
Safe Lower Bounds For Graph Coloring

Stephan Held∗, Edward C. Sewell, William Cook†

November 8, 2010

Abstract

The best known method for determining lower bounds on the vertex coloring num-
ber of a graph is the linear-programming column-generation technique first employed
by Mehrotra and Trick in 1996. We present an implementation of the method that
provides numerically safe results, independent of the floating-point accuracy of linear-
programming software. Our work includes an improved branch-and-bound algorithm
for maximum-weight stable sets and a parallel branch-and-price framework for graph
coloring. Computational results are presented on a collection standard test instances,
including the unsolved challenge problems created by David S. Johnson in 1989.

∗Research supported by DAAD
†Research supported by NSF Grant CMMI-0726370 and ONR Grant N00014-08-1-1104.

1

1 Introduction
Let G = (V,E) be an undirected graph with a set V of vertices and a set E of edges. We
follow the usual notation n = |V | and m = |E|. A stable set is a subset S ⊂ V composed
of pairwise non-adjacent vertices, that is, {v, w} 6∈ E for all v, w ∈ S. A coloring of G, or
a k-coloring, is a partition of V into k stable sets S1, . . . , Sk. The minimum k such that a
k-coloring exists in G is called the chromatic number of G and is denoted χ(G).

A clique is a subset C ⊂ V composed of pairwise adjacent vertices, that is, {v, w} ∈ E
for all v, w ∈ C. The clique number ω(G), defined as the size of a largest clique in G, is a
lower bound for χ(G). Similarly, the stability number α(G), defined as the maximum size
of a stable set in G, provides another lower bound dn/α(G)e ≤ χ(G).

Letting S denote the set of all maximal stables sets in G, it is well known that χ(G) is
the optimal value of following integer-programming problem (e.g. see [14])

χ(G) = min
∑
S∈S

xS

s.t.
∑

S∈S:v∈S
xS ≥ 1 ∀v ∈ V

xS ∈ {0, 1} ∀S ∈ S.

(CIP)

The optimal value, χf (G), of the linear-programming (LP) relaxation, denoted by (CLP),
obtained by replacing the integrality condition by 0 ≤ xS ≤ 1 for all S ∈ S, is called the
fractional chromatic number of G. It defines the lower bound dχf (G)e for χ(G). In [11]
it was shown that the integrality gap between χ(G) and χf (G) is O(log n) wherefore it is
NP-hard to compute χf (G). In fact, for χ(G) as well as for χf (G) and all ε > 0 there does
not exist a polynomial-time approximation algorithm that achieves an approximation ratio
of nε unless P = NP [20].

Mehrotra and Trick [14] proposed to solve (CLP) via column generation and, accordingly,
(CIP) via branch and price. Their process is the most successful exact coloring method
proposed to date, including impressive results obtained recently by Gualandi and Malucelli
[9] and by Malaguti, Monaci, and Toth [12].

Our study focuses on an implementation of Mehrotra-Trick that is guaranteed to pro-
duce correct results, independent of the floating-point accuracy of LP software employed
in the computation. To see the possible difficulty, consider the queen16_16 instance from
the DIMACS test collection. Using the state-of-the art LP solver Gurobi 3.0.0, at the ter-
mination of the column-generation process the floating-point representation χfloatf (G) of
the fractional chromatic number for this graph is χfloatf (G) = 16.0000000000001315. But
17 = d16.0000000000001315e is not a valid lower bound, since there is a known 16-coloring
for queen16_16. In general, χfloatf (G) can be smaller than, equal to , or larger than χf (G).
This difficulty is compounded by the need to accurately run the column-generation process
when dual LP solutions are available only as floating-point approximations.

We propose a technique to avoid this inaccuarcy by computing a numerically safe lower
bound on χf (G), using a floating-point LP solution as a guide. To drive the process,
we also present a new combinatorial branch-and-bound algorithm to compute maximum-
weight stable sets in graphs; the new method is particually well suited for the instances
of the problem that arise in the Mehrotra-Trick procedure. With this safe methodology,

2

we are able to verify results reported in previous studies as well to obtain new best known
bounds for a number of instances from the standard DIMACS test collection. In particular,
we have improved previously reported results on six of the eight open DSJCxxx instances
created by David S. Johnson in 1989, including the optimal solution of DSJC250.9.

