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Edmonds and Giles introduced the class of box totally dual integral polyhedra as a generalization 
of submodular flow polyhedra. In this paper a geometric characterization of these polyhedra is 
given. This geometric result is used to show that each TDI defining system for a box TDI 
polyhedron is in fact a box TDI system, that the class of box TDI polyhedra is in co-NP and 
is closed under taking projections and dominants, that the class of box perfect graphs is in co-NP, 
and a result of Edmonds and Giles which is related to the facets of box TDI polyhdera. 
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1. Introduction 

In recent  years ,  E d m o n d s  and Gi les  [ 11], Hoffman and  Schwartz  [28], F rank  [ 14, 15], 

F r a n k  and  Tardos  [16], Gr6f l in  and  Hof fman  [22], and  others  have in t roduced  

classes o f  p o l y h e d r a  which  genera l ize  in different  ways the class o f  po lyma t ro ids ,  

as def ined by  E d m o n d s  [10]. Each  o f  these  classes is def ined by a class o f  com- 

b ina to r i a l ly  descr ibed  l inear  systems A x  <~ b which have the p r o p e r t y  that  both  sides 
o f  the l inear  p r o g r a m m i n g  dua l i ty  equa t ion  

min{yb:  y A  = w, y >1 0} = max{ wx : A x  <~ b} (1.1) 

can be ach ieved  by integral  vectors ,  whenever  w is integral  and  the op t ima  exist.  

The combina to r i a l  m i n - m a x  theorems  ob t a ined  f rom these p o l y h e d r a  via (1.1) 

genera l ize  many  of  the well  known  m i n - m a x  theorems  o f  g raph  theory  and ma t ro id  

theory.  (An excel lent  survey o f  these  m i n - m a x  results  is given in Schr i jver  [37].) 
In  each case,  the fact that  (1.1) can be ach ieved  by  integral  vectors  was es tab l i shed  

by showing  that  Ax<~ b is to ta l ly  dual  in tegral  and  then  app ly ing  a theorem o f  

Hoffman [27] and  E d m o n d s  and  Gi les  [11]. (A ra t iona l  l inear  system Ax<~ b is a 

totally dual  integral sys tem (TDI  system) if  for  each integral  vec tor  w for which  the 

op t ima  in (1.1) exist,  the  m i n i m u m  can be ach ieved  by  an integral  vector. The 

theorem of  Hoffman [27] and E d m o n d s  and  Gi les  [11] is that  if  Ax<~ b is a T D I  

system and  b is an in tegra l  vector,  then the m a x i m u m  in (1.1) can be achieved by  

an integral  vector  for  each  vec tor  w for which  the op t ima  exist.  For  a genera l  

Supported by a grant from the Alexander yon Humboldt-Stiftung. 

48 



W. Cook / On box TDI  polyhedra 49 

f ramework for proving ra in-max theorems via TDI  systems see Schrijver [36].) In 

fact, in each case the class of  linear systems A x  <~ b was shown to have the stronger 
property that for every choice of  rational vectors l and u the linear system A x  <~ b, 

l ~< x <~ u is a TDI  system, that is that the linear system A x  <~ b is a box totally dual 

integral system (box TDI  system). Giles and Pulleyblank [20] proved that every 

rational polyhedron can be defined by a TDI  system, but it is easy to see that not 
every rational polyhedron can be defined by a box TDI  system. Thus, the fact that 
each polyhedron in the above classes is a box TDI  polyhedron (a nonempty 
polyhedron is a box TDIpolyhedron if it can be defined by a box TDI  linear system) 
is a nontrivial property of  these classes; so the structure of  box TDI  polyhedra may 

provide insights into the above min-max  results. Edmonds and Giles [11, 12, 13] 
made a study of box TDI  polyhedra, obtaining some interesting results. In this 
paper  a further study of these polyhedra is made. In Section 2, a geometric charac- 
terization of box TDI  polyhedra is proven and is used to show that each TDI  
defining system for a box TDI  polyhedron is in fact a box TDI  system. In Section 
3, this geometric characterization is used to prove a "dupl icat ion" result of  Edmonds 
and Giles [13] which implies that every box TDI  polyhedron can be defined by a 
linear system A x  <~ b where A is 0, 1, - 1  valued. It is also shown in that section 

that the class of box TDI  polyhedra is closed under taking projections and dominants. 
In Section 4, an algorithmic result on the recognition of box TDI  polyhedra is given, 

an application of which is a proof  that the class of  box perfect graphs (as defined 
by Cameron [5]) is in co-NP. 

It should be noted that throughout the paper  all linear systems, linear spaces, 

and polyhedra are assumed to be rational. For basic results in the theory of polyhedra 
the reader is referred to Bachem and Gr6tschel [1], Pulleyblank [33], Rockafellar 
[34], and the forthcoming book of Schrijver [38]. 

