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Following Chvfital, cutting planes may be viewed as a proof system for establishing that a given 
system of linear inequalities has no integral solution. We show that such proofs may be carried 
out in polynomial workspace. 
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The integer programming problem is to decide if a given system of linear inequalities 
has an integral solution. Recent progress on this algorithmic question has involved 
techniques from the geometry of numbers, in the celebrated paper  of  Lenstra [20] 

and in results of  Babai [1], Gr6tschel, Lovfisz and Schrijver [14] and Kannan [16]. 
One of the things that is apparent  in these results is the importance of the fact that 
if a polyhedron contains no integral vectors then there must be some direction in 
which it is not very 'wide'.  This idea has been developed more fully by Kannan 

and Lovfisz [17], who obtained a theorem which provides much more information 
on the appearance of such polyhedra. These 'width'  results have consequences for 
the construction and analysis of  p roof  systems for verifying that a polyhedron 
contains no integral vectors. Whereas the integer programming problem is directly 
related to the question of the equality of  P and NP, the existence of a polynomial-  
length proof  system for integer programming is equivalent to NP = co-NP. 

One of the fundamental  concepts in the theory of integer programming is that of  
cutting planes, going back to the work of Dantzig, Fulkerson and Johnson [11] and 
Gomory  [12]. On the practical side, cutting-plane techniques are the basis of  very 

successful algorithms for the solution of large-scale combinatorial  and 0-1 program- 
ming problems in Crowder, Johnson and Padberg [9], Crowder and Padberg [10], 
Gr/Stschel, Jiinger and Reinelt [13], Padberg, van Roy and Wolsey [21] and else- 
where. On the theoretical side, Chvfital [3, 4, 5, 6] has shown that the notion of 
cutting planes leads to many nice results and proofs in combinatorics. We will adopt  

Chvfital's point of  view and consider cutting planes as a proof  system, in our case 
for verifying that polyhedra contain no integral vectors. 

Perhaps the best known of all proof  systems is the resolution method for proving 
the unsatisfiability of  formulas in the proposit ional  calculus. Haken [15] settled a 
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long-standing open problem by showing that resolution is nonpolynomial.  It is easy 
to see that proving the unsatisfiability of a formula is a special case of proving that 
a polyhedron contains no integral vectors, and, using Haken 's  result, it can be shown 
that cutting planes are a strictly more powerful proof  system than the resolution 
system (see [7] for a treatment of  this and the relationship of cutting planes and 

extended resolution). 
To define Chv~ital's [5] concept of  a cutting-plane proof, consider a system of 

linear inequalities 

aix<~bi ( i =  1 , . . . ,  k). (1) 

I f  we have nonnegative numbers Y l , . . . ,  Yk such that y l a l + ' "  "+ykak is integral, 
then every integral solution of (1) satisfies the inequality 

(yla~ +" • • + ykak)X <~ Y (2) 

for any number  y which is greater than or equal to [y~bl +" • • +ykbkJ (the number 
y l b ~ + ' "  • +ykbk rounded down to the nearest integer). We say that the inequality 
(2) is derived from (1) using the numbers y l , . . . ,  Yk. A cutt ing-plane p r o o f  of the 
fact that the linear system (1) has no integral solution is a list of inequalities 

ak+iX<~ bk+i ( i =  1 , . . . ,  M) ,  together with nonnegative numbers Y!i ( i =  1 , . . . ,  M, 
j = 1 , . . . ,  k +  i - 1), such that for each i the inequality ak+~x <~ bk+~ is derived from 
the inequalities ajx<~ b~ ( j  = 1 , . . . ,  k +  i - 1) using the numbers Y!i (J = 1 , . . . ,  k +  i - 
1) and where the last inequality in the sequence is 0x ~<-1. Results of Chvfital [3] 
and Schrijver [24] imply that a system of rational linear inequalities has no integral 
solution if and only if this fact has a cutting-plane proof. 

The length of a cutting-plane proof  is the number,  M, of derived inequalities. 

