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Abstract

We present an exact rational solver for mixed-integer linear programming which avoids
the numerical inaccuracies inherent in the floating-point computations adopted in existing
software. This allows the solver to be used for establishing fundamental theoretical results
and in applications where correct solutions are critical due to legal and financial conse-
quences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-
bound, using numerically-safe bounding methods for all binding computations in the search
tree. Computing provably accurate solutions by dynamically choosing the fastest of several
available methods depending on the structure of the instance, our exact solver is only mod-
erately slower compared to an inexact floating-point branch-and-bound solver. The software
is incorporated into the SCIP optimization framework, using the exact LP solver QSOPT_EX
and the GMP arithmetic library. Computational results are presented for a suite of test
instances taken from the MIPLIB and Mittelmann collections.
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1 Introduction

Mixed-integer programming (MIP) is a powerful and flexible tool for modeling and solving
decision problems. Software based on these ideas is used in many application areas. Despite
their widespread use, few available software packages provide any guarantee of correct answers
or certification of results. Possible inaccuracy is caused by the use of floating-point numbers
[14]. Floating-point calculations necessitate the use of built-in tolerances for testing feasibility
and optimality, and can lead to calculation errors in the solution of linear-programming (LP)
relaxations and in the methods used for creating cutting planes to improve these relaxations.

Due to a number of reasons, for many industrial MIP applications near optimal solutions
are sufficient. CPLEX, for example, defaults to a relative MIP optimality tolerance of 0.001.
Moreover, when data describing a problem arises from imprecise sources, exact feasibility is
usually not necessary. Nonetheless, accuracy is important in many settings. Direct examples
arise in the use of MIP models to establish fundamental theoretical results and in subroutines
for the construction of provably accurate cutting planes. Furthermore, industrial customers of
MIP software request modules for exact solutions in critical applications. Such settings include
the following.

e Feasibility problems, including chip verification in the VLSI design process [1].
e Compiler optimization, including instruction scheduling [23] and register allocation [15].

e Combinatorial auctions [10], where serious legal and financial consequences can result from
incorrect solutions.

Exact methods are also important as a standard of comparison for developing efficient, but
possibly inaccurate, methods.

Optimization software relying exclusively on exact rational arithmetic has been observed to
be prohibitively slow, motivating the development of more sophisticated techniques to compute
exact solutions. Significant progress has been made recently toward computationally solving LP
models exactly over the rational numbers using hybrid symbolic/numeric methods [6, 111, 12|
17, 18], including the release of the software package QSOPT_EX [7]. Exact MIP has seen less
computational progress than exact LP, but significant first steps have been taken. An article by
Neumaier and Shcherbina [20] describes methods for safe MIP computation, including strategies
for generating safe LP bounds, infeasibility certificates, and cutting planes. The methods they
describe involve directed rounding and interval arithmetic with floating point numbers to avoid
incorrect results.

The focus of this paper is to introduce a hybrid branch-and-bound approach for exactly
solving MIPs over the rational numbers. Section [2] describes how rational and safe floating-
point computation can be coupled together, providing a fast and general framework for exact
computation. Section [3] describes several methods for computing valid LP bounds, which is
a critical component of the hybrid approach. Section M describes an exact branch-and-bound
implementation within SCIP and includes detailed computational results on a range of test
libraries comparing different dual bounding strategies. The exact solver is compared with an
inexact floating-point branch-and-bound solver and observed to be only moderately slower.



2 Hybrid Rational/Safe Floating-Point Approach

Two ideas for exact MIP that have been proposed in the literature, and tested to some extent,
are the pure rational approach [6] and the safe floating-point (FP) approach [9,20]. Both utilize
LP-based branch-and-bound. The difference lies in how they ensure the computed results are
correct.

