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ABSTRACT

Gomory’s cutting-plane technique can be viewed as a recursive procedure for
proving the validity of linear inequalities over the set of all integer vectors in a
prescribed polyhedron. The number of rounds of cutting planes needed to obtain all
valid linear inequalities is known as the rank of the polyhedron. We prove that
polyhedra featured in popular formulations of the stable-set problem, the set-covering
problem, the set-partitioning problem, the knapsack problem, the bipartite-subgraph
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problem, the maximum-cut problem, the acyclic-subdigraph problem, the asymmetric
traveling-salesman problem, and the traveling-salesman problem have arbitrarily high
rank. In particular, we prove conjectures of Barahona, Grotschel, and Mahjoub;
Chvatal; Grotschel and Pulleyblank; and Jinger.

1. INTRODUCTION

How do you certify that there are no k pairwise nonadjacent vertices in a
prescribed graph? How do you certify that there is no acyclic subgraph with
k arcs in a prescribed directed graph? How do you certify that there is no
tour of length at most k in a prescribed instance of the traveling-salesman
problem? One way is to first state the problem as an integer linear-program-
ming problem and then solve it by a cutting-plane algorithm of the kind
designed by Gomory (1958, 1960, 1963): like all algorithms, the cutting-plane
algorithm must provide a certificate when it solves the problem. The subject
of this paper is the structure of the cutting-plane certificates for several
popular formulations of combinatorial optimization problems. Our results
state that, for certain instances of these formulations, all cutting-plane certifi-
cates must be complex in a sense. '

To make this statement more precise, consider a polyhedron P in the
n-dimensional Euclidean space R"; as usual, let Z" denote the set of all
vectors in R" all of whose components are integers; in addition, set

P= {x € P:a'x <b wheneverac€Z", b Z,
and max{a'x:x € P} <b+1}.
Trivially, P NZ" C P’; if we define P = P and, recursively,
PP = (P(j—l))'
for all positive integers j, then P NZ" C PY for all rionnegative integers j

Hence, letting P; denote the convex hull of P NZ", we have P, € P for all
nonnegative integers j.

TueoreMm 1.1.  For every bounded polyhedron P there is a nonnegative
integer j such that P = P,

The validity of Theorem 1.1 follows from Gomory’s own analysis of his
cutting-plane algorithms; an alternative proof was given by Chvatal (1973b).
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As pointed out by Schrijver (1980), the assumption that P is bounded cannot
be dropped: for instance, if ¢ is an irrational number and P in R? is defined
by x, = cx,, then P{).=P for all j but P; includes only the origin. However,
Schrijver (1980) also proved that this assumption can be replaced by another:
rather than assuming that P is bounded, we may assume that P is rational
(that is, P consists of all solutions of some system Ax < b of linear inequalities
such that all entries of A and b are integers).

Tueorem 1.2. For every rational polyhedron P there is a nonnegative
integer j such that P = P,

Incidentally, Theorem 1.1 follows easily from Theorem 1.2,

The rank of a polyhedron P is the smallest j such that P& =P,. Our
results provide lower bounds on the rank of polyhedra featured in popular
formulations of

(1) the stable-set problem (Theorems 3.2 and 3.3),

(2) the set-covering problem (Theorem 3.4),

(3) the set-partitioning problem (Theorem 3.5),

(4) the knapsack problem (Theorem 3.6),

(5) the bipartite-subgraph problem (Theorem 4.1),

(6) the maximum-cut problem (Theorem 4.3),

(7) the acyclic-subdigraph problem (Theorem 5.1),

(8) the asymmetric traveling-salesman problem (Theorem 8.1),
(9) the traveling-salesman problem (Theorems 8.3 and 8.4).

In particular, we prove conjectures of Barahona, Grotschel, and Mahjoub
+ (Theorem 4.1), Chvatal (Theorem 8.3), Grotschel and Pulleyblank (Theorem
8.5), and Jinger (Theorem 5.5), and answer a question of Schrijver
(Theorem 3.3).

We still have not explained the relationship between the rank of polyhe-
dra and the complexity of cutting-plane certificates; discussion of this rela-
tionship is postponed till Section 6, where cutting-plane proofs will be
defined.

We close the present section with a few comments on terminology and
notation.

Let P be a polyhedron in R", and let a’x < b be an inequality valid over
P NZ". The depth of this inequality relative to P is the smallest d such that
a’x < b is valid over P, Thus the rank of P is the maximum depth, relative
to P, of an inequality valid over P NZ". In fact, our lower bounds on the
rank of P are typically presented by exhibiting an inequality valid over
P NZ" and establishing a lower bound on its depth relative to P.
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We let Z, denote the set of all nonnegative integers. Whenever conve-
nient, we ignore the artificial distinction between real vectors with compo-
nents subscripted by elements of a finite set V on the one hand and mappings
from V to R on the other hand; we let R denote the set of these objects (and
similarly for ZV and ZY ). We let e denotté the vector with all components
equal to 1 (and length understood from the context), and we let e denote the
base of natural logarithms 2.71828. .. ; to avoid overworking this letter, we let
the mnemonic h denote a typical edge of a graph. Each edge of an
undirected graph is a set of two verﬁces;.thus, for instance, the statement
“edge h has precisely one endpoint in the set W™ can be recorded as
“lhN'W|=1". All three expressions

Exi, Y (x;:i€8), and x(S)

ie$

have the same meaning and are used interchangeably. The natural logarithm
of t is In¢, and the binary logarithm of ¢ is log, . As usual, |£]| and [¢] denote
t rounded down and up, respectively, to the nearest integer.

2. FOUR LEMMAS

Our first lemma will be used four times in the following three sections. It
guarantees that certain points lie in P for all small values of j. These points
are on the half line that starts at a point u in P and goes in the direction
opposite to a vector v:

Lemma 2.1.  Let P be a rational polyhedron in R™; let u and v be points
in R"; let my, m,,..., m; be positive numbers; write

i1
(])z —_ — } =
X u (Z m)v. (j=0,1,...,d).

i=1""

If weP and if, for all j=1,...,d, every inequality a'x <b valid over
PNZ" withaeZ" and a'v < m; satisfies a'xD < b, then xP € PD forall
i=01,....d. ~
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Proof. By induction on j; note that x®=u and that ue P® by
assumption. Now assume that x/~Y € PU~D for some positive integer j not
exceeding d. If x() ¢ P() then a’x'¥ > b for some a and b such that

ac€Z", beZ, and max{a’x:xePU D} <p+1. (2.1)

Hence we only need show that a’x() < b whenever (2.1) holds. For this
purpose, we may assume that a’v > m; (otherwise the desired conclusion is
guaranteed by assumption). Since a’x < b +1 is valid over PU~Y, we have

) 1
alxN=qaTx0"V—~ —alv<(b+1)-1=b,
m;
i

as claimed. n

On several occasions, we shall establish a lower bound on the rank of a
polyhedron T indirectly, by transforming another polyhedron § into a subset
of T. Lemma 2.3 spells out conditions which are sufficient to guarantee that
the rank of T is at least the rank of S. The first part of the argument will be
used on its own twice in Section 8; we set it out separately as Lemma 2.2.

LemMa 2.2. Let C be an integer matrix of size t X s, and let d € Z%; let
f:R® > R be defined by f(x) = Cx+d; let S be a polyhedron in R®, and let T
be a polyhedron in R. If f(S) C T then

ASD)YcT® (29

for all nonnegative integers i.

Proof. By induction on i; note that (2.2) with i = 0 holds by assumption.
Now assume that (2.2) holds for some nonnegative integer i, and consider an
arbitrary x* in $¢*D; we need only show that f(x*) € T¢*D, Since x* € S,
we have f(x*)eT® by (2.2); hence our task reduces to showing that
a'f(x*) < b wheneverac Z!, b€ Z, and

max{a’y:yeTH} <b+1.
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The last inequah'ty combined with (2.2) guarantees that
max{a (Cx+d):x e85V} < b +1; |
since C and d are integral, it follows that
| max{a (Cx+d): xeS(’“)} <b
in partlcular alf(x*) < b ’ “ [ |

LemMa 2.3.  Let the assumptions of Lemma 2.2 hold; in addition, let f
be one-to-one and let f(SNZ* )2T NZ*. Then the rank of T is at least the
rank of 8.