2 Column generation
Let S ′ ⊆ S contain a feasible solution to (CLP), that is, V =

⋃
S∈S′ S, and consider the

restricted LP problem defined as

χf (G,S ′) := min
∑
S∈S′

xS

s.t.
∑

S∈S′:v∈S
xS ≥ 1 ∀v ∈ V

0 ≤ xS ≤ 1 ∀S ∈ S ′.

(CLP-r)

Let (x, π) be an optimum primal-dual solution pair to (CLP-r), where the dual solution
vector π = (πv)v∈V contains a value πv ∈ [0, 1] for every v ∈ V . By setting xS = 0 for all
S ∈ S \ S ′, x can be extended naturally to a feasible solution of (CLP). Now, either (x, π)
is also optimum or π is dual infeasible with respect to (CLP). In the latter case, there is a
stable set S ∈ S \ S ′ with

π(S) > 1, (1)

where we use the notation π(X) :=
∑
v∈X πv for a subset X ⊆ V . A stable set satisfying

(1) exists if and only if the weighted stability number

απ(G) := max
∑
v∈V

πvyv

s.t. yv + yw ≤ 1 ∀ {v, w} ∈ E
yv ∈ {0, 1} ∀ V ∈ V

(MWSS)

is greater than one.

2.1 Finding maximum-weight stable sets

The maximum-cardinality stable-set problem and its weighted version (MWSS) are among
the hardest combinatorial optimization problems. For any ε > 0, α(G) cannot be approx-
imated within a factor O(n1−ε) unless P= NP [20]. However, for very dense graphs, for
example with edge-density ρ(G) := m/(n(n − 1)/2) ∼ 0.9, the size and number of maxi-
mal stable sets is quite low and can be enumerated. A particularly efficient way of solving
(MWSS) in dense graphs is via Östergård’s CLIQUER algorithm [21], which we employ on
dense instances. For sparse graphs CLIQUER becomes less efficient and for such instances
we employ a new algorithm described below.

2.1.1 Combinatorial branch and bound

The branch-and-bound algorithm presented here uses depth-first search and adopts ideas
from algorithms presented in [3, 4, 19].

3

A subproblem in the branch-and-bound tree consists of a lower bound, denoted LB,
which is the weight of the heaviest stable set found so far, the current stable set S =
{v1, v2, . . . , vd} (where d is the depth of the subproblem in the search tree), the set of
free vertices F , and a set of vertices X that are excluded from the current subproblem
(which will be explained below). The goal of the subproblem is to either prove that this
subproblem cannot produce a heavier stable set than the heaviest one found so far (that is,
π (S) + απ (G [F]) ≤ LB) or find a maximum-weight stable set in G [F] (given a vertex set
W ⊆ V , its induced subgraph G [W] is defined as G [W] := (W, {{v, w} ∈ E : v, w ∈W})).

An overview is given in Algorithm 1. The algorithm consists of a recursive subfunction
mwss_recursion(S, F,X) that is called with S = ∅, F = V and X = ∅.

Algorithm 1 An Exact Maximum-Weight Stable Set Algorithm.
function mwss_recursion(S,F,X)

LB = max (LB, π (S));
if F = ∅ then return;
end if
if ∃ x ∈ X with πx ≥ π ((S ∪ F) ∩N (x)) then return;
end if
Find a weighted clique cover of G [F];
if weight of the clique cover ≤ LB − π (S) then return;
end if
Determine the branch vertices F ′′ = {f1, f2, . . . , fp} ⊂ F

using the three branching rules;
for i = p down to 1 do

Fi = F\ (N (fi) ∪ {fi, fi+1, . . . , fp});
mwss_recursion(S ∪ {fi} , Fi, X);
X = X ∪ {fi};

end for
end function
mwss_recursion(∅, V, ∅);