In the pure rational approach, correctness is achieved by storing the input data as rational
numbers, by performing all arithmetic operations over the rationals, and by applying an exact
LP solver [12] in the dual bounding step. What makes this approach interesting is that it can
handle a broad problem class: MIP instances that are given by rational data. Furthermore, since
LP relaxations are solved exactly, branch-and-bound nodes that can be cut off due to bounding
or infeasibility will be recognized immediately, preventing unnecessary branching. However,
replacing all FP operations by rational computation will increase running times noticeably. For
example, although the exact LP solver QSOPT_EX avoids many unnecessary rational compu-
tations and is efficient on average, Applegate et al. [6] observed an exact MIP solver which
called QSoPT_EX for each LP computation to be two or three orders of magnitude slower than
commercial MIP solvers.

In order to limit the degradation in running time, the idea of the safe-FP approach is to
continue to use FP-numbers as much as possible, particularly within the LP solver. However,
to ensure correct decisions in the branch-and-bound algorithm extra work is necessary. This
consists of controlling the rounding mode of crucial arithmetic operations, like the primal feasi-
bility test for an approximate LP solution, and in post-processing the approximate LP solution
to obtain a correct dual bound. Such a safe dual bounding technique has been successfully im-
plemented in CONCORDE [5] for the traveling salesman problem. A generalization of the method
for MIPs can be found in [20]. Furthermore, the idea of manipulating the rounding mode can
be applied to cutting-plane separation. In [9], this idea was used to generate numerically safe
Gomory mixed-integer cuts. Nevertheless, whether the safe-FP approach leads to acceptable
running times for general MIPs has not been investigated.

Although the safe-FP version of branch-and-bound has great advantages in speed over the
pure rational approach, it has several clear disadvantages. Everything, including input data
and primal solutions, is stored as FP numbers. Therefore, correct results can only be ensured
for MIP instances that are given by FP-representable data and that have a FP-representable
optimal solution if they are feasible. Some rationally defined problems can be scaled to have
FP-representable data. However, this is not always possible due to the limited representation
of floating-point numbers, and the resulting large coefficients can lead to numerical difficulties.
The applicability is even further limited as the safe dual bounding method discussed in [20]
requires, in general, lower and upper bounds on all variables. Moreover, when dealing with
MIPs some branch-and-bound nodes may only be processable by an exact LP solver. One such
situation occurs when the current subproblem is just an LP (all integer variables have been
fixed), i.e., branching is not possible, but post-processing its approximate LP solution does not
allow the node to be cut off. To immediately process this node, the LP must be solved exactly.

The pure rational approach is always applicable but introduces a large overhead in running
time while the safe-FP approach is more efficient but of limited applicability. Since we want to
exactly and efficiently solve MIPs that are given by rational data we have developed a version
of branch-and-bound that attempts to combine the advantages of the pure rational and safe-FP
approaches, and to compensate for their individual weaknesses. The idea is to work with two
branch-and-bound processes. The main process implements the rational approach. Its result is



surely correct and will be issued to the user. The other one serves as a slave process. Here, the
faster safe-FP approach is applied. To achieve reasonable running time whenever possible the
expensive rational computation of the main process will be skipped and certain decisions from
the faster safe-F'P process will be substituted. In particular, dual bound computations will be
avoided as they require exact LP solves in the rational process. Instead, dual bounds will be
taken from the safe-FP process. However, due to the rational process, the exact problem data
are known, primal solutions can be stored correctly, and exact LP solves are always possible.

The complete procedure is given in Algorithm [II The set of floating-point representable
numbers is denoted by M, x € M and £ € M stand for lower and upper approximations of
x € Q, respectively. The slave process, which utilizes the safe-FP approach, works on a MIP
instance with FP-representable data. It is set up in Step [ of the algorithm. If the input data
are already FP-representable, both processes solve the same MIP instance, i.e., P := P and
¢ := cin Step [l In principle, this results in employing only the safe-FP approach except for
some necessary exact LP solves. Otherwise, an approximation of the MIP with P = ]3, c~C
or a relaxation with P C ﬁ, ¢ = ¢ is constructed; called FP-approximation and FP-relaxation,
respectively. The choice depends on which dual bounding method we want to apply in the slave
process, one of which requires an FP-relaxation. Generating dual bounds via relaxations can
lead to weaker bounds, in particular, if equalities are present. Still, a larger branch-and-bound
tree might be processed faster through this method. We also remark that any optimal solution
identified by this procedure is guaranteed to have a rational description, despite the fact that
some feasible/optimal solutions can have irrational components.