Proof. Since (ISNZS)DT NZ', and f is a one-to-one linear functlon
we have

TS ‘ o (23)

NoW let r be the rank of S; we only need show that the rank of T is at least
r. If r =0, then the desired conclusion is trivial; if > 0, then there is a pomt
xin S7D — S, and (2.2), (2.3) guarantee that f(x) € TC~D —T,. ]

Recall that a face of a polyhedron P is the intersection of P with a
hyperplane {x:a’x =b} such that

b=max{a'x:x € P}.

Lemma 2.4. If S is a face of T; then the rank of T is at least the rank
of S.

Proof. Since S C T, we have trivially
SOCT®  forall nonnegative integers i o (2.4)
In addition, we claim that ; | .
SNT,CS,. | | @2.5)

To justify (2.5), consider an arbitrary x in S N T;. By definition, x is a convex
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combination of points x®,x®,... x® in T NZ" Since a’x = b and a’xD < b
for all i, we must have a’x¥) = b for all i. To put it differently, x € S for all
i, and so x €S,.

The rest is straightforward. Let r be the rank of S; we only need show
that the rank of T is at least r. If r =0 then the desired conclusion is trivial;
if 7> 0, then there is a point x in $¢~Y — S, and (2.4), (2.5) guarantee that
xeTr DT, m

3. STABLE SETS, SET COVERING, SET PARTITIONING, AND THE
KNAPSACK PROBLEM

Let G be an undirected graph with vertex set V; let C denote the family
of all cliques in G; let P denote the polyhedron in RY defined by

x(C)<1 forall CinC,

(3.1)
x, >0 forall vinV.

v

The problem of maximizing a linear function over P NZY is known as the
maximum-weight stable-set problem, and P; is called the stable-set polytope
of G. (These terms are explained by observing that an integer vector belongs
to P if and only if it is the incidence vector of a set of pairwise nonadjacent
vertices; such sets are called stable.) The stable-set polytope has been studied
by Chvatal (1973b, 1975), Padberg (1973, 1977), Nemhauser and Trotter
(1974), Trotter (1975), Wolsey (1976), Balas and Zemel (1977), Boulala and
Uhry (1979), Ben Rebea (1981), Giles and Trotter (1981), Fonlupt and: Uhry
(1982), Sbihi and Uhry (1984), and Gerards and Schrijver. (1986).

Our first task in this section is to show that the rank of (3.1) may increase
as fast as a linear function of the number of vertices of G [the lower bound
established previously by Chvatal (1973b) is only logarithmic in the number
of vertices]. We begin with a lemma, in which a«(G) stands for the largest
number of pairwise nonadjacent vertices in G.

LeEmma 3.1. Let G be a graph with n vertices and let k; s be positive
integers. If k < s and if every subgraph of G with s vertices is k-colorable,
then the depth of €'x < a(G) relative to (3.1) is at least

n

ka(G) '
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Proof. 'Writing

wol sy
* _k(s+k)e’

we only need show that x4 e PW for all j: if j <(s/k)In[n/ka(G)] then

n s \I n
= 22V 5 2w ().
s

To show that x) € P& for all §, we only need verify the assumptions of
Lemma 2.1 with

u=-—e, v=e, and mj=s(
s

s+k ) i
Since G contains no clique with more than k vertices, we have u € P. Now
consider an arbitrary inequality a’x < b valid over P NZV and such that
acZV, dle< my; we only need to verify that a’x(¥ < b. For this purpose,
note that

; ) ;
b;max{aTx:XEPﬂZV}>—max{ Zai:ISlgs}. (3.2)
k [X=H] .
We may assume that a’e > 0 (otherwise a"x¥) < 0 and we are done, as b > 0);
if a has at most s positive components, then (3.2) implies b > (1/k)a’e >
a’x(?; if a has at least s positive components, then (3.2) implies .

LT

s s ‘ -
b>—->—ale=alx®, (33) m
k= km;

TueorEM 3.2. There are a positive integer c, a positive number &, and
arbitrarily large graphs G such that G has n vertices and cn edges. and the
depth of €'x < a(G) relative to (3.1) is at least en.

Proof. Erdos (1962) proved that for every positive # there are a positive
integer c, a positive number 8, and arbitrarily large graphs G such that G
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has n vertices and cn edges, «(G) <tn; and every subgraph of G with at
most 8n vertices is 3-colorable. (’I"h_; fact, he proved .that for all sufficiently
large n, at least 99% of all graphs with n vertices and cn edges hg\'_f_g the last
two properties.) Any # smaller than } will do for our purpose: we only need
set k =3 and s =|n|in Lemma 3.1. : |

BN

. A graph is called claw-free if it does not contain three pa1rm§e ionadja-
cent vertices with a common neighbor. Giles and Trotterq;(1981) gave
examples of claw-free graphs G such that (3.1) has rank at least ;two;

Sq}}n]ver asked whether this lower bound can be replaced by arbitf;l}'ﬂgl iarge
numbers; our next theorem provides an affirmative answer.

T e £
., THEOREM 3.3. There are arbitrarily large graphs G such that G has n
vertices, «(G) = 2, and the depth of e"x < 2 relative to (3.1) exceeds 3Inn.

Ex

.. Progf. Erdds (1961) has proved that there a).‘i;e gposmv(e c and arbitrar-
ily large graphs G such that G has n vertices, a(G)= 2, and every clique in
G has at. most cn'/?Inn verthes“Weoﬁiyneed apply Lemma 3.1 with k
equal to the largest number of vertices in a clique G and with s=k+1.  ®

As we shall observe later (Theorem 9.1), the lower bounds of Theorem 3.2

and 3.3 cannot be improved beyond a constant factor. .

Next let A be a zero-one matrix of size m X n, and let P denote the
“polyhedron in R" defined by '

Ax>e, O<x<e 7 (34)

The problem of minimizing a linear function over P NZ" is known as the
set-covering problem, and P; is called the set-covering polytope: (These terms
come from interpreting the jth column of A as the incidéiice vector of 2
subset Sj of the “ground set” {1,2,...,m}, and calling & Sét-“f of stibscripts a
cover if the union of all S, with j € J is the ground set.) The set-covering
polytope has been studied by Balas (1980), Balas arid Ng (1985), Sassano
(1985), and Cornuéjols and Sassano (1986). Our ébjéctive is to show that the
rank of (3.4) may increase as fast as a lineaf function of the number of
positive entries in A. '

Treorem 3.4. There are a positive number & and arbitrarily large
zero-one matrices A of size m X n such that m > n, each row of A has
precisely two ones, and the polyhedron defined by (3.4) has rank at least em.
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Proof. Given a graph G, consider the transpose A of the incidence
matrix of G: rows of A correspond to edges of G, columns of A correspond to
vertices of G, and each row of A is the incidence vector of the corresponding
edge of G. Let S denote the polyhedron defined by (3.1), and let T denote
the polyhedron defined by (3.4); let f:RV— R" be defined by f(x) =e -~ x.
The desired conclusion follows from Lemma 2.3 and Theorem 3.2. n

Now let A be a zero-one matrix of size m X n, and let P denote the
polyhedron in R" defined by «

Ax=e, O<x<e. ' (3.5)

The problem of minimizing a linear function over P NZ" is known as the
set-partitioning problem, and P, is called the set-partitioning polytope. (These
terms come from interpreting once again the jth column of A as the
incidence vector of a subset Sj of the “ground set” {1,2,..., m}, and calling
a set J of subscripts a partition if the sets S; with j € J are pairwise disjoint
and their union is the ground set.) The set-partitioning polytope has been
studied by Balas (1977), Johnson (1980), and others. Again, our objective is to
show that the rank of (3.5) may increase as fast as a linear function in the
number of positive entries in A.

TuEoREM 3.5. There are a positive constant ¢ and arbitrarily large
zero-one matrices A of size m X n such that m < n < 2m, each row of A
has precisely three ones, and the polyhedron defined by (3.5) has rank at
least em.

