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We discuss several issues that arise in the implementation of Martin, Otto, and Fel-
ten’s Chained Lin-Kernighan heuristic for large-scale traveling salesman problems.
Computational results are presented for TSPLIB instances ranging in size from 11,849 cities
up to 85,900 cities; for each of these instances, solutions within 1% of the optimal value
can routinely be found in under one CPU minute on a 300 MHz Pentium II workstation,
and solutions within 0.5% of optimal can routinely be found in under ten CPU minutes.
We also demonstrate the scalability of the heuristic, presenting results for randomly gen-
erated Euclidean instances having up to 25,000,000 cities. For the largest of these random
instances, a tour within 1% of an estimate of the optimal value was obtained in under one
CPU day on a 64-bit IBM RS6000 workstation.

(Networks-Graphs; Traveling Salesman; Heuristics)

1. Introduction
Given the cost of travel between each pair of a finite
number of cities, the traveling salesman problem (TSP)
is to find the cheapest tour passing through all of the
cities and returning to the point of departure. (We
consider the symmetric version of the TSP, where the
cost of travel between two cities does not depend on
the direction we are traveling.) The simplicity of this
model, coupled with its apparent intractability, makes
it an ideal platform for exploring new algorithmic
ideas, and it has long been a primary subject for the
study of both exact and heuristic methods in discrete
optimization. Treatments of the TSP can be found in
Lawler et al. (1985), Reinelt (1994), Jiinger et al. (1995),
and Johnson and McGeoch (1997).

In heuristic approaches to the TSP, the goal is to
find tours of low cost in reasonable amounts of com-
puting time. One of the most successful methods
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proposed for this task is the simple and elegant local-
search algorithm of Lin and Kernighan (1973). Their
procedure is a “tour-improvement” method, in that it
takes a given tour and attempts to modify it in order
to obtain an alternative tour of lesser cost.

For two decades, Lin-Kernighan was the method
of choice whenever high-quality tours were needed.
Implementations of the algorithm are described in
Bland and Shallcross (1989), Johnson (1990), Mak
and Morton (1993), Perttunen (1994), Reinelt (1994),
Schifer (1994), Verhoeven et al. (1995), Johnson and
McGeoch (1997), Rohe (1997), Neto (1999), and else-
where.

An important, and widely adopted, part of Lin
and Kernighan’s overall tour-finding scheme is the
repeated use of the basic Lin-Kernighan algorithm.
The idea is simple: as long as computation time
is available, by generating a new initial tour and
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applying Lin-Kernighan, we have a chance of find-
ing a tour that is cheaper than the best tour we
have found thus far. This standard practice ended,
however, with the publication of the work of Martin
et al. (1991, 1992), who argued that repeatedly start-
ing from new tours is an inefficient way to sample the
locally optimal solutions produced by Lin-Kernighan.
The alternative strategy they propose is to kick the
Lin-Kernighan tour (that is, to perturb it slightly), and
reapply the algorithm. If this effort produces a better
tour, we discard the old Lin-Kernighan tour and work
with the new one. Otherwise, we continue with the
old tour and kick it again.

We refer to the algorithm of Martin et al. as Chained
Lin-Kernighan, to match the Chained Local Optimiza-
tion concept introduced in Martin and Otto (1996).
Chained Lin-Kernighan offers a great performance
boost over the original Lin-Kernighan scheme, as
demonstrated in the computational study of John-
son (1990). Further results comparing the two
approaches can be found in Reinelt (1994), Jiinger
et al. (1995), Codenotti et al. (1996), Johnson and
McGeoch (1997), Hong et al. (1997), and Neto (1999).
These papers offer good codes for a range of problem
instances, but each of the implementations is imprac-
tical for very large examples having 250,000 or more
cities. (A recent alternative to Chained Lin-Kernighan
was proposed by Helsgaun 2000. His LKH code gives
exceptionally good solutions for a wide range of prob-
lem sizes, but again it is not practical for very large
problem instances.)

In this note, we discuss three issues involved in
obtaining efficient implementations of Chained Lin-
Kernighan for large instances, namely the breadth of
the Lin-Kernighan search, the structure of the kick,
and the choice of an initial tour. We report computa-
tional results for the TSPLIB set of test instances col-
lected by Reinelt (1991, 1995), as well as results for
random geometric instances having up to 25,000,000
cities.

The implementation we use in our study is avail-
able for research purposes as part of the Concorde
TSP code of Applegate et al. (1998, 2001); Concorde
uses Chained Lin-Kernighan as part of its exact solu-
tion procedure. The Concorde code is available at
http://www.math.princeton.edu/tsp/. The research

described in this paper contributed to the design
of Concorde’s Chained Lin-Kernighan implementa-
tion. It should be noted that the default settings
in the 99.12.15 version of Concorde’s Chained Lin-
Kernighan differ slightly from those adopted in this
paper (the details are provided in Section 7).

