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1. Introduction

The domination number y(G) of a graph G is the size of a smallest set D of
vertices such that every vertex outside D has at least one neighbour in D; Fink,
Jacobson, Kinch, and Roberts [4] defined the bondage number b(G) of a graph G
as the least number of edges whose deletion makes'y(G) increase. As we are
about to point out, computing b(G) amounts to solving an integer linear
program.

Define a whip in a graph G as any spanning subgraph F of G such that each
component of F is a star and F has precisely y(G) components; let E(G) denote

‘the set of edges of G and let W(G) denote the set of all whips in G. Obviously,

b(G) is the optimal value of the problem

minimize Y, {x.: e € E(G)}

subject to >, {x.:e€ E(F)}=1 for all F in W(G), 1)
x.=0 for all e in E(G).
x. = integer for all e in E(G).

By the fractional bondage number b*(G) we shall mean the optimal value of the
‘linear programming relaxation’ of (1),

minimize , {x,.: e € E(G)}
sﬁbject to >, {x,;ee E(F)}=1 forall F in W(G), : )
%20 for all e in E(G).

By the duality theorem of linear programming, b*(G) equals the optimal value of
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the dual of (2),

maximize Y, {yp: F € W(G)}

subject to >, {yrie € E(F)} <1 forall e in E(G), “(3)
ye=0 for all F in W(G).

Since (3) can be seen as the linear programming relaxation of
| maximize Y, {yz: F € W(G)}

subject to >, {yr:e € E(F)} <1 foralle in E(G),
yr=0 for all F in W(G),

(4)

! yr = integer for all F in W(G),

problems (1) and (4) are in a sense dual. Therefore we refer to the optimal value
of (4) as the discipline number dis(G) of G.
We have

1< dis(G) <b*(G) <b(G) (5)

for all graphs G. Apart from establishing upper bounds on b(G), Fink et al.
computed the bondage number of cycles, paths, and complete multipartite graphs
and studied the bondage number of trees (several of these results can also be
found in Bauer, Harary, Nieminen, and Suffel [1]). The purpose of this paper is
to provide ties with analogous results for the fractional bondage number and for
the discipline number.

2. The fractional bondage number
The principle restraining device of this section goes as follows.
Theorem 1. If G has n vertices and m edges then b*(G) <m/(n — y(G)).

Proof. Observe that the constraints of (2) are satisfied by x, = 1/(n — y(G)) for
alle. O

As usual, let A(G) denote the largest degree of a vertex in G. Fink et al.
conjectured that b(G) < A(G) + 1.

Theorem 2. b*(G) < A(G).
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Proof. Consider any maximal set S of pairwise nonadjacent vertices: trivially,
every vertex outside S has at least one neighbour in § and the number of edges in
G is at most the sum of the degrees of all the.vertices outside S. Hence the
desired conclusion follows from Theorem 1: we have y(G)=<|S| and m =<
A(G)n—|S]). O

Let C, denote the cycle with n vertices. Fink et al. proved that b(C,) =3 if
n=1 mod3, and b(C,)=2 otherwise. Now we shall prove a theorem that
includes a formula for b*(C,) as a special case. Recall that a graph G is called
edge-transitive if for every choice of its edges e,, e, some automorphism of G
sends e; onto e,.

Theorem 3. If G is edge-transitive with n vertices and m edges then b*(G)=
m/(n — v(G)).

Proof. Since G is edge-transitive, (2) has an optimal solution with all x, equal to
each other. Hence b*(G) is the optimal value of the problem

minimize mx subject to (n — y(G))x =1, x=0. O

Since C, is edge-transitive and y(C,)= [n/3], Theorem 3 yields 5*(C,) =
n/|2n/3].

Let P, denote the path with n vertices. Fink et al. proved that b(P,)=2ifn=1
mod 3, and b(P,) =1 otherwise.

Theorem 4. b*(P,) =3 if n=1 mod 3, and b*(P,) =1 otherwise.

Proof. We may assume that n =3k + 1, for otherwise the desired conclusion
follows from (5). Since y(Ps+1) = k + 1, Theorem 1 guarantees that b*(Py, ) <
3; to prove the reversed inequality, we only need exhibit a feasible solution of (3)
in which precisely three variables have value 3. To put it differently, we only need
to find three whips in P;,., so that each edge belongs to precisely two of the three
whips. For this purpose, label the edges of Ps.,; as ey, e, . . ., €, in such a way
that ¢; and e;,; share an endpoint whenever 1<i<m —1. Now the jth whip
arises by deleting all the edges e; with i=jmod3. O

In dealing with complete multipartite graphs, we shall distinguish between
those having a positive number k of classes of size one and those in which all
classes have size at least two. For the first kind, Fink et al. proved that the
bondage number equals [k/2]. ‘

Theorem 5. Let G have n vertices and let precisely k vertices of G have degree
n—1. If k=1 then b*(G) =1; if k =2 then b*(G) =k/2.
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Proof. We may assume that k=2, for otherwise the desired conclusion follows
from (5). Setting x, = 1/(k —1) if both endpoints of e have degree n — 1, and
x. = 0 otherwise, we obtain a feasible solution of (2); hence b*(G) <k/2. On the
other hand, there are precisely k whips; setting y, = % for all of them, we obtain a
feasible solution of (3); hence b*(G)=k/2. O

For complete multipartite graphs G with class sizes n,, n,, ..., n, such that
2<ny<ny<---<n, Fink et al. proved that b(G)=n —n, unless n,=n,=
+++=n,=2, in which case b(G)=n—1.

