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Edmonds and Giles introduced the class of box totally dual integral polyhedra as a generalization
of submodular flow polyhedra. In this paper a geometric characterization of these polyhedra is
given. This geometric result is used to show that each TDI defining system for a box TDI
polyhedron is in fact a box TDI system, that the class of box TDI polyhedra is in co-NP and
is closed under taking projections and dominants, that the class of box perfect graphs is in co-NP,
and a result of Edmonds and Giles which is related to the facets of box TDI polyhdera.
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1. Introduction

Inrecent years, Edmonds and Giles [11], Hoffman and Schwartz [28], Frank [ 14, 15],
Frank and Tardos [16], Groflin and Hoffiman [22], and others have introduced
classes of polyhedra which generalize in different ways the class of polymatroids,
as defined by Edmonds [10]. Each of these classes is defined by a class of com-
binatorially described linear systems Ax < b which have the property that both sides
of the linear programming duality equation

min{yb: yA =w, y =0} = max{wx: Ax =< b} (1.1)

can be achieved by integral vectors, whenever w is integral and the optima exist.
The combinatorial min-max theorems obtained from these polyhedra via (1.1)
generalize many of the well known min-max theorems of graph theory and matroid
theory. (An excellent survey of these min-max results is given in Schrijver [37].)
In each case, the fact that (1.1) can be achieved by integral vectors was established
by showing that Ax<b is totally dual integral and then applying a theorem of
Hoffman [27] and Edmonds and Giles [11]. (A rational linear system Ax<b is a
totally dual integral system (TDI system) if for each integral vector w for which the
optima in (1.1) exist, the minimum can be achieved by an integral vector. The
theorem of Hoffman [27] and Edmonds and Giles [11] is that if Ax=<b is a TDI
system and b is an integral vector, then the maximum in (1.1) can be achieved by
an integral vector for each vector w for which the optima exist. For a general
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framework for proving min-max theorems via TDI systems see Schrijver [36].) In
fact, in each case the class of linear systems Ax =< b was shown to have the stronger
property that for every choice of rational vectors I and u the linear system Ax =< b,
I=x=u is a TDI system, that is that the linear system Ax=b is a box totally dual
integral system (box TDI system). Giles and Pulleyblank [20] proved that every
rational polyhedron can be defined by a TDI system, but it is easy to see that not
every rational polyhedron can be defined by a box TDI system. Thus, the fact that
each polyhedron in the above classes is a box TDI polyhedron (a nonempty
polyhedron is a box TDI polyhedron if it can be defined by a box TDI linear system)
is a nontrivial property of these classes; so the structure of box TDI polyhedra may
provide insights into the above min-max results. Edmonds and Giles [11, 12, 13]
made a study of box TDI polyhedra, obtaining some interesting results. In this
paper a further study of these polyhedra is made. In Section 2, a geometric charac-
terization of box TDI polyhedra is proven and is used to show that each TDI
defining system for a box TDI polyhedron is in fact a box TDI system. In Section
3, this geometric characterization is used to prove a “duplication” result of Edmonds
and Giles [13] which implies that every box TDI polyhedron can be defined by a
linear system Ax<b where A is 0, 1, —1 valued. It is also shown in that section
that the class of box TDI polyhedra is closed under taking projections and dominants.
In Section 4, an algorithmic result on the recognition of box TDI polyhedra is given,
an application of which is a proof that the class of box perfect graphs (as defined
by Cameron [5]) is in co-NP.

It should be noted that throughout the paper all linear systems, linear spaces,
and polyhedra are assumed to be rational. For basic results in the theory of polyhedra
the reader is referred to Bachem and Grétschel [1], Pulleyblank [33], Rockafellar
[34], and the forthcoming book of Schrijver [38].

2. A geometric characterization

When one studies total dual integrality it is often easier to work with the closely
related concept of Hilbert bases. A finite set of vectors hy, ..., h, is a Hilbert basis
if each integral vector in the convex cone {A hy+- -+ Ah: A, =0,i=1,... k}
generated by hy, ..., b, can be written as y h;+- - -+ vy for some nonnegative
integral y, i=1, ..., k. (Note that the vectors h,, ..., h, are not necessarily integral.)
If Sc{x: Ax=<b} then an inequality ax=<2b,; in the system Ax=<b is an active
inequality for S in Ax<b if aX =b, for each € S. A row a; of A is an active row
for § in Ax=b if ax=<b, is an active inequality for S in Ax=b. The following
proposition can be proven easily, using complementary slackness.