2. Chained Lin-Kernighan

Suppose we have an n-city TSP, with c(i, j) represent-
ing the cost of travel between city i and city j. Con-
sider a tour (iy, ..., 1, ;). If forsome 0 <p < q <n, we
have

C(ip—ll l.p) a5 C(iql iq+1) 2 C(l’p—]! iq) ar C(ip' iq+1)

(the subscripts should be taken modulo 7), then we
can construct a better tour by “flipping” the subse-
quence (i;,, St iq), that is, by moving to the tour

(10, Seny 1},A1/ 1_,1, 1(],1, vy Ip+1/ ZP, lq+l/ ¥ # lu—l)'

The well-known 2-opt algorithm repeatedly searches
for such tour flaws, and performs the corresponding
flip operations to remove them.

Flip operations are also the basic building blocks of
Lin and Kernighan’s algorithm. Rather than search-
ing for a single flip, however, Lin-Kernighan attempts
to build a (possibly quite long) sequence of flips
that taken together, one after another, end up at an
improved tour. The point is that by allowing some of
the intermediate tours to be more costly than the ini-
tial tour, Lin-Kernighan can go well beyond the point
where 2-opt would terminate. If the Lin-Kernighan
search procedure is successful in finding an improved
tour, then the sequence of flips is made and a new
search is begun. For details of Lin and Kernighan’s
algorithm, we refer the reader to the literature cited
above; our computational study uses the implementa-
tion described in Applegate et al. (1999). The Apple-
gate et al. implementation is tailored for Chained
Lin-Kernighan, trading off tour quality for speed in
several design decisions when compared to the orig-
inal algorithm of Lin and Kernighan (1973). One of
these design issues, the backtracking in the algorithm,
is discussed in Section 3; other design issues are
treated in Applegate et al. (1999).
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Figure 1 A Double Bridge

In addition to the basic Lin-Kernighan algorithm,
Chained Lin-Kernighan calls for a method for per-
turbing a given tour. The mechanism proposed by
Martin et al. (1991) consists of a sequence of flips
that exchanges four edges in the tour for four other
edges. The particular 4-exchange they use is illustrated
in Figure 1. This kick was discussed in the original Lin
and Kernighan (1973) paper in a different context. It
serves the purposes of Martin et al. well: it is compact,
it can alter the global shape of a tour, and standard
implementations of Lin-Kernighan cannot find the set
of flips needed to undo the exchanged edges. Martin
et al. call this kick a double bridge.

The final ingredient in Chained Lin-Kernighan is
the starting tour. For small instances this is not really
an issue, since the algorithm is powerful enough to
overcome just about any tour that it is given. For large
instances, however, the choice of the initial tour can
have an impact on Chained Lin-Kernighan's perfor-
mance.

We will treat each of the three components of the
algorithm in the discussion below. Our main test bed
of problem instances consists of five of the seven
TSPLIB instances having over 10,000 cities, together
with a randomly generated Euclidean instance (points
in the plane, with travel costs determined by the
Euclidean distances, rounded to the nearest integer).
The TSPLIB instances are geometric examples rang-
ing in size from 11,849 cities up to 85,900 cities; the
randomly generated instance has 100,000 cities. (We
exclude the TSPLIB instances brd14051 and d15112
to give the problem suite a better balance between
uniformly distributed instances and instances that are
highly structured.) We also make a series of tests on
large random Euclidean instances, ranging in size up
to 25,000,000 cities. The random instances have inte-
ger coordinates drawn uniformly from the n by n
square, where 7 is the number of cities.

84

Table 1 Test Instances

Name Cities Lower Bound Tour Gap
rl11849 11,849 923288 923288 OPTIMAL
usa13509 13,509 19982859 19982859 OPTIMAL
d18512 18,512 645198 645244 0.007%
pla33810 33,810 66005185 66050599 0.069%
pla85900 85,900 142307500 142395858 0.062%
r100000 100,000 225736239 225929775 0.086%

With the exception of rl11849 and usal3509, the
optimal values for our main test instances are not
known; the best upper and lower bounds that have
been reported to Reinelt (1995) (as of December 2001)
are listed in Table 1 (r100000 is not part of the
TSPLIB). Each of the lower bound values given in
the table was obtained with the Concorde code of
Applegate et al. (1998, 2001). The rl11849, usal3509,
and r100000 tours were obtained using Chained Lin-
Kernighan together with the branch-width code of
Cook and Seymour (1993); the d18512 and pla33810
tours were obtained using the LKH code of Hels-
gaun (2000) together with the branch-width code; the
pla85900 tour was obtained by K. Helsgaun using a
variant of LKH.