2. A geometric characterization 

When one studies total dual integrality it is often easier to work with the closely 

related concept of Hilbert bases. A finite set of  vectors hi , .  • . ,  hk is a Hilbert basis 

if each integral vector in the convex cone { A l h l + ' '  "+Akhk: )q>~O, i=  1 . . . .  , k} 

generated by h~ , . . . ,  hk can be written as y l h a + ' "  "+ykhk for some nonnegative 

integral % i = 1 , . . . ,  k. (Note that the vectors hi , .  • •, hk are not necessarily integral.) 
I f  Sc_{x:  Ax<~b} then an inequality aix<~bi in the system Ax<~b is an active 

inequality for S in A x  <~ b if a ~  = bi for each )~ e S. A row as of  A is an active row 

for S in A x  <~ b if aix <~ b~ is an active inequality for S in A x  <~ b. The following 
proposit ion can be proven easily, using complementary slackness. 

Proposition 2.1. A linear system A x  ~ b is a T D I  system if  and only i f  for  each face  

F o f  {x: A x  ~ b} the set o f  active rows for  F in A x  ~ b is a Hilbert basis. [] 
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This proposi t ion  was used (together with a theorem of  Hilbert which implies that 

every polyhedral  convex cone can be generated by a finite integral Hilbert basis) 

by Giles and Pulleyblank [20] to show that  every po lyhedron  can be defined by a 

TDI  system with integral left-hand sides and by Schrijver [35] to show that for  

each full d imensional  po lyhedron  P, there exists a unique minimal T D I  system 

A x  <~ b such that A is integral and P = {x: Ax<~ b}. 

To obtain an analogue of  Proposi t ion 2.1 for box T D I  systems, we define a finite 
set of  integral vectors H c Q "  to be a box Hilbert basis if for each M _  

{ea,..  •, e,, - e ~ , . . . ,  - e , }  the set H u M is a Hilbert basis, where e~ denotes the ith 

unit vector in Qn (that is, for i = 1 , . . . ,  n, e~ denotes the vector with a 1 in the ith 

componen t  and a 0 in each of  the other  components) .  Not  every Hilbert basis is a 
box Hilbert basis, for example if h T = (1, 2) and h f = (1, 3) then {ha, h2} is a Hilbert 

basis since [h~ : h2] is a un imodula r  matrix, but  {h~, he} is not a box Hilbert basis 
since {ha, he, -e~} is not  a Hilbert basis. 

Proposition 2.2. A linear system A x  <~ b is a box T D I  system i f  and only i f  f o r  each 

face  F o f  {x: A x  <. b} the set o f  active rows fo r  F in A x  <~ b is a box Hilbert basis. 

Proof. Suppose that A x  <~ b is a box TD1 system. Let F be a face of  {x: A x  <~ b} 

and let ~ c F be a vector  such that an inequality aix <~ bi in A x  <~ b is active for F 

if and only if ai$ = bi. (Such an ~ can be found as follows: For  each inequality 

aix ~ b~ in A x  <~ b that is not  active for  F let x ~ c F be a vector such that a~x ~ < b~. 

Taking a convex combina t ion  o f  the vectors x ~ with all multipliers positive gives 

such a vector.) Let H denote  the set o f  active rows for F in Ax<~b and let 

M c { e l , . . . ,  e , -  el . . . . .  - e , } .  We can choose l and u such that the set o f  active 

rows of{~} in Ax<~ b, - x<~  - I ,  x<~ u is H u  M. This implies that there exists a face 

F '  o f  {x: Ax<~b,  l<~x<~u} which has H u M  as its set o f  active rows in Ax<~b, 

- x ~  < -1, x<~ u. So, by Proposi t ion 2.1, H u  M is a Hilbert basis. 

Conversely,  suppose that for  each face o f  {x: A x  <~ b} the set o f  active rows of  
A x  <~ b is a box Hilbert basis. Let l and u be vectors and let F '  be a face o f  the 

po lyhedron  {x: Ax<~b,  l<~x<~u}. N o w  let A'x<~b ' be the set o f  inequalities in 

A x  <~ b that  are active for  F '  and let F = {x: A x  <~ b, A ' x  = b'}. The set F is a face 

o f  {x: A x  <~ b} whose active inequalities in A x  <~ b are precisely the inequalities 

A ' x  < - b'. So the active rows of  F '  in Ax<~ b, - x < ~ - l ,  x<~ u are the active rows o f  
F in A x  <~ b together with a subset o f  {ea,. .  •, e,, -e~ . . . . .  -en}. So the set o f  active 

rows of  F '  in A x  <~ b, - x  <~ - l ,  x ~ u is a Hilbert basis, which implies, by Proposi t ion 

2.1, that Ax<~b,  l<-x<~u is a T D I  system.  [] 

This proposi t ion  is useful, since those Hilbert bases that are box Hilbert bases 

can be characterized geometrical ly in the fol lowing way. For  an n -componen t  vector 

x let 5~(x) = {i: 1 ~< i ~< n, xi is integral}. Let C be a convex cone and x = (xa, • . . ,  x,)  

C. Let ( U , L )  be a part i t ion of  { 1 , . . . ,  n}\5~(x), that  is U c T L = O  and U u L =  

{1 . . . .  , n}\St(x).  The vector  x has the box property in C with respect to (U, L) if 
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there exists an integral vector  x ' 6  C such that x~ = x~ for all i~ 5~(x), x~ <~ [x~] for 

all i ~ U and x'i >~ [xiJ for all i 6 L (where [x~ ] denotes the least integer greater than 

or equal to x~ and Lx,] denotes the greatest integer lesser than or equal to x~). The 

vector  x has the box property in C if for each part i t ion (U, L) o f  { 1 , . . . ,  n}\5~(x), 

x has the box proper ty  in C with respect to ( U, L). Finally, the cone C has the box 

property if each x ~ C has the box property.  