On the implementation side, we maintain only a single branch-and-bound tree. At the root
node of this common tree, we store the LP relaxations of both processes: max{c'z : z € LP}
and max{c 'z : z € E‘]S} In addition, for each node, we know which branching constraint was
added to create both subproblems. Branching on variables, performed in Step [ introduces
the same bounds for both processes. They are FP-representable which means an FP-relaxation
property will be preserved, i.e., throughout the tree, P; C 15] for corresponding subproblems if
P C P holds.

The use of primal and dual bounds to discard subproblems (see Steps [l [ and [7) is a
central component of the branch-and-bound algorithm. Therefore, in the exact MIP setting,
the efficiency strongly depends on the strength of the dual bounds and the time spent generating
them (Step[l). The starting point of this step is the approximate LP solution of the slave process.
It is obtained by an LP solver that works on FP-numbers and accepts rounding errors; referred
to as inexact LP solvers. Depending on the result, we safely check whether the rational LP, i.e.,
the exact LP relaxation, is also infeasible or we compute a safe dual bound by post-processing
the approximate LP solution. When working with an FP-approximation in the slave process we
need to access the rational data from the main process here. Different techniques are discussed
in Section Bl and are computationally evaluated in Section [dl We only perform the exact but
expensive dual bound computation of the main process if it is necessary (Step .

Dual and primal bounds are stored as FP-numbers and the bounding in Step [6]is performed
without tolerances; a computed bound that is not FP-representable is relaxed in order to be
safe. For the primal (lower) bound L, this means L < ¢™™* if the objective value ¢™¥ of the
incumbent solution ™ is not in M.

Algorithm [I] identifies primal solutions by checking LP solutions for integrality. This check,
performed in Step [[l depends on whether the LP was already solved exactly at the current
node. If so, we exactly test the integrality of the exact LP solution. Otherwise, we decide if it



Algorithm 1 Branch-and-bound for exactly solving MIPs

Input:  (MIP) max{c'z : z € P} with P := {z € R" : Az < b,z; € Z forall i € I},
AcQm™ beQ™, ceQm and I C{1,...,n}.

Output: Fzxact optimal solution z* of MIP with objective value ¢* or conclusion that MIP is
truly infeasible (¢* = —00).
1. FP-problem: Store (FP-MIP) max{c¢'z : = € P} with P := {z € R : Az < b,x; €
Zior allie I}, Ae M™ "™ beM™, and ¢ € M".
Init: Set £ := {(P, ﬁ)}, L := —co, z™¥ to be empty, and c™¥ := —oo0.
Abort: If L = (), stop and return ™ and M.

Node selection: Choose (Pj,lgj) € Land set £L:= L\ {(Pj,lgj)}

RO

Dual bound: Solve LP-relaxation max{c'z : x € fﬁj} approximately.

(a) If fﬁj is claimed to be empty, safely check if LP; is empty.
i. If LP; is empty, set ¢* := —oo0.
ii. If LP; is not empty, solve LP-relaxation max{c'z : x € LP;} ezactly. Let z* be
an exact optimal LP solution and c¢* its objective value.

(b) If fﬁj is claimed not to be empty, let * be an approximate optimal LP solution and
compute a safe dual bound ¢* with max{c'z : z € LP;} < ¢*.
6. Bounding: If ¢* < L, goto Step Bl
7. Primal bound:

(a) If z* is approzimate LP solution and claimed to be feasible for FP-MIP, solve LP-
relaxation max{c’z : x € LP;} exactly. If LP; is in fact empty, goto Step Bl Other-
wise, let * be an exact optimal LP solution and ¢* its objective value.