3. Level of Backtracking
The core of Lin and Kernighan’s algorithm is a
search technique for locating sequences of flip oper-
ations that appear to have a chance of leading
to an improved tour. The search proceeds step by
step, adding one flip after another to the sequence,
with a built-in criterion for determining when the
process should be stopped. A number of proce-
dures for selecting flips have been proposed in
Lin and Kernighan (1973), Mak and Morton (1993),
Reinelt (1994), and Johnson and McGeoch (1997). In
our implementation we use both the standard and
alternate (second level) search methods described in
Lin and Kernighan (1973), as well as the search
method of Mak and Morton (1993); we impose a
bound of 25 on the maximum length of an allowable
flip sequence.

An essential part of the Lin-Kernighan algorithm is
the use of backtracking to enhance the flip search pro-
cedure; Lin and Kernighan (1973) explore up to five
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choices for the first flip in the sequence, and for each
of these flips they explore up to five choices for the
second flip. At further levels of the search, Lin and
Kernighan allow only a single choice, but it is natural
to consider backtracking at any level of the search. We
write (5, 5) to describe Lin and Kernighan's backtrack-
ing proposal, and in general we write (by,b,,...,b,)
to refer to a bound of b, choices for flips at each of
the k =1, ..., p levels, with no backtracking permit-
ted beyond the pth level. (We use the same choices
for the main backtracking and for the alternate back-
tracking described in Lin and Kernighan 1973.) Imple-
mentations of Chained Lin-Kernighan must trade off
the quality of tours produced by individual calls to
Lin-Kernighan versus the speed with which the calls
can be made; varying the bounds on backtracking is
an effective means for regulating this tradeoff.

In Table 2, we report results for eight choices of
backtracking. Each row in the table corresponds to a
set of five trials over each of the six instances in our
test suite. For each of the thirty trials, we calculate the
percentage excess of the cost of the computed tour
over the cost of the best tour known for the particular
instance (as reported in Table 1), that is,

100 - (computed tour cost — best tour cost)

best tour cost

The average of the thirty values, calculated at each of
three points in the runs, is reported in Table 2; the
“Short Run” entry is the value after one minute for
the three smaller instances (r111849, usal3509, d18512)
and after three minutes for the three larger instances
(pla33810, pla85900, and r100000), the “Medium Run”
entry is the value after five minutes for the smaller

instances and after 15 minutes for the larger instances,
and the “Long Run” entry is the value after thirty
minutes for the smaller instances and after 90 min-
utes for the larger instances. The grouping of problem
instances permits us to report results in a compact
fashion, at the expense of hiding some differences
based on problem structure and size (the grouping
does, however, allow one to see trends in the impact
of the design choices). Even with 30 trials, there is still
significant variance in the overall test results, but the
tests do appear to permit the two digits of accuracy
we report in the tables.

The tests were carried out on a 300 MHz Intel Pen-
tium II workstation with 256 megabytes of memory.
The code was compiled with the GNU gcc 2.7.2.1
compiler, using the —O3 option. In these tests we
use the two-level list tour data structure described in
Chrobak et al. (1990) and in Fredman et al. (1995). The
tests use the “250-geometric” kick and the “Quick-
Borfivka” initial tour described in Sections 4 and 5.

Lin and Kernighan’s (5, 5) rule performs quite well,
but for longer runs the results in Table 2 indicate that
a slightly wider search is preferable; we adopt the (4,
3, 3, 2)- breadth as the default value in our implemen-
tation.

4. Choice of the Kick

In their computations, Martin et al. (1992) gener-
ate double bridges at random, but only use as
kicks those that involve pairs of edges of relatively
small total cost. Johnson (1990) and Johnson and
McGeoch (1997), on the other hand, drop this restric-
tion on the edge costs and simply use random double-
bridge kicks. An argument in favor of this latter strat-
egy is that cost-restricted kicks tend to be local in

Table 2 Level of Backtracking

. nature and might, therefore, cause the algorithm to
i) b ek [ Hogy i get stuck in some undesirable global configuration.
(2.1) 0.56% 0.36% 0.27% From another perspective, however, the local nature
(2.2) 0'500’:° 0'332’5 0‘24:’:” of the cost-restricted kicks can be seen as an advan-
Ei 3)2) gjg:: gggojz 8;10/2 tage: the calls to the Lin-Kernighan algorithm will be
(4332) 0.49% 0.28% 0.20% both faster (the costly edges in the random flips tend
(4,3.3,2,2) 0.51% 0.29% 0.21% to lead to long sequences of flips in the Lin-Kernighan
(12,12) 0.59% 0.35% 0.22% searches) and more likely to be successful (since we
(4,4,3.3,2,2) 0.64% 0.31% 0.21% are not causing havoc in the tour, there is a greater
e L g e chance that Lin-Kernighan can find a way to correct
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the perturbation that we have made). As we shall
see below, for large instances this second argument is
dominant—cost restricted kicks are much more effec-
tive than random kicks.