Proposition 2.1. A linear system Ax<b is a TDI system if and only if for each face
F of {x: Ax < b} the set of active rows for F in Ax<b is a Hilbert basis. [
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This proposition was used (together with a theorem of Hilbert which implies that
every polyhedral convex cone can be generated by a finite integral Hilbert basis)
by Giles and Pulleyblank [20] to show that every polyhedron can be defined by a
TDI system with integral left-hand sides and by Schrijver [35] to show that for
each full dimensional polyhedron P, there exists a unique minimal TDI system
Ax = b such that A is integral and P={x: Ax<b}.

To obtain an analogue of Proposition 2.1 for box TDI systems, we define a finite
set of integral vectors H< Q" to be a box Hilbert basis if for each Mc
{e1,..., e, —ey,...,—¢,} the set Hu M is a Hilbert basis, where e; denotes the ith
unit vector in Q" (that is, for i=1,..., n, ¢; denotes the vector with a 1 in the ith
component and a 0 in each of the other components). Not every Hilbert basis is a
box Hilbert basis, for example if h{ =(1,2) and h) =(1, 3) then {h,, h,} is a Hilbert
basis since [h,: h,] is a unimodular matrix, but {h,, h,} is not a box Hilbert basis
since {h,, h,, —e;} is not a Hilbert basis.

Proposition 2.2. A linear system Ax < b is a box TDI system if and only if for each
face F of {x: Ax < b} the set of active rows for F in Ax<b is a box Hilbert basis.

Proof. Suppose that Ax=<b is a box TDI system. Let F be a face of {x: Ax < b}
and let X € F be a vector such that an inequality a;x < b, in Ax<b is active for F
if and only if a;%=b; (Such an % can be found as follows: For each inequality
a;x<b, in Ax<b that is not active for F let x'€ F be a vector such that a,x’ <b,.
Taking a convex combination of the vectors x’ with all multipliers positive gives
such a vector.) Let H denote the set of active rows for F in Ax<b and let
Mc{e,...,e,—ey,...,—e,}. We can choose | and u such that the set of active
rows of {x¥}in Ax<b, —x=<—1I, x<u is Hu M. This implies that there exists a face
F' of {x: Ax<b,I=x=<u} which has Hu M as its set of active rows in Ax=< b,
—x<-I, x=<u. So, by Proposition 2.1, Hu M is a Hilbert basis.

Conversely, suppose that for each face of {x: Ax= b} the set of active rows of
Ax=<b is a box Hilbert basis. Let [ and u be vectors and let F’ be a face of the
polyhedron {x: Ax=b,I<x=u}. Now let A’x<b’ be the set of inequalities in
Ax < b that are active for F’ and let F={x: Ax< b, A’x=b’}. The set F is a face
of {x: Ax=<b} whose active inequalities in Ax<b are precisely the inequalities
A'x<b’. So the active rows of F'in Ax<b, —x=<—I, x =< u are the active rows of
F in Ax =< b together with a subset of {e,,..., e, —e,,..., —e,}. So the set of active
rows of F'in Ax< b, —x < —[, x < u is a Hilbert basis, which implies, by Proposition
2.1, that Ax<b, Isx<u is a TDI system. [

This proposition is useful, since those Hilbert bases that are box Hilbert bases
can be characterized geometrically in the following way. For an n-component vector
xlet F(x)={i: 1= i<n, x; isintegral}. Let C bea convex coneand x =(x,, ..., x,) €
C. Let (U, L) be a partition of {1,..., n}\#(x), that is UnL=@ and Uu L=
{1,..., n\F(x). The vector x has the box property in C with respect to (U, L) if
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there exists an integral vector x'€ C such that x;=x; for all i€ $(x), x}<[x;] for
allie U and xi= (x;]| for all i e L (where [x;] denotes the least integer greater than
or equal to x; and |x;| denotes the greatest integer lesser than or equal to x;). The
vector x has the box property in C if for each partition (U, L) of {1,..., n}\F(x),
x has the box property in C with respect to (U, L). Finally, the cone C has the box
property if each x € C has the box property.