Lemma 2.3. Let  H = { h a , . . .  , hp} be a Hilbert basis and let C be the cone generated 

by H. Then H is a box Hilbert basis i f  and only i f  C has the box property. 

Proof. Supose that  C has the box proper ty  and that H is not  a box Hilbert basis. 

Choose  K _ {e~ , . . . ,  en, - e a , . . . ,  - e , }  and integral vector  w such that  w is in the 

cone generated by H w K, w cannot  be expressed as a nonnegat ive  integral combina-  

t ion o f  vectors in H w  K and of  all such K and w, IKI is minimum. Let k l , . . . ,  kq 

be the elements o f  K. Note  that  by the assumpt ion that  IKI is min imum we have 

that  for each i e { 1 , . . . ,  n} at most  one o f  ei and -e i  is in K. 

Since w is conta ined in the cone generated by H w K, there exist ;ti/>0, i =  

1 , . . . ,  p + q such that w = A l h i  q - "  • " 4-  Aphp "t- ~p+lkl -[-. " " "[- .~p+qkq. We may assume 

that 0 < )ti < 1 for each i c {p + 1 , . . . ,  p + q} since [K I is min imum and since we may 

replace w by w - (  [)tiJ ki_p). Let w ' =  )hhl + .  • .+Zphp. I f  neither el nor  -e~ is in K 
then w'~ is integral, that  is i c 5 ~ (w'). I f  e~ ~ K then w'~ ~< w, which implies that  wi = [w'~], 
since 0 < Aj < 1 for each j E {p + 1 , . . . ,  p + q}. Similarly, if -e~ ~ K then w~ = [w'~]. 

Since w'~ C and since C has the box property,  there exists an integral c c C such 

that c, = w~ if  {ei,-e~} c~ K = 0, c~ ~< w~ if e~ ~ K, and ci >~ w~ i f - e ~  c K. Since H is a 

Hilbert basis, c can be expressed as a nonnegat ive integral combina t ion  of  vectors 

in H. But w can be expressed as the sum of  c and a nonnegat ive integral combinat ion  

of  the vectors in K, a contradict ion.  

Conversely,  suppose that  H is a box Hilbert  basis. Let w E C and let (U, L) be 
a part i t ion o f  { 1 , . . . ,  n}\,C(w). Let K={e~ :  i c  U } u { - e ~ :  i c L } .  The vector w' 

defined as w'i=w~ for i e ~ ( w ) ,  w'~= [wi] for  i~  U and w'~= [w~J for  i c L i s  i n t h e  

cone generated by H u  K. Since H u  K is a Hilbert basis, there exist nonnegat ive 

integers A~, i = 1 , . . . ,  p + q such that )h h~ +" • • + Zphp + )tp+ ~ k~ + .  • • + Ap+qkq = w' 

(where k~, . . . , kq are the elements of  K) .  Let w"= ;hhl  +" " " + ,Xphp. Since )tp+~k~ + 

• . .  + A~,+qkq is integral and since w' is integral, w" is also integral. Furthermore,  

w7 <~ w'i for  i ~ U and w", >~ w'~ for i c L. So w has the box proper ty  with respect to 
( U, L). 

The following result is a geometr ic  characterizat ion of  box T D I  polyhedra .  

Theorem 2.4. A polyhedron P is a box T D I  polyhedron i f  and only i f  f o r  each face  F 

o f  P the cone o f  all vectors w such that max{wx: x ~ P} is achieved by each vector in 

F has the box property. 
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Proof. Suppose that P is a box TDI  polyhedron. Let A x  <~ b be a box TDI  system 
such that P = {x: A x  <~ b} and let F be a face of  P. It is well known (and follows 

easily from the complementary slackness theorem) that the cone generated by the 
set of active rows for F in Ax<~ b is equal to the set of  all vectors w such that 
max{wx: x e P} is achieved by each vector in F. By Proposition 2.2, the set of active 

rows for F in A x  <~ b is a box Hilbert basis and hence generates a cone with the 

box property, by Lemma 2.3. 
Conversely, suppose that for each face of  a polyhedron P the cone of all vectors 

w such that max{wx: x c P} is achieved by each vector in F has the box property. 
By the result of  Giles and Pulleyblank [20] mentioned earlier, there exists a TDI  

system A x  <~ b such that P = {x: A x  <~ b}. Let F be a face of  P. By Proposition 2.1, 
the set of  active rows for F in A x  <~ b is a Hilbert basis. Thus, by Lemma 2.3 and 

the above assumption, the set of active rows for F in A x  <~ b is a box Hilbert basis. 
So, by Proposition 2.2, Ax<~ b is a box TDI  system and hence P is a box TDI  
polyhedron. 

