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ABSTRACT

TSPLIB is Gerhard Reinelt’s library of some hundred instances of the traveling salesman
problem. Some of these instances arise from drilling holes in printed circuit boards; others
arise from X-ray crystallography; yet others have been constructed artificially. None of them
(with a single exception) is contrived to be hard and none of them is contrived to be easy;
their sizes range from 17 to 85,900 cities; some of them have been solved and others have not.

We have solved twenty previously unsolved problems from the TSPLIB. One of them is
the problem with 225 cities that was contrived to be hard; the sizes of the remaining nineteen
range from 1,000 to 7,397 cities.

Like all the successful computer programs for solving the TSP, our computer program
follows the scheme designed by George Dantzig, Ray Fulkerson, and Selmer Johnson in
the early nineteen-fifties. The purpose of this preliminary report is to describe some of
our innovations in implementing the Dantzig-Fulkerson-Johnson scheme; we are planning to
write up a more comprehensive account of our work soon.



1 INTRODUCTION

The traveling salesman problem, or TSP for short, is easy to state: given a finite number
of “cities” along with the cost of travel between each pair of them, find the cheapest way of
visiting all the cities and returning to your starting point. (The travel costs are symmetric
in the sense that traveling from city X to city Y costs just as much as traveling from Y to X
the “way of visiting all the cities” is simply the order in which the cities are visited.) To put
it differently, the data consist of integer weights assigned to the edges of a finite complete
graph; the objective is to find a hamiltonian cycle (that is, a cycle passing through all the
vertices) of the minimum total weight. In this context, hamiltonian cycles are commonly
called tours.

The origins of the TSP are obscure. In the 1920’s, the mathematician/economist Karl
Menger publicized it among his colleagues in Vienna; in the 1930’s, the problem reappeared
in the mathematical circles of Princeton; in the late 1940’s, the mathematician Merill Flood
popularized it among his colleagues at the RAND Corporation. Eventually, the TSP gained
notoriety as the prototype of a hard problem in combinatorial optimization: examining the
tours one by one is out of the question because of their large number, and no other idea was
on the horizon for a long time. (A close relative of the TSP is the minimum spanning tree
problem, where a minimum-weight spanning tree rather than a minimum-weight spanning
cycle is sought. This apparently minor modification makes the new problem far easier: the
first efficient algorithm for solving the minimum spanning tree problem was proposed as early
as 1926 [3]. Just as the TSP is the prototype of a hard combinatorial optimization problem,
the minimum spanning tree problem is the prototype of an easy combinatorial optimization
problem. From this perspective, arguing the difficulty of the TSP by harping on the large
number of tours is not entirely convincing: the number of spanning trees in a complete graph
is much larger than the number of tours.)

A breakthrough came in 1954, when George Dantzig, Ray Fulkerson, and Selmer Johnson
[7] published a description of a method for solving the TSP and illustrated the power of
this method by solving an instance with 49 cities, an impressive size at that time. Riding
the wave of excitement over the numerous applications of the simplex method (designed by
George Dantzig in 1947), they attacked the salesman with linear programming as follows.

Each TSP instance with n cities can be specified as a vector of length n(n — 1)/2 (whose
components, indexed by the edges of the complete graph, specify the costs) and each tour
through the n cities can be represented as its incidence vector of length n(n—1)/2 (with each
component set at 1 if the corresponding edge is a part of the tour, and set at 0 otherwise);
if ¢T' denotes the cost vector (thought of as a row vector) and if S denotes the set of the
incidence vectors (thought of as column vectors) of all the tours, then the problem is to

minimize ¢’z subject to z € S. (1.1)

Like the man searching for his lost wallet not in the dark alley where he actually dropped
it, but under a streetlamp where he can see, Dantzig, Fulkerson and Johnson begin not with
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the problem they want to solve, but with a related problem they can solve,
minimize ¢’ ¢ subject to Az < b (1.2)

with some suitably chosen system Az < b of linear inequalities satisfied by all  in §: solving
linear programming problems such as (1.2) is precisely what the simplex method is for.

Since (1.2) is a relazation of (1.1) in the sense that every feasible solution of (1.1) is a
feasible solution of (1.2), the optimal value of (1.2) provides a lower bound on the optimal
value of (1.1). The ground-breaking idea of Dantzig, Fulkerson, and Johnson was that solv-
ing (1.2) can help with solving (1.1) in a far more substantial way than just by providing a
lower bound: having satisfied oneself that the wallet is not under the streetlamp, one can
pick the streetlamp up and bring it a little closer to the place where the wallet was lost. It
is a characteristic feature of the simplex method that the optimal solution z* it finds is an
extreme point of the polyhedron defined by Az < b; in particular, if * is not one of the
points in & then it lies outside the convex hull of S. In that case, * can be separated from
S by a hyperplane: some linear inequality is satisfied by all the points in S and violated by
z*. Such an inequality is called a cutting plane or simply a cut. Having found a cut, one can
add 1t to the system Az < b, solve the resulting tighter relaxation by the simplex method,
and iterate this process until a relaxation (1.2) with an optimal solution in S is found.

We shall illustrate the Dantzig-Fulkerson-Johnson method on the Dantzig-Fulkerson-
Johnson example, the 49-city problem. This instance of the TSP was created by picking
one city from each of the 48 states of the U.S.A. (Alaska and Hawaii became states only in
1959) and adding Washington, D.C.; the costs of travel between different cities were defined
as road distances taken from an atlas. (In the actual computations, each distance of d miles
was replaced by (d — 11)/17 rounded up to the nearest integer, so that each of the result-
ing numbers could be stored as a single byte.) Rather than solving this 49-city problem,
Dantzig, Fulkerson and Johnson solved the 42-city problem obtained by removing Baltimore,
Wilmington, Philadelphia, Newark, New York, Hartford, and Providence. As it turned out,
an optimal tour of the 42 cities used the edge from Washington, D.C. to Boston; since the
shortest route between these two cities passes through the seven removed cities, this solution
of the 42-city problem yields a solution of the 49-city problem.

Here, and throughout the paper, we shall conform to the following conventions. The
symbol V is reserved for the set of cities; each edge of the complete graph with vertex-set
V 1s simply a two-point subset of V; if © is a vector whose components are indexed by the
edges of this complete graph, then z. or z(e) denotes the component indexed by e; we write

z(S) = Z(:ce ce CS)
for every set S of cities and
(S, T)=) (ze:eNS#0, enT #0)

for every choice of disjoint sets S, T of cities. By the graph of =, we shall mean the graph
whose vertex-set is V', and whose edges are all the e with z. > 0.



Trivially, each z in S satisifies
0<z. <1 for all edges e (1.3)

and

z({v},V—-{v})=2 for all cities v, (1.4)

and so one can always use the system (1.3), (1.4) as the initial choice of the Az < bin (1.2).

In the 42-city problem, the graph of the optimal solution z* of this initital relaxation is
disconnected: one of its two components has vertices 1,2,41,42 and the other component
has vertices 3,4,...,40. This structural fault makes the first cut obvious: since every tour
must cross every demarcation line separating V into two nonempty parts at least twice, every
z in S satisfies

2(S,V —8) >2 (1.5)

for all nonempty proper subsets S of V; however, z* in place of  violates (1.5) with S =
{1,2,41,42}. Constraints (1.5), called “loop conditions” by Dantzig, Fulkerson, and Johnson,
are nowadays called subtour elimination constraints or simply subtour constraints: from the
set of integer solutions of (1.3), (1.4), they eliminate incidence vectors of disconnected graphs
(consisting of two or more vertex-disjoint “subtours”) and leave only the incidence vectors
of tours.

The next two iterations are similar: the graphs of z* are disconnected and we add two
more subtour constraints (one with S = {3,4,...,9}, the other with S = {24,25,26,27}).
Then the graph of z* becomes connected but not 2-connected: removal of city 18 splits it
into two connected components, one with vertices 13,14,...,17 and the other with vertices
19,20,...,42,1,2,...,12. Again, this structural fault in the graph points out a violated
subtour constraint: more generally, if the removal of a single city, say w, splits the rest of
the graph into connected components with vertex-sets S1,Ss,..., Sk (k > 2) then trivially
z*(S;, V — 8;) = 2*(S;, {w}) < 1 for at least one ¢. We add the subtour constraint with S =
{13,14,...,17} and continue through three similar iterations (adding subtour constraints
with S = {10,11,12}, § = {11,12,...,23}, and S = {13,14,...,23}) until we obtain a
relaxation (1.2), whose optimal solution z* is shown in Fig. 1.1: the solid edges e carry
z. = 1, the dashed edges e carry . = 1/2, and the long path 28-29-30- ...-41-42-1-2- ...-8-
9-10 consists entirely of solid edges. The graph of this z* is 2-connected; no violated subtour
constraints are apparent; in fact (as we shall observe in the next section), there are none.
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Fig.1.1: What is wrong with this vector?