Lemma 2.3. Let H={h,,..., h,} be a Hilbert basis and let C be the cone generated
by H. Then H is a box Hilbert basis if and only if C has the box property.

Proof. Supose that C has the box property and that H is not a box Hilbert basis.
Choose K c{ey,..., e, —e€,,...,—e,} and integral vector w such that w is in the
cone generated by H u K, w cannot be expressed as a nonnegative integral combina-
tion of vectors in Hu K and of all such K and w, |K| is minimum. Let k,, . . ., k,
be the elements of K. Note that by the assumption that |K| is minimum we have
that for each i€{1,..., n} at most one of ¢, and —e; is in K.

Since w is contained in the cone generated by H U K| there exist A;=0, i=
1,...,p+qsuch that w=Ah+ - -+ A0, + A,k +- - -+ A, k. We may assume
that 0<A;<1foreachie{p+1,..., p+q} since |K|is minimum and since we may
replace w by w—(|A;] k;_,). Let w' =A,h;+- - -+ A h,. If neither ¢, nor —e; is in K
then w;isintegral, thatis i $(w'). If ¢; € K then w]=< w; which implies that w, = [w}],
since 0<<A; <1 for each je{p+1,..., p+gq}. Similarly, if —e;€ K then w;, = |w}].
Since w'e C and since C has the box property, there exists an integral ce C such
that ¢;=w; if {e, —e,} " K =@, c,;=w; if ¢ K, and ¢;=w; if —e;c€ K. Since H is a
Hilbert basis, ¢ can be expressed as a nonnegative integral combination of vectors
in H. But w can be expressed as the sum of ¢ and a nonnegative integral combination
of the vectors in K, a contradiction.

Conversely, suppose that H is a box Hilbert basis. Let we C and let (U, L) be
a partition of {1,...,n\F(w). Let K={e:ic Ulu{—e:icL}. The vector w’
defined as wi=w, for ie #(w), wi= [w;] for ie U and wj=|w;] for i€ L is in the
cone generated by Hu K. Since H U K is a Hilbert basis, there exist nonnegative
integers A, i=1,...,p+gq such that Ahy+- -+ Ak, A,k + 0 H Ak, =w
(where ki, ..., k, are the elements of K). Let w"= A h;+- - -+ Ak, Since A,k +
<+ -+ A,..k, is integral and since w’' is integral, w” is also integral. Furthermore,
wi<w! for ie U and w/ = w;| for ic L. So w has the box property with respect to
(U,L). O

The following result is a geometric characterization of box TDI polyhedra.

Theorem 2.4. A polyhedron P is a box TDI polyhedron if and only if for each face F
of P the cone of all vectors w such that max{wx: x € P} is achieved by each vector in
F has the box property.
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Proof. Suppose that P is a box TDI polyhedron. Let Ax=b be a box TDI system
such that P={x: Ax< b} and let F be a face of P. It is well known (and follows
easily from the complementary slackness theorem) that the cone generated by the
set of active rows for F in Ax<b is equal to the set of all vectors w such that
max{wx: x € P} is achieved by each vector in F. By Proposition 2.2, the set of active
rows for F in Ax<b is a box Hilbert basis and hence generates a cone with the
box property, by Lemma 2.3.

Conversely, suppose that for each face of a polyhedron P the cone of all vectors
w such that max{wx: x € P} is achieved by each vector in F has the box property.
By the result of Giles and Pulleyblank [20] mentioned earlier, there exists a TDI
system Ax =< b such that P={x: Ax=<b}. Let F be a face of P. By Proposition 2.1,
the set of active rows for F in Ax<b is a Hilbert basis. Thus, by Lemma 2.3 and
the above assumption, the set of active rows for F in Ax < b is a box Hilbert basis.
So, by Proposition 2.2, Ax=b is a box TDI system and hence P is a box TDI
polyhedron. [

It follows from Lemma 2.3 that if H is a box Hilbert basis then any other Hilbert
basis for the cone generated by H is also a box Hilbert basis. Hence, Theorem 2.4
implies the following result.

