6^ and b^^ = î .̂ Hieiiwcpiality x(8(i>)) + x,. g b^
is valid foar S(G, b) and in^jlies x(«(o)) £ b^. Now SI^^KM* that (3.19) hdds. FOT eadi
u £ Niv) sdect b^ edges from <(«) n 8iv) and let / be tlie cdltecticm of tbse e d ^
Let X. »= 1 for &di e £ / and x, * 0 for eadi e £ EG-J. T1» vectac x does acM satisfy
xiSiv)) S K l^t it ^ ^ s a t i ^ eath oi the oiba imegoalitfes in (3.17). So the

^ x(5(o)) ^Kh essaitial fat SiG, b).
that b'iNio)) ^b^ + ZlMJhea eoBef^km tab„ + 2 e < ^ in «(») «idi

n 8(u)\ s K i<« e«* « ^ ^("X Let *. " V(*e + I) ' « ««* e £
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3ĉ  = 0 for each e e EG-J. Tte vector 3c does not satisfy x(8(i>)) ^ b^ but it does
satisfy each of the other inequalities in (3.17Xi) and (3.17Xii). Let ojc ^ jS be an
inequality in (3.17Xiii). Let S be a propts subset of / . If |5 | ^ &„, then x(5) ^ \S\ and
5 is a simple 6-matchii^ of G. If |5 | =° &„ + 1, thai ic(5) — \ and S contains a
simple fr-matching of cardinality &„. So if a, # 1 for some e e / then 3c satisfies
ax ^ /S. On the other hand, if a, = 1 for eadi e £ / then ^ must be at least
\ ( \ + (b^ + 2)) /2l = 6, + 1. Since 3c(/) < 6̂  + 1, if a, = 1 for each e^J then Jc
satisfies ax ^ p. So 3c satisfies all other inequalities in (3.17), which implies that
xiSiv)) ^b^is essential for 5(G, b). m

Using these lemmas, the minimiil definii^ s^ton for SiG, b) can be described.

THEOREM 3.12. The unique (t̂ p to positive scalar multiples of the inequalities)
minimal defining system for the convex hull of the simple h-matchings ofGis

(i) JC, ̂  0 Ve e EG. (3.21)
(ii) X, ^ 1 for eadi e e EG such that e tbes not meet a node v with &„ = 1 and

da(v) > 1.
(iii) X ( 8 ( B ) ) ^ b^ for eachve VGfor which either (3.18), (3.19), <»• (3.20) holds.
(iv) xiEH) ^ [6*(Kff )/2J for each simple b-aiticalsimple b-nonseparable subgraph

H of G sudi that there <hes not exist an edge e = («, v) e EG-EH wiih u,ve VH and

PROOF. This follows from Lemma 3.7, Lemma 3.9, Lemma 3.10, Lemma 3.11 and
the fact that linear systan (3.2) is a defining system fOT SiG, b).

By setting b^^ I for eadi v € VG, this theoron, togetl^r with the characterisation
of single ^-critical simple d-ncmsqtarable graphs given in Hieorem 3.S, implies the
charactmsation, of Pulleybladc and Edm(Hids [28], of the minimal defining system for
the ccmvoc hull of the matchings of G given in Hieorem 2.2.

REMARK 3.13. In virtue of the characterisation of sinq)le ^-critical simple ^nonsq>-
arable gr^hs given in ThecHem 3.S, it is possible to test in pcdynomial time for a givoi
gr^h G and inequality ax ^ P whether or not ax ^ jS is in the system (3.21) (see
Remark 3.6).

Linear system (321) is not, in gmeral, totally dual intend. (Con»der the example of
a simple 2>-bicritical ffaph ffyen earUer, die complete graph on four nodes with b^='2
for eadi notk v, with each edge rec^ving w e ^ t 1.) However, the foUowing result
shows that if G is ccnmected thai either (3.21) is totally dual integral or, if not, the
additicm of a single valid inequality to the system makes it totally dual integral.

THEOREM 3.14. Tite Schryver system for the convex hull of the simple b-matchings of
G is (3.21) together with

x(EH) 5 b^iVH)/2 for eatk amnected compment HofG such that H
is a simple b-lnaitical simple iMumseparabk g^eph.

PROOF. Siiu% linear system (32) is a totally dual int^ral defining system for
S(G, b). Lemma 2.5 ii^lies that the Sdmjver ^st«n for S(G, fe) is x , ^ 0 for each
ee EG and x(J) ^ r(J) for eadi / c EG, / # 0 wMdi is dosed and nonsquirabte
to the §maal m^epeBdamx sy&em (EG, I), wtere / is tl^ s^ of maple 6-matdungs
(rf G sod r(J} is the araSnafity oi a laigest mmple fe-matohing amtained in / .