Now Dantzig, Fulkerson, and Johnson add two more linear inequalities satisfied by all
z in § and say in a footnote, “We are indebted to I. Glicksberg of Rand for pointing out
relations of this kind to us”. These two inequalities read

x({15,16,18,19}) + 2T (14,15} T T{1617) T T{19,20) < 6 (1.6)

(actually, this constraint is presented in [7] as our (1.6) minus the sum of the three equations

z({v},V — {v}) =2 with v = 15,16,19) and
Z T, < 42 (1.7)

with {53y = 2 and a. = 1 for all other e except that a. = 0 when (i) e = {25, 26}, or (ii)
x> =0 and |eN {10,11,...,28}| = 1, or (iii) =} = 0 and |e N {10,21,25,26,27,28}| > 1. It

is easy to see that each © in S satisfies (1.6); in fact, each z in S satisfies
£({15,16,18,19}) + z1415) + {1617} + T{r9,20) < B (1.8)

the sum of (1.8) and the trivial #1415y < 1is (1.6). To check that each  in S satisfies (1.7),
assume the contrary: the incidence vector of some tour T' violates (1.7). Obviously, T' has
to use the edge {22,23} and has to avoid all the edges e with a. = 0. Since {9,10} and
{28,29} are the only two edges e with a, # 0 and precisely one endpoint in {10,11,..., 28},
they have to be used by T'; since {10,25} and {24,25} are the only two edges e with a, # 0
and one endpoint equal to 25, they have to be used by T'; since {26,27} and {26,28} are
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the only two edges e with a. # 0 and one endpoint equal to 26, they have to be used by
T. Since T uses {26,28} and {28,29}, it must avoid {21,28}; since {20,21} and {21,22}
are the only remaining edges e with a. # 0 and one endpoint equal to 21, they have to be
used by T'. Since T uses {21,22} and {22,23}, it must avoid {22,27}; since {24,27} and
{26,27} are the only remaining edges e with a. # 0 and one endpoint equal to 27, they have
to be used by T. But then T' contains a cycle on 1,2,...,10,25,24,27,26,28,29,...,42, a
contradiction.

By adding constraints (1.6) and (1.7) to the previous relaxation of (1.1), Dantzig, Fulk-
erson and Johnson finally put the streetlamp next to the wallet: they obtained a relaxation,
whose optimal solution is the incidence vector of a tour (passing through the 42 cities in the
order of their labels). And that was the end of the 49-city problem.

The influence of this work reached far beyond the narrow confines of the TSP.

On the one hand, the method can be used to attack any problem of the form (1.1),
regardless of the particular choice of S, as long as there is an efficient algorithm to recognize
points of S (we have to know a good thing when we see it returned as an optimal solution
of a relaxation (1.2)). Many problems in combinatorial optimization have this form: in
the maximum clique problem, § consists of the incidence vectors of all cliques in the input
graph G (the components of these vectors are indexed by the vertices of G); in the maximum
cut problem, S consists of the incidence vectors of all edge-cuts in the input graph G (the
components of these vectors are indexed by the edges of G); and so on. In each of these
particular examples, the challenge is to come up with linear inequalities satisfied by all the
points in S and violated by the optimal solution z* of the current relaxation (1.2). To meet
this challenge, one often begins with common sense to establish some combinatorial property
of § and only then (as we have seen in the 42-city example) one expresses this property in
terms of linear inequalities. This line of attack led to the development of the flourishing field
of polyhedral combinatorics.

Second, the method can be used to attack any integer linear programming problem. (To
cast the TSP in this form, note that its S consists of all integer solutions of (1.3), (1.4),
(1.5).) Again, the challenge is to come up with linear inequalities satisfied by all the integer
feasible solutions of the current relaxation (1.2) and violated by its optimal solution z*: can
I. Glicksberg’s ingenuity be replaced by an automatic procedure to generate cutting planes?
Ralph Gomory [8], [9], [10] answered this challenge with breathtaking elegance by his design
of cutting-plane algorithms.

In this way, the work of Dantzig, Fulkerson, and Johnson became the prototype of two dif-
ferent methodologies: polyhedral combinatorics in combinatorial optimization and cutting-
plane algorithms in integer linear programming.

This seems to be the reason why the TSP is so popular. Arguing that it is popular be-
cause 1t arises from practical applications would be hard: even though variations on the TSP
theme come up in practice relatively often, the theme in its pure form appears only rarely.
Two of its sources are (a) drilling holes in printed circuit boards, where the time spent on
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moving the drill through a sequence of prescribed positions is to be minimized, and (b) X-ray
crystallography, where the time spent on moving the diffractometer through a sequence of
prescribed angles is to be minimized [1]. A number of TSP instances arising from these
sources, along with instances created artificially in the Dantzig-Fulkerson-Johnson tradition
(by taking 120 cities in Germany, or 532 cities in the U.S.A., or 666 cities all over the world,
or ...), have been used for years as standard test problems for computer algorithms; recently,
Gerhard Reinelt [27, 28] collected around a hundred of them, with sizes ranging from 17 to
85,900 cities, in a library called TSPLIB.

Writing computer programs to solve TSPLIB problems can hardly be classified as applied
work. The technology of manufacturing printed circuit boards has changed and the drilling
problems from the TSPLIB are no longer of interest to the industry. Similarly, development
of multiplex cameras is making the TSP problems of X-ray crystallography obsolete; besides,
research laboratories have never considered large investments of computer time for the small
gain of minimizing the time spent by moving the diffractometer. Furthermore, even if there
were a client with a genuine need to solve TSP problems, such a client would most likely be
satisfied with nearly optimal tours. Finding nearly optimal tours even in fairly large TSPLIB
problems is a relatively easy task: good implementations of the Lin-Kernighan heuristic [19]
and its refinements work like a charm. Most of the computer time spent on solving TSPLIB
problems goes into prowving that a tour is optimal, a fact of negligible interest to the hypo-
thetical client.

Writing computer programs to solve TSPLIB problems can hardly be classified as the-
oretical work, either. A prize offered by the RAND corporation for a significant theorem
bearing on the TSP was never awarded; Dantzig, Fulkerson, and Johnson close their seminal
paper with the modest disclaimer “ It is clear that we have left unanswered practically any
question one might pose of a theoretical nature concerning the traveling-salesman problem

.7. All the successful computer programs for solving TSP problems follow the Dantzig-
Fulkerson-Johnson scheme; improvements consist only of better ways of finding cuts and
better handling of the large linear programming relaxations. (Having a faster computer
helps, t00.) It might be argued that the most significant theorem bearing on the TSP is one
pointing in the opposite direction: Richard Karp, Eugene Lawler, and Robert Tarjan [18]
proved that the decision version of the TSP is an AP-complete problem. (In quite a few
of the TSPLIB instances, the cities are points in the plane and the cost function is some
natural metric; the decision version of the TSP remains N P-complete even when its inputs
are restricted to such special instances: see [17].)

Writing computer programs to solve TSPLIB problems could be classified as a sport,
where each new record is established by solving at least one previously unsolved instance. A
few milestone records are shown in Table 1.1; the suffix of each problem name, as given in
TSPLIB, specifies the number of cities.
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PROBLEM SOLVED BY

gr120 Grotschel [11]
1in318 Crowder and Padberg [6]
pcb442  Grotschel and Holland [12]
att532 Padberg and Rinaldi [24]
gr666  Grotschel and Holland [12]
pr1002 Padberg and Rinaldi [24]
pr2392 Padberg and Rinaldi [24]

Table 1.1: The TSP Olympics

Progress in this discipline is made by solving harder and harder problems; “harder” is by no
means synonymous with “larger”. On the one hand, the fact that recognizing upper bounds
on the optimal tour length is an AP-complete problem suggests (subject to the article of
faith that P # N'P) the existence of relatively small TSP instances guaranteed to require
prohibitively large amounts of time by any algorithm; for relatively small TSP instances
guaranteed to require prohibitively large amounts of time by any of the algorithms wn cur-
rent use, see [5]. On the other hand, any reasonable TSP algorithm should make an easy
job of solving an instance created by taking the euclidean distances between 10000 randomly
chosen points on a circle. (Of course, one could always argue that the algorithm never made
use of the special structure of this instance as long as it has not been explicitly told to do
s0.) Problems from the TSPLIB are not like either of these two extremes: they (with the
exception of ts225) are not contrived to be hard and they are not contrived to be easy. Still,
they are subject to statistical variations of difficulty.

What does one mean by saying that a particular TSP instance is difficult? A really
huge instance can overwhelm the machine simply by its sheer size; however, there are ways
in which even relatively small instances can turn nasty. Success of the Dantzig-Fulkerson-
Johnson method hinges not on the ability to find cuts (Gomory taught us how to always
do that) but on the ability to find cuts that are strong enough, so that their insertion
into the current relaxation brings about significant progress towards solving the instance.
This progress i1s often estimated by the increase in the optimal value of the relaxation; as
more and more cuts are added, these increases tend to get smaller and smaller. If these
diminishing returns get below an acceptable threshold, then it may be preferable to branch
by splitting the problem into two subproblems. Typically, this is done by first picking an
edge, say e, and then looking separately for (i) the cheapest tour that uses e and (ii) the
cheapest tour that avoids e. Again, each of the two subproblems is attacked by solving
its linear programming relaxation (with constraint z, = 1 added to subproblem (i) and
constraint z. = 0 added to subproblem (ii)) and adding new cuts (that is, linear inequalities
satisfied by every incidence vector of a tour and violated by an optimal solution of the current
relaxation of the subproblem) to the old; again, failure to find sufficiently many sufficiently
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strong cuts may force splitting one or both of the two subproblems into sub-subproblems,
and so on. In the resulting binary tree of subproblems, some branches may be pruned off
without exploring the subtrees they lead to: from the outset, one stores the best currently
known tour and uses its cost as a bound on the cost of an optimal tour. If the optimal value
of a subproblem’s relaxation is at least this bound, then no tour in the subproblem has a
chance of beating the current incumbent, and so the subproblem can be abandoned at once.
(In addition, a subproblem can be abandoned if its relaxation has no feasible solutions.) This
scheme, apparently used first by Miliotis [20] and later, in a different context, by Grotschel,
Jinger, and Reinelt [13], is known as branch-and-cut [24].