Corollary 2.5. If Ax= b is a box TDI system then each TDI system Mx < d such that
{x: Mx=d}={x: Ax=<b} is also a box TDI system. []

3. Defining systems

If P is a box TDI polyhedron of full dimension, then Theorem 2.4 implies that
each facet-inducing inequality, ax < B, for P can be scaled so that it has 0, 1, —1
values on the left hand side. (Since F ={x: ax =B} P is a facet of P, the cone of
all vectors w such that max{wx: x € P} is achieved by each vector in F is just the
ray {Aa: A €Q, A =0} and the only such rays that have the box property are those
which contain a 0, 1, —1 valued point.) Thus, each box TDI polyhedron of full
dimension can be defined by a linear system which has 0, 1, —1 valued left hand
sides. Edmonds and Giles [11, 13] proved this result in general.

Theorem 3.1. If P is a box TDI polyhedron then there exists a linear system Ax=<1b
such that P={x: Ax<b} and Ais 0, 1, —1 valued. [}

The proof of Edmonds and Giles uses the following ‘duplication’ result, for which
a new proof, based on the results of the previous section, is given below. (See
Schrijver [37] for other operations that preserve the fact that a system is a box TDI
system.)
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Theorem 3.2. Let Ax=<b be a box TDI system, where A is an r X n matrix, and let
A, denote the nth column of A. Then Ax+ A,x,., < b is also a box TDI system, where
X,+1 IS a new variable.

Proof. Let H=1{h,,..., h,} be a box Hilbert basis in Q". For each vector k=
{hir, ..., hiy)€ H let h; denote the (n+1)-component vector (h;y, ..., hy, hin). By
Proposition 2.2, it suffices to prove that H = (h,, ..., h,,) is also a box Hilbert basis.
Furthermore, since it is clear that H is a Hilbert basis, Lemma 2.3 implies that it
suffices to show that the cone C generated by H has the box property.

Let w=(W,..., W, W, )eC and let w denote the n-component vector
(W1, ..., W,,). Notice that w € C, the cone generated by H. Since w, = w,,,, we have
that either {n, n+1}<= #(Ww) or {n, n+1} A F(w)=@. If {n, n+1} < F(W), then since
w has the box property in C, W has the box property in C. So we may assume that
{n,n+1}n F(w)=¢.

Let (U, L) be a partition of {1,..., n+1\F(w). If {n,n+1}c Uor{n n+1}c L,
then w has the box property in C with respect to (U, L) since w has the box property
in C with respect to (U\{n+1}, L\{n+1}). So we may assume, by symmetry, that
ne U and n+1e L. Let w' be an integral vector in C such that

(i) wi=w, for each ic $(w),
(ii) wi=[w;]|for each ie U, (3.1)
(iii) wi= |w;| for each ie L\{n+1}.

If w,=|w,]|, then, since w'=(w/,..., w/, w,) is an integral vector in C, we have
that w has the box property in C with respect to (U, L). So we may assume

wh < |w,] <w, (3.2)

Now since each convex combination of w’ and w is a vector in C which satisfies
the conditions given in (3.1), the inequalities in (3.2) imply that there exists a vector
w?e C which satisfies the conditions in (3.1) and is such that w2 = |, |. Now since
w? has the box property in C, there exists an integral vector w>e C such that the
conditions in (3.1) are satisfied and wj=|w,]. The integral vector Ww’=
(w3,...,w,, wl) in C proves that w has the box property in C with respect to
(U, L). O

The nice proof by Edmonds and Giles [13] of Theorem 3.1 goes as follows: Let
Ax=<b be a box TDI system and P ={x: Ax < b}. A vector x* is in P if and only
if max{—1x"+1x": Ax+ Ax'+Ax"< b, x =x* x'=0, x"=< 0} =0, which, by the linear
programming duality theorem and the fact that Ax+ Ax'+ Ax"<b is again a box
TDI system, is true if and only if 7Ax™ < #b for all integral 7 =0 such that 7A is
integral and —1s=7A<1.
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Remark 3.3. It should be noted that Theorem 3.1 does not imply that if P is a box
TDI polyhedron then there exists a box TDI system Ax <b such that P={x: Ax< b}
and A is 0, 1, —1 valued. Indeed, this stronger statement is not true, as evidenced by
examples of Edmonds and Giles [12] and Schrijver [38]. 1

Several results related to the above theorems of Edmonds and Giles will now be
cosidered.