To obtain cost-restricted kicks for large instances,
we need an alternative to the process of examining
kicks at random used by Martin et al. The difficulty
with their procedure is that only a very small fraction
of random kicks would be accepted by any reasonably
small cost threshold. To overcome this, we propose
three direct construction procedures for “local” kicks.
In each of our procedures, we employ a method pro-
posed by Rohe (1997) for selecting the first edge of a
kick; the idea is to start the double bridge at a city v
that appears to be out of place in the tour. We describe
this method below.

When we search for a kick we have in hand a cur-
rent tour T through the cities; for convenience we fix
an orientation of T. For a city v, let next(v) denote the
city immediately following v in tour T and let near(v)
denote the city w that minimizes ¢(v, w), the cost of
travel from v to w. To select the first edge removed
by the kick, we consider a small fraction of the cities
(selected randomly) as candidates for v and choose
the one that maximizes

c(v, next(v)) — c(v, near(v)).

The first edge of the double bridge will be (v, next
(v)). To complete the construction, we choose the
remaining three edges to be close to v, as we describe
below.

Our first selection procedure examines, for some
constant @, a random sample of an cities (where n is
the number of cities in the TSP instance). We attempt
to build a double bridge using three edges of the
form (w, next(w)), for cities w that are amongst the six
nearest neighbors of v, distinct from next(v), in the
random sample. We call the double bridges found by
this procedure close kicks. Note that as we increase «,
the kicks we obtain with this method are increasingly
local in nature.

A second, perhaps more natural procedure, is to
complete the double bridge from edges of the form
(w, next(w)), where w is chosen at random amongst
the k cities nearest to v. By varying k, we can get very
local kicks or kicks similar to those generated purely

86

at random. Notice, however, that these kicks are time-
consuming to compute in general instances, since we
would be required to examine every city in order
to obtain the k nearest cities. In geometric instances,
however, we can use kd-trees (see Bentley 1992) to
examine the nearest sets efficiently. We call the double
bridges found in this way geometric kicks.

Our third procedure is based on taking three ran-
dom walks from city v in a prescribed neighbor graph
that is used in the flip-selection procedure of Lin-
Kernighan; the double-bridge edges we consider are
of the form (w;, next(w;)), where w; is the city reached
in walk i, for 1 =1,2,3. By varying the number of
steps taken in the walks, we can control the local-
ity of the resulting kicks; the double bridges found
with this process are called random-walk kicks. In our
implementation, the neighbor graph consists of the
three least costly edges in each of the four geometric
quadrants (for two-dimensional geometric instances,
like those in our test suite) around each city. This
graph was proposed by Miller and Pekny (1995) in
the context of two-matching algorithms, and Johnson
and McGeoch (1997) have shown that it is an effec-
tive neighbor graph for Chained Lin-Kernighan. (We
developed the random-walk kick as an effective way
to obtain cost-restricted kicks on instances having sev-
eral million cities, where the close and geometric kicks
become costly to compute.)

In Table 3, we compare random, close, geomet-
ric, and random-walk kicks, as well as random kicks
where we use Rohe’s rule for choosing the ini-
tial edge. (The tests use (4, 3, 3, 2)-breadth, as we

Table 3 Kicking Strategy

Kick Short Run Medium Run Long Run
random 0.78% 0.43% 0.23%
random, long first edge 0.77% 0.41% 0.23%
close (e = 0.003) 0.54% 0.29% 0.17%
close (e =0.01) 0.49% 0.28% 0.18%
close (a = 0.03) 0.52% 0.33% 0.22%
geometric (k = 100) 0.53% 0.33% 0.24%
geometric (k = 250) 0.50% 0.28% 0.20%
geometric (k = 1000) 0.55% 0.29% 0.17%
random-walk (25 steps) 0.59% 0.44% 0.36%
random-walk (50 steps) 0.49% 0.26% 0.17%
random-walk (100 steps) 0.55% 0.28% 0.17%
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described in the previous section; the results are again
the average over thirty trials, that is, five trials over
each of the six instances in our test suite; we use the
“Quick Bortvka” initial tour described in the next
section.) The results indicate a clear preference for the
cost-restricted kicks.