It follows from Lemma 2.3 that if H is a box Hilbert basis then any other Hilbert 
basis for the cone generated by H is also a box Hilbert basis. Hence, Theorem 2.4 
implies the following result. 

Corollary 2.5. I f  A x  <~ b is a box TDI  system then each TDI system M x  <~ d such that 
{x: M x  ~< d} = {x: A x  <~ b} is also a box T D I  system. [ ]  

3. Defining systems 

I f  P is a box TDI  polyhedron o f  full dimension, then Theorem 2.4 implies that 
each facet-inducing inequality, ax  ~</3, for P can be scaled so that it has 0, 1, - 1  
values on the left hand side. (Since F = {x: ax  =/3} c~ P is a facet of  P, the cone of 
all vectors w such that max{wx: x ~  P} is achieved by each vector in F is just the 
ray {ha: h ~ Q, A >~ 0} and the only such rays that have the box property are those 
which contain a 0, 1, - 1  valued point.) Thus, each box TDI  polyhedron of full 

dimension can be defined by a linear system which has 0, 1, -1  valued left hand 

sides. Edmonds and Giles [11, 13] proved this result in general. 

Theorem 3.1. I f  P is a box T D I  polyhedron then there exists a linear system A x  <~ b 

such that P = { x :  Ax<~ b} and A is O, 1, - 1  valued. [] 

The proof  of  Edmonds and Giles uses the following 'duplication'  result, for which 
a new proof,  based on the results of the previous section, is given below. (See 

Schrijver [37] for other operations that preserve the fact that a system is a box TDI  

system.) 
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Theorem 3.2. Let A x  <- b be a box T D I  system, where A is an r x n matrix, and let 

An denote the nth column o f  A. Then A x  + A,x,+~ <~ b is also a box T D I  system, where 

x,+~ is a new variable. 

Proof.  Let H = {h~ , . . . ,  hm} be a box Hilbert basis in Qn. For  each vector hi = 

{h i1 , . . . ,  hin)c H let /~ denote  the (n + 1) -component  vector ( h i1 , . . . ,  hi,,, h,,). By 

Proposi t ion 2.2, it suffices to prove t h a t / 4  = (/~1, • • -,/T,,) is also a box Hilbert  basis. 
Furthermore,  since it is clear that R is a Hilbert  basis, Lemma 2.3 implies that  it 

suffices to show that the cone C generated by H has the box property.  

Let w = ( ~ l , . . . , ~ , , ~ , + 0 ~ C  and let w denote  the n -componen t  vector 

(~1, • • •, ~m). Notice that w c C, the cone generated by H. Since ~ ,  = ~,+~, we have 

that either {n, n + 1} c ~ ( ~ )  or {n, n + 1} c~ 5~(~) = ~. I f  {n, n + 1} c 5~(~), then since 

w has the box proper ty  in C, ~ has the box proper ty  in C. So we may assume that  
{n, n + 1}c~ 5~(~) =~.  

Let (U, L) be a parti t ion o f { l , . . . ,  n + 1}\5~(~). I f{n,  n + l } _  U or{n,  n + l } c  L, 

then ff has the box proper ty  in C with respect to ( U, L) since W has the box proper ty  

in C with respect to ( U \ { n  +1}, L \ { n  + 1}). So we may assume, by symmetry,  that  

n ~ U and n + 1 c L. Let w' be an integral vector  in C such that 

(i) w l - -~ i  for each ic5~(~) ,  

(ii) w ~  < [wi] for each i c  U, (3.1) 

(iii) w'i ~> [ffi] for each i c L \ { n  + 1}. 

t ! I f  wn ~> [ ~ , ] ,  then, since ~ ' =  ( w ' , . . . ,  w,,, w ' )  is an integral vector in C, we have 

that ~ has the box proper ty  in C with respect to (U, L). So we may assume 

w" < [~.1 < ~.. (3.2) 

Now since each convex combina t ion  o f  w' and w is a vector in C which satisfies 
the condit ions given in (3.1), the inequalities in (3.2) imply that there exists a vector 

2 
W 2 C  C which satisfies the condit ions in (3.1) and is such that w.  = [ # . ] .  Now since 

w e has the box property in C, there exists an integral vector w3c C such that the 
3 condit ions in (3.1) are satisfied and w . =  [#nJ.  The integral vector #3 

( w 3 , . . . ,  w3., w3.) in C'. proves that # has the box proper ty  in (? with respect to 
(u ,  L). [] 

The nice p roo f  by Edmonds  and Giles [13] o f  Theorem 3.1 goes as follows: Let 
Ax<~ b be a box T D I  system and P = {x: Ax<~ b}. A vector x* is in P if and only 

if m a x { -  1 x '  + 1 x": A x  + Ax '  + Ax"  <~ b, x = x*, x'  >~ O, x" <~ 0} ~> 0, which, by  the linear 

p rogramming  duali ty theorem and the fact that  A x + A x ' + A x " < ~  b is again a box 

TDI  system, is true if and only if 7tAx* <~ 7rb for all integral 7r >~ 0 such that 7rA is 
integral and - 1  ~< 7rA<~ 1. 
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Remark 3.3. It  should be noted that Theorem 3.1 does not imply that i f  P is a box 