(b) If 2* is exact LP solution and truly feasible for MIP, set z™'* := x*, M* := ¢*, and
L := ¢* and goto Step Bl
8. Branching: Choose index i € I with z} ¢ Z.
(a) Split Pj in Qq :=Pjn{x:xz; < |z}]}, Q2 :=Pjn{x:xz; > [z]]}.
(b) Split ]3] in Q := ]3j N{x:z; < |27]}, Qg = ]3] N{x:z; > [zF]} .
Set £ :=LU{(Q1,Q1),(Q2,Q2)} and goto Step Bl




is worth solving the LP exactly by checking if the approximate LP solution is nearly integral.
In this case, we solve the LP exactly, using the corresponding basis to warm-start the exact
LP solver (hopefully with few pivots and no need to increase the precision) and perform the
exact integrality test on the exact LP solution. In order to correctly report the optimal solution
found at the end of Step [B], the incumbent solution (that is, the best feasible MIP solution found
thus far) and its objective value are stored as rational numbers.

The hybrid approach can be extended to a branch-and-cut algorithm with primal heuristics
and presolving; but the focus of this paper is on the development of the basic framework.

3 Safe Dual Bound Generation Techniques

This section describes several methods for computing valid LP dual bounds. The overall speed
of the MIP solver will be influenced by several aspects of the dual bounding strategy; how
generally applicable the method is, how fast the bounds can be computed and how strong the
bounds are, because weak bounds lead to an increased node count.

3.1 Exact LP Solutions

The most straightforward way to compute valid LP bounds is to solve each node LP relaxation
exactly. This strategy is always applicable and produces the tightest possible bounds. Within
a branch-and-bound framework the dual simplex algorithm can be warm started with the final
basis computed at the parent node, speeding up the LP solution process. The fastest exact
rational LP solver currently available is QSOPT_EX [6]. The strategy used by this solver can
be summarized as follows: the basis returned by a double-precision LP solver is tested for
optimality by symbolically computing the corresponding basic solution, if it is suboptimal then
additional simplex pivots are performed with an increased level of precision and this process
is repeated until the optimal basis is identified. This method is considerably faster than using
rational arithmetic exclusively and is usually no more than two to five times slower than inexact
floating-point LP solvers. For problems where the basis determined by the double-precision
subroutines of QSOPT_EX is not optimal, the additional increased precision simplex pivots and
additional exact basic solution computations significantly increase the solution time.

3.2 Verify LP Basis

Any exactly feasible dual solution provides a valid dual bound. Therefore, valid dual bounds
can be determined by symbolically computing the dual solution corresponding to a numerically
obtained LP basis, without performing the extra steps required to identify the exact optimal
solution. If the dual solution is feasible, its objective value gives a valid bound. If it is infeasible,
an infinite bound is returned. Within the branch-and-bound algorithm, an infinite dual bound
will lead to more branching. Due to the fixing of variables, branching often remediates numerical
problems in the LP relaxations. This strategy avoids the extended precision simplex pivoting
that can occur when solving each node LP exactly, but it can increase the number of nodes.

3.3 Primal-Bound-Shift

Valid bounds can also be produced by correcting approximate dual solutions. A special case
occurs when all primal variables have finite upper and lower bounds. This technique was em-



ployed by Applegate et. al. in the CONCORDE software package [5] and is described more gen-
erally for MIPs by Neumaier and Shcherbina [20]. Consider a primal problem of the form
max{c’z : Az < b,0 < z < u} with dual min{b"y +u"z: A"y + 2 > ¢, y,z > 0}. Given an
approximate dual solution ¢, Z, an exactly feasible dual solution ¢, Z is constructed by setting
9; = max{0,9;} and 2; = max{0,(c — A"§);}. This gives the valid dual bound b"§ + u" 2.
This bound can be computed using floating-point arithmetic with safe directed rounding to
avoid the symbolic computation of the dual feasible solution. The simplicity of computing this
bound suggests it will be an excellent choice when applicable. However, if some primal variable
bounds are large or missing this procedure can produce weak or infinite bounds, depending on
the feasibility of ¢, Z.