A set {e} for same eeEGis tlbsed if and cniy if e do« not n^et a node v with
* „ - lsadd^v)> LSo^iiMqualityx,^ 1 is in tlw SdirijwT systan frar S(G, £>) if
and ooly if it is in (321Xfi)-
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A set 8(v) for some v e VG contains a simple 6-matching of size b^ if and only if
b'(N(v)) ^ b^, where bi == min{*«, \8(u) n S(v)\} for each u e N(v). So the in-
equality x(8(v)) ^ 6p is in the Schrijver systan for S(G, b) if and only if b'(N(v)) ^ b^
and 8(v) is closed and nonseparable. This implies that X(8(D)) ^ 6̂  is in the Schrijver
system for S(G, b) if and onfy if it is in (3.21Xiii).

By the form of systmi (3.2), any inequality in the Schrijvet system for S(G, b) that is
not of the form x, ^ 1 or ac, ̂  0 for some e e EG nor of the form x(8(v)) g b^ for
some V G VG must be of the form

x{EH) g [b"iVH)/2\ (3.23)

for some cormected subgraph H ot G with \VH\ ^ 3.
Let ff be a connected subgraph of G with \VH\ ̂  3. The inequality (3.23) is in the

Schrijver system for S(G, b) if and only if EH is dosed and nonseparable and H has a
simple ^-matching of cardinality {b''(VH)/2\. So, by Lemma 3.3 and Lemma 3.4, if
(3.23) is not of the form x(8(v)) ^ b^ for some v ^ VG then it is in the Schrijver
system for S(G, b) if and only if EH is closed and dther H is simple ^-critical simple
fr-nonsq)arable or H is simple fr-bicritical simple 6-nonseparable.

If ^ is a simple Critical simple 6-nonseparable gr̂ qjh then EH is dosed if and
only if there does not exist an edge e - (u, v) e EG — EH with u,ve VH and
dni") ^ *« and dii(o) ^ &„. It follows that if b"(VH) is odd and (3.23) is not of the
form x(8(v)) ^ b^ tor some v ^ VG then (3.23) is in the Schrijver system for S(G, b)
if and only if it is in (3.21Xiv).

Suppose that h is simple 6-bicritical and simple fr-nonsq)arable. By Lemma 3.3,
there exists a perfect simple i*-matching of H. It follows that du(v) > b^ for each
V G VH (since if dif(v) g b^ then ({e), EH-{e}) is a simple ^-separation of H for
eadi e G 8if(v)). It H is not a connected component of G then there exists an edge
e G EG-EH which meets a node in VH. If e is such an edge then r(EH U {e}) =
r(EH). So EH is dosed if and only if jy is a connected con^nent of G. Thus, if J^ is
a connected subgraph of G with \VH\ ̂  3 such that b"(VH) is even and (3.23) is not
of the form x(8(v)) ^ b^ for some v G VG, then (3.23) is in the Schrijver system of
S(G, b) if and tmly if it is in (3.22). •

Notice that Hieorem 3.12 is not used in the above proof.
This theorem can be used to obtain the characterisation of the Schrijver system fOT

the ccmvex hull of the matchings of G, givoi in Hieorem 2.3, due to Cunningham and
Mar^ [13], by setting 6̂  - 1 for each v G VG. (Any single Z>-bicritical graph must
have A,, ^ 2 for each node v, so ii bg=l for each node v then G has no simple
£>-bicriticaI subgraph.)

We complete our discussion of ample &-matchings by characterising simple 6-bicriti-
cal simple ^nonsq)arable gn^hs. For each edge e — (u, v) G EG, let G, „ denote tlK
graph obtained from G by rqpladng e; by the nodes v', v" with b^. = 1 and b^, = b^,
rqjladnge = (u, t>) by the e ^ ( u , i ; ' ) , and rqpladng eadi edge/=° (t,v)'i3k8Q(vy-{e}
by (t, v"). (Tlw edges in Ĝ ^̂  will be identified with thdr corresponding «iges in G.)

THEOREM 3.1S. A single b-bicritical graph G is single b-nonsepta-abk if and onfy if
for eadi c = («,») G EG the gjrt^hs G, „ md G, „ are simple b-critical sinqtle b-mms^-
wMe gnqihs.