T D I  polyhedron then there exists a box T D I  system A x  ~ b such that P = {x: A x  <<- b} 

and A is 0, 1, - 1  valued. Indeed, this stronger s tatement  is not true, as evidenced by 

examples o f  Edmonds and Giles [12] and Schrijver [38]. [] 

Several results related to the above theorems of Edmonds and Giles will now be 

cosidered. 
For a set K c_ Qn+", the projection of  K onto the first n coordinates is the set 

{xeQn:  3 z c  Q~ such that (x, z ) e  K}. It is well known that the projection of a 

polyhedron is again a polyhedron (see Bachem and Gr6tschel [1], for example). 
Furthermore, it is easy to see that if all vertices of a polyhedron are integral then 

all vertices of  each projection of that polyhedron are also integral, a result which 
has been used to prove combinatorial theorems in Balas and Pulleyblank [2] and 
Cameron [5]. The above proof  technique of Edmonds and Giles can be used to 
show that if P is a box TDI  polyhedron and Q is a projection of P, then Q can be 
defined by a linear system with 0, 1, -1  valued left hand sides. In fact, the class of 

box TDI polyhedra is closed under taking projections. 

Theorem 3.4. Each projection o f  a box T D I  polyhedron onto a subset o f  its coordinates 

is again a box T D I  polyhedron. 

Proof. Let P be a box TDI  polyhedron in the space Q,+m, let P '  be the projection 

of P onto the first n coordinates, let F '  be a face of  P '  and let C '  be the cone for 
F ' ,  that is, C '  is the set of  all vectors w c Qn such that max{wx: x ~ P'} is achieved 

by each vector x in F' .  Let c e C '  be a vector such that max{cx: x e P'} is achieved 
only by the set of vectors in F' .  Now let F be the maximal face of P such that 

max{cx: ( x , z ) e P }  is achieved by each vector ( x , z ) e F ,  that is, let F =  
{(x, z) c P: cx =/3} where/3 = max{cx: (x, z) c P}. It follows that F '  is the projection 
of F onto the first n coordinates. Let C be the cone of all vectors (u, v ) e l )  n+" 
such that max{ux + vx: (x, z) c P} is achieved by each vector (x, z) in F. Each w e C '  
has the box property in C '  since the n + m component  vector (w, 0) has the box 

property in C. [] 

The dominant  of a polyhedron P c_ Qn is the polyhedron {x e Qn: x/> z for some 

z c P}. The problem of finding properties of  the dominant of  a polyhedron arises 
in the study of blocking pairs of  polyhedra (see Fulkerson [17], Cunningham [8], 
and McDiarmid [32]). In general, linear systems which define the dominant of a 

polyhedron P may necessarily have a complicated structure, even though the 
inequalities defining P are of  a simple form. Indeed, Cunningham and Green-Krotki  
[9] have shown that for any positive integer n there exists a perfect matching 
polyhedron having dominant  P ~_ Qm and an inequality a lx l  +" • • + amXm >~ fl such 

that c q x l + . .  "+cMxm>~fl is a facet-inducing inequality for P and { 1 , . . . ,  n } c  
{ a b . . .  am}. This problem, however, does not occur with box TDI  polyhedra. 
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E d m o n d s  and  Gi les  [11, 13] have shown tha t  if  P is a box  T D I  p o l y h e d r o n  then  

the d o m i n a n t  of  P can be  def ined by  a l i n e a r  system Ax >i b where  A is a 0, 1 va lued  

matr ix .  Again ,  the  s t ronger  s ta tement  tha t  the class of  box  T D !  p o l y h e d r a  is c losed  

unde r  tak ing  dominan t s  is true. The fo l lowing  l e m m a  will be  used  in the  p r o o f  o f  

this s t ronger  result .  

Lemma 3.5. I f  C is a cone with the box property then C c~ {x: x <~ 0} also has the box 
property. 

Proof .  Let  C be a cone wi th  the box p r o p e r t y  and  suppose  C c~ {x: x <~ 0} does  not  

have the box  proper ty .  Choose  w ~ C ~ { x : x ~ O }  and  pa r t i t i on  ( U , L )  o f  

{1 . . . .  , n } \ ~ ( w )  such that  

(i) w does  not  have the box  p rope r ty  wi th  respect  to ( U, L) in C c~ {x: x ~< 0} and  

(ii) of  all vectors  v ~ C c~ {x: x <~ 0} and  p a r t i t i o n s  o f  { 1 , . . . ,  n}\.,~(v) sat isfying 

(i), ILl is min imum.  

Suppose  L = 0. Since C has the box  p rope r ty ,  there  exists a vec tor  ~ c C such 

that  ~ = w i  for  all i~ ,¢(w)  and  ~i~< [w~] for  all  i t { I , . . . ,  n} \St (w) .  N o w  since 

w<~0, we have #<~0. So # c  C n { x :  x<~0}, a cont rad ic t ion .  