Theorem 6. Let G be a complete multipartite graph with n vertices and m edges. If
all classes of G have size at least two then b*(G) =m/(n —2).

Proof. Theorem 1 guarantees that b*(G)<m/(n —2); to prove the reversed
inequality, we shall exhibit an appropriate feasible solution of (3). For this
purpose, let S;, S, . . ., S, denote the classes of G; write n, = |S,|. By a center of
a star, we shall mean a vertex in the star adjacent to all the other vertices in the
star (unless the star has precisely two vertices, its center is uniquely determined);
by a pointed whip, we shall mean a whip with a center distinguished in each of the
two components; the pointed whip is of type (i, j) if its two centers belong to S;
and §;. Clearly, there are precisely

ninjzn —(n;+n;)

pointed whips of type (i, j); each edge with one endpoint in S; and the other
endpoint in §; belongs to precisely

(n; + n; — 2)27 =)
pointed whips of type (i, j), to precisely
nkzn—(n;+nk)—1
pointed whips of type (i, k) with k #i, j, and to precisely
nkzh—(ni+nk)—1
pointed whips of type (k, j) with k #1i, j. Hence the desired feasible solution of
(3) can be obtained by setting first

z_l
H -2

2n,<+n,<—n

for every pointed whip H of type (i, j), and then

yF=22H

with the summation running through all pointed Whips H such that E(H) =
E(F). O

Fink et al. proved that b(T) <2 for every tree T.
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Theorem 7. b*(T) <(n—1)/[n/2] for every tree T with n vertices.

Proof. As S.T. Hedetniemi pointed out to us, Theorem 13.1.3 in Ore’s book [5]
implies that y(G)=< |n/2] for every graph without isolated vertices; the rest
follows from Theorem 1. O

~ To show that the bound of Theorem 7 cannot be improved (at least not for
even values of n), consider the tree with vertices u;, v; (1<i<k) and edges
uu; ., (I1<si<k-1), yy; (1<i=<k). We shall refer to any such tree as a Justine
[7]. (One of the referees pointed out that the same trees have been called combs
by Fink et al. [3]. However, combs is also the name of graphs used by Padberg
and Rinaldi [6] in solving a traveling salesman problem. To avoid confusion, we
prefer the descriptive and unambiguous term Justine.)

Theorem 8. b*(T) =2(n — 1)/n for the Justine T with n vertices.

Proof. By virtue of Theorem 7, we only need prove that b*(T)=2(n — 1)/n; to
do this we only need exhibit a feasible solution of (3) in which precisely n — 1
variables have value 2/n. To put it differently, we only need find whips
R,E,...,F;_, in a Justine with 2k vertices so that each edge belongs to
precisely k of these whips. We propose to do so by induction on k. The case. of
k =1 is trivial; now assume that appropriate whips F, F, .. ., F,;_; have been
found in the Justine with 2k — 2 vertices. Without loss of generality, assume that
F,E,...,F._, do not include the edge u,_,u,_,. Next, observe that each of
these k—2 whips must include the edge wu,_,v,_,. Extend each FE with
1=<i=<k -2 by adding the edge u;._,u; and extend each F,with k —1<i<2k -3
by adding the edge u,v,. Finally, let F,,_, consist of all u;v; with i odd, all u;u;.,,
with i even and less than %, and u, . u,. Let F,;,_; consist of all ;v; with i even,
all u;u; ., with i odd and less than k, and u,_u,. O

3. The discipline number

 Theorem 3 combined with (5) implies that dis(C,)=1 whenever n=5;
Theorem 7 combined with (5) implies that dis(7) =1 for every tree T; in
addition, it is easy to see that dis(G) =1 whenever y(G) = 1. However, we are
about to show that dis(G) can be arbitrarily large even when y(G) =2.

" Theorem 9. Let G be a complete multipartite graph with no classes of size one, a
classes of size two, and b classes of size at least three. If a + |b/2]| =3, then

dis(G)=a + |b/2].