Our reported results are restricted to double-bridge
kicks, but there is no strong argument favoring these
over other kicking structures. Hong et al. (1997)
tested the use of k-exchange kicks for k varying from
two up to 50; they report that several values of k
work well on their 318-city, 532-city, and 800-city test
instances. A quite different kick was studied in Code-
notti et al. (1996), involving a perturbation of the
x, y-coordinates of the cities. In our implementation,
however, double bridges appear to perform at least
as well as any alternatives that we have tried; we will
comment further on the Codenotti et al. scheme in
Section 6 below.

5. The Initial Tour

In this section we discuss the choice of a starting tour
for Chained Lin-Kernighan. Although the algorithm
behaves very well over a wide range of tours, we
will see that its performance can be influenced by the
structure of the initial solution. In our tests below, we
use 50-step random-walk kicks and our default (4, 3,
3, 2)-breadth in Lin-Kernighan.

In Table 4 we report results for a number of dif-
ferent starting tours, using our standard suite of six
test instances. Three of the tours, “Random,” “Near-
est Neighbor,” and “Christofides,” are well known in
the TSP literature. The fourth starting tour, “Greedy,”
is produced by a heuristic developed by Bent-
ley (1992) (he calls it “multiple fragment”); it is used
as a starting tour in Johnson and McGeoch (1997)

and in Codenotti et al. (1996). The remaining two
tours, “Quick-Bortivka” and “HK-Christofides,” are
described below.

Quick-Boriivka is motivated by the minimum-weight
spanning tree algorithm of Bortivka (1926). In Quick-
Bortivka, we build a tour edge by edge. The construc-
tion begins (for geometric instances) by sorting the
cities of the TSP according to their first coordinate. We
then process the cities in order, skipping those cities
that already meet two edges in the partial tour we
are building. To process city x, we add to the partial
tour the least costly edge meeting x that is permis-
sible (so we do not consider edges that meet cities
having degree two in the partial tour, nor edges that
create subtours); this procedure can be implemented
efficiently using kd-trees. As a stand-alone heuris-
tic, quick-Boriivka produces tours that are of slightly
worse quality than Greedy, but it requires less time to
compute and it appears to work well together with
Chained Lin-Kernighan.

The final tour in the table is HK-Christofides. The
standard Christofides heuristic (Christofides 1976)
works with a minimum-cost spanning tree, combin-
ing it with a matching on the cities having odd degree
in the tree; the tour is produced from the union
of the tree and matching via a “short-cutting” tech-
nique. (A description of the algorithm can be found in
Johnson and Papadimitriou 1985. In our implementa-
tion, we use the Lin-Kernighan matching heuristic of
Rohe 1997 to find the matching, rather than using an
exact matching algorithm.) In HK-Christofides, we do
not start with the minimum spanning tree, but rather
a tree produced by running the iterative algorithm of
Held and Karp (1971) (for computing lower bounds
for TSP instances). The Held-Karp procedure com-
putes a sequence of spanning trees, using costs that are
adjusted at each iteration according to the degree of
the nodes in the current tree. If a node has degree less

Table4 Initial Tour than 2, then the cost of each edge meeting the node is
Tour Short Run Medium Run LongRun  decreased; if a node has degree greater than 2, the cost
Rahdom 0.62% 0.31% 0.18% of each edge pneetmg the node is increased. The num-
Nearest Neighbor 0.58% 0.31% 0.18% ber of trees in the Held-Karp sequence depends on
Christofides 0.50% 0.27% 0.17% the values of several parameters that must be chosen
Greedy 0.55% 0.29% 0.17% in the algorithm, but even a relatively short run will
Quick-Boriivka 0400 0.26% 017% usually produce a tree having a far greater number of
HK-Christofides 0.44% 0.23% 0.15% s ..

nodes of degree 2 than does the initial minimum-cost
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spanning tree; this feature makes it an attractive tree
for starting the Christofides heuristic.

The results reported in Table 4 demonstrate that the
initial tour can indeed have an impact on the per-
formance of Chained Lin-Kernighan (the table again
reports the average over 30 trials, as in the previ-
ous sections). Random starting tours and tours pro-
duced by the Nearest Neighbor heuristic exhibit the
worst behavior. The Christofides, Greedy, and Quick-
Bortivka heuristics all provide much better approx-
imations to optimal tours, and this results in good
performance in Chained Lin-Kernighan in each of
these cases. Finally, with the help of the excellent
tour approximation provided by the Held-Karp iter-
ative procedure, Chained Lin-Kernighan with HK-
Christofides stands out in our tests as the overall
winner in terms of tour quality. It must be noted,
however, that the “Short,” “Medium,” and “Long”
time checks include only the time spent in Chained
Lin-Kernighan, and not the time needed to compute
the starting tours. The time (in seconds) needed to
compute the initial tours for the 100,000-city random
problem are

Random NN Greedy Q-Bortivka Christofides HK-Christofides

0.0 =5 8.2 2.0 13.6 1621.8

respectively. The large value for the HK-Christofides
tour makes in unsuitable for short runs (unless the
Held-Karp lower bound is also needed for the given
application), but its exceptional performance on long
runs indicates that it should be a candidate for the
starting tour if very high quality tours are required.