Suppose  L ¢  0. There  exists an in tegra l  vec tor  # c C such tha t  #~ = wi for  all 

i~  5~(w), #~ <~ [w~] for all  i c U, and  #~ >t [w~] for  all i c L. By a s sumpt ion ,  # ~ C c~ 

{x: x ~< 0}. So for  some t ~ L, wt > 0. Thus,  s ince w <~ 0, there  exists a vec tor  v which  
is a convex c o m b i n a t i o n  o f  w and  # such tha t  v <~ 0 and  v, = 0 for  some r c L. N o w  

v c C ~ { x :  x~<0} and  v~=w~ for  all ic~¢(w), v~<~ [wi] for  all i c  U and  v i ~  > [w~] 

for all i 6 L. So, by  a s sumpt ion  (i), v does  not  have the box  p rope r ty  in C c~ {x: x ~< 0} 

with respect  to ( U \ . C ( v ) ,  L \ ~ ( v ) ) .  But ]L\5~(v) I < ILl, s ince r ~ L, a con t r ad i c t i on  

to a s sumpt ion  (ii). [ ]  

Theorem 3.6. I f  P is a box TDI polyhedron then the dominant of  P is also a box TDI 
polyhedron. 

Proof.  Let  P be  a box  T D I  p o l y h e d r o n  and  let  P* be the d o m i n a n t  o f  P. Let  F *  

be a face o f  P* and  let F = F*  c~ P. There  exists a h y p e r p l a n e  H such tha t  H c~ P* -- 

F * . W e h a v e  F * c ~ P = H c ~ P * n P = H c ~ P ,  so F i s a f a c e o f P .  Let  C b e t h e c o n e  

for  F in P, tha t  is C is the  set o f  all vectors  w such that  max{wx:  x ~ P} is ach ieved  

by  each vec tor  in F, and  let  C* be the cone  for  F *  in P*.  By T h e o r e m  2.4, C has 
the  box  proper ty .  We mus t  show that  C* also has the box  p roper ty .  

Suppose  w ~ C*. We have that  w <~ 0, s ince o therwise  max{wx:  x c P*} does  not  

exist. Also,  w c C, s ince max{wx:  x c P*} = max{wx:  x c P}. Let  3- = {i: 1 ~< i ~< n and  

there  exist po in t s  x c F *  and  y ~ P such tha t  x >~ y and  xi > yi}. F o r  each i c .3- we 

have wi = 0, s ince if  x c F *  and  y c P with  x >~ y then wx = wy, which  impl ies  tha t  

w~ = 0 for each  j such tha t  xj > yj. So w is con ta ined  in the  cone 

C'= Cc~{x: x ~ < 0 } n { x :  x i = 0  for  all  i c  3-}. 
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Now suppose wc  C'. Let fl = max{wx: x c  P}. Since w~<0, max{wx: x c  P*} =/3. 
Suppose there exists a vector y c F* such that wy </3. There exists a vector z s P 

such that y/> z. It follows that z c F and, hence, that wz =/3. But wi = 0 for each 

i c {1 . . . . .  n} such that Yi > zi, which implies wy = wz, a contradiction. So wy' =/3 

for each y ' c F * .  Thus wc  C*. 

Since C has the box property, Lemma 3.5 implies that C n {x: x ~< 0} has the box 

property. Thus, C ' =  C* has the box property. [] 

For an example of the application of this result see Edmonds and Giles [11]. 

Remark 3.7. One can similarly prove that i f  P is a box T D l  polyhedron then {x: x ~ z 

for  some z c P} is also a box TDl  polyhedron. Polyhedra o f  this type arise in the study 

o f  antiblocking pairs o f  polyhedra (see Cunningham and Green-Krotki  [9], Fulkerson 

[17] and McDiarmid [32]). [] 

4. An algorithmic characterization 

Consider the following geometric characterization of polymatroids given by 

Edmonds [10]: A compact nonempty set P c {x c Q ' :  x i> 0} is a polymatroid if and 

only if 

(i) x ~ P a n d 0 ~ < y ~ < x i m p l y t h a t y ~ P a n d  
(ii) for each nonnegative a 6 Qn, every maximal vector y ~ P c~ {x: x <~ a} has the 

same coordinate sum 

(where maximal is with respect to the ordinary ~< ordering). An attractive feature 

of this geometric characterization is that it gives an easy way to prove that a 

polyhedron is not a polymatroid. It implies that if we are given a polymatroid P 

by an optization oracle (see GrStschel, Lov~isz, and Schrijver [23, 26] for definitions 

regarding oracles), then if P is not a polymatroid then there exists a short proof of 

this fact. It is shown below that Theorem 2.4 implies that a similar statement can 
be made for box TDI polyhedra. 

Gr6tschel, Lov~isz, and Schrijver [26] define a well-described polyhedron to be a 

triple (P; n, p) where P _c Qn is a polyhedron which can be defined by a finite system 

of linear inequalities such that the input size (in binary notation) of each inequality 

is at most p. 

Lemma 4.1. Let (C; n, p) be a well-described convex cone given by a strong separation 
oracle. I f  C does not have the box property then there exists an oracle-polynomial-time 

proof of  this fact. 