3.4 Project and Shift

Correcting an approximate dual solution to be exactly feasible in the absence of primal variable
bounds is still possible. Consider a primal problem of the form max{c’x : Az < b} with dual
min{b"y : A"y = ¢, y > 0}. An approximate dual solution §j can be corrected to be feasible by
projecting it into the affine hull of the dual feasible region and then shifting it to satisfy all of
the non-negativity constraints, while maintaining feasibility of the equality constraints. These
operations could involve significant computation if performed on a single LP. However, under
some assumptions, the most time consuming computations can be performed only once at the
root node of the branch-and-bound tree and reused for each node bound computation. The
root node computations involve solving an auxiliary LP exactly and symbolically LU factoring
a matrix; the cost of each node bound computation is dominated by performing a back-solve of
a pre-computed symbolic LU factorization, which is often faster than solving a node LP exactly.
A detailed description and computational study of this algorithm can be found in [22]. A related
method is also described by Althaus and Dumitriu [4].

3.5 Combinations and Beyond

The ideal dual bounding method is generally applicable, produces tight bounds, and computes
them quickly. Each of the four methods described so far represent some trade-off between these
conflicting characteristics. The exact LP method is always applicable and produces the tightest
possible bounds, but is computationally expensive. The primal-bound shift method computes
valid bounds very quickly, but relies on problem structure that may not always be present. The
basis verification and project and shift methods provide compromises in between, with respect to
speed and generality. Therefore, a strategy that combines and switches between these bounding
techniques is the best choice for an exact MIP solver intended to efficiently solve a broad class
of problems. Also, the relative performance of these dual bounding methods strongly depends
on the problem structure, and this can change throughout the tree.

In Section (], we will evaluate the performance of each dual bounding method and analyze in
what situations which technique works best. In a final step, we will study different strategies to
automatically decide how to compute safe dual bounds for a given MIP instance. The central
idea is to apply fast primal-bound shift as often as possible and if necessary employ another
method depending on the problem structure. In this connection, we will address the question of
whether this decision should be static or dynamic. The dual bounding method can be selected
at the beginning, in Step [Il and remain fixed throughout the tree. This allows us to work with
FP-approximations whenever we do not select primal-bound shift. Alternatively, we can decide



on the method dynamically at every node, in Step B The drawback is that this requires an
FP-relaxation for the slave process in order to support fast primal-bound shift at every node.
However, how do we decide on primal-bound shift: by guessing or testing? This is addressed in
Section [4 Beyond that, we will analyze whether it is a good idea to compute safe dual bounds
only if they are really required, i.e., at nodes where the unsafe bound would lead to pruning.
Furthermore, we experiment with interleaving our actual selection strategy with exact LP solves
to eliminate special cases where weak bounds cause the solver to keep branching in subtrees
that would have been cut off by the exact LP bound.

4 Computational Study

In this section, we investigate the performance of our exact MIP framework employing the differ-
ent safe dual bounding techniques discussed above: primal-bound shift (“BoundShift”), project
and shift (“ProjectShift”), basis verification (“VerifyBasis”), and exact LP solutions (“ExactLP”).
We will first look at each method on its own and then examine them within the branch-and-
bound algorithm. At the end, we discuss and test a strategy to automatically switch between the
most promising bounding techniques (“Auto”) as well as variants where we only guess whether
primal-bound shift will work (“Auto-Static”), where we interleave the normal selection with ex-
act LP calls (“Auto-lleaved”), and where we restrict safe dual bound generation to the necessary
nodes (“Auto-Limited”).