The algorithm uses two methods to prune subproblems. The first method works as
follows. Let X be the set of vertices that have been excluded from consideration in the
current subproblem because they have already been explored in an ancestor of the current
subproblem (see Algorithm 1 to see how X is created). If there exists a vertex x ∈ X such
that πx ≥ π ((S ∪ F) ∩N (x)), then the current subproblem cannot lead to a heavier stable
set than has already been found. To see this, let S′ be the heaviest stable set that can be
created by adding vertices from F to S. Now consider the stable set S′′ = {x} ∪ S′\N (x)
created by adding x to S′ and removing any of its neighbors from S′. Then

π (S′′) = π ({x} ∪ S′\N (x)) = πx + π (S′\N (x))
= πx + π (S′)− π (S′ ∩N (x)) ≥ πx + π (S′)− π ((S ∪ F) ∩N (x)) ≥ π (S′) ,

where the second to last inequality follows from the fact that S′ is contained in S∪F and the
last inequality follows from the supposition that πx ≥ π ((S ∪ F) ∩N (x)). Furthermore,
every vertex in S′′ was available when x was explored as a branch vertex, thus LB must

4

have been greater than or equal to π (S′′) when the algorithm returned from exploring x
as the branch vertex. Consequently, LB ≥ π (S′′) ≥ π (S′). Hence, this subproblem can be
pruned.

The second method of pruning subproblems uses weighted clique covers. A weighted
clique cover for a set of vertices F is a set of cliques K1,K2, . . . ,Kr together with a positive
weight Πi for each clique Ki such that

∑
i:f∈Ki

Πi ≥ πf for each vertex f ∈ F . The weight
of the clique cover is defined to be

∑r
i=1 Πi. It is easy to show that απ (G [F]) is less than

or equal to the weight of any clique cover of F . Hence, if a clique cover of weight less than
or equal to LB − π (S) can be found for F , then this subproblem can be pruned.

An iterative heuristic is used to find weighted clique covers. The heuristic repeatedly
chooses the vertex v with the smallest positive weight, finds a maximal clique Ki that
contains v, assigns the weight Πi = πv to Ki, and subtracts Πi from the weight of every
vertex in Ki.

The algorithm uses three branching rules to create subproblems. The first two rules
adopt a weighted variation of a technique employed by Balas and Yu [5, 4]. Suppose that
F ′ ⊆ F and it can be proved that

απ
(
G
[
F ′
])
≤ LB − π (S) .

Let F ′′ = F\F ′ = {f1, f2, . . . , fp} and let Fi = F\ (N (fi) ∪ {fi, fi+1, . . . , fp}) .
If απ (G [F]) > LB − π (S) , then

απ (G [F]) = max
i=1,...,p

πfi
+ απ (G [Fi]) .

Hence, one branch is created for each set F1, . . . , Fp.
The first branching rule uses the weighted clique cover to create F ′. The clique cover

heuristic is halted as soon as the weight of the clique cover would exceed LB − π (S).
Then F ′ is defined as the set of vertices whose remaining weight is zero (that is, F ′ ={
f ∈ F : π′f = 0

}
) and F ′′ = F\F ′.

The second branching rule uses a method similar to the first method of pruning. If
there exists a vertex x ∈ X such that πx ≥ π (S ∩N (x)), then it can be shown that if
απ (G [F]) > LB − π (S), then every maximum-weight stable set in G [F] must contain at
least one neighbor of x that is in F . The proof is similar to the proof for the first method
of pruning. In such a case, F ′′ is set equal to N (x) ∩ F .

The third branching rule searches for a vertex f ∈ F such that πf ≥ π (F ∩N (f)). If
such a vertex exists, it is easy to prove that there exists an maximum-weight stable set of
G [F] that includes f, hence a single branch is created (that is, F ′′ = {f}).

The algorithm uses the rule that generates the smallest F ′′ (ties are broken in favor of
the first rule and then the third rule). For both the second and the third branching rules,
the set of vertices F ′′ are sorted in increasing order of their degree in G [F] .

In the context of column generation the running time can be reduced further because
the actual maximum-weight stable set need not necessarily be found. Instead, it is sufficient
to either find a stable set S with π(S) > 1 or decide that no such set exists.