In a way, the number of nodes in the branch-and-cut tree of subproblems (for a fixed
method of finding cuts and a fixed heuristic to find the initial incumbent tour) could be taken
as a measure of the inherent difficulty of an instance, independent of its size: its internal
nodes are in a one-to-one correspondence with subproblems so difficult that, given any of
them, the algorithm resorted to brute force and simply split it into two sub-subproblems.
In this perspective, Table 1.2 illustrates the point that larger does not always mean harder:
curiously, the number of nodes in the branch-and-cut tree decreases here as the problems
get bigger. (The four problems are named ATT532, GH666, TK1002, and TK2392 in [26].
Padberg and Rinaldi apparently do not count the root as one of the nodes of the branch-
and-cut tree; we do.)

PROBLEM NUMBER OF NODES IN THE
BRANCH-AND-CUT TREE OF [26]

att532 107
greeé 21

pr1002 13

pr2392 3

Table 1.2: A monotonically decreasing function
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Dantzig, Fulkerson, and Johnson showed a way to solve large instances of the TSP; all
that came afterward is just icing on the cake. The purpose of the present paper is to describe
some of the icing we have added on top of the previous layers. Our icing comes in five flavors:

(1) new ways of finding cuts,

)
i1) new ways of handling the LP relaxations,
g
(iii) new ways of selecting an edge on which to branch,
)

(iv) new ways of finding an incumbent tour
(and so pruning the branch-and-cut tree more often),

(v) solving the problem in parallel on a network of UNIX workstations.

The purpose of this preliminary report is to describe a subset of (i); we are planning to write
up a more comprehensive account of our work soon.

Our initial goal was to solve TSPLIB problem pcb3038. To attain this goal, we had
armed ourselves with some sixty workstations and written, as well as we could, a computer
program based on previously published work of others. The cut-finding techniques of our
program included

e the Crowder-Padberg “shrinking procedure” [6],

o the separation algorithm for subtour constraints that solves » — 1 max-flow min-cut
problems

(see, for instance, Section 2.2 of [21]),

e the Padberg-Rao separation algorithm for blossom constraints [23],

e the Grotschel-Holland comb heuristics [12],

e the Padberg-Rinaldi comb and clique-tree heuristics [25],
as well as a number of our own innovations (not described in this report); our LP solver was
CPLEX, which we modified in significant ways. In January 1992, we began our first run on
pcb3038. As we monitored the growth of the branch-and-cut tree during a few weeks, it was
becoming more and more obvious to us that, despite the considerable computing power at
our disposal, we had no hope of ever solving the problem: the tree just kept on growing and
growing and growing. We had to either come up with new tricks or give up.

We did come up with new tricks and solved the problem by the end of April. In retrospect,
we are not sure which of these new tricks got us over the pcb3038 hump. We believe it was
not any single one of them, but a combination of three cut-finding techniques described in
this report (in Sections 6, 7, and 8) and a certain time-consuming way to branch. Over the
next couple of years, we added a few more improvements (including the necklace technique of
Section 3) and solved additional problems from the TSPLIB. Among the previously unsolved
problems that we have solved are d1291, d1655, dsj1000, £11400, fnl4461, nrwl379,
pcb1173, pcb3038, pla7397, rl1304, r1i1323, rl1889, ts225, ul060, uld32, ulsl?,
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u2152, u2319, vm1084, and vm1748; certificates of the optimality of our solutions of fn14461,
pcb3038, pla7397, and ts225 are available by anonymous ftp from
netlib.att.com
in the directory
netlib/att/math/applegate/TSP .

The remaining unsolved problems in TSPLIB-Version 1.2 are brd14051, 42103, 418512,
£11577, £13795, pla33810, pla85900, r15915, r15934, and r111849.
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2 TIGHT SETS AND PQ-TREES

Throughout this paper, z will always denote a vector, with components indexed by the edges
of the complete graph on vertex-set V', that satisfies

0<z. <1 for all edges e (2.1)

and

c({v},V—-{v}) =2 for all cities v. (2.2)

The purpose of the present section is to introduce a certain hierarchical decomposition of V
with respect to z; we shall use this decomposition again and again to find cuts.

This decomposition revolves around the notion of a tight set, by which we mean any set
S of cities such that z(S,V — S) = 2. For reasons that will become apparent later, we find
1t useful to store as many tight sets as we can find without undue effort. To store these sets,
we first choose an arbitrary city, call it exterior, and write W = V — {exterior}; since
S 1s tight if and only if V — S is tight, we lose no generality by storing only tight subsets of W.

A PQ-tree (introduced by Booth and Lueker [2]) is a rooted ordered tree with each
internal node having at least two children and labeled either as a P-node or as a (Q-node; it
1s customary to draw P-nodes as circles and (Q-nodes as rectangles. For each node u of such
a PQ-tree T', we let D(u) denote the set of all leaves that are descendants of u; we let B(T")
denote the family of

e all sets D(u)

such that « is a node of T', and

e all sets D(u;) U D(uiy1) U ... U D(uj)
such that wy, us,...,us in this order are the children of some (3-node of T"and 1 <z <
J<k.

We say that a PQ-tree is compatible with « if the set of its leaves is W and all sets in B(T")
are tight. (In these definitions, it is immaterial whether a node with precisely two children
is labeled a P-node or a (3-node; Booth and Lueker consider it P-node; for our purpose, it
will be more convenient to consider it a Q-node.) For example, the PQ-tree shown in Fig.2.1
i1s compatible with the vector # shown in Fig.1.1; there, we have chosen exterior = 42.

We are about to prove a theorem specifying a minor reason why we are interested in
PQ-trees (the major reasons will come in subsequent sections). This theorem involves the
intuitive notion of shrinking a set of cities. Formally, shrinking a subset S of V means
replacing V' with V/S defined as (V — S) U {o} for some new vertex o (representing the
shrunk S) and replacing « with /S defined on the edges of the complete graph with vertex-
set V/S by

z/S({o,t}) ==x(S,t) foralltinV — §
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and x/S(t1,t2) = ®(t1,) for all ¢1,¢t2in V — 5. (If S is tight then the resulting z/S satisfies
(2.2) in place of z.) With each internal node u of a PQ-tree compatible with z, we associate

the vector z[u] that arises from z by shrinking V' — D(u) as well as each D(v) such that v is
a child of u.

43
[T 111 | [T 111
12 . 10 53 28 29 ... 41
54 51
44 55 48 49
[ N
11 12 2425 26 27
52 47
[ ]
50 46 2223
[ 11
45 17 1819 20 21
HER
13 14 15 16

Figure 2.1: A PQ-tree compatible with the vector in Fig.1.1.

THEOREM 2.1 For every PQ-tree T compatible with x, the following two conditions are
equivalent:

(i) x satisfies all subtour constraints,

(it) x[u] satisfies all subtour constraints for each P-node u of T'. O
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This is one reason why we are interested in PQ-trees: if a PQ-tree compatible with z is
available and if each P-node of this tree has a relatively small number of children, then
the problem of finding subtour constraints violated by z reduces to smaller subproblems.
(For instance, since the PQ-tree in Fig. 2.1 has no P-nodes at all, Theorem 2.1 guarantees
immediately that the vector in Fig. 1.1 satisfies all subtour constraints.)

It will be convenient to set a part of the argument used to prove Theorem 2.1 on its
own as a lemma. We call a subset S of V' bad if S is a nonempty proper subset of V and

(S, V—-5) <2

LEMMA 2.1 If R is tight, if S is bad, and if RN S #0, RUS # V, then at least one of
RNS and RUS is bad.

PROOF. Writing A=R—S,B=RNS,C=S5—R,and D=V — (AU BUC), observe
that
¢(B,V—-B)+4+«(D,V—-D)=2(R,V—-R)+z(5,V-5)—2z(4,C) < 4 O

PROOF OF THEOREM 2.1. The “if” part: Assume that ¢ does not satisfy all subtour
constraints: some subset of W is bad. Let u be the lowest node in the tree such that D(u)
contains a bad set and call this bad set S. Now scan all the children v of w such that
S N D(v) # 0 one by one and, for each of these children v, replace S with S U D(v). Since
S N D(v) is not bad (by our choice of u), Lemma 2.1 with R = D(v) guarantees that S
remains bad throughout this iterative process; in the end, S is the union of sets D(v) with v
ranging through some nonempty set of children of u. Trivially, the counterpart of S (obtained
by shrinking V' — D(u) as well as each D(v) such that v is a child of w) is bad for z[u]; since
z|w]| is the incidence vector of a cycle whenever w is a Q-node, v must be a P-node.