Proof. Given a zero-one matrix A of size m X n such that Ae = 2e, let §
denote the polyhedron in R" defined by (3.4), let T denote the polyhedron in
R"*™ defined by :

Ax+y=e, 0<x<e, 0<y<e,

and define f:R" —» R"*™ by

)= e

The desired conclusion follows from Lemma 2.3 and Theorem 3.4. y
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Finally, let a be a vector in Z"} and let b be an integer; let P be the
polyhedron in R” defined by

alx<bh, O<x<e. (3.6)

The problem of maximizing a linear function over P NZ" is known as as
the zero-one knapsack problem, and P; is called the knapsack polytope. The
knapsack polytope has been studied by Balas (1975), Hammer, Johnson, and
Peled (1975), Padberg (1975), Wolsey (1975), Balas and Zemel (1978),
Johnson (1980), Hammer and Peled (1982), and others. We are going to show
that the rank of (3.6) may increase as fast as a linear function of the number
of variables even when b and the components of a are relatively small.

TueoremM 3.6. There is a positive constant ¢ such that, for arbitrarily
large n, there are a vector a in Z and a positive integer b with the
following properties: each component of a as well as b is less than 4", and
the rank of the polyhedron defined by (3.6) is at least en.

Proof. By Lemma 2.4, we only need prove a modified statement, where
the polyhedron defined by (3.6) is replaced by the polyhedron defined by

alx=bh, O<x<e. (3.7)

Given a zero-one matrix A consisting of rows aV,a®, ... a{™ such that each
a®) has precisely three ones, define

m-—1 . m—-1 E
aT= Z 4ia(i+1), b= Z 41'.

i=0 i i=0.

Let S denote the polyhedron (3.5), and let T denote the polyhedron (3.7).
Since a’x = b is a linear combination of Ax = e, we have S C T. Hence we

only need prove that
TNZ"cSNZ", (3.8)

~for then the desired conclusion will follow from Lemma 2.3 [with f(x) =x]
and Theorem 3.5. To prove (3.8), consider an arbitrary x in T NZ": we have

m-—1 m-—1
Z (a(i+l)x)4i = Z 4:'.
i=0 i=0
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Since each a*! has precisely three ones, each a®*Dx is one of the integers
0,1,2,3; since the 4-ary expansion of any nonnegative integer is unique, we
conclude that a**Yx =1forall i=0,1,...,m -1, andsox €SNZ™" n

Let us conclude this section with another look at the stable set polytope.
Consider an undirected graph G with vertex set V; for each subset S of V, let
a(S) denote the largest number of pairwise nonadjacent vertices in S; let P
denote the polyhedron in RY defined by '

x(S)<a(S)  for all subsets S of V,

(3.9)
x>0 forall vinV.

v

Obviously, P; is the stable-set polytope of G. Even though (3.9) approximates
the stable-set polytope better than (3.1) does, the rank of (3.9) can still exceed
any constant.

Tueorem 3.7. There are a positive constant ¢ and arbitrarily large
graphs G with n vertices such that the rank of (3.9) exceeds c(n/Inn)'/>

Proof. To construct G, let p; denote the kth prime; for an arbitrary but
fixed positive integer m, take pairwise disjoint sets V,, Vas..., V., such that
Vil =2p; +1 for all k, and let V denote the union of these sets. Then let
each V; induce a chordless cycle of length 2p, + 1, and make every two
vertices in distinct sets V; adjacent. [The same construction has been used by
Chvatal, Garey, and Johnson (1978) for a different purpose.]

Now write b =p,p, - - - p,, and a; = b/p, for all k. On the one hand, it
is not difficult to see that

m

Y ay(x,:veV)<h
k=1

~ defines a facet of P;, and so it (or its positive multiple) must be induced in
every system of linear inequalities that defines P,. On the other hand,
Remark 1 after Theorem 10 in Cook, Gerards, Schrijver, and Tardos (1986)
guarantees that P() can be defined by a system of linear inequalities with
integer coefficients whose absolute values do not exceed nJ. Hence the rank
of P is at least (Ina,)/(Inn).
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Finally, observe that a, =1b>im!>{(m/e)", and so Ina;>cymInm
for some positive constant c,. The prime-number theorem asserts that p, ~
kInk, and so

n=Y 2pi+1)<c, ) kink<c,lnm Y k<cym’lam
k=1 k=1 k=1

for some positive constants c,, ¢;. Hence m > c,(n/In n)'/% for some positive
constant ¢, and the desired result follows. ]

4. THE BIPARTITE-SUBGRAPH PROBLEM
AND THE MAXIMUM-CUT PROBLEM

Let G be a complete graph with vertex set V and edge set E; let O
denote the family of all odd circuits in G; let P denote the polyhedron in RE
defined by

x(C)<|C|-1 forall Cin O,
(4.1)
O0<x,<1 forall hin E.

The problem of maximizing a linear function over P NZE is known as the
bipartite-subgraph problem, and P, is called the bipartite-subgraph polytope.
(These terms are explained by observing that an integer vector belongs to P
if and only if it is the incidence vector of a bipartite subgraph of G.) The
bipartite-subgraph polytope has been studied by Barahona, Grétschel, and
Mahjoub (1985) and Gerards (1985). In particular, Barahona, Grotschel, and
Mahjoub (1985) conjectured that, for each complete subgraph H of G such
that H has 2k + 1 vertices, the depth of the inequality

x(H) <k(k+1) v (42)
relative to (4.1) grows linearly with k. We shall prove this conjecture.
Straightforward induction on k shows that the depth of (4.2) relative to (4.1)

relative to (4.1) is at most k—1; the lower bound is provided by the
following theorem.

TueoreM 4.1. The depth of (4.2) relative to (4.1) is at least 3(k —1).

In order to prove this theorem, we first establish an auxiliary result.
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TueorREM 4.2. Let (V, E) be a complete graph, and let a: E — 7, be a
Junction; write m =a(E). If m > 0, then there is a subset S of V such that

m m\1/2 1
Z(a(h):heE,|hnS|=1)>E+(§) - (43)

Proof. Write n=|V|; we shall proceed by induction on n and distin-
guish between two cases.

Case 1: a(h*)<0 for some h*. In this case, we identify the two
endpoints of A* and use the induction hypothesis. Formally, let 4 and o be
the two endpoints of h*, and let w be a point outside V; define

Vi=(V-{u,0})u{w},
E*={h:hCV*, [h|=2},
a*(h)=a(h)  whenever heENE*,
a*(wx)=a(ux)+a(vx) whenever x€V*, z+uw,
m*=m— a(uv).

By the induction hypothesis, there is a subset § of V* such that

) m* m*\12 1
Z(a*(h):hEE*, IhnS|=1)2?+(—8-) —Z. (44)

Without loss of generality, we may assume that SC V (to put it differently,
w & S); now the left-hand side of (4.4) equals the left-hand side of (4.3). As
m* > m, the right-hand side of (4.4) is at least the right-hand side of 4.3).

Case 2: a(h)>1 forall h. In this case, averaging over all subsets S of
V such that |S|=|n/2|, we observe that at least one of them satisfies

n/?]n[;z/ﬂm> ";lm, - (45)
2 :

Y (a(h):he€E, hnS§|=1)> l
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Since

mz(g) and n>2,

m m 12 m \ /2 n\1212 n
=l T3

n—1 1/2- n 172 n 1
X NG R
( 4 ) 16 16 4

and so the right-hand side of (4.5) is at least the right-hand side of (4.3). |

we have

Proof of Theorem 4.1. Writing

e,

1
x(’)=§(1+4j+3

we only need show that x) € P& for all j: if j <3(k — 1) then

1 1
x(j)(H)=§(1+ m)(zkgl) > k(k +1).

To show that x € P() for all j, we only need verify the assumptions of
Lemma 2.1 with u=2e, v=e, and m;={(4j +3)(4j — 1). It is easy to see
that u € P. Now consider an arbitrary inequality a’x < b valid over P NZF%,
and such that a€ZF, a'e <m; for some j; we need only verify that
aTx () < b. For this purpose, we may assume that a’e > 1 (else a"x') < 0 and
we are done, as b > 0). Now write

A=4j+3, vB=[(4]'+3)(4jﬁl)]1/2_,

and observe that

1/2

A+B>2B=(8m)"",

4j+3 14
- HT2 Zcgle
A-BS2LTI<TF "
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[here we use the inequality 1—(1—#)"2<¢/(2~1t) with t=4/(4j +3)].
Since 1 < a’e < m,, we conclude that

[(SaTe)l/2 -A- B] [(SaTe)l/2 -A+ B] < 0;
that is,
9ale — (4 +3)(2a%e)"*+ (4] +3) < 0. . (48)

Finally, Theorem 4.2 guarantees that

e [ale\? 1
b —+| — -
2 8 4
this bound combined with (4.6) yields
b> %aTe(l-*— T2 ) =alx(®,
and the proof is completed. [ |

Now let P denote the set of all ordered pairs (B, C) such that C is (the
edge set of) a circuit in G and B is a subset of C such that |B] is odd; let Q
denote the polyhedron in RE defined by

x(B)-x(C—-B)<|B|-1  forall (B,C)inP,

(4.7)

O<x,x1 forall h in E.

