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As introduced by Chvatal, cutting planes provide a canonical way of proving that every integral
solution of a given system of linear inequalities satisfies another specified inequality. In this note
we make several observations on the complexity of such proofs in general and when restricted
to proving the unsatisfiability of formulae in the propositional calculus.

1. Introduction

An attractive way of looking at Gomory’s cutting plane technique [13] was intro-
duced by Chvital [5]. The point of view is that cutting planes provide a canonical
way of proving that every integral solution of a given system of linear inequalities
satisfies another given inequality. Suppose that we have such a system

a;x<b; (i=1,...m) = o - 1)

where a), ..., a,, are rational vectors and b,, ..., b,, are rational numbers. If we also
have nonnegative numbers y;, i=1,...,m such that ¥ {y;q;: i=1,...,m} is integral,
then every integral solution of (1) satisfies the inequality -

(X {yia;: i=1,....m}x=<y ' )
for any y which is at least | ¥ {y;b;: i=1,...,m} ] (where | ¢ | denotes the largest

*Supported by a grant from the Alexander von Humboldt Stiftung and by the Institut fiir Okono-
metrie und Operations Research of the University of Bonn, W. Germany.

**Supported by the joint research project ‘‘Algorithmic Aspects of Combinatorial Optimization’’ of

the Hungarian Academy of Sciences (Magyar Tudomanyos Akadémia) and the German Research Asso-
ciation (Deutsche Forschungsgemeinschaft) and SFB 303 (DFG).

0166-218X/87/$3.50 © 1987, Elsevier Science Puﬁlishers B.V. (North-Holland)



26 W. Cook et al.

integer less than or equal to a given number g). We say that the inequality (2) is
derived from (1). As in Chvétal [7], a cutting-plane proof of an inequality cx<a
from (1) is a sequence of inequalities

Aok XSbpox (k=1,..., M) 3)

together with nonnegative numbers y,; (1<k<M, 1<j<m+k-1) such that for
each k=1,..., M the inequality a,,, ;,x<b,,., is derived from the system

a;x<b; (i=1,...,m+k-—1) 4)

using the numbers y;, j=1,...,m+k—1, and such that the last inequality in the
sequence is a positive scalar multiple of cx=<a.

So if there exists a cutting-plane proof of cx<ea from (1), then every integral
solution of (1) also satisfies cx<a. Chvatal [5] showed that if the polyhedron
defined by (1) is nonempty and bounded, then the converse of this statement is also
true, that is if every integral solution of (1) satisfies cx < & then there exists a cutting-
plane proof of cx<a from (1). Schrijver [27] latter showed, by a geometric
argument, that the condition that the polyhedron be bounded can be removed as
long as there exists at least one integral solution to (1). Examples of the use of
cutting-plane proofs in the solution of combinatorial problems are given in Chvétal
[5, 6, 7, 8] and Boyd and Pulleyblank [3].

The number M in (3) is the length of the cutting-plane proof of cx<a from (1).
The applicability of cutting-plane proofs is clearly related to their length, which was
investigated by Chvatal [7] for proofs of the stability number of graphs. In this note
we make several observations on the length of cutting-plane proofs in general and
when restricted to proving the unsatisfiability of formulae in the propositional
calculus. ‘ _ :

In Section 2 we show that if (1) has no integral solution then there exists a cutting-
plane proof of Ox< ~1 from (1) whose length depends only on the number of
variables in the system. Thus, there is an ‘indirect’ form of cutting-plane proof
whose length can be bounded above by a constant in fixed dimension, contrasting
the fact that an example of Bondy shows that even when restricted to problems in
two dimensions the length of a shortest cutting-plane proof of cx<a from (1)
cannot be bounded above by a polynomial function in the size (in binary notation)
of (1) and ex<a. We also discuss the size of coefficients appearing in cutting-plane
proofs.