For a set K< Q"*™ the projection of K onto the first n coordinates is the set
{xe@Q": 3z Q™ such that (x, z) e K}. It is well known that the projection of a
polyhedron is again a polyhedron (see Bachem and Grétschel [1], for example).
Furthermore, it is easy to see that if all vertices of a polyhedron are integral then
all vertices of each projection of that polyhedron are also integral, a result which
has been used to prove combinatorial theorems in Balas and Pulleyblank [2] and
Cameron [5]. The above proof technique of Edmonds and Giles can be used to
show that if P is a box TDI polyhedron and Q is a projection of P, then Q can be
defined by a linear system with 0, 1, —1 valued left hand sides. In fact, the class of
box TDI polyhedra is closed under taking projections.

Theorem 3.4. Each projection of a box TDI polyhedron onto a subset of its coordinates
is again a box TDI polyhedron.

Proof. Let P be a box TDI polyhedron in the space Q"™ let P’ be the projection
of P onto the first n coordinates, let F’ be a face of P’ and let C’ be the cone for
F' that is, C' is the set of all vectors we Q" such that max{wx: x € P’} is achieved
by each vector x in F'. Let c€ C' be a vector such that max{cx: x € P'} is achieved
only by the set of vectors in F'. Now let F be the maximal face of P such that
max{cx: (x,z)e P} is achieved by each vector (x,z)e F, that is, let F=
{(x, z) € P: cx = B} where 8 =max{cx: (x, z) € P}. It follows that F’ is the projection
of F onto the first n coordinates. Let C be the cone of all vectors (u, v)e Q"™
such that max{ux + vx: (x, z) € P} is achieved by each vector (x, z) in F. Each we C’
has the box property in C' since the n+m component vector (w, 0) has the box
property in C. [

The dominant of a polyhedron P < Q" is the polyhedron {x € Q": x = z for some
z € P}. The problem of finding properties of the dominant of a polyhedron arises
in the study of blocking pairs of polyhedra (see Fulkerson [17], Cunningham [8],
and McDiarmid [32]). In general, linear systems which define the dominant of a
polyhedron P may necessarily have a complicated structure, even though the
inequalities defining P are of a simple form. Indeed, Cunningham and Green-Krotki
[9] have shown that for any positive integer n there exists a perfect matching
polyhedron having dominant P< Q™ and an inequality a;x;+* - -+ a,,x,, = B8 such
that a,x,+ -+ a,x,, =B is a facet-inducing inequality for P and {1,...,n}<
{ay,...a,}. This problem, however, does not occur with box TDI polyhedra.
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Edmonds and Giles [11, 13] have shown that if P is a box TDI polyhedron then
the dominant of P can be defined by a linear system Ax = b where A is a 0, 1 valued
matrix. Again, the stronger statement that the class of box TDI polyhedra is closed
under taking dominants is true. The following lemma will be used in the proof of
this stronger result.

Lemma 3.5. If C is a cone with the box property then C n{x: x <0} also has the box
property.

Proof. Let C be a cone with the box property and suppose C n {x: x <0} does not
have the box property. Choose we Cn{x:x=<0} and partition (U, L) of
{1,..., n\#(w) such that

(i) w does not have the box property with respect to (U, L) in C n{x: x <0} and

(ii) of all vectors ve C n{x: x <0} and partitions of {1,..., n}\#(v) satisfying

(i), |L| is minimum.

Suppose L=¢. Since C has the box property, there exists a vector we C such
that w; = w; for all i€ $(w) and w,=< [w;] for all ie{l,...,n\F(w). Now since
w=0, we have w=0. So we Cn{x: x=<0}, a contradiction.