The problem of maximizing a linear function over Q NZE is known as the
maximum-cut problem, and Q; is called the cut polytope. (These terms are
explained by observing that an integer vector belongs to Q if and only if it
intersects each circuit in G in an even number of edges, and thus it is the
incidence vector of a set of all the edges that have precisely one endpoint in
some fixed subset S of V; such sets of edges are called cuts.) The cut
polytope has been studied by Barahona and Mahjoub (1986).
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TueoreM 4.3. The depth of (4.2) relative to (4.7) is at least 3(k — 1).

Proof. Identical with the proof of Theorem 4.1, except that Q is
substituted for P. [}

5. THE ACYCLIC-SUBDIGRAPH PROBLEM

Let G be a complete directed graph with vertex set V and edge set D (so
that D consists of all ordered pairs of distinct elements of V'); let C denote
the family of all (edge-sets of) directed circuits in G (including directed
circuits of length two); let P denote the polytope in RP defined by

x(C)<|C|-1 forallCinC,

(5.1)
O0<x,x1 for all A in D.

The problem of maximizing a linear function over P NZP is known as the
acyclic-subdigraph problem, and P is called the acyclic-subdigraph poly-
tope. (These terms are explained by observing that an integer vector belongs
to P if and only if it is the incidence vector of an acyclic subdigraph of G.)
"The acyclic-subdigraph polytope has been studied by Grotschel, ]unger, and
Reinelt (1985).

In our next theorem, as elsewhere in this paper, we let n stand for |V}

‘TueoreMm 5.1.  For all sufficiently large n, the rank of the polytope
defined by (5.1) exceeds 10~ %n%/2,

Before proving this theorem, we shall establish three auxiliary results.
There, as usual, ||x||, denotes the | -norm of a vector x.

Lemma 5.2.  For every integer matrix consisting of rows a',a%,...,a" and
columns b',b2,....b°, we have

r s 3/4
Z lla‘lls + Z IIb’Ilz/( )y Ilbjllx) .
= j=1

i=1
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Proof. First, let us show that

r s k s
Ll + X billy> k=22 Y iy, + 2 b2
i=1 j=1 j=1 i=1

for all k=1,2,..., s. For this purpose, let & denote the vector consisting of
the first k components of . Since (Klle = k~'/2|)x||, whenever x € R%, we
have

r r r k
2 lafly> X 18]g > k=172 3 ||, = k=12 2 b,
i=1 i=1 i=1 j=1

Now observe that x|, > |ix/|//2 whenever x & Z*,

We shall complete the proof of the Lemma by justifying the following
claim: for every nonincreasing sequence C15Cg;-.., ¢; of nonnegative reals
there is a subscript k such that 1 <k<s and

k

s s 3/4
k-2 Yy ¢+ Y c]-1/2> ( > cj)
=1

i=1 =1

This will be done by induction on s. Writing d = Zj.=lcj, note that ¢, < d/s.
Hence we may assume that ¢, < d1/2 (for otherwise the desired conclusion
holds with k = s). By the induction hypothesis, there is a subscript k such

that 1<k <s—1 and

s—1

z

k
k‘l/zzcj+
s

1=

s—1 3/4
1/2
c;” >( Zc].)

1 j=1

Hence we only need show that
(d- cs)s/4+ cl?> d¥4,

This inequality follows from observing that

o : 3/2
d3/4—(d—cs)wse(d—cs)“”“-cs<‘(Zi
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and that

o

2\ 3
(E) csl/2<221/4<1. ‘ [

LemMa 5.3. Let n be a positive integer, and let [n] denote the set
{L,2,...,n}. Forall x in R", we have

27" Y (1x(8)]: 8¢ [n]) > 27 2x,. (5.2)
Proof. We shall rely on the inequality
27y (|x(8) = x([n] =8)[:Sc [n]) > 27 %xll,  (5.3)

proved by Szarek (1976); see also pp. 138—139 in Devroye and Gyorfi (1985).
To derive (5.2) from (5.3), we only need observe that

Y (Ix(s)]:5c [n]) =3 Z(Ix(S) |+ [x([n] = $)|: S < [n])

and use the inequality |a|+ |b| > |a + b| with a =x(S), b= —x([n] —S). W

An oriented graph is a directed graph H such that, for each pair of
distinct vertices v, w of H, at most one of vw, wov is an edge of H.

TueoreM 5.4. Let H be an oriented graph with vertex set V and edge set
E; let a: E — Z be a function; write m = a(E). If m > 0, then there is an
acyclic subset E* of E with

a(E*) = im + £m*4,

Proof. Extend the domain of a to V XV by writing a(vw) = 0 when-
ever vw & E; for each ordered pair v, w of vertices of H, write

x(w)=a(vw) — a(wv);

for each vertex v of H, let x* denote the vector with components x°(w).
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Applying Lemma 5.2 to the skew-symmetric matrix with columns x?, we find
that

3/4 _
L la>4( ) > 3em)¥ 54

veV veEV

By Lemma 5.3, we have

L([x°(8)[:ScV - {v}) > 2" 25|k,

for all v; now (5.4) guarantees that

Z Z([x”(S)[:SgV— {v}) 22"—3'5(2m)3/4,

veEV

Hence there is a set S such that
Z(|x"(S) |:oe S) > 27 WA/ > Ay
It follows that there is a subset R of V —§ such that
|Z(x”(S): vE R)I;%m‘“’/“.
To put it differently, there are disjoint subsets R, S of V such that
|a(RXS)—a(S X R)|>2&m**%
switching R and S if necessary, we may assume that
a(RXS)—a(SXR)>Zm4 (55)

The rest is routine. Fach linear order < on V defines an acyclic subset
E° of E: set uv € E° if and only if uv € E and u < o. Clearly, there is a pair
of linear orders on V such that, for any pair u, v of distinct vertices, we have

u<v inbothorders ifandonlyif uc R, oveS.

If EY, EJ denote the two acyclic subsets of E defined by these two orders,
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then trivially
a(EQ)+a(E)=a(E)+a(RXS)—a(SXR);

now (5.5) guarantees that at least one of E?, EJ has the property required
of E*, ]

A tournament is a directed graph H such that, for each pair of distinct
vertices v, w of H, precisely one of vw, wov is an edge of H. Spencer (1971)
proved that, for some positive constant ¢, every tournament with n vertices

n .
contains an acyclic set of at least 1 9 )t cn®/? edges. Note that this theorem

is a special case of Theorem 5.4; conversely, our proof of Theorem 5.4 relies
in part on the ideas used by Spencer.

Proof of Theorem 5.1. Spencer (1980) proved that, for some constant ¢
and for all sufficiently large n, there is a tournament in which every acyclic
set of edges has size at most '

n
%(2) +cn®/?,

subsegently, de la Vega (1983) proved that we may set ¢ =1.73. (In fact,
both Spencer and de la Vega proved that a randomly chosen tournament is
very likely to have the property.) Let v be the incidence vector of the edge
set of such a tournament. Writing

n=[pesemrry
we need only show that x() € PW for all j: if j <107%n%2 then
vix( = (g)[é"' 1(3 +38) _1/3] > (g)(é +3.48n‘1/2)’

and so x(V & P,
To show that x € P for all §, we need only verify the assumptions of
Lemma 2.1 with u = 2v and - .

3(3'0j +8)"*(310(j — 1) +8)"°
.