It is an important open problem in complexity theory to determine whether there
exists a polynomial proof system for demonstrating the unsatisfiability of propo-
sitional formulae in conjunctive normal form; the existence of such a proof system
is equivalent to NP =co-NP. Recently, Haken [16] settled a longstanding open
problem by proving that the resolution proof system is not polynomial. No such
result is known, however, for the extended version. of resolution introduced by
Tseitin [30]. Using Haken’s result and a result of Cook [9], we show in Section 3
that cutting planes are between these two systems in power, that is, a polynomial-
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length resolution proof implies a polynomial-length cutting-plane proof and the
converse is not true, while a polynomial-length cutting-plane proof implies a
polynomial-length extended resolution proof. Thus, an interesting next step in
proving the nonpolynomiality of proof systems would be proving that the cutting-
plane proof system is nonpolynomial. (We note that the hard formulae of Tseitin
[30] are candidates for showing this.)

Throughout the paper we assume that all linear systems and polyhedra are
rational. We refer the reader to the book of Schrijver [28] for the theory of poly-
hedra. The set of n component rational vectors and the set of n component integral
vectors are denoted by Q" and Z” respectively. By the size of a linear system we
mean the size of the system in binary notation (see, for example Lovasz [24]).

2. Indirect cutting-plane proofs

In [7}, Chvital proved an upper bound on the length of cutting-plane proofs for
the stability number of a graph in terms of the number of nodes, that is, in terms
of the number of variables in the inequality. No such result holds in general, as is
shown by the following example of J.A. Bondy (see Chvital [5] and Schrijver [27]).
Consider the linear system '

- thl +XZSO,
2+ x,<2f, %)
—XZSO

where 7 is a positive integer. It can be checked, by induction on ¢, that every cutting-
plane proof of x,<0 from (5) has length at least ¢. (Notice that ¢ is not polynomi-
ally bounded in the size of (5) and x,=<0.) This is somewhat disappointing since we
know that in fixed dimension we can prove the validity of cx=<e for all integral
solutions to Ax=<b in polynomial-time with Lenstra’s algorithm [22]. To overcome
this we will modify slightly the definition of a cutting-plane proof. Ny

Observe that the inequality cx < ¢, where ¢ and ¢ are integral, is satisfied 'by every
integral solution of (1) if and only if the system

ax<b;, (i=1,...,m),
(6)
T exza+l

‘has no integral solution. This later property can be verified by exhibiting cutting-
plane proof of Ox=< — 1 from (6). We shall refer to such a verification of cx<¢ as
an indirect cutting-plane proof of cx<a from (1) and define its length to be the
- length of the cutting-plane proof of Ox< —1 from (6). (In general, if ¢ and « are
nonintegral, we first multiply the inequality by a positive number to obtain integral
data.) With these definitions we have the following result.
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Theorem 1. For each natural number n there exists an integer f, such that if every
integral solution of a linear system Ax<b in n variables satisfies an inequality

cx=<a, then there exists an mdzrect cutting-plane proof of cx<a from Ax<b whose
length is at most f,,.

To prove this result, we first state it in a different way. As in Schrijver [27],
cutting-plane proofs may be viewed geometrically as follows. Let P be a polyhedron
and H={x:cx<a} a halfspace which contains P, where c is an integral vector with
relatively prime components. It is clear that every integral point in P is contained
in the halfspace H;={x:cx<|a|}. (Note that H; is obtained by shifting the
supporting hyperplane of A until it contains integral points.) We refer to such a
halfspace H, as a Chvdtal cut for P and say that PN\ H, is obtained from P by a
Chvatal cut. Using Farkas’ lemma (see Schrijver [28]), we have that Theorem 1 is
equivalent to the following geometric result.

Theorem 1’. For each natural number n there exists an integer 8, Such that if P
is any polyhedron of dimension n which contains no integral points, then there
exists a sequence of polyhedra P=Py, P,,..., P,=0, where k<g, and for each
i=1,...,k, P; is obtained from P;_, by a Chvdtal cut.

In the proof of this geometric result, we will need the following lemma of
Schrijver, which is contained in the proof of the main theorem of [27].

Lemma 2. Let F be a face of a polyhedron P. If F is obtained from F by a Chvdtal
cut, then there exists a polyhedron P that can be obtained from P by a Chvital cut
such that POFCF.