PROOF. Suî pc»e that G is a WBBS^ &-bicritical an^te 6-nonsq>arabte gnQ>h. Let
e - (a,») be an edge <rf G. If b°''{VG^^,) = b°iVG), ^xsa dc(v} ^ b^ and Om
({ /} , EG-if)) is a aa^Ie ^sq»aratkm of G fm eadi / G 8a(t>) {moe G has a perfect

^ ' ^ So b'^"(VG^^) - b^VG) + I, which fflq^es that '^
is oM. This uiqilks that the cardinality ol a I i ^ ^ t a n q ^ 6-ma&:Ung of G« „ is equal
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to the cardinality of a largest saxsple fe-matdung of G. Therefore, any sinq>le
aration of Ĝ  „ would be a ample fe-sqjaration of G. Thus, G, „ is sinq>le b-nonsep-
arable and, by Lemma 3.4, also simple fe-critical.

Now suppose that G is simple 6-bicritical and that for each e = («, v) e EG the
gr^hs Gg^„ and Ĝ  „ are sin^e 6-critical and simple 6-nonseparable. Let Ei,..., E^^
be subsets of EG wliich satisfy the conditions given in (3.14), where G' = G. Since G, „
is simple 6-critical, no set E/, i e {l,...,k}, can he of the form {e} for some
e = iu, v) e EG. Also, since G is simple fe-bicritical, no set £„ / e {1 , . . . , A:}, can be
of the form 8iv) for some v G VG. So, by Lemma 3.4, for / = 1,. . . , k, the graph G,
(as defined in (3.14)) is ample ZKsitical or simple ^bicritical. Thus,

If few some i e {1 , . . . , A:} and D G VGi we have d^v) = b^', then (£;, EG-E^) is a
simple ^separation of G, „ for any e e 5e^(o). So for each / e [l,...,k}, we have
Z> '̂(FG,) = biVGi). Ifk^2 then for eadi / e {1 , . . . , A:} there exists a y e {1 , . . . , A:},
j * i, such that FG, n FĜ  # 0 . Since b^^2 for each u e FG, if A: ^ 3 then this
impli^ that biVGi) + ••• -hfe(FGt) ^ 6(KG) + ;t + 1 and hence that (3.24) is not
satisfied. So A: is at most 2. Suppose that A: = 2. By (324), we must have that
biVGi n FG2) = 2. TTius VGi n FG2 = {P} for some » e FG and &„ = 2. Now since
G is sinqjle 6-bkritical, G has a simple ^matching x such that xiSiv)) = 0 and
3C(5(M)) = *„ for each « G FG-{«} . SO fe(FGi) and biVG2) are even numbers, which
implies that (3.24) is not satisfied. So A: = 1, which implies diat G is simple b-nomep-
arable. •

REMARK 3.16. Using this characterisation of simple 6-bicritical simple b-noBsep-
arable graphs and the duum;terisation of simple ^-critical simple 6-ncnisq)arable
^aphs given in Hieoron 3.5, it is possible to test in pdynomial time whether or not a
given graph G is a simple fe-lnaitical simple ^nonsq}arable ^aph (see Remaric 3.6).
Hius, it is possible to test in polynomial time for a p^en graph G and inequality
ax g /S whether or not ax ^ i8 is in (3.21) or (3.22). Also, Lemma 2.5, TTworem 3.5,
Thec»em 3.14, and Theorexn 3.15 tc^ether imply that it is pebble to test in polyn(»nial
time whetha or not a given graph G is simple ^n(Hisq>anible.

4. Qyadtated A-ontcU^ Capadtated ^matchings are a generalisation of sim-
ple Z»-matchii^ and 6-matdiings. Let G be a gr^h, possibly with multiple ed^s,
b = (*„: 0 e VG) a positive int^er vectfM:, and c = (c,: e G EG) a positive int^er
vector of ec%e capadtks. A c-capadtat&l b-matdiing of G is a ib-matching x such that
Xg ^ c, f<M- eadi e G EG. We abbreviate "c-capadtated 6-matching" by "(ft, c)-matdi-
ing". If c, = 1 for eadi e e EG then a (6, c)-matdiing of G is a siiiq>le 6-matchii^ of
G. If /8 = msa{b^: v e VG} and c, = /8 for each e & EG then x is a (6, c)-matdiing
of G if and onfy if x is a Z>-matdung of G.