The “only if” part is trivial. a

Theorem 2.1 facilitates the search for subtour constraints violated by x only if a PQ-tree
compatible with z is available and only if each P-node of this tree has a relatively small
number of children. Figure 2.2 describes a function crude that, given a vector = (satisfying
(2.1), (2.2) as declared at the beginning of this section), either produces a PQ-tree compatible
with # or returns a bad set. (This description is not quite deterministic: there may be quite a
few choices of F in quite a few iterations.) The PQ-tree produced by crude is special: except
possibly for a single node current, all of its internal nodes are Q-nodes. Hence Theorem 2.1
reduces in this case to the statement that

z satisfies all subtour constraints if and only if z[current] does. (2.3)

Removal of the statements that construct the P(Q-tree reduces crude to the “shrinking
procedure” of Crowder and Padberg [6], who use it along with (2.3) to find bad sets. Given
a vector ¢ such that z. < 1 for all edges e, crude finds no bad sets whatsoever and produces
the trivial PQ-tree whose root, the P-node current, is the common parent of all the cities
in W; now (2.3) is a tautology. Nevertheless, the performance of crude is often adequate:
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for instance (see Figure 2.3), it produced the PQ-tree in Fig. 2.1. We shall describe a way
of refining crude PQ-trees in Section 4.

create a P-node root, whose children are all the cities except exterior;
current=root;

while there is an edge e with z, =1
do G = graph consisting of vertex-set V' and all the edges e with z, = 1;
F = arbitrary component of G that has at least two vertices;

if F'is a path, say, wjw, ... wy
then shrink F';
if shrinking F' produced an edge uwv with z,, > 1
then return the bad set D(u) U D(v);
else if F' does not include exterior
then create a ()-node new with children w;, wo, ..., wy
on the list of children of current, replace wy, w,, ..., w; with new;
else S = the set of all children of current that are not in F’
create a P-node new, whose children are the vertices in 5
¢ = the subscript for which exterior=w;;
make current into a (Q-node with children
W;—1,Wi—2,...,W,NeW, Wg, Wr_1,...,Wit1,
exterior = the shrunk F';
current — new;
end
end
else (now F is a cycle)
if F' passes through all the vertices of V
then make current into a ()-node with children ordered as in F;
return;
else return the bad set Uy,erpD(w);
end
end

end

Figure 2.2: Function crude.
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Figure 2.3: Function crude() working away on Figure 1.1.
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3 FINDING CUTS: COMBS, DOMINOS, AND NECKLACES

KT, T, ..., Toryr with k > 1 are pairwise disjoint subsets of V' and if a subset H of V meets
every T; but does not contain any, then every incidence vector & of a tour satisfies

H(H)+ Y. #(T) < (1H -1+ 3 (T 1)~k (51

(To see this, define ¢ by (H) = |H| — c. We may assume that ¢ < k, since otherwise (3.1)
holds trivially. Since the subgraph of the tour induced by H consists of ¢ vertex-disjoint
paths, there are at most 2¢ subscripts 2 such that the subgraph of the tour induced by T; 1s
a single path, and so ¥ «(T;) < Y (|Ti] — 1) — (2k + 1 — 2¢).) Inequalities (3.1) are known
as comb inequalities. The name comes from Chvétal [4], who introduced a variant of (3.1)
with 71,75, ..., Tor41 not required to be pairwise disjoint but each T; restricted to meet H in
precisely one point. The present theme is due to Grotschel and Padberg [14, 15, who have
shown that it properly subsumes the original variation; we follow them in referring to H as
the handle of the comb and to T1,Ts, ..., Tory1 as its teeth. The purpose of this section is to
describe first a method of finding comb inequalities violated by  in such a way that all T},
T; N H, and T; — H are tight, and then a heuristic extension of this method that may find
additional comb inequalities violated by .

By a domino, we mean any bipartite graph

e whose vertex-set is A U B such that
A, B are disjoint subsets of V' and all three of A, B, AU B are tight, and

e whose edge-set consists of all e
with one endpoint in A, the other endpoint in B, and z. > 0.

An edge-cut in a graph G is the set of all edges that, for some set H of vertices, have one
endpoint in H and other endpoint outside H; throughout this section, we let G denote the
graph of z. By a cutter, we mean any set of dominos such that

(1) the number of dominos in this set is odd,
(i1) the union of their edge-sets is an edge-cut,
(iii) their vertex-sets are pairwise disjoint.

Given a cutter {Dy, Ds,..., Dary1} and given a partition of the vertex-set of each D; into
tight sets A;, B;, we can always find a comb inequality violated by z; here is how. Property
(i1) allows us to find a set H of vertices such that an edge of G has one endpoint in H and
other endpoint outside H if and only if it is an edge of some D;. Writing T; = A; U B;, note
that (since every domino has at least one edge) H meets every T; but does not contain any; in
addition, note that «(H,V —H) = > #(A;, B;) = 2k+1, which implies z(H) = (|H|—-0.5)—k
by virtue of (2.2). Hence (3.1) is a comb inequality violated by z.
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For sets of dominos that satisfy (iii), conditions (i) and (ii) amount to a system of linear
congruences modulo two; we are about to explain how and why. Let D* denote any set of
dominos (viewed as the incidence vectors of their edge-sets whenever convenient). Now each
subset D of D* can be specified by its incidence vector s, whose components are indexed
by the members of D* (if d is the incidence vector of some domino in D then s = 1; else
s4 = 0). In these terms, D has property (i) if and only if the sum of all the components of s
1s odd; with e standing for the vector of the same length as s and with all components equal
to 1, this condition can be stated as

efs =1 mod 2. (3.2)

As for (i), it is well known and easy to prove that a set of edges is an edge-cut if and only
if it meets each cycle in an even number of edges. Let C denote the set of all the incidence
vectors of the edge-sets of cycles in G; now a set of edges is an edge-cut if and only its
incidence vector y satisfies

Ty =0mod 2 for all ¢in C. (3.3)

If T is a spanning tree of G then for every edge e in G — T' there is precisely one cycle in
T + e; the set of all such cycles, one for each e in G — T, is called a fundamental set of cycles
(relative to T'). Let Cy denote the set of all the incidence vectors of the edge-sets of cycles
in some fundamental set. It is well known and easy to prove that each ¢ in C is the sum
modulo two of some subset of Cp; hence the system (3.3) and its subsystem

fy=0mod 2 for all ¢in Cy (3.4)

have the same solutions. If D satisfies (iii) then the incidence vector of the union of the
edge-sets of all its dominos is Y sqd; in that case, D has property (ii) if and only if

Z sg¢td =0mod 2 for all cin C. (3.5)

deD*

System (3.5) can be recorded in matrix notation as
As =0 mod 2; (3.6)

here, A is the matrix with rows indexed by the elements of Cy, colums indexed by the ele-
ments of D*, and each entry equal to the appropriate ¢7d.

These observations suggest an idea for finding cutters: having found a reasonably large set
D* of dominos, we restrict our search for cutters to subsets of D*. This arbitrary restriction
enables us to restrict the search further, without any further loss of generality, to subsets of
D defined by solutions of (3.2),(3.6): a subset of D* is a cutter if and only it is defined
by a solution of (3.2),(3.6) and has property (iii). To implement this idea, we need a D*
to start with, and that is where PQ-trees come in: any PQ-tree compatible with = that
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has a reasonably large number of (Q-nodes is a source of a reasonably large set of dominos.
Consider a partition of V into sets Vg, Vi, ..., Vi such that, for each : = 0,1,... k, setting
A = V; and (with subscript arithmetic modulo k 4+ 1) B = V;4; yields a domino; we refer
to this set of k£ + 1 dominos as a necklace and to each V; as a bead of this necklace. In any
PQ-tree compatible with z, each Q-node v with children vy, vs, ..., vy defines a necklace by
Vo =V — D(v) and V; = D(v;); having constructed a PQ-tree compatible with z, we let D*
consist of all the dominos in the necklaces defined by ()-nodes of this PQ-tree.

Unfortunately, system (3.2), (3.6) may have an overwhelming number of solutions and only
a small fraction of this number may have property (iii). Fortunately, the set of solutions of
(3.2), (3.6) partitions naturally into sizable classes labeled in such a way that

(a) the labels of these classes can be enumerated easily one by one, and

(b) it is easy to recognize labels of classes that include at least one solution with property
(1ii).
As for (a), the key observation is that

cf'd = ¢T'd" mod 2 whenever ¢ € C and

d',d" are incidence vectors of two dominos that belong to the same necklace

(to see this, note that graph arising from G by shrinking each of Vp, Vi,...,Vj is a cycle). It
follows that the set of columns of A partitions into equivalence classes of identical columns,
these equivalence classes being in a one-to-one correspondence with all the Q-nodes of our
PQ-tree. Let Q denote the set of all the (3-nodes in our PQ-tree and let B be the matrix,
with rows indexed by the elements of Cy and colums indexed by the elements of Q, that
arises from A by replacing each equivalence class of columns with a single representative.

Solutions of the system
Bt =0mod 2, eTt=1mod?2 (3.7)

(the vector e here, having length |Q], is different from its counterpart in (3.2)!) are intimately
related to solutions of (3.2),(3.6): with N(w) standing for the necklace of w, the link is the
system

Lw

E sq mod 2. (3.8)
deN (w)
If s solves (3.2),(3.6) then the ¢ defined by (3.8) solves (3.7); conversely, if ¢ solves (3.7) then
any s satisfying (3.8) solves (3.2),(3.6). In this sense, each solution of (3.7) is a label of a
class of solutions of (3.2), (3.6).