Proof. Let P={x:A%=<b% A'x<b'} where A° and b° are integral and F=
{x:A4%=0% A'x=<b'} and let cx=a be a valid inequality for F such that c is
mtegral and F=FN{x:cx<|e]}. By Farkas’ lemma, there exist vectors y' =0 and
»° such that

A%+ ylal =g,

Yol +y'bi<a. M
Defining ¢’ and a’ as

c'=c=[°]A°= ("~ y* Pa’+y'al, ®

o' =a— LyOJbO2 (yO_ LyOJ)b0+ylbl
we have that ¢’ is integral (since |_y°JA° is integral) and that ¢’x<a’ is valid for P
(since y°— | ¥°| is nonnegative). Now letting P=PN {x:c'x=<|a’|} we have
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PNF=FN{cx<|a']}
=FN{x:cx=|a'),|y°]4%=»"]p%} o
CFN{x:ex<|ef}=F. O )

Proof of Theorem 1’. We proceed by induction on n. The result being clear if n=0,
let PC Q™ be a polyhedron of dimension n>1 with PNZ™ =9, We first argue that
we may assume P is of full dimension, that is n=m. If this is not the case, then P
lies in a hyperplane J={xeQ™:cx=a} where c is integral with relatively prime
components. If @ is nonintegral, then @ can be obtained from P by the Chvatal cut
{xeQ™:cx=<|a]}. If a is integral, then J contains integral points, which implies
that there exists an affine transformation T which maps J onto {xe Q" :x,, =0}
and Z™ onto Z™. (One way to see this is as follows: let w be an integral vector in
J and translate J by — w to obtain the linear space L =J— w parallel to J. Now let
by, ..., by, be a basis for the lattice Z™ such that b,,...,b,,_, is a basis for the
(m—1)-dimensional lattice LNZ™. If we define a linear transformation M by
setting M(b;)=e; for i=1,...,m, where ¢; is the ith unit-vector, then letting 7(x) =
M(x)— w, we have the required affine transformation.) If we have a sequence of
polyhedra Ry, ..., R, in Q"' where Ry={ye Q" ':(3,0)e T(P)}, R, =0, and for
i=1,...,k R; is obtained from R;_; by a Chvatal cut, then defining P; to be
{xeQ™: T(x)=(,0) for some yeR;} for i=0,...,k, we have Py=P, P,=0, and
for i=1,...,k, P; is obtained from P;_; by a Chvatal cut. As the dimension of
{yeQ™ ':(),0)e T(P)} is equal to the dimension of P, it suffices to prove the
result for {ye Q™ ':(»,0)e T(P)}. Since we may repeat this procedure, we may
assume that P is of full dimension, as claimed.

It follows from a result of Lenstra [22] and Grétschel, Lovasz, and Schrijver [15]
that, since P contains no intégral points, there exists a nonzero integral vector w
such that |wx —wx’| <y, for all x, x"€ P, where y, is a constant which depends only
on n. Let f=| max{wx:xe P} | and let P,=PN{xeQ™: wx<p}. If P, =@ we are
finished, so suppose this is not the case. Let F=P N{xeQ": wx=4}. Since
n=m, the face F is a polyhedron of dimension less than #n. We may assume, by
induction, that there exists a sequence of polyhedra F=Fy, Fy, ..., F;=0 where
J=<gn_, and for i=1,..., j, F; is obtained from F;_, by a Chvital cut. By Lemma
2, this implies the existence of a sequence of polyhedra P, P,, ..., P;, such
that for i=2,...,j+1,P; is obtained from P;., by a Chvital cut and PN
{xeQ":wx=B}CF;_y. So P;, N{xeQ™: wx=B}=0 and {xeQ™:wx<f-1}
is a Chvatal cut for P;,,. Let P;,,=P; ;N{xeQ": wx<f~1}. Since PC
{xeQ™:wx>p—yp,}, repeating this procedure at most y,— 1 times we obtain the
empty set. Thus, letting g,=y,(1 +g,_;)+1, the result follows. O

One may wonder why we'have only considered the length of a cutting-plane proof
of ex<a from (1) and not its size, that is the size of the linear system (3) plus the
size of the nonnegative numbers y; (1<k<M,1<j<m+k~1), which is a more
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accurate measure of the complexity of the proof. A partial justification of this is
the following result, which is proved using Carathéodory’s theorem and is used in
the next section (see also Chvital [7, Theorem 3}).