The discussed algorithms were implemented into the branch-and-bound algorithm provided
by the MIP framework SCIP 1.2.0.8 1,2, 21], using best bound search for node selection and first
fractional variable branching. To solve LPs approximately and exactly we call CPLEX 12.2 [16]
and QSOPT_EX 2.5.5 [7], respectively. Rational computations are based on the GMP library
4.3.1 [13]. All benchmark runs were run on Intel E5420 CPUs with 4 cores and 16 GB RAM
each. To maintain accurate results only one computation was run at the same time. We imposed
a time limit of 1 hour and a memory limit of 3 GB. Our test set contains all instances of the
MirpLiB 3.0 [8] and MipLiB 2003 [3] libraries and from the Mittelmann collections [19]. We
excluded eight instances that could not be run within the imposed limits. This gives a test suite
of 155 MIP instances.

We start with evaluating the root node behavior of the dual bounding methods. Our per-
formance measures are: time overhead and bound quality. Table [ presents for each method
the additional time spent to compute dual bounds safely relative to “BoundShift” in shifted
geometric mean] (“DBT”). Note that the timings used to measure the computation times are
always rounded up to one second if they are smaller. Furthermore, Table [1] states the num-
ber of instances for which a certain dual bound quality was achieved. The quality is given
by the relative difference between the computed safe dual bound ¢* and the exact LP value
¢* := max{c'z : z € LP;}. However, we actually compare the FP-representable upper
approximations of both values, as used in Algorithm [I, and define the relative difference as
d := (¢* — ™)/ max{1, |c*|,|c**|}. The corresponding columns in Table [ are: “Zero” difference
for d = 0, “S(mall)” difference for d € (0,107°], “M(edium)” difference for d € (107%,1073], and
“L(arge)” difference for d € (1073, 00). Column “co” counts the worst case behavior, i.e., infinite
dual bounds. Note that for these tests we doubled the time limit in order to leave enough room
to compute the exact dual bound value ¢**.

'The shifted geometric mean of t1,...,t, is defined by (IT7-;(¢; + s))l/" — s and is an intermediate measure
between the arithmetic and geometric means, we use a shift factor of s = 10 for time and s = 100 for nodes.



optimal (24) timeout (105) timeout+gap (21)
Setting slv. Nodes Time DBT Nodes DBT Nodes Gap DBT

Setting Zero S M L o DBT

- BoundShift 33 6753 39.0 5.6 475948 5457 1509219 70.3 512.9
BoundShift 37 72 3 0 43 1.0 projectShift 35 6097 103.4 63.9 87640 2569.6 199486 18.9 2911.8

ProjectShift 51 85 10 4 5 7.1 = verifyBasis 33 6073 126.3 88.4 57442 2748.4 167485 19.9 3038.9
VerifyBasis 151 2 0 0 2 19 pEyctlP 30 6072 146.5 109.6 40452 3073.2 134083 20.4 3163.1
ExactLP 15 0 00 O 3.0

Inexact 50 6051 29.1 — 969872 — 2477629 95 —
Auto 5396 51 0 1.2
Auto-Static 54 95 5 1 0 1.4 Auto 43 6087 38.9 8.9 281844 967.1 501730 16.2 1241.7
Autolleaved 53 96 5 1 0 1.2 Auto-Static 42 6087 43.4 11.1 268833 9782 505212 16.2 1240.6

Auto-lleaved 45 6066 39.5 9.9 273331 1014.2 504037 15.7 1399.0

Table 1. Root node dual bound:  ayio |imited 37 7305 352 55 507565 369.8 1100675 483.7 660.6
Relative difference to exact bound

and additional computation time in
shifted geometric mean.

Table 2. Overall performance. “slv” is number of instances solved, “DBT”
is additional time spent computing exact dual bounds.