Suppose L#@. There exists an integral vector we C such that w;,=w; for all
ic $(w), w;<[w;]| forall ie U, and w;= |w,] for all i e L. By assumption, wg C
{x: x<0}. So for some t€ L, w,> 0. Thus, since w =0, there exists a vector v which
is a convex combination of w and w such that v =<0 and v, =0 for some re L. Now
veCni{x:x=<0}and v;=w, for all ie F(w), v;<[w,] forall ie U and v;= | w;]
forall i e L. So, by assumption (i), v does not have the box property in C n {x: x <0}
with respect to (U\$(v), L\F(v)). But |L\$(v)|<|L|, since re L, a contradiction
to assumption (ii). O

Theorem 3.6. If Pis a box TDI polyhedron then the dominant of P is also a box TDI
polyhedron.

 Proof. Let P be a box TDI polyhedron and let P* be the dominant of P. Let F*
be a face of P* and let F = F* ~ P. There exists a hyperplane H such that H n P* =
F* We have F*n P=HP*nP=H P, so F is a face of P. Let C be the cone
for F in P, that is C is the set of all vectors w such that max{wx: x € P} is achieved
by each vector in F, and let C* be the cone for F* in P*. By Theorem 2.4, C has
the box property. We must show that C* also has the box property.

Suppose we C*. We have that w=0, since otherwise max{wx: x € P*} does not
exist. Also, w e C, since max{wx: x€ P*} =max{wx: xe P}. Let 7 ={i:1<i<nand
there exist points x€ F* and ye P such that x=y and x;>y;}. For each i€ J we
have w; =0, since if xe F* and y€ P with x=y then wx = wy, which implies that
w; =0 for each j such that x;> y. So w is contained in the cone

C'=Cni{x:x=s0ln{x:x;=0forall ic T}.



56 W. Cook / On box TDI polyhedra

Now suppose we C'. Let 8 =max{wx: x € P}. Since w =<0, max{wx: xe P¥*} = 8.
Suppose there exists a vector y € F* such that wy < 8. There exists a vector z€ P
such that y =z It follows that ze€ F and, hence, that wz = 8. But w; =0 for each
ie{l,..., n} such that y,> z, which implies wy = wz, a contradiction. So wy'=f
for each y’ ¢ F*. Thus we C*,

Since C has the box property, Lemma 3.5 implies that C n {x: x < 0} has the box
property. Thus, C'= C* has the box property. [

For an example of the application of this result see Edmonds and Giles [11].

Remark 3.7. One can similarly prove that if P is a box TDI polyhedron then {x: x <z
for some z € P} is also a box TDI polyhedron. Polyhedra of this type arise in the study
of antiblocking pairs of polyhedra (see Cunningham and Green- Krotki 9], Fulkerson
[17] and McDiarmid [32]). [0

4. An algorithmic characterization

Consider the following geometric characterization of polymatroids given by
Edmonds [10]: A compact nonempty set P < {x<Q": x =0} is a polymatroid if and
only if

(i) x€ P and 0= y=<x imply that ye P and

(ii) for each nonnegative a € @", every maximal vector y € P {x: x < a} has the
same coordinate sum
(where maximal is with respect to the ordinary < ordering). An attractive feature
of this geometric characterization is that it gives an easy way to prove that a
polyhedron is not a polymatroid. It implies that if we are given a polymatroid P
by an optization oracle (see Grotschel, Lovdsz, and Schrijver [23, 26] for definitions
regarding oracles), then if P is not a polymatroid then there exists a short proof of
this fact. It is shown below that Theorem 2.4 implies that a similar statement can
be made for box TDI polyhedra.

Grotschel, Lovdsz, and Schrijver [26] define a well-described polyhedron to be a
triple (P; n, p) where P < Q" is a polyhedron which can be defined by a finite system
of linear inequalities such that the input size (in binary notation) of each inequality
is at most p.

Lemmad.1. Let (C; n, p) be a well-described convex cone given by a strong separation
oracle. If C does not have the box property then there exists an oracle-polynomial-time

proof of this fact.