Hence, LB can be initialized as 1, because only solutions of value bigger than one are of
interest. Furthermore, it is sufficient to stop the algorithm once a stable set S with π(S) > 1
is found.

5

2.1.2 Heuristics

Within the column-generation process, a stable set with π(S) > 1 can often be found by
heuristic methods. The heuristics we use create an initial solution by a greedy strategy
and then improve this solution with local search. The greedy algorithms build a stable set
S ∈ S \S ′ by starting with an empty set and adding vertices one by one. A vertex v ∈ V \S
is added to S if S∪{v} is a stable set. Mehrotra and Trick proposed to traverse the vertices
in non-decreasing order of their weight [14]. We use the following three greedy orderings:
as the next vertex, try a not yet processed vertex v ∈ V \ (N(S) ∪ S) for which

1. πv (maximum weight strategy)

2. πv −
∑

w∈N(v)\N(S)
πw (maximum dynamic surplus strategy)

3. πv −
∑

w∈N(v)
πw (maximum static surplus strategy)

is maximum.
The result of the greedy algorithm is then improved by local search similar to the local

swaps in [1]. If we do not find a stable set of weight greater than one, then we perform
several additional searches using slightly perturbed greedy orders.

3 Numerically safe bounds
Competitive LP codes for solving (CLP-r) use floating-point representations for all numbers.
This causes immediate difficulties in the column-generation process. Indeed, let πfloat
denote the vector of dual variables in floating-point representation as returned by an LP-
solver. Based on these inexact values, απ(G) > 1 can hardly be decided and this can lead to
premature termination or to endless loops (if the same stable set is found again and again).

One way to circumvent these problems would be to solve (CLP-r) exactly, for example
with a solver such as [2]. However, exact LP-solvers suffer significantly higher running
times, and in column generation, where thousands of restricted problems must be solved,
these solvers would be impractical. Thus, instead of computing χf (G) exactly, we compute
a numerically safe lower bound χf (G) in exact integer (fixed point) arithmetic, where the
floating-point variables πfloat serve only as a guide.

Recall that any vector π ∈ [0, 1]n, with απ(G) ≤ 1 is a dual feasible solution of (CLP)
and defines a lower bound regardless whether it is optimum or not. Accordingly, given a
scale factor K > 0, a vector πint ∈ NV (G)

0 proves the lower bound K−1πint(V) if and only
απint(G) ≤ K.

Now, the goal is to conduct the maximum-weight stable-set computations with integers
πintv := bKπfloatv c (v ∈ V). Thus, achieving a lower n

K -approximation of πfloatv (V):

πfloatv (V)− n

K
≤ 1
K
πintv (V) ≤ πfloatv (V). (2)

The question is how to represent the integers πintv (v ∈ V) and how to choose K. For
performance reasons, it is preferable to use integer types that are natively supported by the
computer hardware, e.g. 32- or 64-bit integers in two’s complement.

6

More generally, assume that all integers are restricted to an interval [Imin, Imax] with
Imin < 0 and Imax > 0. To avoid integer overflows, we have to ensure that during the
computations of maximum-weight stable sets the intermediate results neither fall below
Imin nor exceed Imax. The smallest intermediate results occur while computing surpluses
with the greedy strategies 2 and 3. The largest intermediate results are either given by
πint(X) for some X ⊂ V or as the weight of the weighted clique covers in Algorithm 1. As
πfloatv ∈ [0, 1] (v ∈ V), setting K := min{−Imin, Imax}/n guarantees that any intermediate
result will be representable within [Imin, Imax]. Note that the dual variables returned as
floating point numbers by the LP solver might exceed the permissible interval [0, 1] slightly.
They are shifted into [0, 1] before scaling.

By (2) the deviation from the floating-point representation of the fractional chromatic
number is at most n2/min{−Imin, Imax}. Note that the denominator grows exponentially
in the number of bits that are spent to store numbers, allowing a reduction in the error
without much memory overhead.