Proposition 3. A cutting-plane proof of an inequality cx<a from a linear system
Ax=<Db implies the existence of one of the same length and with size bounded above
by a polynomial function of the length of the proof and the sizes of cx<a and
Ax<b. '

Proof. Suppose we have a linear system in »n variables
aixsb;, (i=1,...,m) : (10)
and a sequence of inequalities

U+ iXSbyy; (=1,..,1) (11)

which, together with the nonnegative numbers y,, , hi(d=sk=stlsjsm+k-1),is
a cutting-plane proof of cx<a from (10). By scaling if necessary, we may assume
that a,...,a,,c and b,,...,b,, a are integral. Let o denote the maximum of the
absolute values of the numbers appearing in (10) and cx<a. We will show, by
induction on ¢, that there exists a sequence of inequalities

@y iX<bhy; (i=1,..00) (12)

and nonnegative numbers y;, +'k, j(Isk=<t1=<j<m+k-1) which together form a
cutting-plane proof of cx<a, where for i=1,...,7 the vector (a},, ; bf) has compo-
nents which are at most (n+ 1)’ in absolute value. The theorem will follow from
this, since this implies that the size of (12) is polynomial in # and the sizes of (10)
and cx<a, and since we may assume that the size of the numbers Y Isk=t,
1<j=m+k—1) is polynomial in the size of (12), as for each k€ {1,...,¢} we may
replace yp, . ¢ j (1<j=<m+k—1) by any solution of the linear system '

Y {zia;:i=1,....m}+ ¥ {zia{:i=m+l,...,m+k—k1} =Qli ks
E {Zib[:i=l,...,M}+ Z {z,-b,-’:i=m+l,...,m+k—1}<b,',,+k+l,
%20 (i=1,...,m+k-1). o 13)

(and there exists such a solution with size polynomial in the size of (13)).
The existence of the sequence of inequalities (12) is trivial if 7<1. Suppose 7=2
andlet 8= ¥ {¥m1,;b;:j=1,...,m}. By Carathéodory’s theorem the linear system

E {Zm'.,‘.]’jl;lj:j‘-"- 1, ...,m} =iy
X zmer,jbyii=1, .. my=p, (14)
zm_,_l.jZO (i:l,...,m)

has a solution 3, ; (1<j<m) with at most n+ | nonzero variables. (The system
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clearly has-a solution, namely y, . == m).)> Let
| a,:+,= Y ACme1, =~ mser,  Daji=1,...,m},
me1=L L ATmer,j— [Fmer i Dbiij=1,...,m} ], | (15)
Yt i=FImst,j— Imer i) G=1,...,m).

Note that

| am+l=a;+l+ Z {|_7m+1,jJaj3j=l,---,m},

LB1=b3 s+ T ALSmer Sty =1 s ve
Thus, for k=2,...,¢, letting
y_m+k,j=}’m+k,j+J’}n+k,m+1Um+1,j_| ,(J'=1,---}mk) an
Imswj=Ym+kj U=m+l,...,m+k-1)
we have | ' '
Y k@30 = Loy Mt k= L jE M+ 1} + Py g 18041 =8
LY Gmribizi=lsecsmt k=1, j#m+ 1} + Imokms10mer | <D sie
(18)
So ”
A iX<Db; (i=2,...,t) : (19)V

together with the nonnegative numbers 7, ., j R=k=tl=sj=m+k-1)is a
cutting-plane proof of ex=a from the system

a;x<b; (z—l m), (20)
am+lX<bm+l

As the length of this proof is -1, we may assume inductively that there exists a
sequence of inequalities

caggix<br. (i=2,..,1) ‘ - @0

and nonnegative numbers y , j@=k=t1=sjsm+k-1) which together form a
cutting-plane proof of cx<a from (20), where for /=2, ..., the vector (a, . » b,k . ;)
has components which are at most (n+ 1) "' * in absolute value, letting o * denote
the maximum of o and the absolute values of the components of @y, by, ).
Using this, we have that

am+1x<bm+: (i=1,..,0 . k (22)