As expected, primal-bound shift is the fastest method, but it fails to produce dual bounds
on 43 instances in contrast to only 5 for project and shift and only 2 for basis verification. This
is, project and shift meets its requirements most of the time and the bases obtained by CPLEX
are almost always dual feasible and even optimal. Still, primal-bound shift provides very good
quality bounds if it works; most of these instances fall into the “Zero” and “S(mall)” categories.
When primal-bound shift works we expect to obtain strong bounds and whenever it fails we
assume basis verification or project and shift to be applicable. Which method to chose depends
on the time overhead. However, this can not be decided by looking at the root node as project
and shift involves an expensive initial set-up step. This can be seen in the performance profile
in Figure [ It visualizes the relative overhead times for the safe dual bounding methods. For
each of them, it plots the number of instances for which the dual bounding step was performed
within a given factor of the bounding time of the fastest method.

Where basis verification is in most cases only up to 10 times slower than the fastest method
primal-bound shift, project and shift can be up to 100 times slower at the root node because
of the set-up step. But we will see that this overhead often pays off in the branch-and-bound
tree. Let us further remark that the idea of basis verification, to omit the repair step of exact
LP solvers, actually limits the occasional large overhead of QSOPT_EX. As it produces very
good bounds we will prefer basis verification to exact LP solves in our automatic dual bound
selection strategy. Comparing their branch-and-bound behavior leads to the same conclusion.

We will now analyze the effect of the dual bound methods on the overall performance of the
exact MIP solver and compare it with the inexact branch-and-bound version of SCIP. Table 2]
reports the number of instances that were solved within the imposed limits (Column “slv”), for
each setting. 50 instances were solved in at least one test run, indeed all of them by at least the
inexact version “Inexact”. Figure[2gives a detailed comparison of the solution times for these 50
instances. For a setting where an instance had a timeout it is reported with an infinite ratio to
the fastest setting. Thus, the points at the right boarder of the graphic reflect the “slv” column.
To compare the methods on all instances of the test set, we split them into three groups with
different performance measures each. The first group “optimal” contains all 24 instances that
were solved by all versions. For this group, we present in Table Bl for each setting, the number
of branch-and-bound nodes “Nodes”, the solution times “Time” in seconds, and the additional
time spent in the safe dual bounding step “DBT”, all in shifted geometric mean. The second
group “timeout” includes all instances where every test run had a timeout. Here, the number of
branch-and-bound nodes “Nodes” indicates how fast a method is. In general, the more nodes
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Figure 1. Additional time for root node dual bound Figure 2. Overall solving times.

computations.

processed, the faster the dual bounding method. For a subgroup of 21 instances, we had a finite
primal-dual gap in every test run. This gives our third group “timeout+gap” for which we also
report the primal-dual gaps in shifted geometric mean “Gap”.

The observations made for the root node carry forward to the application in the branch-and-
bound algorithm. Primal-bound shift leads to the fastest node processing. Basis verification has
a slightly better performance than solving LPs exactly at every node. However, basis verification
is often outperformed by project and shift.

A closer look reveals that primal-bound shift introduces not only a small overhead at the
root but throughout the tree. On the “optimal” group, it performs similar to the inexact code
in mean. For the individual instances, we usually experience a slow-down of at most 2. The few
large slow-down factors of up to 10 can, for example, be explained by a slight node increase due
to a small number of missing bounds and by expensive exact LP calls to prove infeasibility of
the node or primal feasibility of the basic LP solution. A similar decrease in running time can
be observed for the “timeout” group via the node count. However, this group includes instances
where primal-bound shift fails: the gap in geometric mean is 70.3% on the “timeout+gap” group
in contrast to 9.5% for the inexact code.