Cook, Coullard, and Turfin [7] have shown that results on the 'width'  of polyhedra 
imply that if a rational linear system has no integral solution then there exists a 
cutting-plane proof  of  this with length bounded above by a function depending 
only on the number  of  variables in the system. A consequence of this is that in fixed 
dimension, the total number  of binary digits needed to write down a cutting-plane 
proof  that a rational system A x  ~ b has no integral solution can be bounded above 
by a polynomial  function of the size, in binary notation, of A x  <~ b (see [2, 7]). 

Unfortunately, the bound on the length of the cutting-plane proofs is necessarily 
exponential in the number  of variables, so for varying dimension we have no 
guarantee that we can write down our cutting-plane proof  in polynomial  space. 
(Again, this is possible if and only if N P =  co-NP.) Notice, however, that during 
the course of a proof  it may happen that some of the derived inequalities are no 
longer needed and so could be removed from our workspace. Thus the amount of 
space we need in order to carry out a proof  may be considerably less than the 

amount  of  space it would take to write down the entire list of derived inequalities. 

So perhaps we can still bound the amount  of  workspace we need by a polynomial 
function of the size of  A x  <~ b. 
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A notion of the amount of space required by general proof  systems was developed 
by Kozen [18, 19]. To specialise his definition to cutting planes we will view our 
proofs as certain acyclic directed graphs, as suggested by Chv~tal [5]. Suppose that 
a k + i x ~ b k +  i ( i = I , . . . , M ) ,  together with nonnegative y~j ( i = I , . . . , M ,  j =  
1 , . . . ,  k +  i -  1), is a cutting-plane proof  of  the fact that aix ~ bi (i = 1 , . . . ,  k)  has 
no integral solution. An associated directed graph has nodes 1, 2 , . . . ,  k +  M and a 
directed edge from node i to node j if and only if the inequality aix ~ bi is used in 
the derivation of ajx ~ b~. (By 'used' we mean that a positive multiple of  the inequality 
aix ~ bi is taken in the derivation of ajx ~ bj.) So to derive inequality ajx ~ b~, we 
only need to know the inequalities corresponding to the immediate predecessors of 
n o d e j  in our directed graph. Thus, once we have reached node j, the only previously 
derived inequalities we need to remember are those for which there is a directed 
edge going from it to a node greater than j. So the greatest number of  inequalities 
which must be stored during the proof  is the maximum number, over all nodes k + i 
( i =  1 , . . . ,  M),  of directed edges going from nodes { 1 , . . . ,  k + i }  to nodes { k + i +  
1, . . . ,  k + M}. As our bound on the space requirement of the proof  we take this 
number multiplied by the maximum size of an inequality used in the proof. (We 
have not considered the numbers y!~ in calculating our bound, since, using linear 
programming results, these can always be chosen to be of size polynomial in the 
size of the inequalities used in the derivation and the size of the inequality to be 
derived; see, for example, [23].) With this definition, we will show that there exist 
cutting-plane proofs with length depending only on the dimension and which can 
be carried out in polynomial workspace, that is, in an amount of  workspace bounded 
above by a polynomial function of the size of  A x  ~ b. We refer the reader to the 
book of Schrijver [23] for results in the theory of polyhedra and integer programming 
which are used in the proof. 

Theorem 1. Let A be a rational m × n matrix and b a rational m × 1 vector such that 
A x ~  b has no integral solution. Then there exists a cutting-plane proo f  o f  O x ~ - 1  
f rom A x  ~ b o f  O(n 3n) length which can be carried out in polynomial workspace. 

The proof  of this result will involve an inductive argument, making use of the 
following lemma (see [22]) which allows one to 'rotate' a cutting plane for a face 
of a polyhedron so that it is also a cutting plane for the polyhedron itself. 

Lemma 2. Suppose wx ~ c~ is derivable f rom the linear system ( A x  ~ b, Cx  = d ), where 
C, d, w and a are integral, and that the system has a solution x with wx > a - 1. Then 

there exists an inequality w 'x  ~ a '  that is derivable f rom ( A x  ~ b, Cx  ~ d) such that: 

(i) { x : A x < ~ b ,  C x = d , w ' x < ~ a ' } ~ _ { x : A x ~ b ,  C x = d ,  wx<~a}; 

(ii) {x: ax<~b,  C x = d ,  w ' x = a ' ) = { x :  A x ~ b ,  C x = d ,  w x = a } .  