.. together with the nonnegative numbers y, ., j(I=sk=fl=sjsm+k-1) is the
required cutting-plane proof of cx<a from (10). Indeed, from (16) we have that
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@y .1 is integral and hence that (22) is a cutting-plane proof of cx<a from (10).
Furthermore, since at most n+1 of the nonnegative numbers Pmer,j A=j=m)
are nonzero, from (15) we have that the absolute value of each component of
(@mi1b%ny 1) is at most (n+1)o. Thus for each i=1,...,# the components of
(@)1, by, 1) are at most (n+ 1)'c in absolute value. [

Remarks. (1) Cutting planes may be viewed geometrically as a method of obtaining
a linear description of the convex hull, P;, of integer points contained in a given
polyhedron PC Q". Letting P’ denote the set of vectors which satisfy every Chvatal
cut for P, we have that P, C P’. Schrijver [27] proved that P’ is a polyhedron,
which can be seen by noting that, as in the proof of Proposition 3, we may restrict
our attention to cutting planes that can be derived from at most » valid inequalities
for P, each with a nonnegative multiplier less that 1. The results of Chvital [5] and
Schrijver [27] mentioned in Section 1 give that P*)= P, for some natural number
k, where P® =P and P = P~ for all i= 1. (In fact, this is the way in which the
results are presented in Schrijver [27].) The least number k such that P*) = P, is the
Chvdtal rank of P. Using Carathéodory’s theorem, Chvatal [7, Theorem 3] proved
a result which gives an upper bound on the length of a shortest cutting-plane proof
of an inequality from a linear system Ax=< b in terms of the number of variables and
the Chvatal rank of {x:Ax=<b}. :

The example of Bondy given above shows that polyhedra in 2-space can have
arbitrarily high Chvétal rank. However, if P¢ Q" and PNZ" =@, then Theorem 1’
implies that P~ =@, where ¢, is a constant which depends only on »n. This result
is used in Cook, Gerards, Schrijver, and Tardos [11] to show that the Chvatal rank
of a polyhedron {x:Ax=<b} can be bounded above by a function of the matrix A,
independent of the vector b.

(2) Not surprisingly, the number g, in Theorem 1’ is necessarily exponential in 7.
What follows from the proof of Theorem 1’ and Proposition 3, is that 2"/n—1<
y¥<n", where ¥ is the least possible value of ¥,. To see the lower bound, con-
sider the linear system in the variables x, ..., x,

Y{x:ied} - Y {x:ie{l,...,n}\J}=|J]|-1 VJIC{l,..,n} (23)

where each inequality cuts off exactly one corner of the unit hypercube. This system
has no integral solution, but if an inequality for any set J is removed, then the 0-1
vector x;=1 for each ie J and x;=0 for each ie {1,...,n} \ J satisfies the remaining
2" —1 inequalities in the system. Thus any cutting-plane proof of Ox=< -1 from
(23) must make use of each inequality (that is, each inequality in (23) must be given
a positive multiplier in at least one of the derivations in the proof). Now, as in the
proof of Proposition 3, if there exists a cutting-plane proof of length of Ox< —1
from (23), then there also exists one of length at most # which uses at most » positive
multiplies at each step (except possibly the last, where n+ 1 positive multiplies may
be needed). Since each of the 2” inequalities in (23) must be used in the proof (and
since each derived inequality must also be used),  must be at least 2”/n. Hence the
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shortest sequence of polyhedra as described in Theorem 1’ must have length at least
2"/n - 1. (Note that this example cannot be improved by replacing (23) by a system
which has more that 2” inequalities, since Scarf [26] (see also Bell [2], Hoffman
[19], and Todd [29]) has shown that any system of linear inequalities in n variables
having no integral solution contains a subsystem of at most 2" inequalities which
also has no integral solution.) v