In contrast, project and shift gives a much better gap (18.9% in mean) on these instances.
That is, the often observed good dual bound quality at the root node seems to stay throughout
the tree. We already pointed out the big overhead this costs at the root node. However, the
method is fast on the rest of the tree and leads to an acceptable slow-down compared to the
inexact code. In mean, it is only 3 times slower on the “optimal” group and only 10 times on the
“timeout” instances. In this fashion, most of the 35 instances solved by this setting are only up
to 10 times slower than the inexact code. If we compare project and shift with basis verification
we see a similar and often better performance for project and shift. For example, it solves two
more instances. However, on some instances basis verification works better. We tested different
problem characteristics and found the number of non-zeros in the constraint matrix to be a good
criterium for choosing between project and shift and basis verification. In the automatic dual
bound selection, we prefer project and shift as long as the matrix has at most 10,000 non-zeros.

We already gave some remarks concerning a strategy that automatically chooses a dual
bounding method. Another important observation for this purpose is that replacing FP-
approximations by FP-relaxations does not affect the performance much: running project
and shift on a FP-relaxation gave similar results. Therefore, we decided to always set up



an FP-relaxation in Step [[I This way, we are allowed to apply primal-bound shift whenever
we want to. The automatic decision process used in the “Auto” run works as follows. At ev-
ery node, we first test whether primal-bound shift produces a finite bound. If not, we choose
primal-bound shift or basis verification depending on the structure of the constraint matrix as
explained above.

The results show that we actually combined the advantages of all dual bounding methods.
We can solve all 35 instances that primal-bound shift solved as well as 8 additional instances
by automatically switching to other dual bounding methods at the nodes. Furthermore, on the
“timeout+gap” group, where project and shift produced a much better gap than primal-bound
shift, the automatic setting processes in mean even two times more nodes than project and shift
and this way further improves the gap.

In Section B35l we discussed three possible improvements for the automatic dual bound
selection procedure. The first one, to only guess whether primal-bound shift will work, is
implemented in test run “Auto-Static”. The guess is static, i.e., does not change throughout the
tree. We skip primal-bound shift if more than 20% of the variables have lower or upper bounds
with absolute value larger than 10%. Comparing both automatic settings shows that it is no
problem to actually test whether primal-bound shift works and it even leads to a slightly better
performance. The second idea was to interleave the strategy with exact LP calls whenever the
node is very likely to be cut off. The test run (“Auto-lleaved”) showed that this applies not very
often but when it does apply it actually helps. We solved two more instances to optimality and
improved the gap on the “timeout+gap” group.

The third extension suggested in Section was to only compute bounds safely if they are
actually used for a crucial decision, i.e., if the unsafe bound with tolerances would lead to cutting
off a node. Looking at the overall behavior for the corresponding test run “Auto-Limited”, it is
not clear whether this is a good idea in general. For one thing, the node count on the “timeout”
instances doubles, i.e., the node processing is much faster on average. On the other hand, we
can solve only 37 instead of 43 instances. We cannot tell anything about the quality on the rest
of the instances as the primal-dual-gap does not improve steadily. Further testing is needed
here, e.g., by applying safe dual bounding steps at selected levels of the tree.

5 Conclusion

From these computational results we can make several key observations. Each dual bounding
method studied has strengths and weaknesses depending on the problem structure. Automati-
cally switching between these methods in a smart way solves more problems than any single dual
bounding method on its own. Of the 50 problems solved within one hour by the floating-point
branch-and-bound solver, 45 could also be solved exactly and the solution time was usually
no more than 10 time slower. This demonstrates that the hybrid methodology can lead to an
efficient exact branch-and-bound solver, not limited to specific classes of problems. As our focus
has been exclusively on the branch-and-bound procedure, we have compared the exact solver
against a floating-point solver restricted to pure branch-and-bound. The exact solver is still not
directly competitive with the full version of SCIP with its additional features enabled. However,
it is realistic to think that the future inclusion of additional MIP machinery including cutting
planes, more extensive presolving and heuristics into this exact framework could lead to a fully
functioning exact MIP solver that is not prohibitively slower than its inexact counterparts.
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