As for (b), the class of vectors labeled by ¢ includes at least one s with property (iii) if
and only if the family of necklaces defined by ¢ admits a system of pairwise vertex-disjoint
representatives; in that case, we shall call the family representable. A fast way of finding a
system of pairwise vertex-disjoint representatives (or establishing its nonexistence) relies on
an easy observation, which we set apart as a lemma only for the sake of clarity.
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LEMMA 3.1 If Uy, Uy,...,U, are the beads of the necklace defined by a (Q-node u and
Vo, Vi,...,V, are the beads of the necklace defined by another (Q-node v, then there are unique
subscripts © and j such that U; UV; = V.

PROOF. If neither  nor v is an ancestor of the other then (V — D(u)) U (V — D(v)) = V.
If  is an ancestor of v then some child u; of u is an ancestor of v (possibly u; = v) and
D(u;)U(V — D(v)) = V. This establishes the existence of 7 and j. Their uniqueness follows
easily from the fact that each of the two necklaces has at least three beads; here, no refer-
ences to the PQ-tree are necessary. a

If the two necklaces of Lemma 3.1 belong to a representable family then the domino rep-
resenting the first necklace must avoid U; (otherwise it would bump into every domino of
the second necklace) and the domino representing the second necklace must avoid V; (other-
wise it would bump into every domino of the first necklace); conversely, as soon as the first
representative avoids U; and the second representative avoids Vj, the two representatives are
guaranteed to be vertex-disjoint.

This observation suggests an idea of a polynomial-time algorithm for recognizing repre-
sentable families of necklaces defined by Q-nodes of our tree. In each iteration, we consider
two of the input necklaces; to guarantee that the two dominos representing these two neck-
laces will be vertex-disjoint, we mark a uniquely defined bead in each of the two necklaces
as taboo. If, after the last iteration, some necklace contains no two consecutive unmarked
beads then we know that the family admits no system of vertex-disjoint representatives; else
we may represent each necklace by a domino consisting of two consecutive unmarked beads.

To develop an implementation of this idea that runs in time O(n), consider a Q-node v
with children vy, v, ..., vg; in the necklace defined by v, associate each bead D(v;) with the
corresponding child v; and refer to the remaining bead V — D(v) as the outer bead. In these
terms, our taboo rules can be restated as follows:

e a child of a node v with ¢, = 1 is taboo if and only if
at least one node u with ¢, = 1 is a descendant of this child,

e the outer bead of a node v with £, = 1 is taboo if and only if
at least one node v with ¢, = 1 is not a descendant of v.

(Here, as usual, every node is considered to be its own descendant.) This formulation leads
us to scan all the nodes of our PQ)-tree recursively so that scanning each node is preceded
by scanning all its children; while we are scanning a node v, we mark it either as NONEMPTY
in case at least one of its children is marked NONEMPTY and/or v is a Q-node with ¢, = 1; in
all the remaining cases, we mark v as EMPTY. In addition, if v is a Q-node with ¢, = 1, then
we also assign a representative domino to its necklace or else return a message indicating
that the family 1s not representable. If v has two consecutive children marked EMPTY then
the necklace may be represented by the domino defined by these two children. If no two
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consecutive children of v are marked EMPTY then the family is not representable unless all
the nodes u with £, = 1 are descendants of v; in this exceptional case, we may also have the
option of representing the necklace by the domino defined by an end-child (that is, the very
first child or the very last child) of v along with the outer bead; this option is available if and
only if the end-child is marked EMPTY. To find out in constant time whether we are dealing
with the exceptional case or not, we may keep a pointer to the node a that, among all the
nodes w with ¢,, = 1, comes first in the preorder and a counter of the number of necklaces
represented so far: we are dealing with the exceptional case if and only if v = a and the
counter is at the total number of necklaces minus one.

Now we shall illustrate the method of this section in its entirety on the z of Figure 1.1
and the PQ-tree of Figure 2.1 with the fundamental set of cycles indicated in Figure 3.2
(the spanning tree has solid edges; the dashed edges define the cycles A|B, ..., I in the
fundamental set).

14 13 12 10 9
15 :

\ : D H

16 § 11 i

/ \ ; / \ § LONG

E: S Iy RN 23 24— 25 PATH
B C
E F
A 77 S S 26
: G

19 20 P ORI, 28 wevereemeniainians 29

Fig.3.2: A spanning tree and its fundamental set of cycles
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In this case, system (3.7) assumes the form

taa +tas +tag+tar +ts2+t55 = 0 mod 2
tso = 0mod2

taa +tas +ts50+ 155 = 0mod 2

tys = 0mod2

t47 + t51 + t54 = 0 mod2
t48 + t49 = 0 mod 2
tar +tas +t51 + i3+ tsa+ 155 = 0 mod 2

t44 + t48 + t53 = 0 mod2
tag + tag + tag + €51 + Us53 0 mod 2
tas + taa + tas + tag + tar + tas +tag + ts0 + 51 + 52 + ts3 + sa + 155 = 1mod 2.

Its solution space has dimension four: a general solution can be obtained by first choosing
ta4,t4e, tar, tsg arbitrarily, and then setting

tas = taa+tar+tss+1 mod 2,
t45 = 0 mod 2,

tyg = t4g mod 2,

tsp = 0 mod 2,

tsn = taa+tar+tss+1 mod 2,
tss = t46 + t47 mod 2,

tss = tgq + t4s mod 2,

tsg = tgg+tss+1 mod 2,

tss = t4qa mod 2.

Of the resulting sixteen solutions, five are representable:

® ty3 =15 = t5a =1 (with ¢, = 0 for all remaining w) yields, for instance, the comb
H = {10,11,12,24, 25},
T, = {9,10},
T, = {24,25,26,27},
T3 = {11,12,...,23}.

® tyy =t53 = t55 = 1 (with ¢, = 0 for all remaining w) yields the comb
H = {11,22,23,...,27},
T, = {11,12},
T, = {24,25,...,42,1,2,...,10},
Ty = {13,14,...,23}.
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® tyg =ty = tsa = 1 (with ¢, = 0 for all remaining w) yields, for instance, the comb

H ={11,12,...,17,18,23},

T, = {18,19},
T, = {22,23},
Ty = {24,25,...,42,1,2,...,12}.

® ty7 =15y = t5a = 1 (with ¢, = 0 for all remaining w) yields the comb
H={11,12,...,16,17,23},

T, = {22,23},
T, = {13,14,...,21},
Ty = {24,25,...,42,1,2,...,12}.

® t4s = ty9 = t53 =1 (with ¢, = 0 for all remaining w) yields the comb
H = {25,26,28,29,30...,42,1,2,...,10},

=

T, = {24,25},
T2 — {26,27},
Ts = {28,29,...,42,1,2,...,23}.

(These five combs are depicted in Figures 3.3-3.7.)

Incidentally, this example illustrates the fact that our method yields more cuts than we
have initially admitted. Each necklace with beads Vg, Vi, ..., V; such that d > 3 yields more
than d + 1 dominos: for each choice of distinct ¢, 7, k, in this cyclic order,

A:W+1UW+2U...U‘/§'a,ndB:‘/;'+1U‘/;'+2U...U‘/;Q

yield a domino. Since the edge-set of this new domino equals the edge-set of the the domino
with A =V;, B = V;4,, the new domino may also be used to represent the necklace. In the
example, ty3 = t5; = t54 = 1 yields 2600 distinct comb inequalities violated by z (there are
2600 choices of T1) and t46 = ta7 = t54 = 1 yields 10 distinct comb inequalities violated by «
(there are 10 choices of T7).
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Figure 3.3: First comb for the forty-two cities (43 = t5; = t54 = 1).
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Figure 3.4: Second comb for the forty-two cities (t44 = t53 = t55 = 1).
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Figure 3.7: Fifth comb for the forty-two cities (ts5 = t49 = t53 = 1).

In general, the solution space of system (3.7) may have a large dimension, which makes
enumerating all solutions out of the question. If that is the case then, having transformed
(3.7) into an echelon form, we may generate its solutions one by one and test each of them
for representability until our patience runs out. Here, the chances of coming across a repre-
sentable solution can be improved by a simple trick. Let us say that a zero-one vector vector
t majorizes a zero-one vector t’ of the same length if each component of ¢ is at least the cor-
responding component of ¢ (to put it differently, ¢’ has a 0 wherever ¢ does). Trivially, if a
representable solution ¢ of (3.7) majorizes another solution ¢’ then ¢’ is also representable. In
particular, if (3.7) has any representable solution at all, then it has a representable solution
which is minimal in the sense that it majorizes no other solution of (3.7). This observation
leads us to replace each new solution ¢ that we generate with a minimal solution ¢’ majorized
by ¢ and then test ¢’ rather than ¢ for representability.

In our implementation, the dimension of of the solution space of (3.7) is considered large if
it is at least six; our patience runs out when we have generated a solution ¢ of (3.7), reduced ¢
to a minimal solution ¢, and tested ¢’ for representability fifty times; both of these thresholds
have been chosen arbitrarily at least to some extent. Led by the belief that random samples
from the uniform distribution over all minimal solutions are better than biased samples, we
use randomization in generating each ¢ as well as in the subsequent reduction of ¢ into a
t'. To generate t, we assign zero-one values to the free variables at random and solve for
the remaining variables. To reduce ¢ to ', we remove all the variables whose current values
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are zero, transform the resulting system into an echelon form again if necessary, and repeat
the whole process (assign zero-one values to the free variables at random, solve for the re-
maining variables, remove all the variables whose current values are zero, and transform the
resulting system into an echelon form again if necessary) as long as any free variables remain.