Proof. Suppose that C does not have the box property. Let we C be a vector which
does not have the box property in C. Since C is a well-described polyhedron, there
exists a set G of integral vectors which generates C such that the size of each vector
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g € G is polynomial in n and p (see Grotschel, Lovisz, and Schrijver [23, 26]). By
Carathéodory’s Theorem, w may be expressed as A, g, +- - -+A,g, Where ¢ is the
dimension of C and fori=1,...,t: g€ G and‘/\,- € Q 1s nonnegative. Since w does
not have the box property in C, (A, — |A,])g:+- - -+ (A, — [A,])g does not have the
box property in C. So we may assume that 0==A; <1 fori=1,...,¢

Let (U, L) be a partition of {1,..., n}\#(w) such that w does not have the box
property in C with respect to (U, L). Since the size of each g, i=1,...,¢ is
polynomial in n and p, the size of the vector w' defined as w! = w; for ic $(w),
w;=[w,] for ie U, and wj=|w;] for i€ L is also polynomial in n and p. Let w’
be a vector in B=C n{x: x;=w| for ie $(w), x;<w! for ie U, x;,=w) for ie L}
such that |#(w?)| is maximum. Consider the mixed integer (feasibility) program:
x € B, x; is integral for all i e $(w?). It follows from the results of von zur Gathen
and Sieveking [19], on bounds for integral solutions to linear inequality systems,
that there exists a solution vector w’ to this program, where the size of w® is
polynomial in n and p. (One way to see this is to note that, using Farkas’ Lemma,
the projection of B onto the $(w?) coordinates can be described by a system of
inequalities each of which has input size bounded above by a polynomial in n and
p.)

Let D={x: x;=w’ for all ie #(w’), x;=< [w}] for all ie U\F(w’), x;= |w;}] for
all ie L\$(w>)}. By the choice of w and (U, L), there does not exist an integral
vector in C n D. So either U\F(w>) # @ or L\ F(w>) # (. Suppose that U\ F(w*) # ¢
and let i e U\ $(w?). If there exists a vector v in C n D with v, integral then there
also exists a vector v’ in C n D with v}=[w}] or v)=[w]]—1 (since any convex
combination of v and w’ is also in C n D and if v, # [w}] then, since v; is integral,
there exists a convex combination, v’, of v and w’ such that v}= [w}]—1). Using
the results of Grétschel, Lovasz, and Schrijver [26], we can check in oracle-
polynomial time that C D n{x:x;=[w{]} and CnDn{x:x;=[w;]—1} are
empty. (Since |#(w?)| is maximum, each of these polyhedra is indeed empty.) This
proves that w> does not have the box property with respect to ( U\ $(w?), L\ #(w")).
A similar argument can be used in the case where L\ F(w’)#9. O

Theorem4.2. Let (P; n, p) be a well described polyhedron given by a strong optimization
oracle. If P is not a box TDI polyhedron then there exists an oracle-polynomial-time
proof of this fact.

Proof. Suppose P is not a box TDI polyhedron. By Theorem 2.4, there exists a face
F of P such that the cone C of all vectors w such that max{wx: x € P} is achieved
by each vector in F, does not have the box property. We may describe F as
P ~{x: ax =B}, where ax =g is an equation of size polynomial in n and p. (To
see that such an equation exists, let A'x=<b', A’x=< b’ be a defining system for P
such that each inequality has size at most p and such that F = {x: A'x < b' A’x = b?}.
Let k=rank(A?) and let A’x=b’ be a subsystem of k equations from A’x= b’
such that rank(A*) = k. Letting ax = 8 be the sum of the k equations in A’x = b?,
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we have an appropriate equation.) Thus, we can optimize over F in oracle-poly-
nomial time (see Grotschel, Lovasz, and Schrijver [23, 26]).

If Ax=<b is a defining system for P then C is generated by the active rows for
F in Ax=<b. So C is generated by a finite set of vectors, each of which is of size
at most p. This implies (see Grotschel, Lovdsz, and Schrijver [26]) that C can be
defined by a linear system such that the size of each inequality in the system is
polynomial in n and p. So, by Lemma 4.1, it suffices to show that we can solve the
strong separation problem for C in oracle-polynomial time. This can be done in
the following way, as observed by L. Lovdsz. Suppose weQ" Let A, =
max{wx: x € P} and A,=min{wx: x€ F}. If A, =A,, then we C. If A, > A,, then we
have found vectors v', v>€ P such that v>e F and v'w> v’w, that is (v' —0v*)w > 0.
Let X C. We have v°% = max{y%: y € P}, since v’ F and € C. So v'X =< v’%, that
is (0! = v?)x=<0. Thus, {x: (v' —v*)x = 0} is a separating hyperplane for wand C.