We made an attempt at constructing a fast HK-
Christofides tour by performing only a small fixed
number of iterations of the Held-Karp procedure (and
working only on a sparse graph), but the resulting
Chained Lin-Kernighan implementation was not sig-
nificantly better than with the basic Christofides tour.
Based on the results in Table 4, we adopt Quick-
Bortivka as our default starting tour—it gives results
similar in quality to those obtained using Christofides
or Greedy, and it requires less time to compute.

6. Computational Results
We describe a series of tests aimed at demonstrating
the range of application of Chained Lin-Kernighan.
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Throughout this section, we adopt our default (4, 3,
3, 2)-breadth for Lin-Kernighan.

6.1. TSPLIB Instances

We now consider the full set of seven TSPLIB
instances having over 10,000 cities. The values of the
best known tours and lower bounds are

Name Cities Lower Bound Tour Gap
brd14051 14,051 469374 469388  0.003%
d15112" . 15,112 " 1573084 1573084 OPTIMAL

for the two examples that were not part of our main
test suite.

In Table 5 we report benchmark results for our
Chained Lin-Kernighan implementation over the
TSPLIB instances and the random Euclidean instance
r100000; the average number of iterations used at
each of the checkpoints is reported in Table 6. Unlike
the tables in the previous sections, Table 5 reports
the %-excess over the known lower bounds for the
instances (reported above and in Table 1), so the
results are guaranteed to be within the stated per-
centage of the optimal values. For each of the eight
instances we made five runs, using Quick-Bortivka as
the starting tour; the reported values are the average
tour qualities achieved at the indicated checkpoints.
To obtain good performance over a wide range of
running times, we adopt a hybrid kick where we use
a 50-step random walk for the first n iterations and
switch to a 100-step random walk thereafter; this is
important for the quality of the short runs, as can be
seen from the results reported earlier in Table 3.

The CPU-time checkpoints in Table 5 are the full
times for the runs, including the start-up time to com-
pute the initial tour and to compute the neighbor

Table 5 Excess over Lower Bounds

Name 1 Minute 10 Minutes 1 Hour 4 Hours 24 Hours
rl11849 0.51% 0.29% 0.24% 0.22% 0.19%
usa13509 0.45% 0.22% 0.15% 0.13% 0.09%
brd14051 0.49% 0.16% 0.11% 0.09% 0.07%
d15112 0.39% 0.17% 0.11% 0.07% 0.06%
d18512 0.42% 0.18% 0.12% 0.09% 0.07%
pla33810 0.73% 0.41% 0.30% 0.26% 0.23%
plag85900 0.85% 0.34% 0.25% 0.21% 0.16%
r100000 1.63% 0.48% 0.28% 0.22% 0.17%
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Table 6 Iterations of Chained Lin-Kernighan Table 7 Geometric Instances Run on an IBM RS6000, Model 43-P 260
Name 1 Minute 10 Minutes 1 Hour 4 Hours 24 Hours Number of Cities Trials Tour Quality Ratio CPU Time (seconds)
r11849 2,916 28,782 163,199 650,199 3,968,180 10,000 10 0.7189 260
usa13509 1,968 21,818 118,745 473,399 2,858,160 25,000 10 0.7171 715
brd14051 3,228 32,520 185,799 742,199 4,468,970 100,000 10 0.7156 3,300
d15112 2,701 28,837 162,199 647,999 3,903,349 250,000 10 0.7152 9,059
d18512 3,454 36,192 200,271 797,399 4,831,603 1,000,000 10 0.7148 37,232
pla33810 3,205 37,393 193,862 770,399 4,653,300 2,500,000 10 0.7145 94,110
pla85900 3,020 38,920 203,828 757,799 4,445,160 10,000,000 1 0.7143 396,362
r100000 806 18,660 124176 444,607 2,627,547 25,000,000 1 0.7146 698,628

graph. The average start-up time (in seconds) for the
eight test instances are

usa brd pla pla
rl11849 13509 14051 d15112 d18512 33810 85900 r100000
19 255 2.2 215 3.0 4.3 11.6 23.4

respectively. These rather small values do not have a
significant effect on the results for the higher check-
points, but they do affect the “1 Minute” times.
Improved one-minute results could be obtained by
using, for example, a fast Delaunay triangulation code
to create a neighbor graph (which works quite well for
short runs). To illustrate this, we used the “sweep2”
code of Fortune (1987, 1994) to compute a Delau-
nay triangulation for r100000 in 3.8 seconds, and
obtained an excess of 1.410% after a total of 1 minute
of CPU time. For longer runs, however, our default
“3-quadrant” neighbor graph produces more reliable
results than the (sparser) Delaunay triangulation.