If (a, b) = (0, 4), (0, 5) or (1, 3), then dis(G) =3. If (a, b) = (0, 3), (1, 1), (1, 2),
(2, 0) or (2, 1), then dis(G) =2. If (a, b) = (0, 2), then dis(G) = 1.
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Proof. Enumerate the classes of G as S;, S,, . . ., S,., so that |S;| =2 whenever
l1<i=<agand |S)|=3 whenevera+ 1<i<a+b.

Claim 1. dis(G)=a + |b/2].

Proof of Claim 1. Write S;={u;, v;} fori=1, 2, ..., a and choose vertices Uy
V,4; With 1<j=<|b/2| so that Ui € Sayaj—1, Vauj € Sa4a. FOr every choice of i
and j such that 1si<j<a+ |b/2], set

uueE, vveF, wveF, uvcF.

For all the remaining vertices w, set wu; € F; if w and v, belong to the same S,
and wv, € E otherwise. [

Claim 2. If a + b =4, then dis(G) = 3.

Proof of Claim 2. Choose vertices u,, u,, u; so that u; € S; and choose a vertex x
in S,. Set

Uuy € F'l: Uz € FIZ; Uzl € ‘F3’ U x € F'Z) Ux € ‘Ei) Uszx € Fi-.

For all the remaining vertices w, set wx € F, if w € S; and wu; € E otherwise. O
Claim 3. If a=1, then dis(G)=2.

Proof of Claim 3. Write S, = {x,, x,}. For every vertex w outside $;, set wx, e F,
and wx, e F,. 0O

These three claims guarantee that the values stated in Theorem 9 provide
correct lower bounds on dis(G); now we shall establish the upper bounds. For
this purpose, consider arbitrary pairwise edge-disjoint whips £, B, ..., F, in G.
For each i=1,2,...,k, choose vertices u;, v; that are centers of the two
components of F.. Write

Q = {uI) Uy, Uz, Uy o oo, Uy, Uk}'
Claim 4. If |Q| =2k, then k<a + |b/2).

Proof of Claim 4. Consider the graph H whose set of vertices is Q, two vertices
being adjacent in H if and only if they are adjacent in some E. Since no y; is
adjacent to v; in H, all the remaining pairs of vertices must be adjacent in H: we
have (%) — k = k(2k — 2) and each F, contributes 2k — 2 edges to H.

Now call an §; special if it includes at least two vertices from Q. As we have just
observed, each special ; includes some u; and v; and it includes no other vertices
from Q; since each vertex outside Q is adjacent to at least one of u; and v;, we
must have |S;| =2. It follows that |Q| <24 +b. 0O
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Claim 5. If k=3, then |Q|=4.

Proof of Claim 5. Assume the contrary: k=3 but |Q|=<3. Since G has at least
four vertices, some vertex w lies outside Q; since F,, E, . . . , F, are edge-disjoint,
w is adjacent to at least k distinct vertices in Q. Hence |Q| = k = 3. Now no S;can
include a vertex from Q and a vertex w outside Q (w has to be adjacent to at least
three distinct vertices in Q); since |S;| =2 for all j, it follows that Q = §; for some
J. Finally, this §; includes some vertex w distinct from u; and v,, a contradiction:
w must be adjacent to at least one of u; and v,. O

Claim 6. If k=4, then k<a + |b/2].

Proof of Claim 6. By virtue of Claim 4, we only need show that |Q| = 2k. For this
purpose, assume the contrary: without loss of generality u, = u,. Write

QO = {uI: vl: Uz, U, u3) Us, Ug, U4}

and consider the graph H, whose set of vertices is Q,, two vertices being adjacent
in Hy if and only if they are adjacent in some F, with 1<i<4. Since each E with
1=i=4 contributes |Q,| —2 edges to H,, we have
1Qol

4100 -2 = (*22);
observing that |Qo| <7 (since u; = u,) and |Q,| = 4 (by Claim 5), we conclude that
|Qol =7. Now H, has twenty edges, which is a contradiction: (3)=21 and no y;
with 2=<i=4is adjacent to v; in H,. O

Claim 7. If k=3, thenk<a+ |b/2| ora+b=4.

Proof of Claim 7. Claim 4 allows us to assume that |Q|=<35; Claim 5 guarantees
that |Q| = 4. Defining H as in the proof of Claim 4, observe that H has 3(|Q| — 2)
edges. It follows that H (and hence also G) contains four pairwise adjacent
vertices. [

Claim 8. If a=0and b =2, then k +2.

Proof of Claim 8. Assume the contrary: k=2 but a =0 and b =2. Claim 4
implies that [Q| =<3 and so, without loss of generality, u; =u, € §;. Since S;
includes a vertex distinct from both u,, v, but adjacent to at least one of them,
we must have v, €5,; a symmetric argument shows that v, € S,. But then S,
includes a vertex outside Q and adjacent to only one vertex in Q, a
contradiction. [

This ties down the proof of Theorem 9. [
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The reader interested in additional results in a similar vein is directed to [2,
Chapter 5].
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