Column generation including safe lower bounds is summarized in Algorithm 2. Initially,
a coloring is determined with the greedy algorithm DSATUR [6]. It provides the initial
set S ′ and an upper bound for χ(G). The column-generation process terminates when

Algorithm 2 Column Generation for Computing χf (G)
S ′ ← Compute initial coloring (DSATUR).
S ← ∅
repeat
S ′ ← S ′ ∪ S
πfloat ← Solve (CLP-r) in floating-point arithmetic
πint ← bKπfloatc
S ← search for an improving stable set by heuristic (Section 2.1.2) or Algorithm 1

until πint(S) ≤ K
χf (G)← K−1πint(V)

απint(G) ≤ K with a lower bound of χf (G) := K−1πint(V) ≤ χf (G).
Note that it is difficult to bound the difference χf (G)−χf (G) without further assump-

tions on the LP solver. However, a close upper bound χf (G) for χf (G) can be computed
by solving the final restricted LP (CLP-r) once in exact arithmetic [2]. Thereby, an interval
[χf (G), χf (G)] containing χf (G) can be determined, allowing us to obtain the precise value
of dχf (G)e on most test instances.

4 Improved computation of lower bounds

4.1 Decreasing dual weights for speed

If the weight of a maximum-weight stable set in Algorithm 2 is slightly larger than K, it can
potentially be reduced to K, or less, by decreasing the integer variables πint. This way an
earlier termination of the column-generation approach might be possible. Of course, such
reduced weights will impose a lower fractional bound. However, the entries of πint can be

7

Instance |V | |E| None Uniform Neighborhood
latin_square_10 900 307350 1 1 1
queen16_16 256 12640 1 1 1
1-Insertions_5 202 1227 67 1 1
1-Insertions_6 607 6337 > 18046 9 40
DSJC250.1 250 3218 > 301 1 1
DSJC250.5 250 15668 18 13 13
DSJC500.5 500 62624 75 39 38
flat300_28_0 300 21695 25 5 4
myciel7 191 2360 79 33 5

Table 1: Impact of reducing dual weights on # calls to Algorithm 1

reduced safely by a total amount of

frac(πint,K) := max
{

0,
(∑
v∈V

πintv − 1
)}

mod K, (3)

while generating the same lower bound of dK−1πint(V)e. The difficulty is to decide how to
decrease entries in πintv . Ideally, one would like to achieve a largest possible ratio between
the reduction of the value of the maximum-weight stable set and the induced lower bound
for the chromatic number.

Gualandi and Malucelli [9] proposed a uniform rounding style, rounding down all values
πintv (v ∈ V) uniformly by frac

(
πint,K

)
/n. This way the weight of a stable set S ∈ S

decreases by |S|n frac(πint,K).
An alternative technique works as follows. Consider a v ∈ V with πv > 0, then at least

one vertex from V ′ := v ∪ {w ∈ N(v) : πw > 0} will be contained in a maximum-weight
stable set. Thus, to reduce the value of the maximum-weight stable set, it is sufficient to
reduce weights in V ′ only. In our implementation, we always select a set V ′ of smallest
cardinality. We refer to this rounding style as neighborhood rounding.

Table 1 demonstrates the importance of rounding for instances from the DIMACS bench-
mark set, covering several instance classes. It reports the number of calls of the exact
maximum-weight stable-set solver (Algorithm 1) needed to terminate column generation,
in column 4 without any dual weight reduction (beyond safe weights according to Sec-
tion 3), in column 5 with uniform rounding, and in column 6 with neighborhood rounding.
However, neither of the two dual variable reduction styles dominates the other.

5 Experimental results
The described algorithms were implemented in the C programming language; our source
code is available online [10]. The LP problems (CLP-r) are solved with Gurobi 3.0.0 in dou-
ble floating-point precision. Experiments were carried out on the DIMACS graph-coloring
instances [18], using a 2.268 GHz Intel Xeon E5520 server, compling with gcc -O3. To
compute χf (G) by solving (CLP-r) exactly we used the exact LP-solver QSopt_ex [2].