Proof. Suppose that C does not have the box property. Let w ~ C be a vector which 

does not have the box property in C. Since C is a well-described polyhedron, there 

exists a set G of integral vectors which generates C such that the size of each vector 
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g c G is polynomial  in n and p (see Gr6tschel,  Lov~sz, and Schrijver [23, 26]). By 

Cara th6odory ' s  Theorem,  w may be expressed as h lg~+""  .+h,g, where t is the 

d imension of  C and for i = 1 , . . . ,  t: gi ~ G and )ti c Q is nonnegative.  Since w does 

not  have the box proper ty  in C, (hi - [h~] )g~ + .  • • + (At - [At] )g, does not have the 

box proper ty  in C. So we may  assume that 0<~ hi < 1 for i = 1 , . . . ,  t. 

Let (U, L) be a part i t ion of  {1 . . . .  , n}\.C(w) such that w does not  have the box 

proper ty  in C with respect to (U, L). Since the size of  each gi, i - -1  . . . .  , t, is 
polynomial  in n and p, the size of  the vector w ~ defined as w] = wi for i c 5~(w), 
w~= [w~] for i c  U, and w~= [wiJ for i c L  is also polynomial  in n and p. Let W 2 

be a vector in B = C c a { x : x , = w ]  for i c . ¢ ( w ) , x i ~ < w ]  for i c U ,  x~>w]  for i ~ L }  

such that 1.¢(w2)[ is maximum.  Consider  the mixed integer (feasibility) program: 

x c  B, xi is integral for all i c ~¢(w2). It follows f rom the results o f  von zur Gathen  

and Sieveking [19], on bounds  for integral solutions to linear inequali ty systems, 
that  there exists a solution vector w 3 to this program,  where the size of  w 3 is 
polynomial  in n and p. (One way to see this is to note that, using Farkas '  Lemma,  

the project ion of  B onto the ~¢(w 2) coordinates  can be described by a system of  

inequalities each of  which has input size b o u n d e d  above by a polynomia l  in n and 
p.) 

Let D = {x: x~ = w 3 for  all i ~ ~¢(w3), xi ~< [w~] for all i c U\.C(w3), xi t> [w3J for 

all i ~ LkSt(w3)}. By the choice of  w and (U, L), there does not  exist an integral 
vector in C ca D. So either U\~C(w 3) # 0 or Lk~C(w 3) # 0. Suppose  that  U\5~(w 3) # 0 
and let i c U\.C(w3). I f  there exists a vector v in C ca D with v~ integral then there 

also exists a vector v' in C ca D with v'i = [w 3] or v'i = [ w ~ ] -  1 (since any convex 

combina t ion  of  v and w 3 is also in C ca D and if v~ ~ [w 3] then, since vg is integral, 

there exists a convex combinat ion,  v', o f  v and w 3 such that  v'i = [w 3] - 1 ) .  Using 

the results o f  Gr6tschel,  Lov~isz, and Schrijver [26], we can check in oracle- 

polynomial  time that C c a D c a { x : x i  =[w3]} and C c - ~ D c a { x : x i = [ w 3 ] - l }  are 

empty. (Since [~¢(w2)1 is maximum,  each of  these po lyhedra  is indeed empty.) This 
proves that w 3 does not  have the box proper ty  with respect to (Uk.C(w3), L\St(w3)).  

A similar argument  can be used in the case where L\~C(w 3) ~ O. [] 

Theorem 4.2. Let (P;  n, p) be a well described polyhedron given by a strong optimization 

oracle. I f  P is not a box TDI  polyhedron then there exists an oracle-polynomial-time 

proof of  this fact. 

Proof. Suppose  P is not  a box T D I  polyhedron.  By Theorem 2.4, there exists a face 

F o f  P such that the cone C of  all vectors w such that  max{wx: x c P} is achieved 

by each vector  in F, does not have the box property.  We may  describe F as 

P ca {x: ax  = fl}, where ax  = fl is an equat ion o f  size polynomial  in n and p. (To 
see that such an equat ion exists, let A l x  <~ b ~, A2x <~ b 2 be a defining system for P 

such that each inequali ty has size at most  p and such that  F = {x: A l x  ~ b 1, A2x = b2}. 
Let k = rank(A 2) and let A3x = b 3 be a subsystem of  k equat ions f rom A2x = b 2 
such that r ank(A 3) = k. Letting ax =/3 be the sum of  the k equat ions in A3x = b 3, 
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we have an appropriate  equation.) Thus, we can optimize over F in oracle-poly- 

nomial time (see Gr6tschel, Lovfisz, and Schrijver [23, 26]). 
I f  A x  <~ b is a defining system for P then C is generated by the active rows for 

F in A x  <~ b. So C is generated by a finite set of  vectors, each of which 'is of size 

at most p. This implies (see Gr6tschel, Lovfisz, and Schrijver [26]) that C can be 

defined by a linear system such that the size of  each inequality in the system is 
polynomial in n and p. So, by Lemma 411, it suffices to show that we can solve the 
strong separation problem for C in oracle-polynomial  time. This can be done in 
the following way, as observed by L. Lovfisz. Suppose w ~ Q  ~. Let A1 = 

max{wx: x c P} and A2 = min{wx: x c F}. I f  A1 = A2, then w ~ C. I f  A1 > A2, then we 
have found vectors v ~, v 2 6 P such that v 2 ~ F and v lw > v2w, that is (v 1 - vZ)w > O. 