A (6, c)-niatdax% probkan can be redvtced to a siiiq>le fe-matching problem t^
eada. edge e G EG widi c, e^es, each of whidi has the same aid nodes as e.q p ^ g

Howeva-, from m a^cnithmic point of view it is better to use Tutte's c(»istructi<m fcnr
redttdn^ amfde fe-matdui^ IH'c4>lems to b-xaatciaag problans to redtue ib, c)-matdi-
iag pnMems directly to fr-matdui^ problems as fdk^t^: Siqq>ose that w = (w^:
e G £G> is a vectCH* of e ^ we^ts . For eadi ed^ e = («, v) of G aM nodra «, and
o, to VG and rej^wx « by the e(%es («, a,), (u,, p,), (D,, O). F<» ewdi c e £G kt
*», ~ *e. - c, and W(,^^)« ^^^ , j - w ,̂̂  ,) = w,. The maxinBon wei^t <rf a 6-

^ in the mw p s ^ k eicat^ £{w«c,: e G EG) greater than the maxumun
f a (b, c>-m^dhing dt G. Again, as presaited m Araoz, Cunnin^iam, EdnKmds,
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and Gre«i-Kr6tki [2] and Schrijv^* [31], Tutte's construction and the total dual
integrality of (2.4) together imply the fdUowing result, which follows from a theorem of
Edmonds and Johnson [17].

THEOREM 4.1. A totally dual integral defining system for the convex hull of the
(b, cy-matchings ofGis

O^x.^c, VeGEG, (4.1)

x{8(v)) ^b^ Vo e VG.

+ c(>))/2] VS c FG, / c

If iBT is a subgraph of G, let *<"•') = min{i^, c(8ff(v))) for each v G VH. Again, the
size of a largest (b, c)-matching of G (that is, the maximum value of x(EG) over all
(6,c>-matchings of G) is at most [b^^- '''(FG)/2J. So, since for each SQVG,JC: 8(S)
the set of edges y(S) U 7 is the edge set of a subgraph of G, Theorem 4.1 implies that

Ogac^gc , \feBEG, (4.2)

x(EH) s [b^"''\VH)/2\ for each connected subgraph

is a totaUy dual integral dining system for P(G, b, c), the convex hidl of the
(b, c)-matchings of G. We will use this result and the results on simple 6-matdungs
given in the previous section to describe the minimal defining system and the Schrijver
system for P(G, b, c).

We g«ieralise the notions of simple 6-matching criticality, bicriticaUty, and sep-
arability as follows. If G is connect^ then G is (b, c}-critical if |FG| ^ 3 and for each
veVG there exists a (b, c>-matching 3c of G such Oiat 3c(5(»)) = b^^^'^ - 1 and
x(8(u)) = b^"''^ for each u G VG-{v}. It G is connected and |FG| ^ 3 then G is
(b, cybicritical if tor each v G VG there exists a (b, c)-matd)ing 3c of G such that
x(8(v)) = bf''^ - 2 and x(8(u)) = b^^-'^^ tor each u G VG-{v}. A (b, c)-separation
of G is a pair (Ei, Ej) such that Ei, Ej^ c EG, ^^ U £2 = ^G, £1 # 0 # E2, and if,
for i = 1,2, ki is the aze of larg^t (b, c)-matching of G such that x^ = h for all
e G EG-Ej, then ki + k2is the size of a largest (b, c)-mabdiing of G. A (b, c)-match-
ing JC of G is perfect if x(8(v)) = b^ for eadi v G VG.

Throughout the remainder of this sectitHi, let G' denote tte graph obtained from G
by replacing each edge e G EG with edges e^,..., e^^, eiK;h of whidi has tl^ same aid
nodes as e. Eadi sub^aph H ot G corre^x>nds to a subgraph H' ot G' (that is
VH' = VH and £ ^ ' = U {{ej,. . . , ê  }: e G EH}).

4.2. IfGis (b, cybicritical then G has a perfect (b^°' '\ cymatching.

PROOF. Let G be a (6, c)-bkritical graph. By Lemaa 3.3, the graph G' has a
perfect simple ^'^-matdiing x', since G' is anq>le ^bicritical. Letting 3c, » ^{K,'-
I = 1, . . . , c,} for eadi e G £G we have a perfect (6^*'''^ c)-matdm^ <rf G. •

LEMMA 4.3. A cmnected grqph G with \VG\ ^3 is (b, cynmseparMe mfy if G is
istmwrphic to Ki „ for srnne n (with midtiple edges allowed) orGis (b, cycritiad orGis
(b, cybicritical. '