Furthermore, letting or(A, b, C, d)  denote the greatest absolute value amongst  the 

entries o f  A,  b, C and d, the absolute value o f  each coefficient o f  w'x<~ a '  can be 
bounded above by mr(A,  b, C, d).  
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Proof.  By Cara theodory ' s  theorem and the definition of  a derivation, there exist 

vectors u and v with u>!0, a A + v C  = w, and [ u b + v d J  = a, such that  at most  n 
componen ts  o f  u and v are nonzero.  For  each inequali ty a~x <- bi let 

{u~ - 1  if u~ is a positive integer, 

zii= Lug]  otherwise, 

and for each equat ion c~x = d~ let 

~, = Lv, J. 
N o w  let 

w'= w - O A -  OC = (u - O)A+ (v - O)C, 

a ' =  a - O b - ~ S d  = [ ( u - O ) b + ( v - ~ ) d J .  

We claim that w'x<~ a'  is the desired inequality. 

Firstly, since u - ~i and v - ~ are nonnegat ive and w' is integral, w'x<~ a'  may be 
derived f rom (Ax  <~ b, Cx <~ d). Secondly,  since each componen t  of  u - Li and v - z5 

is at most  1, the absolute value o f  each coefficient in w'x <~ a' is at most  no-(A, b, C, d). 

Thirdly, (i) follows f rom the fact that  wx <~ a can be obtained from w'x <~ a' by 

adding nonnegat ive multiples o f  inequalities f rom A x  <~ b and multiples o f  equations 

f rom Cx = d. Finally, (ii) follows in the same way, using the fact that if ui > 0, then 

aix <~ bi may be replaced by agx = bi in both sides o f  (ii) without altering the solution 

sets (since ui-~i~ is also positive). []  

To obtain the O(n 3n) b o u n d  on the length o f  the cutt ing-plane proofs,  we will 

use the fol lowing 'width '  result of  Kannan  and Lovfisz [17]. 

Theorem 3. For any rational polyhedron P o f  dimension n that contains no integral 

vectors, there exists an integral vector w ~ 0 such that 

max{wx: x c P} - min{wx: x c P }  < ~bn 2 

where ~b is a positive constant, independent o f  P and n. [] 

Proof of Theorem 1. As we may scale the inequalities if necessary, we may assume 

A and b are integral. We may also assume n is at least 2, since the result is trivial 

otherwise. The theorem will be proven by showing that  the fol lowing result holds 
for each k~  {0, 1 , . . . ,  n}: 

(A) Let C be a k ×  n integral matrix o f  rank k, let d be a k x 1 integral vector 
and let or(A, b, C, d)  denote  the greatest absolute value amongst  the entries of  A, 

b, C, d. Then there exists an inequality ck+lx<~dk+~ with {x: ck+~x<~dk+~}c~ 

{x :Ax<~b ,  C x = d } = 0  and a cutt ing-plane p roo f  o f  Ck+lX<~dk+~ from (Ax<~b, 

Cx <~ d) of  length at most  qz,, kn25(, k) (where ~ is the positive constant  given in 

Theorem 3) needing only n - k + l  inequalities, besides (Ax<~b, Cx<~d),  to be 

stored at any one time and where each inequality in the p roo f  has all coefficients 
o f  absolute value at most  qzn-kn3(n-k)+~o'(A, b, C, d). 
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The theo rem fol lows f rom the case k = 0 ,  s ince {x: c l x < ~ d l } n { x :  Ax<~b}=~) 

impl ies ,  by  Fa rkas '  l emma,  that  0 x < ~ - 1  may  be der ived  from (Ax<~ b, clx<~ dl). 