8

5.1 Results of column generation

We were able to compute χf (G) and χf (G) for 119 out of 136 instances, limiting the running
time for computing χf (G) to three days per instance. Solving (CLP-r) exactly can be quite
time consuming, for example, on wap02a it takes 34 hours, compared to 10 minutes in
doubles (using QSopt_ex in both cases). This demonstrates that the use of an exact LP-
solver for every instance of (CLP-r) would be impractical. As we compute χf (G) only for
the academic purpose of estimating the differences χf (G) − χf (G), we do not report its
running times from here on.

For all the 119 solved DIMACS instances it turned out that dχf (G)e = dχf (G)e. Thus,
we obtained safe results for dχf (G)e. But there were many instances where χf (G) <
πfloat(V), and the floating-point solutions implied by the LP-solver would have been wrong,
as in the example from Section 3: queen16_16. However, we did not find previously reported
results for dχf (G)e that were incorrect.

Here, we focus on those instances for which the chromatic number is or was unknown.
For space reasons, we skip those open *-Insertions_* and *-FullIns_* instances where
dχf (G)e was already reported in [9] or [12]. Table 2 shows the results on the remaining open
instances. Columns 2 and 3 give the number of vertices and edges, column 4 shows dχf (G)e
from our computations, where bold numbers are those where we could improve best-known
lower bounds. Column 5 shows the clique numbers from the literature or computed with
CLIQUER, columns 6 and 7 summarize the best lower and upper bounds that can be found
in the literature [7, 9, 15, 16, 17]. The last column shows the running time for computing
χf (G).

For the instances DSJC1000.5, flat1000_50_0, flat1000_60_0, flat1000_76_0,
wap01a, wap02a, wap06a, wap07a, wap08a, 1-Insertions_6, and 3-Insertions_5 we could
compute dχf (G)e for the first time, improving known lower bounds on DSJC1000.5,
flat1000_50_0, flat1000_60_0, and flat1000_76_0 significantly. On flat1000_50_0
and flat1000_60_0, dχf (G)e proves the optimality of known upper bounds.

On most instances that are not listed χf (G) is computed much faster than within
three days. The geometric mean of the running times of the 119 solved instances is 6.5
seconds. 17 DIMACS instances were not finished within three days. For 11 of these in-
stances (le450_5a, le450_5b, le450_5c, le450_5d, le450_15a, le450_15b, le450_15c,
le450_15d, le450_25c, and le450_25d, and qg.order100) the clique numbers ω(G) can
be computed within seconds by CLIQUER [21] and match known upper bounds and proving
ω(G) = χf (G) = χ(G).

5.2 Results of branch and price

For all open benchmark instances, we attempted to improve the lower bounds by branch and
price as described in [14], allowing a time limit of three days. This way we could improve
the lower bounds of DSJC1000.9 and DSJC250.9 by one to 216 and 72 respectively, proving
optimality of a known upper bound for DSJC250.9.

We also did excessive branching experiments with up to 60 parallel processors, but for
other instances the lower bounds grow too slow to achieve better integral bounds within a
few weeks.

9

Instance |V | |E| dχf (G)e ω(G) old LB old UB Time (sec.)
DSJC250.5 250 15668 26 12 26[9] 28[9] 18
DSJC250.9 250 27897 71 42 71[9] 72[9] 8
DSJC500.1 500 12458 * 5 6[7] 12[17] *
DSJC500.5 500 62624 43 13 16[7] 48[17] 439
DSJC500.9 500 224874 123 54 123[9] 126[17] 100
DSJC1000.1 1000 49629 * 6 6[7] 20[17] *
DSJC1000.5 1000 249826 73 14 17[7] 83[17] 142014
DSJC1000.9 1000 449449 215 63 215[9] 223[17] 5033
r1000.1c 1000 485090 96 89 96[9] 98[9] 2634
C2000.5 2000 999836 * 16 16 148[17] *
C4000.5 4000 4000268 * ≥ 17 17 271[17] *
latin_square_10 900 307350 90 90 90[15] 98[13] 76
abb313GPIA 1557 65390 8 8 8[15] 10[15] 3391
flat1000_50_0 1000 245000 50 14 14 50[9] 3331
flat1000_60_0 1000 245830 60 14 14 60[9] 29996
flat1000_76_0 1000 246708 72 14 14 82[9] 190608
wap01a 2368 110871 41 41 41[15] 45[8] 20643
wap02a 2464 111742 40 40 40[15] 44[8] 236408
wap03a 4730 286722 * 40 40[15] 50[8] *
wap04a 5231 294902 * 40 40[15] 46[8] *
wap06a 947 43571 40 40 40[15] 43[8] 382
wap07a 1809 103368 40 40 40[15] 45[8] 25911
wap08a 1870 104176 40 40 40[15] 45[8] 18015
1-Insertions_6 607 6337 3 2 3[15] 7[15] 1167
3-Insertions_5 1406 9695 3 2 3[15] 6[15] 6959