To prove the upper bound, we need information on the parameter y, given in the
proof of Theorem 1’, that is, the Z"-width of a polyhedron in @” which contains
no integral vectors. Various upper bounds on y, which can be obtained algorith-
micly are given in Lenstra [12], Grotschel, Lovidsz, and Schrijver [15] and Babai [1]
(see also Kannan [20]). Each of these bounds is exponential in n. Hastad [17] has
recently shown, however, that a result of Lenstra and Schnorr [23] implies that one
may let y,=n>? (a bound which is not known to be obtainable by a polynomial-
time algorithm).

Using this and following the proof of Theorem 1/, it is a simple estimation to
obtain n3" as an upper bound on &x- (For other results on lattice-width see Kannan
and Lovasz [21].) :

In the case n=2, the bounds can be 1mproved as follows. It can be checked that
obtaining the empty set from ‘the polyhedron P given by the convex hull of the
points {(3,$), (3> — 4% (—44) (3,3)} requires four cutting planes. (First check
that P’ is given by the convex hull of {(3,0),(3,1),(0,4),(0,%),(1,4),(1,2)} and
then that P’ requires three cutting planes.) Furthermore, Helfrich [18] has shown
that we may take y,=2, which implies that the empty set may be obtained from
any polyhedron of dimension 2 in at most 5 cuts. So 4<g;F=<5. [J

3. Cutting—plane‘ proofs of unsatisfiabiligy

Formulae of the propositional calculus are built up from variables using negation,
conjunction and disjunction. (For an introduction to the propositional calculus
see Chang and Lee [4].) A literal is an unnegated or negated variable. A clause
C={l,,..., I} is a set of literals interpreted as their disjunction (an empty clause is
defined to be false). A formula in conjunctive normal form (or CNF-formula)
¢={C),...,C,} is a set of clauses interpreted as their conjunction. A formula is
unsatxsflab]e if it is false under all truth assxgnments The size of a formula ¢ is the -
number of literals in ¢. ~

Let C;, G, be clauses such that C; contains x, C, contains % and there is no other
literal / in C, such that [ is in C,. Then the clause C=CUGC,—{x, x} is the
resolvent of C; and C,.

A resolution derivation from clauses C, ..., C, is a sequence of clauses CJ, ..., Cs*
such that C* (1 <i=<5) is the resolvent of two clauses from C,, ... ,Cr, CF\y ol , CF .
The length of the derivation is s. A resolution proof of a clause C from clauses
Cy, ..., C, is a resolution derivation with C*=C. A resolution proof of the unsatis-
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JSiability of a CNF-formula ¢{C,,...,C,} is a resolution proof of the empty clause
from C,,...,C,. A CNF-formula is unsatisfiable if and only if 1ts unsatisfiability
has a resolution proof (Robinson {25]).

An extended resolution (e.r.) derivation from clauses Cy,...,C, is defined re-
cursively:

(DIf CK...,C¥is an e.r. derlvatlon and C% | is a resolvent of two clauses from
Cy,...,C,, Cf,...,CF¥, then Cf,...,C% | is an e.r. derivation.

Q@IfCy,... C *isane.r. denvatlon, x and y are variables occuring in C,, » Cr,
Cf,...,C* and z is a new variable then : :

@) Cf,...,C* {z,x}, {z %} is an e.r. derivation;
(b) CF,....,CF, {z.x}, {z, 7}, {Z x y} is an e.r. derivation. :

Thus it is possible to introduce new variables z=x, z=xVy (the new clauses are
- the CNF for these functions). Length, e.r. proof of a clause and e.r. proof of
unsatisfiability are defined as for resolution.

Our purpose here is to compare the power of resolution and extended resolution
with that of cutting planes. We begin by describing cutting planes as a system for
proving the unsatisfiability of CNF-formulae.