Let if6 C. We have v2ff = max{yff: y c  P}, since v2e F and f ie  C. So v~ff~ < v2£, that 
i s (v l -v2)~<~O.  T h u s , { x : ( v ~ - v 2 ) x = O } i s a s e p a r a t i n g h y p e r p l a n e f o r w a n d C .  [] 

I f  we are given a linear system A x  <~ b as an explicit list of  inequalities, then, 
using the algorithm of Khachiyan [29], we can optimize over the polytope {x: A x  <~ b} 

in polynomial time. Thus, the above theorem implies the following result. 

Corollary 4.3. The class of  linear systems A x  <~ b which define box TDI  polyhedra is 
in co-NP. [] 

(See Garey and Johnson [18] for definitions and results on the classes NP and 

co-NP.) 

Remark 4.4. A related result, which follows from the algorithmic work of Chan- 

drasekaran [6], is that the class of  box TDI  linear systems A x  <~ b, with A integral, 
is in co-NP (see Cook, Lov~isz, and Schrijver [7]). This result, however, does not 
imply Corollary 4.3, since the size of  any TDI  defining system Mx<~ d, wish M 
integral, may necessarily be exponential in the size of  A x  <~ b and, furthermore, one 
would have to certify that M x  ~ d is in fact a TDi  system (it is an open problem 

to decide whether or not the class of  TD1 linear systems is in NP). 
Another related result, which follows from Proposition 2.2 and the results of  

Cook, Lovfisz, and Schrijver [7], is that in fixed dimension one can test in polynomial 

time whether or not A x  <~ b, where A is integral, is a box TDI  system. [] 

To give an application of the above results, the class of  perfect graphs will now 
be considered. A graph G is defined to be a perfect graph if for each induced 
subgraph H of  G the chromatic number  of  H is equal to the cardinality of  a 
maximum clique of H (see Berge [3]). There are many interesting results in the 
theory of perfect graphs, a survey of  which can be found in Lov~isz [31] (see also 

Berge and Chvfital [4]). Cameron [5] defined a graph to be box perfect if the linear 
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system 

{xv: v c K}<~ 1 for each (not necessarily maximal) clique K of G, 

x~ >1 1 for each node v of G (4.1) 

is a box TDI system. This definition is motivated, in part, by the result of Fulkerson 
[17] and Lov~sz [30] that a graph G is perfect if and only if (4.1) is a TDI system. 
Thus, box perfect graphs are a subset of perfect graphs. In fact, it is easy to see 
that a box perfect graph is k-perfect for all k, where k-perfect graphs are defined 
as in Lowisz [31] (see Greene and Kleitman [21]). A class of box perfect graphs 
which includes comparability graphs is described in Cameron [5], along with a 
survey of other results on box perfect graphs. Gr6tschel, Lov~isz, and Schrijver [24], 
Lov~isz [31], and Lubiw (see Cameron [5]) have shown that the class of perfect 
graphs is in co-NP. It will be shown below that the class of box perfect graphs is 
also in co-NP. 

It follows directly from the definition of box perfect graphs that a graph is box 
perfect if and only if 

Y~ {x~: v c K} <~ 1 for each maximal clique K of G, 
(4.2) 

x~ ~ 0 for each node v of G 

is a box TDI system. Moreover, Theorem 2.4, together with the theorem of Fulkerson 
[17] and Lov~sz [30] mentioned above, implies the following characterization (where 
the stable set polytope of a graph is the convex hull of the incidence vectors of the 
stable sets of the graph). 

Proposition 4.5. A graph G is box perfect i f  and only i f  G is perfect and the stable set 

polytope of  G is a box TDI  polyhedron. [] 

This characterization will be used to prove the following result. 

Theorem 4.6. The class of  box perfect graphs is in co-NP. 

Proof. Suppose that G is not a box perfect graph. Since the class of perfect graphs 
is in co-NP, if G is not perfect then there exists a polynomial-time proof of this, 
which also proves that G is not box perfect. Suppose that G is perfect. By the 
results of Gr~tschel, Lov~sz, and Schrijver [24, 25], one can optimize linear functions 
over the stable set polytope of G in polynomial time. By Theorem 4.2, using the 
Gr6tschel, Lov~sz, and Schrijver algorithm polynomially many times we can prove 
that the stable set polytope of G is not a box TDI polyhedron. (Notice that to verify 
that the GrBtschel, Lov~sz, and Schrijver algorithm has optimized a linear function 
over the stable set polytope of G we do not need to verify that G is perfect, but 
only check that the primal and dual solutions produced by the algorithm are feasible 
solutions to the corresponding linear programs and that they give equal objective 
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v a l u e s ,  w h i c h  c a n  b e  d o n e  in  p o l y n o m i a l  t i m e  s ince  t h e  p r i m a l  s o l u t i o n s  a re  i n t e g r a l  

a n d  t he  d u a l  s o l u t i o n s  a re  ba s i c . )  [ ]  
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