G be a gn^h with |FG| ^ 3 that is not iKm»Hphic to JTi,, forson^n.
that G is luitter (b,cy<^^cal ma (h,cy\3kn^aL It fcdknvs tsam this

tfiat G' k mA vsonx^piAc to JT̂  „ tor some n msr wss^ -̂cdtirati
simple fr-lnaiticaL In du proof <A Lemma 3.4, a aniple fr-^»u-aticm (£{> ^1) ̂
a g n ^ is ccmstnKrted. This ma^ b-se^xa^aa has tte proi^rty diat, for t == 1,2, if
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ej G E[ for some e G £G and y G {1 , . . . , c,}, then e^_ G £/ for each *: G {1 , . . . , c,}.
So (£i, Ej) is a (6,c)-sq>aration of G, where, for / = 1,2, Ei ~ U{{ei,...,e^ }:
e G £ / } . .

Using th^e lemmas we can describe the Schrijver system for PiG, b, c). Let
F^ c FG be the set of nodes v for which one of the following conditions holds, wdiere

^,E{c^: e e 5(«) n 8(o)}} for each node u G iV(p).

p is in a two-node connected component of G and
if Z{c,: e G 5(i;)} = ft^ then d^v) = 1.

) = ô + 1 and there does not exist an edge e = (PJ, P2) G
Y(iV(p)) with 6; = &„, and 6 ; = 6̂ .̂

b'(l^iv)) ^K + 2. (4.5)

A subgraph H of G is edge maximal if there does not exist an edge (u, p) G EG-EH
with «, p G F ^ and with 6<"''> = 6« and <">

THEOREM 4.4. The Schrijver system for the convex hull of the ib, c)-matchings of G is
(i) x , iOVeG£G, (4.6)
(ii) Xg £ Cg for each e G EG such that e does not meet a node v e VG with b^ < c,

nor one with b^ = c, and dgiv) ^ 2,
(iii) xi8aiv)) ^ fe^ VP G V\
(iv) xiEH) ^ lb^"''\VH)/2\ for each edge maximal, ib, c)-critical, ib, c)-nonsep-

arable subgraph H of G.
(v) xiEH) g b^''-'\VH)/2 for each edge maximal, ib, c)-bicritical, ib, c)-nonsep-

arable std)grqph H of G such that there does not exist an edge («, p) G EG-EH with
u G VH, v€VH and either c^^^„^ = 1 or *„ = 1.

PROOF. Let (£G, / ) be the general independence system with / the set of ib, c)-
matdungs of G. It follows from Lemma 2.5 and the fact that (4.2) is a totally dual
i n t ^ a l defining system for PiG, b, c) that the Schrijver system for PiG, 6, c) is x ^ 0
and x ( / ) ^ r ( / ) for all / c EG, J * 0, J dosed and nonseparable for iEG, I),
where r ( / ) is the size of a latest ib, c)-matching of G such that x, = 0 for each
e G EG-J. Using Lemoma 4.2 and Lemma 4.3, it is straightforward to check, as in the
proof of Theoran 3.14, that this system is identical to (4.6). (Note that if ifif is an edge

b, c)-bicritical subgraph of G, then EH is dosed if and only if there does, i , ) g p
not exist an edge satisfying the conditions given in (4.6Xv).)

If c, = 1 for each e G EG, then PiG, b, c) is equal to the convex hull of the simple
!>-matdungs of G and linear system (4.6) is identical to the linear system consisting of
(321) and (3.22). So Tlieatem 4.4 implies Theorem 3.14. If 8̂ = 2 • nutx{b^: v e VG}
and Cg"' fi for eadi e G EG, then PiG, b, c) is equal to the convex hull of the
6-matdiings of G and it is straightforward to check that linear system (4.6) is identic^
to the linear system consisting of (2.5) and (2.6). So Theoran 4.4 can also be used to
prove Theorem 2.7.

It is dear that not evay inequality in (4.6) is ^sential for P(G, b, c), since if H is a
ib, c)-biaitical subgraph of G then xiEH) g M"- '^/2 is implied by the valid inequali-
ties x(8ii(v)) 5 6̂ "**̂  for eadi v G VH It will be shown that ranoving the inequali-

(4.6Xv) bom (4.6) gives the minimal dining s^tem for PiG, b, c). We begin by
, c)-aritical (b, c>n(a)sq»rable grqdis.