(3 +8)° - (319(j - 1)+8)"*
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Let us note at once that

(319 +8)"° — [31°(j — 1) +8]* > 3%(319j +8) 7

and so
m, < 37%(31% +8)[31°(j — 1) +8] < 375(319j +8)*"*;
hence
L(310'+8)_1/ < -L 1 —1/4 5.6
s\0] 27 (56)

Obviously, u € P. Now consider an arbitrary inequality a’x <b valid over
P NZP and such that a € Z, a"v <m; we only need verify that a"x) <b.
If a”v < 0 then a’x) <0 and we are done as b > 0; if a’v > 0 then

alx < (142 Fm; TY4)aly < Lalv+ L@™v) " <b

by‘(5.6) and Theorem 5.4. [ ]
Finally, let s, ¢t; (i= ., k) be distinct points in V; let v denote the
incidence vector of the set of the k edges s, t;,-and let w denote the

incidence vector of the set of the k(k —1) edges t s; for which i # j. It is
easy to see that the inequality

(v+w) x<k(k—1)+1 (5.7)
is valid over P NZP; this inequality was introduced by Grétschel, Jiinger, and
Reinelt (1985) under the name of “simple kfence inequality”. [Actually,
Grotschel, Jiinger, and Reinelt proved that (5.7) defines a facet of Py
however, this fact is irrelevant to our discussion.] Jinger publicized (but

never published) the conjecture that the depth of (5.7) relative to (5.1) tends
to infinity with k; we are about to prove this conjecture.

Tueorem 5.5. The depth of (5.7) relative to (5.1) is at least log, k —1.
Proof. Writing

D = w4 2-GrDy,
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we need only show that x() € P for all j: if j<log,k — 1 then
(WHv) xD = wlw+2-UDyTy = k(k =1)+2-G* Dk > k(k - 1) + 1,

and so x¥ fails to satisfy (5.7).

To show that x) & P for all j, we need only verify the assumption of
Lemma 2.1 with u = w+ }v and m_ = 2/*% Obviously, u € P. Now consider
an arbitrary inequality a'x < b valid over P NZP and such that a € ZP,
a'v <mj; we need only verify that a”x() < b, If a’v € 0 then let d be the
zero vector; if a’v > 0 then let d be the incidence vector of any single edge
s;t; such that a(s;t;) > 1. In either case, w+d € P NZP, and so

, 1
alx() = gl + '—;aTv <al(w+d) <b,
J

as desired. [ |

The lower bound of Theorem 5.5 can be improved to [log, (k — 1)]; for a
proof, see Hartmann (1988). Staightforward induetion 611 k shows that this
improved bound is best possible.

6. CUTTING-PLANE PROOFS

Arguments of this section rely on the duality theorem of linear prograri-
ming in the following strong form: if a system Ax < b of linear inegiialities in
n variables has a solution and if each of its solutions satisfies a linear
inequality ¢’x < d, then there is a nonnegative vector y with at most n
positive components such that y7A = ¢ and yTb < d. ,

Let m and M be positive integeis: let

alx<h, (i=1,2,....m), (6.1)
aixgh, (i=m+1,m4+2,m+ M) (6:9)

be sequences of linear inequilities in n variables such that a, € Z" whenévei
m<igm+ M; let

wy (m<igm+M, 1<k<i) (6.3)
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be nonnegative numbers such that

i1 i—1
a;= Z wya, and b > [ E wikka for all i.
k=1 k=1

Straightforward induction on i shows that every integer solution of 6.1)
satisfies all the inequalities (6.2). We shall refer to the sequence (6.2), along
with the numbers (6.3), as a cuttingplane proof of a’, , ,;x<b,, . from
(6.1) and say that M is the length of this proof.

Now let P denote the polyhedron in R" defined by (6.1). If there is a
cutting-plane proof of an inequality a’x < b from (6.1), then, as we have just
observed, a’x < b holds for all x in P NZ". The converse is true as soon as P
is rational and P NZ" is nonempty (actually, the second assumption can be
dropped): this is guaranteed by the following theorem in conjunction w1th
Theorem 1.2.

TuEOREM 6.1. Let a,€Z" whenever i=1,2,...,m; let (6.1) have an
integer solution; let a'x < b have depth at most d relatwe to (6.1), and let
a€Z", b €Z. Then there is a cuttingplane proof of a'x <b from (6. 1) of
length at most (n**'—1)/(n—1).

Proof. Let (6.1) satisfy the assumptions of the theorem; let P denote the
polyhedron defined by (6.1). We propose to prove the following statement by
induction on d: if a€ Z", b e Z, andlfa]lxm P@ satisfy aTx <b +1, then
there is a cutting-plane proof of a’x < b from (6.1) of length at most
(n*1=1)/(n—-1).

In case d =0, the desired conclusion follows at once from the duality
theorem. Now let d be a positive integer. Since P is a rational polyhedron,
Theorem 1 of Schrijver (1980) guarantees that P¥) is a rational polyhedron
hence P consists of all solutions of some system

ix<h (i=1,2,...,@)
such that, for all i=1,2,...,7m, WehaveaEZ bEZ and a5x < b, +1
whenever x &€ P(d b, By the induction hypothesm there is a cutting- plane
proof of each a%x < b, from (6.1) of length at most (n?—1)/(n—1); by the
duality theorem, there are a set I of at most n subscripts ¢ and a set of
positive numbers y; (i € I) such that

2. yd;=a, Y ub<b+1.

iel iel
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It follows that there is a cutting-plane proof of a’x < b from (6.1) of length at
most 1+ n(n? —1)/(n — 1), which is the desired conclusion. - |

Finally, we are ready to relate rank to computational complexity. For
example, let f(n) denote the smallest ¢ such that, for every graph G with n
vertices, there is a cutting-plane proof of €’x < a(G) from (3.1) of length at
most ¢. There are reasons to conjecture that f(n) grows faster than every
polynomial in n. (Analogous conjectures can be made about the set-covering
problem, the set-partitioning problem, the knapsack problem, the bipartite-
subgraph problem, the maximum-cut problem, and the acyclic-subdigraph
problem.) These reasons stem from the theory of NP-completeness, and we
shall not elaborate on them; the interested reader is referred to Cook,
Coullard, and Turan (1987) or to Chapter 23 of Schrijver (1986).

The conjecture that f(n) grows faster than every polynomial in n implies
(by virtue of Theorem 6.1) that the depth of e'x < a(G) relative to (3.1)
cannot be bounded from above by any constant; from this point of view,
Theorem 3.2 can be seen as evidence supporting the conjecture. (Analogous
comments can be made on Theorems 3.4, 3.5, 3.6, 4.1, 4.3, and 5.1)
However, the strength of this evidence is questionable: inequalities of large
depth may admit short cutting-plane proofs. For example, there are arbitrar-
ily large graphs G with n vertices and with a(G) = 2 such that the depth of
e'x < 2 relative to (3.1) exceeds :Inn and yet there is a cutting-plane proof

of e'x < 2 from (3.1) of length at most (g) the first property is guaranteed

by Theorem 3.3, and the second property is guaranteed by the following
result.

TuroreM 6.2. - For every graph G with n vertices, there is a cutting-plane
. n
proof of €'x < a(G) from (3.1) of length at most (a(G) )

Proof. For every subset W of V, let a(W) denote the largest number of
pairwise nonadjacent vertices in W. We propose to prove by induction on
|W| that there is a cutting-plane proof of

Y (x,;0eEW)<a(W) (6.4)

‘ w
from (3.1) of length at most ( M

a(W) )’

For this purpose, we may assume that 1 < a(W) < |W|, for otherwise the
desired conclusion is trivial. Since a( W) < |W|, there is a vertex w in W such
that (W — {w}) = a(W). Write W; = W — {w}, and let W, denote the set
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of all vertices in W, are not adjacent to w. Since a(Wy) < a(W) — 1, there is
a set W, such that W, € W, c W, and a«(W,) = (W) — 1. By the induction
hypothesis, there are a cutting-plane proof of

Y (x,:0eW,) <a(W) | (6.5)

Wil

from (3.1) of length at most (a (W)

) and a cutting-plane proof of

Y(x,:veEW) <a(W)-1 (6.6)

from (3.1) of length at most

i)

Note that

(«J:xvalf|>)+(a(v|;?l—i)<(|XV(;>1)+(a|(VvVVI>_—11)=(a|(“v9>)’

since |W,|<|W|—1 and a«(W)>1; note also that the maximum of
2(x,: v € W) subject to (3.1), (6.5), and (6.6) is strictly less than a(W)+1.
Hence the desired cutting-plane proof of (6.4) from (3.1) can be obtained by
concatenating a cutting-plane proof of (6.5) from (3.1), a cutting-plane proof
of (6.6) from (3.1), and the inequality (6.4). |