For a literal / let E(/): =x if /=x and E(/): =1-x if /[=%. For a clause C=
{ly ..., It} let E(C)= Zf.;, E(l;). (E®): =0.) For a CNF-formula ¢={C,,...,C,}
containing variables x, ..., x,, let €(¢p) be the following system of 2m+r inequa-
lities:

EC)=1 (I1<isr), Osx=<1 (1<j=m). (24)

A cutting-plane proof of the unsattsf abzlzty of ¢ is a cutting-plane proof of 0= 1
~ from &€(gp).

It is easy to see that ¢ is unsatlsﬁable if and only if £(¢) has no integral solution,
hence ¢’s unsatisfiability has a cutting-plane proof.

Resolution can be simulated by cutting-planes using the following lemma:

Lemma 4. If clause C is the resolvent of clauses Cy, C,, then E(C)=1 has a cutting-
plane proof of length 1 from -
ECC)=z1, EG)=1, 0=sx=<1, l=<ism.

Proof. Let C] = {x,,l,, ...,lk, lk+1’ ""lkl,}’ C2= {)“61,11, ...,lk, l;‘.,_ 1s ""l;‘z} (thUS
I, ..., I, are the common literals in C; and C,). Then adding

- EC)=x;+ Z E()+ Z El)=1,
i=k+1

E(C)=(1-x)+ _;,E(li)+ Z E(l)=1,

Ci=k+1

El)=0 (k+1=i<k)), E()=0 (k+1=is<K,),
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we get

) :
( ; E(;)+ E E(l)+ Z[,lE(I')>

and by rounding
EC)= E E({)+ Z E({)+ Z E()=1. O
i=k+1

Proposition 5. If the unsatisfiability of a CNF-formula ¢ has a resolution proof of
length s, then it has a cutting-plane proof of length s containing only inequalities
with 0 and *1 coefficients.

Proof. Obvious from the above lemma. " 0 ’

So cutting planes are at’least as powerful as resolution. To proceed further,
consider the following ‘pigeonhole formulae’ that were introduced by Cook and
Reckhow [10] to illustrate the power of extension.

For variables X (I=isn, 1sj<n—1) define

«»/\(Vx,,)/\ A A@ VT | | (25)

h#iy J

These formulae are unsatlsfiable, as a satisfying truth assignment would give a
bijection between {1,...,n} and {1,...,n—1}. Of particular interest here is the
following result of Haken [16].

Theorem 6. There is no polynomial upper bound on the length of a shortest reso-
lution proof of the unsatisfiability of the formulae ¢,. 0O

- This theorem together with the following proposition implies that cutting planes
are more powerful than resolution.

Proposition 7. The unsatisfiability of ¢, has a cutting-plane proof of length n’.
Proof. The corresponding system of inequalities is
n—1 . ) o .
Y x=1 (i=1,...,n), (26)
J=1 .

X j+txp,i=1 (I=sh<i=n, j=1,...,n-1), ‘ ‘ 27
O=sx;=<1 (i=1,...,n, j=1,...,n-1).

It is sufficient to deduce the inequalities

'Elx,-jsl U=L.e,n=1). R (28)
i= ’ ) :
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as then summing (26) and (28) a contradiction is obtained. To get (28) we show that
for every j=1,...,n—-1, r=1,...,n—1and i=1\,....,.n—r
i+r
Y x;=<1. (29)
k=i
This follows by induction on r, the case r=1 is contained in (26). For the induction
step,

itr i+r+1 )
E xlq<l Z xkjsl’ xl_[+xl+l'+|j =1
k=i k=i+1
imply 2 £3*7" ' x,;<3 and by rounding Li*/*!x;<1. As one cut is needed to

generate a new inequality, the bound follows. [

Now we turn to the relationship between extended resolution and cutting planes.

Theorem 8. There exists a polynomial p(n, m) such that for every unsatisfiable CNF-
SJormula ¢ of size m, if the unsatisfiability of ¢ has a cutting-plane proof of length
n, then it has an extended resolution proof of length at most p(n, m).