The method described so far finds either comb inequalities violated by a large amount (in
the sense that the left-hand side of (3.1) with our « exceeds the right-hand side by 0.5) or
no violated comb inequalities at all. Its extension that we are going to describe now settles
for less and may find more.

To begin, consider any set F' of edges with 6 = > .cpz. < 1 and suppose that we have
found a set of vertex-disjoint dominos Dy, D, ..., Dagy1 (along with a partition of the vertex-
set of each D; into tight sets A;, B;) such that the union of the edge-sets of our 2k+1 dominos
is an edge-cut in G — F. Now we can find a set H of vertices such that an edge of G — F
has one endpoint in H and other endpoint outside H if and only if it is an edge of some
D;. Note first that each D; has at least one edge outside F' (since § < 1 = z(A;, B;)); then,
writing T; = A; U B; again, that H meets every T; but does not contain any; and finally that
¢(H,V —H) <6+ X x(A;B;) =2k + 1+ 6, which implies (H) > (|H| — (1 + 6)/2) — k
by virtue of (2.2). Hence (3.1) is a comb inequality violated by z. This observation suggests
applying the method not just to G, but also to graphs arising from G by removing sets F' of
edges e with small z.: possibly, comb inequalities violated by & can be obtained from vectors
that satisfy systems (3.7) arising from G — F' but do not satisfy the system (3.7) arising from
G.

Our implementation of this idea goes as follows. With the weight of each edge e defined
as &, we construct a maximum-weight spanning tree 7' of G and define (3.7) by the fun-
damental set of cycles with respect to this 7. Except for e7t = 1 mod 2, each congruence
in (3.7) arises from some cycle in the fundamental set, and therefore from some edge e of
G — T let us say that the weight of this congruence is the corresponding x.. We construct
a sequence of subsystems of (3.7) by starting with eZ# = 1 mod 2 and then bringing in the
remaining congruences one by one in a nonincreasing order of their weights. With each new
arrival, the current system is transformed into an echelon form; if the newcomer made the
system unsolvable then it is deleted at once. We find the appropriate number of minimal
solutions, test them for representability, and see if their representations yield comb inequal-
ities violated by our z not only when all the congruences from (3.7) have been considered,
but possibly also earlier. More precisely, we monitor the number m of free variables in our
current system and compare it to some benchmark initialized as the number of variables
in (3.7). Whenever m drops below two thirds of the benchmark, we find the appropriate
number of minimal solutions, test them for representability, and see if their representations
yield comb inequalities violated by our x; then we reset the benchmark to m.

In closing, let us remark that a system (3.7) whose solution space has a large dimension
may look like good news: the more solutions there are altogether, the better seem the chances
that there is a representable solution among them. However, the solution space of (3.7) may
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have an unnaturally large dimension simply because (3.7) has duplicated columns. In our
example, Q-nodes 46 and 52 give rise to identical columns in (3.7); the two necklaces defined
by these two nodes can be simultaneously refined into a single necklace with beads

{22,23,...,42,1,2,...,12},{13,14,15,16, 17}, {18}, {19}, {20}, {21};

in the PQ-tree shown in Figure 3.8, compatible with z, this necklace is defined by the single
Q-node 52. In terms of (3.7), replacing the PQ-tree of Figure 2.1 with the PQ-tree of Figure
3.8 brings about a removal of variable t4¢; as a result, the dimension of the solution space
drops by one, the number of solutions is halved, and yet no representable solutions are lost.
In fact, presence of duplicated columns in (3.7) always indicates either the existence of a
PQ-tree whose necklaces refine the necklaces of the original tree or the presence of a bad
set: this is an immediate consequence of the following theorem combined with Theorem 4.1
of the next section.

THEOREM 3.1 There is a polynomaial time algorithm that, given any PQ-tree T compati-
ble with x such that the resulting system (3.7) has duplicated columns, returns a tight subset
S of W that is not in B(T).

PROOF. Let u and v be the two -nodes that give rise to identical columns in (3.7). It is
a trivial consequence of Lemma 3.1 that there are vertex-disjoint dominos D, and D, such
that D, belongs to the necklace defined by v and D, belongs to the necklace defined by v.
If d, and d, denote the incidence vectors of the edge-sets of these two dominos then, since
w and v define identical columns in (3.7), we have cTd, = ¢'d, mod 2 for all ¢ in Cy, and
so cT(du + d,) = 0 mod 2 for all ¢ in Cp; since D, and D, are disjoint, this means that the
union of their edge-sets is an edge-cut. Partition V into nonempty sets S and V — S with
S C W so that an edge of G has one endpoint in S and the other endpoint in V — S if and
only if 1t is an edge of D,, or D,; return S.

To see that S is tight, observe that z(S,V —S) = z7(d,+d,) = 2 since z7d,, = z7d, = 1.
To see that S & B(T'), swap first A, and B, if necessary and then A, and B, if necessary to
obtain

SNA,#0, S2B,, SNA, #0, S 2 B,. (3.9)

It is a routine matter to verify that no member of B(T') satisfies (3.9) in place of S. O
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Figure 3.8: A better PQ-tree compatible with the vector in Fig.1.1.
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4 REFINING PQ-TREES

Every PQ-tree compatible with # can be thought of as a hieararchical decomposition of V'
with respect to . Or it can be thought of as just a compact device that stores the family
B(T) of tight sets. Given a PQ-tree T' compatible with & and given a tight subset S of W
(= V—exterior) that is not in B(T'), can we construct a PQ-tree T’ compatible with z such
that B(T") 2 B(T) U {S}? The following answer is adequate for our purpose.

THEOREM 4.1 There is a polynomial-time algorithm that, given any PQ-tree T compat-
ible with x, and any tight subset S of W that is not in B(T), returns either a PQ-tree T’
compatible with x such that B(T") 2 B(T) U {S} or a bad set. O

The algorithm of Theorem 4.1 is the subject of the present section.

Throughout this section, S will denote an arbitrary but fixed tight subset of W. A node
u of a PQ-tree whose set of leaves is W will be referred to as FULL if D(u) is contained in
S, as EMPTY if D(u) is disjoint from S, and as as PARTIAL otherwise. A node will be called
SPECIAL if and only if it is a PARTIAL ()-node with no PARTIAL children and such that either
all its EMPTY children precede all its FULL children or the other way around.

LEMMA 4.1 Every node of a PQ)-tree compatible with x has at most two SPECIAL children.

PROOF. Assuming the contrary, consider a node with SPECIAL children v;,v,,v3. Since
D(v1), D(vs), D(vs) are pairwise disjoint, we have
3
z(S,V —S8)>> «(D(v;) NS, D(v;) — §) =3,

=1

and so S is not tight, a contradiction. O

LEMMA 4.2 If a node u of a PQ-tree compatible with x has two SPECIAL children and
D(u) 2 S then at least one of S — D(u) and S U D(u) is bad.

PROOF. Let vy, vy be the two SPECIAL children of w. Writing A = D(u)—S, B = D(u)NS,
C=S5—-D(u)and D=V — (AU BUC), we have
2
ilJ(A,B) > Z:B(D(’l)z) - SvD(vz) N S) =2 )
i=1

since S is tight, it follows that
z(B,D)=2(C,A)==2(C,D)=0.

Now z(C,V - C)+«(V — D,D) = (C,B) + (A,D) = «(D(u),V — D(u)) = 2 and the

desired conclusion follows. O
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Let T be a PQ-tree compatible with z, let u be a Q-node with children wq, us, ..., u, (in
the left-to-right order) and let u; be a Q-node with children vy, v, ..., v, (in the left-to-right
order). By splicing u;, we shall mean first substituting the sequence vy, vs,...,v, for u; on
the list of children of 4 and then removing u; from the tree altogether.

LEMMA 4.3 LetT be a PQ)-tree compatible with x, let w be a (Q-node with children wy, us, . .., u,
(in the left-to-right order) and let u; be a SPECIAL node with children vy, va,...,vs (in the
left-to-right order). If

e v; is FULL and u;_; s FULL, or

e v, is FULL and u;4, ts FULL
then the tree obtained from T by splicing u; is compatible with @ or else S U D(u;) is bad.

PROOF. Symmetry allows us to restrict ourselves to the case where v; is FULL and w;_; is
FULL. Writing
A:D(ui)ﬂS, B:D(uz)—S

note that B is tight and that #(A4,B) = 1. If (D(u;—1),B) > 0 then S U D(u;) is bad;
now we may assume that z(D(w;—1),B) = 0. Since z(D(u;i—1),D(u;)) = 1 and since
D(v1), D(vz2),...,D(vs) are tight sets with z(D(v;), D(vj31)) = 1 whenever 1 < j < s,
it follows that z(D(w;—1),D(v1)) = 1; if ¢ < 7 then z(D(u;), D(u;41)) = 1 allows us to
conclude also that z(D(v,), D(uit1)) = 1. O

LEMMA 4.4 LetT be a P(Q)-tree compatible with x, let w be a (Q-node with children wy, us, ..., u,
(in the left-to-right order) and let u; be a SPECIAL node with children vi,va,...,vs (in the
left-to-right order). If

e v; is EMPTY and u;_; is EMPTY, or

e v, is EMPTY and u;y; ts EMPTY
then the tree obtained from T by splicing w; is compatible with © or else S — D(u;) is bad.