The p r o o f  is by induc t ion  on k, beg inn ing  with the  case k = n. So suppose  C is 

an n × n matr ix .  I f  {x: A x  <~ b, Cx = d} = 0, then there  is no th ing  to prove.  So we 

may  assume that  {x: Ax<~ b, Cx = d} consists  o f  a single vector,  say v. (Since Cx = d 

has a un ique  solut ion) .  N o w  since Ax<~ b has no integral  so lu t ion ,  v must  be 

nonin tegra l .  Thus there  exists t r ivial ly  an inequa l i ty  wx <~ c~ which can be der ived  

f rom (Ax<~b, Cx<~d, - C x < ~ - d )  with {x: w x < ~ a } n { x :  Ax<~b, C x = d } = O .  By 

L e m m a  2, we can ' ro ta te '  wx <~ e~ to ob ta in  an inequa l i ty  c,+~ x ~< d,+~, that  can be 

de r ived  f rom (Ax<~ b, Cx<~ d),  such that  

{x: c,+, x ~< d,+l} n {x: A x  <~ b, Cx = d} = ~0 

and  the abso lu te  value  o f  each coefficient in c,,+~ x ~< d,+l  is at most  n~r(A, b, C, d).  

So (A) is t rue when k = n. 

N o w  assume,  by  induc t ion ,  that  (A) is t rue for  all k ~> r. We will show that  (A) 

ho lds  when  k = r -  1, which  will comple t e  the proof .  So suppose  C is an ( r -  1) × n 

matr ix .  Let t ing A°x  <~ b ° be those  inequal i t ies  in A x  <~ b that  ho ld  as equal i ty  for  

each vec tor  in {x: Ax<~b, C x = d }  we have that  M = { x :  A ° x = b  °, C x = d }  is the 

affine hull  o f  {x: Ax<~ b, Cx = d}. 

Claim 1. We may  assume that  M conta ins  in tegral  vectors.  

Proof  o f  Claim 1. I f  M conta ins  no in tegra l  vectors ,  then there exist  vectors  y0 

and  y such that  y ° A ° + y C  is integral  and  y ° b ° + y d  is non in tegra l  (see, for  example ,  

[23]). Let t ing w = y ° A ° +  y C  and  c~ = [y°b°+ ydJ we have {x: wx<~ a, Ax<~ b, Cx = 

d} =~3. Also,  by  Fa rkas '  l emma,  wx<~ ~ may  be der ived  f rom (Ax<~ b, Cx = d).  So, 

ro ta t ing  wx <~ ~ via L e m m a  2(i), we ob ta in  an inequa l i ty  c,x <~ d, which satisfies the  

cond i t ions  in (A). So we may  assume that  M conta ins  in tegral  vectors.  This comple tes  

the p r o o f  o f  C la im 1. 

Claim 2. There  exists an integral  vec tor  w ¢ 0 such tha t  wx' ¢ wx" for  some x ' ,  

x" in M and  

[max{wx: A x  <~ b, Cx = d}J - [min{wx: A x  <~ b, Cx = d}]  < ~ ( n  - r +  1) 2. (3) 

Proof  o f  Claim 2. We canno t  a p p l y  T h e o r e m  3 direct ly ,  since we do not  want  

M_c {x: wx = k} for  some integer  k. So we first t r ans fo rm M so that  we may  work  

with p o l y h e d r a  o f  full  d imens ion .  

Let  s be the d imens ion  o f  M. Clear ly  s ~< n - r + 1, as there  are r -  1 equa t ions  in 

Cx = d. Since M conta ins  integral  vectors ,  there  exists an affine t r ans fo rma t ion  T 

which  maps  7/" onto  7/" and  M onto {x ~ Rn: xs+~ = 0 , . . . ,  x ,  = 0) (see [23, p. 341]). 

Let  P = {£ ~ ~ s :  (£, 0) c T({x:  A x  <~ b, Cx = d})}. Since T maps  Z" onto  Y' ,  we 

have P n 7/~ = ~3. Thus,  by  Theorem 3, there  exists a vec tor  ~ c 7/~ such tha t  ~ ¢ ~3 and  

0 < max{v~x: x ~ P} - min{~x:  x ~ P} < q~s 2 (4) 

(where  the  first i nequa l i ty  comes  f rom the fact  that  P is o f  full d imens ion) .  