Table 2: Computational results on open benchmarks

5.3 Results on dense subgraphs

As already noted in Section 5.1, for 17 very large DIMACS instances we were not able to
compute dχf (G)e. For 11 of these instances, ω(G) is easy to compute and yields a tight
lower bound. For each of the remaining six instances DSJC500.1, DSJC1000.1, C2000.5,
C4000.5, wap03a, and wap04a the gap between the published lower and upper bounds is
particularly large.

However, on these instances column generation can still be applied if restricted to
tractable subgraphs. It is easy to see that for any subgraph G[X] induced by X ⊂ V
(see Section 2.1.1), χf (G[X]) ≤ χf (G) and, thus, dχf (G[X])e imposes a lower bound for
χ(G). The set X should be chosen such that dχf (G[X])e is large, but still solvable. For
the first goal a dense subgraph G[X] would be favorable. We use a simple greedy strategy
that starts with X = V and iteratively deletes a vertex of minimum degree until |X| has a
given size.

Table 3 shows the lower bounds, we could obtain this way. Columns 2 and 3 give
the sizes of the induced subgraph. Column 4 reports the lower bounds obtained from the

10

Instance |X| |E(G[X])| dχf (G[X])e old LB UB Time
DSJC500.1 300 5436 9 6 12 16 days

DSJC1000.1 350 8077 10 6 20 < 36 days
C2000.5 1400 502370 99 16 148 < 24 days
C4000.5 1500 589939 107 17 272 < 26 days
wap03a 2500 164008 40 40 48 < 3 days
wap04a 2500 159935 40 40 46 < 1 days

Table 3: Lower bounds dχf (G[X])e from induced subgraphs

Instance ρ(G) Gurobi 3.0.0 CPLEX 12.2 CLIQUER 1.2 Algorithm 1
in % STD LB STD LB STD LB STD LB

C2000.5.1029 50 *** *** *** *** *** 30586 *** 11373
DSJC250.1 10.3 31278 34901 *** 16288 *** *** 5941 2281
DSJC250.5 50.3 1825 1963 2737 2557 1 1 1 1
DSJC250.9 89.6 1382 1442 319 317 1 1 1 1
DSJC500.5 50.1 *** *** *** *** 9 9 32 32
DSJC500.9 90.1 *** *** 24318 22105 1 1 1 1
DSJC1000.5 50 *** *** *** *** 1076 1057 3634 3547
DSJC1000.9 89.9 *** *** *** *** 1 1 2 2

Table 4: Running times of various MWIS solvers on hard instances in seconds.

subgraphs, while column 5 reports previously published lower bounds, corresponding to the
respective maximum clique numbers.

5.4 Maximum-weight stable set results

Finally, we demonstrate the efficiency of Algorithm 1 for solving maximum-weight stable set
problems. We compared the new algorithm with the currently fastest integer-programming
solvers Gurobi 3.0.0 and CPLEX 12.2, as well as CLIQUER 1.21 [22], which solved the
maximum-weight clique problems in the complement graphs. Where available, we used the
final maximum-weight stable set instances as they occure in Algorithm 2. They can be
downloaded from http://code.google.com/p/exactcolors/wiki/MWISInstances. Ta-
ble 4 shows the results on the DSJC* instances and C2000.5.1029, to which we restrict
ourselves here for space reasons. Comprehensive test results will be reported in the full
version of the paper.