4.5. A (b, cyaitiail graph G is (b, c)^umxpar<Me if md mfy if G' is a
simple b-aitical simple b-mmsepeu-Me gjraph.
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PROOF. Let G hea{b, c)-critical graph. Qearly, G' is simple fr-criticaL If (£i, £2)
is a {b, c)-sq>aratioa of G, thai {E{, E2) is a simple b-se^aration of G', wh^e
El = u{{ei , . . . , e^J : e e £j} for i = 1,2. So if G' is simple 6-nonseparable then G
is {b, c)-nonsq>arable.

Suppose that G' is simple 6-separable. Let Ei,...,E^ be subsets of EG' which
satisfy the conditions given in (3.14). If for each / e {1 , . . . , A:} there exists an edge
e G EG' such that £ ,= {e}, then {F,EG-F) is a (6, c)-separation of G \ndiere
F = {/i,..., /c } for any / e EG. So it can be assuimed that \Ei\ ^ 2. It may also be
assumed that E, is closed with respect to the general indq)endence system {EG', I) for
each / e {!,..., k), where / is the set of sinq)le 6-mat<iings of G'. If JEj is equal to
5e,(p) for some u G KG', then (8c(»). ^<H;('')) ^ ^ (*» c)-sq)aration of G. So it may
be assumed that Ei is not of the form 8(;{v) for some v G F C . SO G^ is either simple
6-critical or sinq>le *-bicritical and r{Ei) = [b'^^{VGi)/l\. Suppose that Gi is simple
6-biaitical. Since Gj is simple *-nonsqparable, d(;f^_v) > b^ for each v e VGi. So if
e, G £1̂  for some e e EG and I G {1 , . . . , C,}, then e, G ^^ for each .s G {1 , . . . , C,}.
nris impli^ that {yG{VGi), EG-yc{VGi)) is a {b, c>separation of G. So it may be
assumed that Ĝ  is simple 6-critical and that for some e e EG and /, j G {1 , . . . , c^}
we have e, G E^, ej € £1, and e, C £, for each t*l.ljetu,ve^ VGi be the ©ads of
e,. Since £1 is dosed and ej S Ei, we must have </ci(") < *«. o^ '^cC") < *«• So we
may assunie that dg {v) < b^. Since Gx is sinq>le &-nonsq)arable, we must have
frCi = i^. Let ^ be a node in VGi-{u, v) such that 6^' = *, (such a node must edst
since a simple fr-critical gr^h cannot be isomorphic to Ki „ for some n). Let M be a
near-perfect simple fr-matching of G' deficient at q. Since (£1, EG'-Ei) is a simple
^-separation of G', we must have that M C\ Ei is a near-perfect single fr-matching of
Gj. So |SC,(M) n M | = fr^, «*dch implies that ej S M. Thus, ({e,}, £G'-{e,}) is not a
simple fr-s^aration of G' and thwe does not exist a / such that £, = {e^}. So we may
assun» that e G £2 ai»i that |£2| ^ 2. By the above aipunents we may also assume
that G2 is simple fr-critical with dther d^^v) < b^ or d^^u) < b^ (since e, «£ £2). If
'^Cj(») < K *en b^^ = fr«, w*ich implies that \M n 5GJ(«)| < fr^^ and |M n 5GJ('')I
< frf ^ (ance frf ^ = dG^{v) and ê  € Af). So if rfc,('') < *, then (£2, £G'-£2) is not a
sinq>le fr-separation of G', whidi contt-adicts the choice of £ 1 , . . . , E^. So it may be
assumed that dg («) < fr,. Tliis inq)lies that frf' = fr^. Now since M n Ei is a
near-perfect simple fr-matching of Ĝ  defidrait at 9, we have e^ G M. SO, once again,
we have \M n 5GJ(O)| < frf = and \M n 5c,(«)l < *« S a contradiction. So we must
have that G is (fr, c)-sq>arable. •

This kmna and Ilieoran 3.5 togetika inq)ly the f<^owing result, who-e (fr, c)-full
edges and near-pofect (fr, c)-matdungs of (fr, c)-critical gnqphs are defined in a way
analc^ws to the mn^le fr-matdiing case and G*^''(FG) for T c FG is the graph
obtained from G by rep\axsn% each node v & T by the nodes o^,..., v,^, wh^e
k = dc{v), and r e p k d ^ tlw edges ê  = (MJ, i>),..., C^ = (ttjt, 0) by the e<%es
(Wi, Ol),..., («fc, OiX and letdi^ fr^^ = c,. f<» i = 1, . . . , A:.