7. TWO MORE LEMMAS

If every cutting-plane proof of ¢x <d from Ax <b must use many
inequalities from Ax <b, then it must be long; in that case, Theorem 6.1
guarantees that the depth of ¢x <d relative to Ax <b is large. Our next
lemma refines this observation. [The lemma deals just with cutting-plane
proofs, but the argument applies as well to more general proof systems; for

_example, see Cook, Kannan, and Schrijver (1986).]
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LemMa 7.1. Let
ax+bly<e (i=12,...,m) (7.1)

be a system of linear inequalities such that a,€Z?, b, €79, c,€Z for all i;
let

Ax+b'y<c (7.2)

be a linear inequality such that a€Z?, b €Z9, c € Z. Let y* be a vector in
Z.9 such that the system ,

adx<c—-bly* (i=L2,...,m) (7.3)

has an integer solution and such that, for at least t distinct choices of the
subscript k, the system

dx<c—bly* (i=12,...,m; i+k), a'x>c—by*

has an integer solution. Then every cutting-plane proof of (1.2) from (7.1)
has length at least (t —1)/(p — 1), and the depth of (7.2) relative to (7.1) is
at least (logt/logp)—1.

Proof. First, we propose to show that every cutting-plane proof of
a’x<c—bly* (7.4)

from (7.3) has length at least (¢ —1)/(p — 1) and that the depth of (7.4)
relative to (7.3) is at least (log¢/logp) — 1.

For this purpose, consider the shortest cutting-plane proof of (7.4) from
(7.3): this proof consists of a sequence of M linear inequalities along with
certain numbers w; (m<i<m+M, 1<k<i). Let N denote the total
number of the numbers w,;, that are positive. On the one hand, for each k
such that m < k <m + M there must be at least one i such that k <i<m +
M and w, >0 (else the inequality subscripted by k could be dropped,
contradicting the minimality of M); by assumption, w;, >0 for at least ¢
subscripts k with k<m; hence N> M —1+¢. On the other hand, the
duality theorem (in the strong form quoted at the beginning of Section 6)
allows us to assume that, for each i such that m <i<m + M, there are at
most p positive numbers w,;; hence N < pM. Comparing the two bounds on
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N, we conclude that M > (¢ —1)/(p — 1). Next, if d denotes the depth of
(7.4) relative to (7.3), then Theorem 6.1 yields

t—1 pd+1_1
——<M<—,
-1 p—1

and so d > (logt/log p) — 1.

To complete the proof of the lemma, note that every cutting-plane proof
of (7.2) from (7.1) reduces to a cutting-plane proof of (7.4) from (7.3): each
inequality aix+b]y <c; reduces to alx <, —bjy* and the numbers w,
remain unchanged. In addition, let P denote the polyhedron in R?*+9 defined
by (7.1), and let P, denote the polyhedron in R” defined by (7.3); straightfor-
ward induction on j shows that

A {x €RP?: [x,y*]T EP(j)} .

Now the desired conclusion follows, n

Lemma 7.2, If S denotes the set of all vectors [y, ys,...,y;] such that

Yo+ X (1-y)>L  whenever Ac {1,2,...,k},
i€A igA :

O0<y <l whenever i=1,2,... k

1

then le € S¢—D),

Proof. - Let F; denote the set of all vectors y of length k such that j
components of y equal } and each of the remaining k — j components is O or
1. We propose to prove by induction on j that

F,c8U=b | (75)

forall j=1,2,..., k. The case of j =1 1is trivial; now assume that (7.5) holds
for some positive integer j such that j <k; let y* be an arbitrary vector in
F,,; we only need prove that y*€ S, For this purpose, consider an

i .
arbitrary inequality a’y <b+1 valid over SY~D and such that a Z*,
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b e Z; our task reduces to proving that a”y* <b. Since y* belongs to the
convex hull of F;, the induction hypothesis guarantees that y*€SY~", and
so a’y* < b + 1. Hence we may assume that al'y* is not an integer (otherwise
we are done). This assumption implies that y; =4 and a;+#0 for some i.
Replacing the ith component of y* by 0, we obtain a vector y’; replacing the
ith component by 1, we obtain a vector y”. Note that max(a"y’, adly) = aly*+
1 since y’, y” € F;, the induction hypothesis guarantees that y’, y” € SU~9,
and so max(a"y’,a’y”) < b + 1. Hence a"y* < b + }; since 2a"y* is an integer,
we conclude that a"y* < b. ]

8. THE TRAVELING-SALESMAN PROBLEM

As in Section 5, let G denote a complete directed graph with vertex set V
and edge set D; call a subset W of V proper it W2, W+V; let P denote
the polyhedron in RP defined by ' :

x({v}x(V-{0}))=1 forallvinV,
x((V-{0v})x {v})=1 forallvinV,

x[(W x(V=W))U((V-W)xW)]>2  forall proper (8.1)
" subsets Wof V;
0<x,x1 forall hin D.

The problem of minimizing a linear function over P N Z7 is known as the
asymmetric traveling-salesman problem, and P, is called the asymmetric
traveling-salesman polytope. (These terms are explained by observing that an
integer vector belongs to P if and only if it is the incidence vector of a
directed Hamiltonian circuit in G.) The asymmetric traveling-salesman poly-
tope has been studied by Grotschel and Padberg (1975), Gritschel (1977),
Grotschel and Wakabayashi (1981a, 1981b), and Balas (1987).

We shall prove that the rank of P is at least {n/8| by exhibiting
(whenever n > 8) a linear inequality valid over P, whose depth relative to P
is at least | n/8|. To describe the inequality, write k = |n/8| and r =n — 8k;
label the vertices in V as

b,

[24

a

c;.d;. e, £, 8 M (i=L2,....k), w; (j=L2,....7);

i
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set wy,=¢; and w,,;=a,. Let D, , denote the set consisting of the edges

a;b;,a;h;, g f;, g;h;, bic;, dic;, f;ei"diei’ b;f., £b; (i=12,..., k);
let D, denote the set consisting of all the edges

Chd, (i=12,....,k), cgiiea,, (i=12,..k=1),
k8 wjwyyy (j=0,1,...,7).

For illustration with n = 27, see Figure 1.

It is easy to check that the directed graph with vertex set V and edge set
D, ;U D, contains no directed Hamiltonian circuit; to put it differently, the
inequality

x(D;,UD;)<n-1 ) (8.2)

is valid over P NZP,

Fic. 1. Double links indicate edges in D,; single links indicate edges in D, ,,.
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TueoreM 8.1.  The depth of (8.2) relative to (8.1) is at least |n /8|
Furthermore, every cutting-plane proof of (8.2) from (8.1) has length at least
27/8/3n.

Before proving this thoerem, we shall establish an auxiliary result. Define
a vector x* in R” by setting '

1 if heD,
x,;".: % if hED]./2
0 if h&DND,,

Lemma 82. If P denotes the polyhedron defined by (8.1), then
x* e pk-D,

Proof. First, let us define a certain mapping f:R¥ > RP. For this
purpose, write :

A= {aibi’ b,f, fe;, g:h;.dc,},
B,= {a;h, die;,g.f, fbi.be,}.

For each y in R, write Y =¥ ¥s-.., 4 )7 and let f(y) denote the vector x
defined by

1 if heD,
_Ju it heAi,
"“\1-y, i hes,
0 f h&D,UD,,,

Note that x* = f(Le). Hence with S as in Lemma 7.2, we need only show that
f(s)cp, , (8.3)

for then the desired conclusion follows from Lemma 2.2 (with T= P) and
Lemma 7.2. To prove (8.3), consider an arbitrary y in S. We need only show
that f(y) in place of x satisfies

x[(WX(V-W)u((V-W)xW)] > 2 (8.4)
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for all proper subsets W of V: it is easy to see that f(y) in place of x satisfies
all the remaining constraints in (8.1) simply because 0 < y<e.