6.2. Very Large Instances

The largest instance in our standard test suite has
100,000 cities; the implementation, however, can eas-
ily handle much larger examples. We demonstrate
this by considering a series of randomly generated
Euclidean instances, ranging in size from 10,000 cities
up to 25,000,000 cities. For each problem size, we con-
sider a set of ten instances (except in the largest two
cases, where we consider only single instances), using
a 50-step random-walk kick and performing 7 iter-
ations, where 7 is the number of cities. The results
of the tests are reported in Table 7. These runs were
carried out on a 64-bit IBM RS6000, Model 43-P 260
workstation equipped with four gigabytes of memory
(this machine is approximately 1.2 times faster than
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our 300 MHz Pentium II workstation). Due to storage
considerations, for the 25,000,000-city instance we use
the six nearest neighbors to each city as our neighbor
graph, rather than the usual three-quadrant graph;
this is the cause for both its faster-than-expected
running time and its slightly worse-quality tour. In
these tests, we use the splay-tree tour data structure
described in Applegate et al. (1990) and in Fredman
et al. (1995); this data structure has better asymptotic
behavior than the two-level list implementation.

Each random instance in our test consists of n cities
with integer coordinates drawn uniformly from the
1 by n square; the travel costs are the Euclidean dis-
tances rounded to the nearest integer value. The “Tour
Quality Ratio” reported in Table 7 is the average
cost of the tours found by Chained Lin-Kernighan,
divided by n./n. This ratio relates to the result of
Beardwood et al. (1959), who showed that for ran-
dom Euclidean instances in the unit square (using the
Euclidean distances as the edge costs) the ratio of the
optimal tour length to /n converges almost surely to
a constant Bypr. (For a discussion of this result, see
Karp and Steele 1985. Note that the decrease in the
ratios reported in the table as » increases is due to the
general rate at which optimal tour lengths converge
to Bopr-) Johnson et al. (1996) give an empirical esti-
mate of B,y using a combination of exact and heuris-
tic TSP algorithms; their conclusion is that Bopr =
0.7124 +0.0002 (similar values were also obtained by
Percus and Martin 1996 and by Cerf et al. 1997). Tak-
ing this value as a rough estimate of the optimal
tour cost for the 25,000,000-city example, we have that
the final tour produced by Chained Lin-Kernighan
(after eight CPU days) is approximately 0.3% above
optimal.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPLEGATE, COOK, AND ROHE
Chained Lin-Kernighan for Large Traveling Salesman Problems

9.1e+10 -
2%
9.05e+10¢}
o s
iS)
g
E 9e+10 1%
o
24h
8.95e+10 0.5%
U.25%
Lot Ll e el sl pegted Totrlengtiie s Lt e Ll
8.9e+10 - - L
0 2e+05 4e+05 6e+05
time (s)
Figure 2 Run on 25,000,000-City Instance

A history of the 25,000,000-city run is given in
Figure 2. After 24 CPU hours, the cost of the tour is
easily within 1% of the estimate of the optimal value.

6.3. Comparison with Earlier Implementations
Most of the previous work on large TSP instances has
dealt with fast heuristics that aim for tours that are
within several percent of optimal; a nice collection of
results of this type can be found in Bentley (1992),
including a study of a 1,000,000-city instance. Our
Chained Lin-Kernighan implementation is not meant
to compete with these heuristics, but rather to provide
a method to obtain much higher quality tours (even
for very large instances) when a modest amount of
additional computing time is available.

There have been two earlier studies dealing
with large-scale implementations of Chained Lin-
Kernighan, carried out by Codenotti et al. (1996)
and Johnson and McGeoch (1997). We will comment
briefly on the relationship between our results and the
findings reported in the papers of these two groups.