PROOF. Symmetry allows us to restrict ourselves to the case where v; is EMPTY and
u;_1 18 EMPTY. Now we may follow the proof of Lemma 4.3 with a single modification: if

z(D(u;i—1), B) > 0 then S — D(u;) is bad. O

LEMMA 4.5 LetT be a P(Q)-tree compatible with x, let w be a (Q-node with children wy, us, . .., uq
(in the left-to-right order), let uw; be a SPECIAL node with children vi,vs,...,v, (in the left-
to-right order), let u;y1 be a SPECIAL node with children wy,ws, ..., w, (in the left-to-right
order). If

e v, s FULL and w; 1s FULL

then the tree obtained from T by splicing u; and w1 is compatible with x or else SU D(u;)U
D(uit1) is bad.

PROOF. Writing

Al = D(’sz) N S, Bl = D(’U,Z) —_ S, Ag = D(“H—l) N S7 Bg = D(“H—l) - S ;
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note that Aj, By, Az, By are tight and that ©(A;,B1) = 1, ©(As, By) = 1. If 2(Aq, Bs) +
z(B1, B2)+x(B1, A2) > 0 then SUD(u;)UD(u;41) is bad; else x(D(u;), D(ui+1)) = 1 implies
that (A, As) = 1. Since D(v1), D(v2),. .., D(v,) are tight sets with z(D(v;), D(vj41)) =1
whenever 1 < j < r, and since D(wy), D(ws), ..., D(w,) are tight sets with «(D(wy), D(wg41)) =
1 whenever 1 < k < s, it follows that «(D(v ),D( 1)) = 1;ifi+1 < d then 2(D(wip1), D(wir2)) =
1 allows us to conclude also that z(D(w,), D (uz+2)) =1; 1f i > 1 then z(D(u;—1), D(u;)) =1
allows us to conclude also that x(D(u;—1), D(v1)) = a

LEMMA 4.6 LetT be a PQ-tree compatible with x and let w be a Q-node whose end-children
are both EMPTY. If SN D(u) € B(T) and S € D(u) then S — D(u) is bad.

PROOF. Let uq, us, . .., uq be the children of u (in the left-to-right order). Since D(u1), D(us),. ..
D(ug4) are tight sets with «(D(u;), D(uj41)) =1forall j =1,2,...,d — 1, we have

z(D(uz) U D(us) U...U D(ug-1),V — D(u)) = 0;

in particular, z(SND(u), S — D(u)) = 0. The desired conclusion follows since S and SN D(u)
are tight and S — D(u) is nonempty. O

LEMMA 4.7 Let V be partitioned into pairwise disjoint nonempty sets A, B,C,D. If AUB
and BU C are both tight and if none of A, B,C, D are bad then all of A, B,C,D are tight.

PROOF. By assumption, we have
z(AUB,CUD)=2,
z(BUC,AUD) =2,

and )
1< 2" z(A,BUC U D),
1
1§5 z(B,AUCUD),
1
1< % z(C,AUBU D),
1
1< 5% z(D,AUBUC);
since z satisfies (2.1), we have
—z(A,C) <0
—z(B, D) <0.

The sum of these eight relations reads 0 < 0, and so all of them must hold as equations. O
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For any node u of a PQ)-tree compatible with z, we set

F(u) = U{D(v):vis a FULL child of u},
E(u) = U{D(v):vis an EMPTY child of u}.

LEMMA 4.8 There is a polynomial time algorithm that, given any PQ-tree T compatible
with  and any node w of T such that F(u) is neither tight nor empty, returns a bad set.

PROOF. Repeat for all PARTIAL children v of u: If one of the four sets S — D(v), SN D(v),
D(v) — S, SU D(v) is bad then return this bad set; else replace S with S — D(v) (which is
guaranteed by Lemma 4.7 to remain tight).

Now SN D(u) = F(u). By assumption, F'(u) is neither tight nor empty; hence Lemma
4.7 guarantees that one of the four sets S — D(u), SN D(u), D(u) — S, S U D(u) must be
bad; return this bad set. a

LEMMA 4.9 There is a polynomial time algorithm that, given any PQ-tree T compatible
with © and any node w of T such that S € D(u) and E(u) is neither tight nor empty, returns
a bad set.

PROOF. Repeat for all PARTIAL children v of u: If one of the four sets S — D(v), SN D(v),
D(v) — 8, SU D(v) is bad then return this bad set; else replace S with S U D(v) (which is
guaranteed by Lemma 4.7 to remain tight).

Now D(u) — S = E(u). By assumption, E(u) is neither tight nor empty; hence Lemma
4.7 guarantees that one of the four sets S — D(u), SN D(u), D(u) — S, S U D(u) must be
bad; return this bad set. a

LEMMA 4.10 There is a polynomaial time algorithm that, given any PQ-tree T' compatible
with x and any node w of T such that D(u) — E(u) is neither tight nor empty, returns a bad
set.

PROOF. Repeat for all PARTIAL children v of u: If one of the four sets S — D(v), SN D(v),
D(v) — S, SU D(v) is bad then return this bad set; else replace S with S U D(v) (which is
guaranteed by Lemma 4.7 to remain tight).

Now SN D(u) = D(u) — E(u). By assumption, D(u) — E(u) is neither tight nor empty;
hence Lemma 4.7 guarantees that one of the four sets S— D(u), SND(u), D(u)— S, SUD(u)
must be bad; return this bad set. a

LEMMA 4.11 There is a polynomaial time algorithm that, given any PQ-tree T' compatible
with @, any Q-node u of T with children uy,us, ..., uq (in the left-to-right order), and any
subscripts ¢, j,k such that 1 < 3 < k, u; is not EMPTY, u; is not FULL, and u;, s not EMPTY,
returns a bad set.
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PROOF. If one of the four sets S — D(u;), S N D(u;), D(u;) — S, S U D(uy;) is bad then
return this bad set; else replace S with S — D(u;) (which is guaranteed by Lemma 4.7 to
remain tight).

Writing L = D(u1) U D(uz) U ... U D(uj—1) and R = D(ujy1) U D(ujp2) U ... U D(uq),
note that SN D(u) CLUR, SNL#0, SNR+#0,and z(L,R)=0. If S C D(u) then one
of SN L, SN R must be bad; else Lemma 4.7 guarantees that one of the four sets S — D(u),
SN D(u), D(u) — S, S U D(u) must be bad. Return the bad set. O

PROOF OF THEOREM 4.1. Let top denote the lowest node u in T such that D(u)
contains S. Scan all the PARTTIAL descendants of top, in any order such that all the PARTIAL
children of a node are scanned before the node itself, and process each node while scanning
it. Processing v means replacing T' (if necessary) with a PQ-tree 7" such that

e 7" is compatible with z,

e B(T)C B(T,

e T and 7" differ (if at all) only in their subtrees rooted at wu,

e SN D(u) € B(T),

e unless u is top, it is SPECIAL in T";
if T cannot be restructured in this way then a bad set is discovered immediately. Note
that, when u comes up for processing, all of its PARTIAL children are SPECIAL; in particular,
Lemma 4.1 guarantees that w has at most two PARTIAL children now. The details of pro-
cessing go as follows.

Case Q: u 1s a 3-node with children uq, us, ..., uq in the left-to-right order.

Find the smallest subscript ¢ such that w; is not EMPTY and find the largest subscript k
such that u; 1s not EMPTY.

If some u; with ¢« < j < k i1s not FULL then use Lemma 4.11 to return a bad set.

If ¢+ = k then replace ¢ with d and replace k with 1. (The only purpose of this bizarre
instruction is to avoid treating the special case ¢ = k separately.)

If u; is PARTIAL then reverse the list of its children if necessary so that the last child is
FULL and then splice u;. If u is PARTIAL then reverse the list of its children if necessary so
that the first child is FULL and then splice ug. If the new T is not compatible with z then
use one of Lemmas 4.3, 4.4, 4.5 as appropriate to return a bad set.

If u is not top and its end-children (in the new T') are both EMPTY then use Lemma 4.6
to return a bad set.

Case P: u is a P-node.

If u has at least two FULL children then introduce a new child v of v and make v the
new parent of all the FULL children of «; the new node v is a (Q-node if it has precisely two
children and a P-node otherwise. If the new T' is not compatible with z then use Lemma
4.8 to return a bad set.
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Subcase P1: u # top.

If w has two PARTIAL children then use Lemma 4.2 to return a bad set.

If u has at least two EMPTY children then introduce a new child w of v and make w the
new parent of all the EMPTY children of u; the new node w is a ()-node if it has precisely two
children and a P-node otherwise. If the new T is not compatible with z then use Lemma
4.9 to return a bad set.

(Now » has at most one FULL child, at most one EMPTY child, at at most one PARTIAL
child.)

If v has only two children then make it a ()-node and process it as a Q-node; else give
the FULL and the PARTIAL child of u a new parent y and process y as a (3-node, then make
y a child of v (whose other child is the remaining EMPTY child) and process u as a -node.

Subcase P2: u = top.