THH>SEI1 4.6. J4 (fr, cyaitiml graph G is (fr, c)-namepardjk if and only if
</G(<') .A>̂  ^^^ " ' ' ^ v G FG wlmk meets an alge {u, v) G £ G timt is (fr, c)-fi^ with
respect to u and the graph G^'^'^VG), where 7 = { O G FG: b^^-'^ ^ dc(v)}, is

^ 1.

4.7. Ua i^ tlw ocHî wTtimi (^ Totte to reduce a (fr, c^matehing problon
to a fr-matcfai^ pr(d>lera, (fr, c)-BiatcJiii^ piobkms can be uAmd m p<dy-
tiow (%e Hooark 3.6). So tlw abow theraoa pnn^tes a ax^hod to test in

pd^soonal tiaw iiiii^ha or sot a gri^b G k a (fr, c><3kicai (fr, c>4UHiseparabfe 9 3 ^
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ITie fc^owing lemma allows us to take advantage of the fact that we know, via
Theorem 3.12, the essential inequalities for the convex hull of the simple ^matchings
of G'.

LEMMA 4.8. Let H be a subgraph of G. If x(EH') ^ a is an essential inequality for
S(G', b) then x(EH) ^ a is an essential inequality for P(G, b, c).

PROOF. Suppose that x(EH') g a is essential, and hence facet inducing, for
S(G', b). Let ^ ' be a coUection of |£G'| affinely indq>endent simple Z>-matchings of
G' for which x(EH') ^ a holds as an equality. For each simple fe-matching x' in ^ '
let X be the (b, c>-matching of G obtained by setting 3c, = L[x'^: / = 1,. . . , c j for
each e G EG. Consider the set of (b, c)-matchings Jf = {3c: x' k J('). Each (b, c)-
matchii^ in Jl satisfies x(EH) ^ a with equality. Furthermore, since . ^ ' is an
affinely independent set of vectors, je contains |£G| affinely independent vectors. So
x(EH) ^ a is facet inducing, and hence essential, for P(G, b, c). m

THEOREM 4.9. The unique (up to positive scalar multiples of the inequalities) minimal
defining system for the convex hull of the (b, cymatching of G is (4.6Xi), (ii), (iii), (iv).

PROOF. Since linear system (4.6) defines P(G, b, c) and since we have already
observed that the inequalities (4.6Xv) are not essential for P(G, b, c), it suffices to
prove that each inequality in (4.6Xi), (ii), (iii), (iv) is essential for P(G, b, c).

Let e e EG and let x^ = - 1 and jc^= 0 for each / G EG-{e}. TTie vector x does
not satisfy x, ^ 0 but it does satisfy each of the other inequalities in (4.6). So each
inequality in (4.6Xi) is essential for P(G, b, c). Suppose that e does not meet a node
ve VG with b^ < c, or one with b^ = c, and rfc(p) ^ 2. Let 3c, = c, -I- 1 and x/= 0
for each / G EG-{e). TTie vector 3c does not satisfy x, ^ c,, but it does satisfy each of
the other inequalities in (4.6). So each inequality in (4.6Xii) is essential for P(G, b, c).

Let « G FG and suppose that dther (4.3), (4.4), or (4.5) holds for v (that is,
V G F^). If dUier (4.4) or (4.5) holds for v, then Lemma 3.11 and Lemma 4.8 together
imply that x(8c(v)) ^ *„ is essential for P(G, b, c). Suppose that (4.3) holds for v. If
E{c,: e G 8c(v)} > b^, let x, = c, for each e G 8^(V) and let x, = 0 for each
e G EG-8Q(V). If E{C,: e G 8G(V)) = b^, let x, = c. H- 1 for the edge e which meets v
and Xf=O for each / G EG-{e). In dther case, x satisfies each inequalify in (4.6)
other than x(5e(i;)) g b„. So each inequality in (4.6Xiii) is essential for P(G, b, c).

Let H hea(b, c)-aitical (b, c)-nonsq>arable subgraph of G such that there does not
exist an edge («, v) G EG-EH with «, o G Fif and with bi'^-'^ = b^ and ft(*'^> = b^
(that is, .ff is edge maximal). By Lemma 4.5, H' is a simple 6-critical simple
fr-nonseparable subgraph of G'. So, Lemma 3.7 and Lemma 4.8 together imply that
x{EH) ^ {b*^"''=\VH)/2\ is essential for P(G, b, c). So each inequality in (4.6Xiv) is
essential for P(G, 6, c). •

3.12 can be obtained from the above result by setting c, == 1 tor each
^ G EG. Letting c, = /8 for each e & EG wh«% j8 = 2 • max{i^: v G VG) and using
tlK diaractoisaticMi of (b, c)-critical (b, c)-nonsq>arable graphs givoi in Ilieorem 4.6,
one (4)tains TheOTon 2.6 (^tiiidi is due to Pull^lank [240.