As we mentioned in Section 4, Codenotti et al.
(1996) employ an alternative kicking structure, involv-
ing a perturbation of the cities (rather than a pertur-
bation of the tour) designed to cause the current tour
to be no longer locally optimal. Their implementation
is aimed at large instances and they include data for
random Euclidean examples with up to 100,000 cities.
Following the suggestion of Johnson et al. (1996),
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Codenotti et al. record their results as the percent-
age excess of the cost of the tours over the Held-
Karp lower bound for the given instances. Their runs
were made on a Silicon Graphics R4000 Indigo, which
is a considerably slower machine than our standard
300 MHz Pentium II workstation. To get an approx-
imate scaling factor between the two computers, we
benchmarked our implementation on a Sun Microsys-
tems Sparc 10, Model 41, which is of similar vintage
to the R4000 Indigo and (for this type of comput-
ing) roughly the same speed. Our code is 6.2 times
faster on the Pentium II than on the Sparc 10, and we
use this as the scaling factor between the Pentium I
and R4000 Indigo. On tests of 100,000-city instances,
Codenotti et al. obtained tours with average Held-
Karp excess of 1.65% (in the best of three reported
results) in 10 hours of computer time. To compare
our implementation with their results, we made trials
on five different 100,000-city instances, stopping our
code when it reached a tour having cost no greater
than 1.65% over the Held-Karp bound, and record-
ing the total amount of CPU time used (including the
start-up time). The average time over the five trials is
reported in the first line of Table 8. The approximate
speed-up (using the 6.2 scaling factor between the
machine times) for our Chained Lin-Kernighan imple-
mentation is 36.9x, that is, the new code achieved the
target value in 36.9 times less CPU time. The rela-
tively poor performance of the Codenotti et al. heuris-
tic may be due to both the global nature of their kicks
(for example, their kick makes it difficult to limit the
number of cities that need to be considered as start-
ing points for flip sequences in the Lin-Kernighan
searches, as in the “don’t look” bits used by Johnson
and McGeoch 1997), and their more aggressive use
of Lin-Kernighan (they permit the algorithm to work
very long in each iteration).

The excellent survey paper of Johnson and
McGeoch (1997) contains a section on a “Production-
mode Iterated Lin-Kernighan” that includes results

Table 8 Comparison on 100,000-City Random Instances

Target HK-Excess CPU Time Speed-Up Reference Paper

1.65% 1573 36.9x Codenotti et al. (1996)

1.31% 298.4 7.8x Johnson and McGeoch (1997)
1.08% 606.9 11:5x Johnson and McGeoch (1997)
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for instances with up to 100,000 cities. Johnson and
McGeoch use the term Iterated Lin-Kernighan to refer
to the restricted case of Chained Lin-Kernighan where
random double-bridge moves are used as kicks, and
no probabilistic acceptance of tours is allowed. (See
also Johnson 1990.) Their runs were carried out on a
Silicon Graphics Challenge L/150 (with a 150 MHz
R4400 processor). To get a rough translation between
this machine and our Pentium II, we benchmarked
our code on a Silicon Graphics Indigo 2 (with a 250
MHz R4400 processor). Our code is 2.6 time faster on
the Pentium II than on the Indigo 2; scaling this by
250/150 to adjust for the speed of the R4400 proces-
sors, we have an approximate factor of 4.4 between
the timings in Johnson and McGeoch (1997) and the
results on our 300 MHz Pentium I

In Table 8 we compare (using the 4.4 factor) our
implementation with Johnson and McGeoch’s two
reported values for 100,000-city random instances;
their implementation achieves an excess of 1.31%
over the Held-Karp bound after 10,200 seconds and
an excess of 1.08% after 30,700 seconds. The values
reported in Table 8 are the average times over five
test instances; we obtained average speed-ups of 7.8x
and 11.5x in the two tests.

7. Conclusions

The reported computational results demonstrate that
Chained Lin-Kernighan is suitable for use on even
very large test instances.

For large instances, our tests indicate that it is
important to consider the use of cost-restricted kicks,
rather than the random double-bridge kicks adopted
in Johnson (1990) and Johnson and McGeoch (1997);
a good choice is a k-step random-walk kick, which
is effective, simple to implement, and requires time
depending only on the choice of k (independent of
the number of cities). For a starting tour, Christofides,
Greedy, and Quick-Bortivka all provide good results;
if a Held-Karp tree is available then it is also worth-
while to consider using HK-Christofides. Finally, it
is important to tune the Lin-Kernighan heuristic to
respond to the needs of Chained Lin-Kernighan; in
our implementation we adopt the (4,3, 3, 2)-breadth
to give a modest-width search in the basic algorithm.

The implementation we adopted in Section 6 dif-
fers in two ways from the default settings used in the
99.12.15 release of Concorde’s Chained Lin-Kernighan
solver. Firstly, the neighbor graph consists of the
three least costly edges in each of the four geometric
quadrants, whereas Concorde uses only the two least
costly edges in each quadrant. This difference can be
set in Concorde by using the “-q 3” command-line
option. Secondly, we use the hybrid 50-step/100-step
random-walk kick, whereas Concorde uses the 250-
geometric kick. The 99.12.15 version of Concorde does
not include code for random-walk kicks, since this
idea was developed after the code was released; we
will incorporate random-walk kicks in future releases
of Concorde.
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