We performed two experiments per instance and solver. First, in the columns labeled
STD, we computed the maximum-weight stable set as is. Second, in the columns labeled
LB, we used the solvers in the same setting as in Algorithm 2 with an initial lower bound
of LB = 1. We gave a time limit of ten hours to each run. C2000.5.1029 is the only
instance with απ(G) > 1, here Algorithm 1 was the fastest to find such a set. Algorithm 1
is competetive throughout all edge-density classes and was a main ingredient for improving
known lower bounds.

11

References
[1] D. V. Andrade, M. G. C. Resende, and R. F. Werneck. Fast local search for the

maximum independent set problem. In Proceedings of Workshop on Experimental Al-
gorithms, pages 220–234, 2008.

[2] D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza. Exact solutions to linear
programming problems. Operations Research Letters, 35(6):693–699, 2007.

[3] L. Babel. A fast algorithm for the maximum weight clique problem. Computing,
52:31–38, 1994.

[4] E. Balas and J. Xue. Minimum weighted coloring of triangulated graphs with applica-
tion to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM
Journal of Computing, 20(2):209–221, 1991.

[5] E. Balas and C.S. Yu. Finding a maximum clique in an arbitrary graph. SIAM Journal
of Computing, 15(4):1054–1068, 1986.

[6] D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM,
22(4):251–256, 1979.

[7] M. Caramia and P. Dell’Olmo. Bounding vertex coloring by truncated multistage
branch and bound. Networks, 44(4):231–242, 2004.

[8] M. Caramia and P. Dell’Olmo. Coloring graphs by iterated local search traversing
feasible and infeasible solutions. Discrete Appl. Math., 156(2):201–217, 2008.

[9] S. Gualandi and F. Malucelli. Exact solution of graph coloring problems via constraint
programming and column generation. Optimization Online, 2010.

[10] S. Held, E. C. Sewell, and W. Cook. Exact colors project webpage, 2010.
http://code.google.com/p/exactcolors/.

[11] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, 41(5):960–981, 1994.

[12] E. Malaguti, M. Monaci, and P. Toth. An exact approach for the vertex coloring
problem. Discrete Optimization, in press, 2010.

[13] E. Malaguti and P. Toth. A survey on vertex coloring problems. International Trans-
actions in Operational Research, 17:1–34, 2009.

[14] A. Mehrotra and M. A. Trick. A Column Generation Approach for Graph Coloring.
INFORMS Journal on Computing, 8(4):344–354, 1996.

[15] I. Méndez-Díaz and P. Zabala. A branch-and-cut algorithm for graph coloring. Discrete
Applied Mathematics, 154(5):826–847, 2006.

[16] I. Méndez-Díaz and P. Zabala. A cutting plane algorithm for graph coloring. Discrete
Applied Mathematics, 156(2):159 – 179, 2008.

12

[17] D. C. Porumbel, J.-K. Hao, and P. Kuntz. An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring. Computers
and Operations Research, 37(10):1822–1832, 2010.

[18] M.A. Trick. DIMACS Graph Coloring Instances, 2002.
http://mat.gsia.cmu.edu/COLOR02/.

[19] J.S. Warren and I.V. Hicks. Combinatorial branch-and-bound for the maximum weight
independent set problem. Technical report, Texas A&M University, 2006.

[20] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

[21] P. R. J. Östergård. A new algorithm for the maximum-weight clique problem. Electronic
Notes in Discrete Mathematics, 3:153–156, 1999.

[22] P. R. J. Östergård and S. Niskanen. Cliquer home page, 2010.
http://users.tkk.fi/pat/cliquer.html.

13

	Introduction
	Column generation
	Finding maximum-weight stable sets
	Combinatorial branch and bound
	Heuristics

	Numerically safe bounds
	Improved computation of lower bounds
	Decreasing dual weights for speed

	Experimental results
	Results of column generation
	Results of branch and price
	Results on dense subgraphs
	Maximum-weight stable set results