REMARK 4.10. Uang the diaractoisation of (6, c)-critical (6, c>-nonseparable
gnq>hs given in 'Dxar&ca 4.6 and a polynomial time (b, c)-niatdiing algcnitlun (see
Rraiuuk 3.6 and Remade 4.7), it is possible to test in polynomial time for a given graph
G and inequality ctx ̂  fi whedier o^ not oix ^ iS is in (4.6Xi),(ii),(iii),(iv). Note

that, u n l ^ the aaq>te fr-matdui^ case, we have not fcmnd an a^nithm to
in polynomial tinK t<x a given gr^h G and inequalify ax ^fi whether or not

ox ^ /3 is in the Sdirijva- system to€ P(G, b, c) (diat is, niiette' or not it is in ^ t e m
(4.6)). Tfae prdb^sm is in testii^ vdietto or not a {b, c)-bicritkal gn^h is (b, c)-ncHi-
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separable. (The analogue of Lemma 4.5 for (6, c)-bicritical graphs is not true, as can be
seen by considering the ffaph with nodes Vi, Uj, v^, v^ and edg^ e^ = (uj, Oj),
2̂ °° ('̂ 2' "3)' 3̂ ~ (^3' ''1)' 4̂ ~ ("l' ''4) with bg = b^ ~ b^ ~ 4, b^ = 2, c^ = ĉ  =

c,j = 4 and c,̂  = 2.)

5. Trian^e-free 2-niatdiii^s. A 2-matching of a graph G is a 6-matching with
&„ = 2 for each i; £ VG. Motivated by the fact that the 2-matching problem is a
relaxation of the travelling salesman problem, Comii6jols and Pulleyblank [10] consid-
ered a constrained variation of 2-matchings which they named triangle-free 2-match-
ings. A 2-matching x is a triangle-free 2-matching ii xiT) £ 2 for each triple of edges
r = { e ,̂ ̂ 2, ^3} £ ^G which form the edges of a triangle of G. (A triangle is a circuit
of length 3.) Comudjols and Pulleyblank found a polynomial time algorithm for
solving the triangle-free 2-matching problem. A consequence of their algorithm is the
following r^ult:

THEOREM 5.1. A totally dual integral defining system for the convex hull of the
triangle-free 2-nuitchings ofGis

xiET) ^ 2 V triangle Tof G,

S \S\ VS £ VG, \S\ ^ 4.

The following r^ult of Comu^jols and Pulleyblank [10] follows easily from this
theOTem.

THEOREM 5.2. The unique (i9> to positive scalar multiples of the inequalities) minimal
defirung system for the convex hull of the triangk-free 2-matchings of G is

x^^O \/eeEG, (5.2)

xi8iv)) ^2 for each v e VG such that either ddv) ^3 or d^iv) = 2

<md V is not a node of a triangle ord^iv) = 1 and v is

in a two-node connected component of G,

xiET) g 2 V triangle TofG.

If G is a circuit of length 5, then (5.2) is not totally dual in t^al . Such a dbrcuit is an
exanq>le of a triangte-free-bicritical graph. If x is a triangle-free 2-matcbing sudi that
x(fi(i?)) = 2 for each v £ VG, thaa x is a perfect trian^e-free 2-matching. If G is
connected and \VG\ ^ 4, thai G is tritmgle-fi-ee-Naitical ii for eadi 0 £ FG the graph
obtained by ddeting v from G has a p^ect triangte-free 2-niatdiing. A triax^e Tof a
connected g r^h G is a pendent triangle of G ii T ctHitains a cutnode of G and T
contiins two nodes v^, V2 with d^ivi) = dgiv2) == 2. Uang Lemma 2.5 and Theorran
5.1, the following resalt can be proven (f(» details see Cook {70.

THECKREM 5.3. The Schrijtser system fw the convex hull of the triangle-free 2-match-
ings ofGis (5 J2) toother with

(5.3)

bicritic^ emd amtains m triangle T which is a

pendent trita^k <^G\S\.
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REMARK 5.4. Using the triangle-free 2-matdiing algorithm of Comudjols and
Pulleyblank [10], it is possible to test in polynomial time for a given ^aph G and
inequality ax^fi whedier or not ax ^ i8 is in (5.2), (5.3).
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