We m a y  assume that  the componen t s  o f  • are  re la t ive ly  pr ime  and  hence  tha t  

for  any  in teger  k the equa t ion  v~£ = k has in tegral  solut ions .  Let tl - [max{~£:  ~ c P}J 
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and t2 = [min{~£:  £ ~ P}].  Since {2 c ~s: ~ = tl} contains  integral  vectors,  so does 
the hyperp lane  H = T-I ({(g ,  0) c Rn: ~ = q}). So there exists a vector  w ~ 7/n with 

relatively pr ime componen t s  such that  H = {x: wx = a} for  some integer a. Further- 
more ,  for  any integer k the hyperp lane  T ~({(~, 0 ) c  Rn: ~ = k}) contains  integral 

vectors  and  so is of  the fo rm {x: wx = k'} for  some k'. Thus,  the fact that  t~ - t2 < ~ s  2 
implies  that  (3) holds. Now,  by the first inequali ty in (4), we know that  there does 
not  exist an integer k such that  M _  {x: wx -- k}. So wx' ~ wx" for  some x' ,  x" in 
M. This comple tes  the p r o o f  of  Cla im 2. 

Let we7/n satisfy the condi t ions  in Cla im 2 and  let a =  [max{wx:Ax<~b,  
Cx = d}].  Since {x: A x  <~ b, Cx = d} c {x: wx < a + 1}, Farkas '  l e m m a  implies that  

wx<~ a can be derived f rom (Ax<~ b, Cx<~ d, - C x < ~ - d ) .  By rotating,  via L e m m a  

2(i), we obtain  an inequal i ty  e'rX <~ d'r which can be derived f rom (Ax  <~ b, Cx <~ d),  
such that  {x: A x  <~ b, Cx = d, C'rX <~ d'r} c {x: A x  <~ b, Cx = d, wx <~ c~} and  the greatest  
amongs t  the absolute  values of  the componen t s  of  c',. and d'r is at most  no (A ,  b, C, d).  
It  also follows f rom the rota t ion procedure  that  for  any integer k, 

{x: Ax<~ b, Cx = d, C'rX<~ d ' r - k } ~  {X: Ax<~ b, Cx = d, wx<~ o~ - k}. 

So, by (3), {x :Ax<~b ,  C x = d } c _ { x : c ' ~ x > d ' r - q t ( n - r + l ) 2 } .  Let C"rx<~d~ be 

obta ined  by  summing  c'~x <~ d'~ and the inequali t ies Cx <~ d, that  is, C'r' = C'r+ I C, 
d~= d'~+ld, where 1 is the vector  o f  all l 's .  We have that  

{x: Ax<~b, Cx<~d, c'~x<~d'r, c ~ x = d ~ ' } = { x :  Ax<~b, C x = d ,  c~.x=d;}.  (5) 

Not ice  that  {x :Ax<~b ,  C x = d } c _ { x : c ~ x > d ~ ' - g t ( n - r + l ) 2 + l }  and that  the 
numbers  appear ing  in cTx<~ d7 have absolute  value at most  2nor(A, b, C, d).  

Claim 3. There  exists a cut t ing-plane p r o o f  of  c~ x ~< d ~ - 1 f rom (A x  <~ b, Cx ~ d, 
c'~x<~d'~) of  length at most  q t ,  ~n2.5( ~ ~ + 1  which requires at most  n - r + l  
inequali t ies besides (Ax<~ b, Cx<~ d, C'rX<~ d'~) to be stored at any one t ime and 

with each inequali ty in the p r o o f  having all coefficients o f  absolute  value at most  
tI In r n3(n r)+2o'(A, b, C, d).  

Proof o f  Claim 3. By Cla im 2, the d imens ion  of  {x: Ax<~b, C x = d ,  w x = a }  is 
less than  that  o f  {x: A x  <~ b, Cx = d} (since wx' # wx" for  some x' ,  x" in M) .  So 
{x: Ax<~b, C x = d ,  C'rX=d'r} has d imens ion  less than  that  of  {x: Ax<~b, C x = d }  
(by L e m m a  2(ii)). Thus  c'~ is not  a l inear combina t ion  of  the rows of  C. This implies 

that  there exists an inequal i ty  c~+~ x <~ dr+~ with {x: A x  <~ b, Cx = d, c'~x = d'~, c~+~ x <~ 

d,.+l} = 0 and  a cut t ing-plane p r o o f  of  Cr+l X ~< d~+~ f rom (Ax  ~ b, Cx <~ d, c'~x <~ d'r) 
of  length at most  q t ,  ~n2-5(~-~ which requires at most  n -  r +  1 inequalit ies besides 
( A x  <~ b, Cx <~ d, c'~x <~ d'r) to be  stored at any one t ime and with each inequali ty in 
the p r o o f  having all coefficients o f  absolute  value at most  
"tFn-rn3(n-r)+lno-(A, b, C, d) (by the induct ion hypothesis) .  Now,  by (5), we have 