If we are given a linear system Ax<b as an explicit list of inequalities, then,
using the algorithm of Khachiyan [29], we can optimize over the polytope {x: Ax < b}
in polynomial time. Thus, the above theorem implies the following result.

Corollary 4.3. The class of linear systems Ax < b which define box TDI polyhedra is
in co-NP. [

(See Garey and Johnson [18] for definitions and results on the classes NP and
co-NP.)

Remark 4.4. A related result, which follows from the algorithmic work of Chan-
drasekaran [6], is that the class of box TDI linear systems Ax < b, with A integral,
is in co-NP (see Cook, Lovasz, and Schrijver [7]). This result, however, does not
imply Corollary 4.3, since the size of any TDI defining system Mx<d, with M
integral, may necessarily be exponential in the size of Ax < b and, furthermore, one
would have to certify that Mx<d is in fact a TDI system (it is an open problem
to decide whether or not the class of TDI linear systems is in NP).

Another related result, which follows from Proposition 2.2 and the results of
Cook, Lovasz, and Schrijver [7], is that in fixed dimension one can test in polynomial
time whether or not Ax < b, where A is integral, is a box TDI system. {1

To give an application of the above results, the class of perfect graphs will now
be considered. A graph G is defined to be a perfect graph if for each induced
subgraph H of G the chromatic number of H is equal to the cardinality of a
maximum clique of H (see Berge [3]). There are many interesting results in the
theory of perfect graphs, a survey of which can be found in Lovdsz [31] (see also
Berge and Chvital [4]). Cameron [5] defined a graph to be box perfect if the linear
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system
Y{x,;veK}=1 for each (not necessarily maximal) clique K of G,
x, =1 for each node v of G (4.1)

is a box TDI system. This definition is motivated, in part, by the result of Fulkerson
[17] and Lovasz [30] that a graph G is perfect if and only if (4.1) is a TDI system.
Thus, box perfect graphs are a subset of perfect graphs. In fact, it is easy to see
that a box perfect graph is k-perfect for all k, where k-perfect graphs are defined
as in Lovasz [31] (see Greene and Kleitman [21]). A class of box perfect graphs
which includes comparability graphs is described in Cameron [5], along with a
survey of other results on box perfect graphs. Grotschel, Lovasz, and Schrijver [24],
Lovasz [31], and Lubiw (see Cameron [5]) have shown that the class of perfect
graphs is in co-NP. It will be shown below that the class of box perfect graphs is
also in co-NP. '

It follows directly from the definition of box perfect graphs that a graph is box
perfect if and only if

Y {x,;ve K}=1 for each maximal clique K of G, (4.2)

x,=0 for each node v of G

is abox TDI system. Moreover, Theorem 2.4, together with the theorem of Fulkerson
[17] and Lovasz[30] mentioned above, implies the following characterization (where
the stable set polytope of a graph is the convex hull of the incidence vectors of the
stable sets of the graph).

Proposition 4.5. A graph G is box perfect if and only if G is perfect and the stable set
polytope of G is a box TDI polyhedron. [

This characterization will be used to prove the following result.
Theorem 4.6. The class of box perfect graphs is in co-NP.

Proof. Suppose that G is not a box perfect graph. Since the class of perfect graphs
is in co-NP, if G is not perfect then there exists a polynomial-time proof of this,
which also proves that G is not box perfect. Suppose that G is perfect. By the
results of Grotschel, Lovasz, and Schrijver [24, 25], one can optimize linear functions
over the stable set polytope of G in polynomial time. By Theorem 4.2, using the
Grotschel, Lovasz, and Schrijver algorithm polynomially many times we can prove
that the stable set polytope of G is not a box TDI polyhedron. (Notice that to verify
that the Grotschel, Lovasz, and Schrijver algorithm has optimized a linear function
over the stable set polytope of G we do not need to verify that G is perfect, but
only check that the primal and dual solutions produced by the algorithm are feasible
solutions to the corresponding linear programs and that they give equal objective
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values, which can be done in polynomial time since the primal solutions are integral
and the dual solutions are basic.) O
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