For each subset B of {1,2,..., k }, let y5 denote the incidence vector of B
and define

WB=( U {gi’hi’di’ci})u( U {g: fi.bi, ¢} ). (8.5)

ieB i&€B

Observe that f(yg) is the incidence vector of a subgraph of G that consists of
two directed circuits, one spanning Wy and the other spanning V — W,
Hence f(yg) in place of x satisfies all the constraints (8.4) except for

x[(Ws X (V= W3)) U((V = W,) X Wy)] > 2. (8.6)

Since y is a convex combination of zero-one vectors, and since f is a linear
function, we conclude that f(y) in place of x satisfies all the constraints (8.4
except possibly some of the constraints (8.6). Now we only need observe that
the left-hand side of (8.6) with f(y) in place of x is at least

4) (1-y)+4 ¥ Y;

i€eB i¢B

which is at least 2, asy € S. n

Proof of Theorem 8.1. 'The first assertion follows at once from Lemma
8.2; to prove the second assertion, we shall use Lemma 7.1. For each subset
B of {1,2,...,k}, let y; denote the incidence vector of B and define Wz by
(8.5). As in the proof of Lemma 8.2, observe that f(yg) in place of x satisfies
all the constraints (8.1) except for (8.6).

Hence Lemma 7.1 with ¢ = 2% and p =10k +1 [counting the 10k edges
in D, plus an additional edge, say d, f;, to assure solvability of (7.3) in
integers] guarantees that every cutting-plane proof of (8.2) from (8.1) has
length at least (2% — 1) /10k. ‘ n

Next, let G denote a complete undirected graph with vertex set V and
edge-set E; let Q denote the polyhedron in RE defined by

Z(xh':veh)h=2 forall v inV,

2 (x,:[hNW|=1)>2 for all proper subsets W of V., (8.7)

0<x,<1 forall hinE.
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The problem of minimizing a linear function over Q NZ* is known. as the
travelmg—salesman prablem and Q is called the traveling-salesman polytope.
(These terms are explained by observing that an integer vector belongs to Q
if and only if it is the incidence vector of a Hamiltonian circuit in G.) The
traveling-salesman polytope has been studied by Dantzig, Fulkerson, and
Johnson (1954), Chvatal (1973a), Maurras (1975), Grotschel and Padberg
(1979a, 1979b, 1985), Grotschel and Pulleyblank (1986), and others.

In particular, Chvatal (1973a) conjectured that the rank of Q tends to
infinity with n. We shall prove this conjecture by exhibiting a linear inequal-
ity valid over Q; whose depth relative to Q is at least | n/8|. To describe this
inequality, let D, , and D, be as in (8.2); write

E,={{v,w}:(v,w)€D,or (w,v) €D, or both}.

It is easy to check that no Hamiltonian circuit in the graph with vertex set V
and edge set E, , U E, includes all the edges of Ey; to put it differently; the
inequality

x(E,5) +2x(E;) < (n— 1)+ |E] : (8.8)

is valid over QNZE. [This inequality is closely related to a sequence
G,, Gy, Gs,... of hypo-Hamiltonian graphs constructed by Chvatal (1973c);
there, G, has 8k +2 vertices, If V and E* denote the vertex set and the edge
set, respectively, of G, and if Q is defined by (8.7), then x(E) <n—11is
valid over Q NZZE, and its depth relative to (8.7) is at least k. The first of
these assertions amounts to saying that G, is not Hamiltonian; the second
follows from a variation on the proof of Theorem 8.3.]

TueoreM 8.3. The depth of (8.8) relative to (8.7) is at least |n/8)
Furthermore, every cutting-plane proof of (8.8) from (8.7) has length at least
2"/8/3n. :

Proof. Let D and P be as in the beginning of this section. For each x in
R, let f(x) denote the vector y in R® defined by

Y(u,0) = Fu,0) T X(o,u)

With k = |n /8] and x* as in Lemma 8.2, we have f(x*) € Q*~D by Lemma
2.2 (with P in place of S and Q in place of T') and Lemma 8.2. Since f(x*)
fails to satisfy (8.8), the first assertion follows. '
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To prove the second assertion, define Wy by (8.5) and observe that the
graph with vertex set V and edge set E, , U E, has a subgraph consisting of
two circuits, one spanning Wy and the other spanning V —Wj. This sub-
graph includes all the edges of E,, and the incidence vector of its edge set
satisfies all the constraints (8.7) except for

2 (xRN Wp|=1)>2

Hence Lemma 7.1 with ¢ =2F and p =9k +1 [counting the 9% edges in
E,,, plus an additional edge, say d,f;, to assure solvability of (7.3) in
integers] guarantees that every cutting-plane proof of (8.8) from (8.7) has
length at least (2% —1)/9k. , |

A large class of linear inequalities 0\"er Q NZE has been introduced by
Grotschel and Pulleyblank (1986); we are going to describe this class now.
For each subset W of V, set

E(W)={h:hcW, |h|=2}.
Let Hy, H,,...,H, and T, T,,..., T, be nonempty subsets of W; set
V¥*=H,UH,U---UH,UT,UT,U --- UT,,
E*=E(H,)UE(H,)U - -+ UE(H,)U E(T,) UE(T,) U - -- U E(T,).

Sets H; will be called handles, and sets T; will be called teeth. The graph G*
with vertex set V* and edge set E* is called a clique tree if

(1) the handles are pairwise disjoint and the teeth are pairwise disjoint,

(2) for each handle, the number of teeth it intersects is odd and at least
three,

(3) each tooth includes at least two vertices, at most n — 2 vertices, and-
at least one vertex that belongs to no handle,

(4) G* is connected,

(5) if a handle H, and a tooth T; mtersect then H; N T; is a cutset of G*.

Finally, let ¢; denote the number of handles that intersect T;. Gritschel and
Pulleyblank proved that the inequality

¥ x(E()+ ¥ x(E(T)) < ,>;:1|H.~|+ é(w f—t,-);—s“;—i (8.9)

i=1 j=1
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is valid over ONZE [In fact, they proved that (8.9) defines a facet of QO
however, this fact is irrelevant to our discussion.] Inequalities (8.9) are called
clique-tree inequalities; by the clique-tree polytope, we sha] mean the
polytope in RE defined by all the clique-tree inequalities and by the con-
straints

E(xh:th)=2 forall v inv, B
(8.10)

Os'xhgl foraHhinE.‘

It is easy to see that the polytope in RE defined by (8.10) and by

x(E(W)) < IW|-1  foran subsets W of V such that 2<|Wi<n—g
(8.11)

Furthemore, every cuttingplane proof of (8.8) Jrom the clique-tree polytope
has length at loggs n=3gn/12 '

Proof. Let F+ denote the family of 4] 9% sets W, defined by (8.5). In
the proof of Theorem 8.3, we observed that eévery cutting-plane proof of (8.8)
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We propose to show that

every cliquetree inequality admits a cutting-plane proof
from (8.7) that uses at most n-2%/° of the inequalities  (8.13)
(8.12).

As soon as (8.13) is proved, the rest follows easily: by (8.13), every cutting-
plane proof of (8.8) from the clique-tree polytope that uses M clique-tree
inequalities can be converted into a cutting-plane proof of (8.8) from (8.7)
that uses at most Mn -22%/3 of the inequalities (8.12). Since all 2* inequalities
must be used, we must have M > n~'2¥/3. Now we only need apply Lemma
7.1 with t =n~12%3 and p =n(n-1)/2.