Proof. The proof is based on a general result of Cook [9] on the power of extended
resolution. Here we assume the notions and results of [9] without giving the detailed
formulation. We also refer to the thesis of Dowd [12], where Cook’s results are
proven in detail and generalized, and to the book of Goodstein [14] for rigorous
formal proofs in a restricted arithmetic system called primitive recursive arithmetic
(which was further restricted by Cook to obtain his system PV).

First we note that the length of a cutting-plane proof in the theorem refers to
number of inequalities, while in the framework of Cook’s paper the length of a
proof means the number of digits of the whole (encoded) proof, which is poly-
nomially related to the sum of the sizes of the inequalities, where the size of the
coefficients is counted as well. However, Proposition 3 of the previous section
implies that from our point of view the two definitions are equivalent. (At the
beginning, every coefficient on the left-hand sides is + 1, and every coefficient on
the right-hand sides is at most m.) ‘ '

The main result of [9] (Theorem 5.5, see also Theorem 1V.4.1 of [12]) implies that
it is sufficient to show, that the cutting-plane-proof system is p-verifiable (see Defi-
nition 5.4 of [9]). Informally, this means that the statement

“If x is a cutting-plane proof of the unsatisfiability of a CNF—formula ¥,
then y is indeed unsatisfiable’’,

expressing the correctness of the proof system, can be formulated and proven in the
formal system PV. '

A technical detail here is that [9] defines proof systems (including extended reso-
lution) for proving that propositional formulae are tautologies. However, cutting
planes can also be considered as a proof system for tautologies (proving that the
negation of the formula is unsatisfiable), and it is also easy to see that the two
versions of extended resolution are equivalent.



On the complexity of cutting-plane proofs 37

Below we give an informal description of the proof of the p-verifiability of cutting:

planes. References are given to the results and proofs of [9], [12] and [14], that can -

be used to give a more formal proof (which would contain no technical novelties).

The p-verifiability of cutting planes is proven in the following stages.

Stage 1. Arithmetic on integers and rationals (as pairs of integers) is defined. This
is possible, as Theorem 2.12 of [9] states that every polynomial-time computable
function is definable in PV. (See also Theorem 11.4.1 of [12], where a proof is
given.)

Stage 2. Propositions involving linear inequalities and rounding are proven.
Theorem 3.11 of [9] states that every proof of a universal sentence from universal
sentences in the usual predicate calculus can be translated into a system PVI1.
Theorem 3.10 of [9] states that PV1 proofs can be translated into PV proofs. (This
is Theorem 11.5.1 of [12], where the result is proven.) Detailed formal proofs which
can be translated into PV1 are given for such identities in section 2.96 of [14].

Stage 3. The p-verifiability of cutting planes is proved by formalizing the proofs
of the propositions referred to above. Section 4 of [9] and section I1.6 of [12] discuss
the definition and pfopcrties of a Godel numbering. For example, the function
f(x,i): =“the Godel number of the i-th inequality in the cutting-plane proof en-
coded by x, or 0 if this is not defined”’ can be defined using the function ELEM(x, i)
of [12, p. 31]. The formalized versions of statements such as “If the integer y
satisfies the first / inequalities in the cutting- -plane proof x, then it also satisfies the
i+ 1-st one”’ imply the p-verifiability of the cutting-plane proof system, in the same
way that the proof of the soundness of extended resolution is used to prove the
p-verifiability of extended resolutlon (see Lemma 5.8 of [9] and Section IV.2

of [12). O '

This implies that extended resolution is at least as powerful as cutting plane
proofs of unsatisfiability. We have not been able to show that extended resolution
is the more powerful of the two systems, a proof of which would mvolve showmg
that the cutting-plane proof system is nonpolynomlal

Remark. The geometric analogue of extension by Z=xVy is a ‘lifting’ of the poly-
tope determined by the actual clauses to a higher-demensional one by adding a new
variable z and inequalities 0<z=<1, x=<z, y<z=<x+y. It is not clear how such a
lifting operation influences the number of cuts required to reduce a polyhedron to
the empty set. [
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