{x: Ax<~b, Cx<~d, c'~x<~d~, c',~x=d~, Cr+lX~dr+l}=~) 

and hence c'/. x<~ d~' - 1 m a y b e  derived f rom ( A x ~  b, Cx<~ d, c'~x<~ d'~, Cr+~X<~ d~+~). 
This comple tes  the p r o o f  of  Cla im 3. 
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I f  {x: A x  <~ b, C x  = d, C"rX <~ d ~ ' - 1 }  = 0 we are finished. Otherwise, arguing as in 
Claim 3, we can find a cutting-plane proof  of  c~"x<~ d ~ " - 2  from (Ax<~ b, Cx<~ d, 

c~' x ~< d ~' - 1), where c ~"x <~ d ~" is obtained by summing c~' x ~< d ~' and the inequalities 
Cx<~d.  (Notice that each coefficient in e~"x<~d"r ' is of  absolute value at most 
3nor(A,  b, C, d ) . )  Repeating this at most q t ( n - - r + l )  2 times, we obtain a cutting- 

plane proof  of  an inequality CrX <~ dr from ( A x  <~ b, C x  <~ d )  with {x: A x  <~ b, C x  = d, 

crx <~ dr} = O. 

The absolute values of  the coefficients of  crx <~ dr are at most ( ~ ( n - r  + 1)2+ 

1)or(A, b, C, d). So the greatest absolute value amongst  the coefficients of  the 
inequalities in the cutting-plane proof  is at most 

yr ,  ,n3~ . r)+l((qt(n _ r +  1)2+ 1)o-(A, b, (7, d)) 

~< ~ ' - r+ln3¢ ' - r+l)+lo ' (A,  b, C, d). 

The length of  the cutting-plane proof  is at most 

qt (n - r + 1 )2( ~F" rn 25~,-r) + 1 ) + 1 ~< qt" r+l n25~,-r+ 1). 

Finally, the proof  requires at most n -  r +  2 inequalities, besides ( A x  <~ b, C x  <~ d ) ,  

to be stored at any one time. So (A) holds when k = r - 1 ,  which completes the 
proof  of  the theorem. [] 

Remarks. (a) For bounded polyhedra, this theorem without the restriction on the 
lengths of  the proofs may also be derived from Chvfital's [3] technique, since, as 
observed by Coullard [8], the cutting-plane proofs given in [3] require only poly- 
nomial workspace. The restriction on the length does not follow in this way since 
the number  of  derived inequalities in these proofs depends on the least integer N 

such that {x: Ax<~ b}c_ {x: Ix/I <~ N, i =  1 , . . . ,  n} and so may be arbitrarily high, 
even in the 2-dimensional case. 

(b) Chvfital [5] defines cutting-plane proofs in general as a method for showing 
that every integral solution of A x  <~ b satisfies another  specified inequality wx <~ [3, 

by requiring that the last inequality in the proof  be w x  <~ [3, rather than 0x <~-1. 
Such a cutting-plane proof  always exists if either {x: A x  <~ b} is bounded,  as shown 

by Chvfital [3], or if A and b are rational and A x  <~ b has at least one integral 
solution, as shown by Schrijver [24]. The lengths of  these proofs, even when the 
inequalities have only two variables, may necessarily be arbitrarily long (see the 
example of  J.A. Bondy given in [3]). But, as the proof  of  our theorem only requires 
that ( A x  <~ b, w x  = t) have no integral solution in order to obtain a cutting-plane 
proof  of  w x  ~< t -  1 from ( A x  <~ b, w x  <~ t) ,  if A and b are rational then in either 
Chvfital's case or Schrijver's case there exist proofs which can be carried out in 
polynomial workspace. 

(c) It should be noted that Theorem 1 is of  an existential na ture- - i t  states only 
that there exists such a cutting-plane proof  and not how to go about finding it. For 
related algorithmic work we refer the reader to the paper  of  Kannan [16]. 
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