Our proof of (8.13) begins with two preliminary observations. F irst, let T
be an arbitrary subset of V that contains at least one member of F*. By
definition,

g,.¢GET foral i=1,2,...,k,
and there is a subset S of {1,2,...,k} such that
fi>b;€T whenever i€S and h,,d,€T whenever i¢S.
If R denotes the set of subscripts i such that
hi,d, €T, i€S or f,b,eT, i&S§,

that T contains precisely 2! members of F*. Since |R|< 3(IT|— 4k), we
conclude that

every set of size ¢ contains at most 2¢~*/2 members of F*. (8.14)

Next, consider a clique tree with handles H), H,,...,H, and teeth
T,,T,,...,T,; we wish to point out that a large tooth cannot intersect too
many handles. For this purpose, fix a subscript §» and let I' denote the set of
all subscripts i such that H,N T,+@. By definition, each H, meets at least
three teeth; letting { run through I, we obtain 2|I| teeth distinct from Tj;
since every nonempty intersection of a handle and a tooth is a cutset of the
clique tree, these 2|I|teeth are pairwise distinct. Since every tooth includes at
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least two nodes and since every two teeth are disjoint, we conclude  that
4|Ijgn~ |Tj|. To put it differently, - Co

every tooth of size ¢ meets at most (n —¢)/4 handles. (8.15)

Finally, let F denote the family of all nonempty sets that have either the
form H,NT; for some subscripts i and j or the form T; — U(H;:i € J) for
some subscript j and some (possibly empty) family J of subscripts. In proving

their Theorem 3.7, Grotschel and Pulleyblank (1986) have shown that the
clique-tree inequality (8.9) has a cutting-plane proof from the system

Y (x,:v€h)=2 foraloinV,
Y (xp:lhnW|=1)>2  forall Win F,
O0<x, <1 forall hin E.
This fact reduces our task of proving (8.13) to the task of proving that '
|F N F*|<n-2%/5 - (8.16)

To prove (8.16), note that.each member of F is a subset of some tooth and
that each member of F* includes g,. Since every two _teeth arc disjulut, We
conclude that there is a single tooth, say T}, that contains all the members of

FnrF* If |T;<16k/3, then (8.14) guarantees that
|F N F*|< 2%/3
i |T)|> 16k /3, then (8.15) guarantees that
- 2k 7
|F A F*| < — + — +27/%.2%/3;
3 4
in either case, (8.16) holds with room to spare. : ]

The last theorem of this section bears on a rémark made by Grotschel and
Pulleyblank (1986) at the end of their paper: '

Clique tree inequalities have several interesting properties with respect to the rank
function defined by Chvatal (1973b). For example, a clique tree with more than one
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handle is of rank at least two, and it appears that as the number of handles increases,
50 too does the rank although not linearly. This will be treated in a subsequent paper.

TrEOREM 8.5. For every positive integer k there is g clique tree G* with
Sk+1 vertices such that, for every complete undirected graph G that
*

relative to (8.7) is at least [(k-1)/@4+ 2logy k)] — 1 and every cuttingplane
proof of (8.9) from (8.7) has length at least 2"/401;%

Proof. The vertices of G* are
a;,b;,¢,,d,, e, (i=1,2,...,k) and  f,
its handles are
{bi.c,.d,} (i=l,2,...,k),
and its teeth are |
{a,.,b,.},{d,.,el.} (i=1,2,...,k) and {01,02,...,ck,f}.

For illustration with k = 5, see Figure 2.

Now let G be any complete undirected graph whose vertex set v
includes all the vertices of G*, énumerate all the vertices of G-G* as
W1, Wy, ..., w,; let E; denote the set of edges g :

CKOL, WyWy,..., w,_ 1w, w,a,
(so that E, =2 in case r = 0); let E, ,, denote the set of all the edges of ¢
that have both endpoints in G¥. For each subset S of {1,2,..., k} such that
IS]> 2, set A

W= {f}n{csics)

and observe that G has a subgraph F; with the following properties:

(1) Fg consists of two circuits, one spanning Wy and the other spanning
VoW, : . 3

(@) F; uses edges a;b;,bd,,d.e;, whenever ; S, and it uses edges
ab,bc,cd,, de; whenever i ¢ §, é

(3 Fg uses only edges of E, s2Y Ey, and it uses all the edges of PO

\
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Fre. 2.

Note that F; and G* share 4k +1 edges; note also- that the right-hand
side of (8.9) is 4k. Hence Lemma 7.1 with

t=2"—(k+1) and p= (5k2-l=1)'

guarantees the desired conclusion: observe that ¢ > 22% +1 whenever k > 3
and that p <15k? for all k. ' ‘ ‘ -

9. AN UPPER BOUND ON DEPTH

We have already noted that the lower bound of Theorem 4.1 (and hence
also the lower bound of Theorem 4.3) is best possible within a factor of two.
To show that a few other lower bounds derived earlier in this paper are best
possible within a constant factor, we only need appeal to the following
theorem. : ' : :
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TreoREM 9.1.  Let A be a matrix of size m X n with all entries nonnega-
tive, and let bER™, c €2, d€Z . If d <c'e and if all integer solutions

x of
Ax<b, O<x<e (9.1)

satisfy ¢'x < d, then the depth of ¢'x < d relative to (9.1) is at most c’e —d
if c’e > 2d + 1, then the upper bound can be replaced by

>

d+1 2d +1)1 ce
+1+]( +)n2d+1.

Proof. First, we propose to show that, with P defined by (9.1),

for each v in Z" such that v<ec and v'e <d+1, the (92)
inequality vTx < d is valid over P’. ‘
If v?e < d, then the conclusion is immediate (since x < e whenever x € P);
hence we may assume that v’e = d + 1. Now we only need show that

max{vx:x P} <vle.

If this inequality fails then P must include a point x* such that x F=1
whenever v, > 1. Let & be the zero-one vector of length n defined by ;=i
and only if v, > 1. Since all entries of A are nonnegative and since ¥ < x*, we
have & € P, and so ¢'% < d by assumption. However, '8 > v = vie =d +1,
a contradiction.

If d =0, then (9.2) implies that ¢"x < 0 is valid over P’; hence we may
assume that d > 1. Now let us define a sequence ny,n,, n,,... of integers by
setting ny=d +1 and letting each n, with k>1 be the largest integer
smaller than (d +1)n,_, /d. We propose to show that

for each v in Z? such that v<c and vie <n, |, the 9.3)
inequality v7x < d is valid over P®), ’

For this purpose, we shall use induction on k; note that (9.3) with k=1 is
just (9.2). Now assume that (9.3) holds for some positive integer k, and
consider an arbitrary v in Z" such that v<cand vie<n & we have to.show
that vIx <d holds over P**D: If v%e <n,_,, then (9.3) guarantees that
v"x < d holds over P®); hence we may assume that v’e >n,_,. Let S consist
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of all ordered pairs i, j of integers such that 1< j<n and 1 <i<o; Next,
let x* be an arbitrary but fixed vector in P®); write y,;=x} whenever
ij €S. For each subset T of S such that |T|=n,_,, the assumption (9.3)
guarantees that

Z Yi; = Z l{i:ijeT}lx]’.*‘gd;

ijeT j=1

now symmetry irﬁpﬁes that

IS
X yide' .
ijes o M-
Hence
: IS| g
vTx*= Zytjgd- Sd' <d+1.
ijes g1 g1

Since x* was an arbitrary vector in P%®, we conclude that
max{v'x:x € PP} <d +1,

and so v7x < d holds over P**D.

Now we only need prove that the smallest k With n,_,>c’e satisfies
k <c%e —d and, in case c’e > 2d +1,

k d+1+'2d+'1\]i1”£'c"VTi(.é

For this purpose, we fitst use inchiction on k to show that n;>d+1+ k for
all k. Then, observing that

(ed+1)(1 1) d
( ”(*2:1)

R k-1-d
+l<—— —1
C Al<— (2d+1)(1+ 2d) _
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whenever k > d, we use further induction on k to show that

1 \k-d ‘
nk>(2d+1)(1+—-—) foral k=d,d+1,d+2,....

2d
Since
1 1
1+ ﬁ > exp MT , .
the desired conclusion follows. [ ]

By Theorem 9.1, the lower bound of Theorem 3.2 cannot be improved by
more than a constant factor, and the lower bound of Theorem 3.3 cannot be
improved to more than 5Inn. Furthermore, Theorem 9.1 guarantees that the
depth of (8.2) relative to the polyhedron in R” defined by

x({o}x(V={v})) <1 forall o inV,

x((V-{v})x{v})<1 forall v inV,
,. (94)

(WXW)g|W|-1 for all proper subsets W of v,

O0<x,<1 forall h in D

1s at most (5n/8)+1, and that the depth of (8.8) relative to the polyhedron
in RE defined by

Z(xh:veh)§2 forall vinV,
x(W)<|W|-1 forall proper subsets W of V,  (9.5)
O0<x, <1 forallhin E

is at most (n,/2)+ 1. It follows that the lower bound of Theorem 8.1 cannot
be improved to more than (5n,/8)+ 1 [since all solutions of (8.1) are solutions
of (9.4)] and that the lower bound of Theorem 8.3 cannot be improved to
more than (n/2)+1 [since all solutions of (8.7) are solutions of (9.5)].
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