(Now at least two children of w are not EMPTY, at most two are PARTIAL, and at most one
is FULL.)

If v has at least one EMPTY child then introduce a new child w of u, make w the new
parent of all the children of w that are not EMPTY, make w a P-node, and set top = w. If
the new T is not compatible with  then use Lemma 4.10 to return a bad set.

Reorder the children of top if necessary so that the only FULL child (if any) comes second;
then make top a (Q-node and process it as a (Q-node. a

Readers familiar with [2] will recognize in our proof of Theorem 4.1 a variation on an
algorithm designed by Booth and Lueker to solve the following problem: Given a PQ-tree
T and a set S of leaves of T such that S & B(T'), either construct the coarsest PQ-tree 7"
such that

B(T") 2 B(T)U{S} (4.1)
or return a failure mesage to indicate that no PQ-tree T" satisfies (4.1). Here, a PQ-tree T7 is
considered coarser than a PQ-tree Ty if B(T1) C B(T>); it may not be obvious that the set of

all 7" with property (4.1) includes the coarsest element as long as it is nonempty. The original
Booth-Lueker theme can be reconstructed from our variation by simple modifications:

«

(1) Delete all instructions of the type “If the new T is not compatible with = then ...

i1) Replace all the remaining instructions of the type “use Lemma X to return a bad set”
P g yp
with “return a failure message”.

(iii) Begin processing each u with the new instruction
“If w has at least three PARTIAL children then return a failure message.”
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If the Booth-Lueker algorithm returns a failure message then it may have modified its
input tree T' beyond recovery. To maintain access to T' even in this case, we could make a
spare copy of T' before applying the algorithm; alternatively, we may first call yet another
variation on the Booth-Lueker theme, one which leaves T intact and simply answers the
question whether or not some PQ-tree 7" satisfies (4.1). In this variation, we again scan all
the PARTTIAL descendants of top, in any order such that all the PARTIAL children of a node
are scanned before the node itself, and process each node while scanning it. But processing
uw means something simpler now: its details go as follows.

If w has at least three PARTIAL children then return NO.
If w is not top and has two PARTIAL children then return NO.

Case Q: w 1s a )-node with children uq,u,, ..., uq in the left-to-right order.

Find the smallest subscript ¢ such that w; is not EMPTY and find the largest subscript k
such that u; 1s not EMPTY.

If some u; with ¢« < j < k i1s not FULL then return NO.

If w = top then return YES.

If neither of u; and ug is FULL and at least one of usy, us, ..., ug_1 is not EMPTY then return
NO.

Case P: u 1s a P-node.
If w = top then return YES.
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5 THE CUTPOOL AND HOW WE STORE IT

The problem of finding cuts may seem to be this: Given an z that is not a convex combina-
tion of tours, find a hyperplane separating = from all the tours. But this formulation makes
the problem sound harder than it is: we are not given z alone. We also have the current
LP relaxation at our fingertips; in addition, nothing (except memory limitations) prevents
us from storing at least some of the constraints added to the various LP relaxations in the
past. In the subsequent three sections, we shall describe three different ways of exploiting
this additional information; the purpose of the present section is only to specify just what
this additional information is and how we store it.

Let us begin with a few definitions.
Given any vector z satisfying (2.1), (2.2), we define the deficiency of each subset S of V
as

0:(S) =2(S,V—-5)—2;

whenever z is specified by the context, we allow ourselves to write simply §(.5) rather than
0:(5).

A hypergraph is an ordered pair (V, F) such that V is a finite set and F is a family of (not
necessarily distinct) subsets of V; elements of V' are called the vertices of the hypergraph
and the elements of F are called the edges of the hypergraph. Given a hypergraph (V,F)
denoted H, and given a vector z, whose components are indexed by the edges of the complete
graph with vertex-set V, we write Hoz = Y gc7 0,(5); we let pu(H) stand for the minimum
of H o x taken over all incidence vectors x of tours through V.

All the cuts we ever find (and subsequently use) have the form
Hoz > p(H). (5.1)

Trivially, every subtour inequality has the form (5.1) with H having a single edge and
#(H) = 0. To see that comb inequalities have the form (5.1), let us call a hypergraph H a
comb if H has edge-set {H, Ty, T1, ... T2} such that £ > 1 and

o Ty, T1,... Ty are pairwise disjoint,

e H meets each of Ty, Ty, ... T, but does not contain any.
Since (2.2) implies z(S) = |S| — 1 — 8(.5)/2, each comb inequality (3.1) of Section 3,

2k+1 2k+1
e(H)+ Y =(Ti) < (H -1+ Y (T 1)~k
=1 =1
may be written as
Hox > 2k. (5.2)

Since (5.2) is satisfied by all incidence vectors z of tours, we have u(H) > 2k; since there is
a tour with incidence vector ¢ such that H o z = 2k, we have u(H) < 2k. Hence u(H) = 2k
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and (5.2) is a special case of (5.1).

We store a number of the cuts we have used and refer to their collection as our cutpool.
The cutpool, initially empty, may acquire new items with each new LP relaxation of our TSP
instance. Each of these new relaxations arises from the relaxation preceding it by adding new
cuts. (Actually, some of the constraints of the preceding relaxation may be also removed.
The removal, although crucial for maintenance of sleek LP relaxations, is irrelevant to the
cutpool, and so we shall not discuss it now.) Some, but not necessarily all, of these new cuts
are added to the cutpool as soon as the new relaxation is solved. Specifically, each of the
new cuts is added to the cutpool if and only if it satisfies all three of the following entrance
requirements:

(1) it is active in the sense that, in the optimal solution of the dual of the new relaxation,
the corresponding variable has a nonzero value,

(i1) it is not a subtour inequality,

(iii) it is not a blossom inequality
(meaning a comb inequality where each tooth consists of precisely two points).

We impose these entrance requirements only to save space: inequalities that fail (1) are useless
at least for the moment, and inequalities that fail (i) or (iii) can be recovered relatively
quickly, should they become violated again in the future.

The notion of a cutpool was introduced by Padberg and Rinaldi [24, 26]; our cutpool is
managed in a little different way (which we have just specified); it is used in a much different
way (which is the subject of the next three sections), and it is stored in a much different way
(which we are about to outline).

The cutpool consists of a number of inequalities that have the form (5.1). No matter
how the cutpool is stored, its right-hand sides alone take up a negligible proportion of the
total space; besides, every inequality H; o z > pu(H;) in our cutpool is such that, given
H;, we can easily compute pu(H;). Hence storing the cutpool amounts to storing a family
{H1, Ha, ..., Hp} of hypergraphs.

We take advantage of the empirical observation that distinct hypergraphs in our cutpool
share edges relatively often: rather than storing each member of the cutpool independently
from the other members, we first store the union A of all the edge-sets of the hypergraphs in
the cutpool and then represent the edge-set of each H; simply by pointers to the appropriate
members of A. Let us refer to A as our archive.

Our scheme for storing the archive has evolved from a chain of heuristic arguments. First,
when a hypergraph H is admitted to the cutpool, our optimal solution z of the current LP
relaxation satisfies Hoz = p(H). Hence edges S of H seem likely to be tight or nearly tight
with respect to z in the sense of having small 6,(5): for instance, if H is a comb with 2k + 1
teeth then the value of §,(.5) averaged over all the edges S of H comes to k/(k+1). Second,

even though = keeps changing as we keep adding new constraints to the LP relaxation,



- 38 —

it seems likely that at least some of the sets S in our archive will persist in maintaining
a reasonably small §,(5). Third, as the LP relaxation gets tighter and tighter, its optimal
solution z seems to be more and more likely to closely approximate an optimal tour. Putting
all these arguments together, we were led to suspect that many members of our archive may
have fairly small values of §,(S) with respect to the incidence vector z of an optimal tour,
and also with respect to the incidence vector z of a near-optimal tour delivered by a decent
heuristic.

Now consider an arbitrary tour T, its incidence vector z, and an arbitrary subset S of
V. When S consists of precisely k circular arcs of T', we have §,(S) = 2k with the same
value of k; once all the vertices of T' have been enumerated in their cyclic order, S can be
represented simply by 2k pointers, one pointer to the beginning of each of the k circular arcs
and one pointer to the end; if 2k is significantly smaller than |S| then this representation
1s significantly more compact than the straightforward representation of S by a list of its
elements.

That, with 7" being the near-optimal tour at our disposal, is how we represent every
member of the archive. The heuristic reasoning that motivated this storage scheme in the
beginning was confirmed by empirical evidence in the end. Our cutpool for TSPLIB problem
pla7397 eventually grew to 2,888,447 hypergraphs with an archive of 33,814,752 sets; the
average size of a set in the archive was around 200, but the average value of §,(S) was less
than 11.
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6 FINDING CUTS: CONSECUTIVE ONES

The purpose of this section is to describe one way in which the cutpool may help us in
finding new cuts. Actually, here it is just the archive rather than the entire cutpool that is
put to a good use. Throughout this section, we let exterior denote an arbitrary but fixed
element of V and we write W = V — {exterior} just as we did in Section 2. The central
notion of the present section is this: a family F of subsets of a set W is said to have the
consecutive ones property if W can be endowed with a linear order < so that each § in F
has the form {y € W : ¢ <y < b} with a,b € W. On the one hand, it is easy to see that
a family F of subsets of our W has the consecutive ones property if and only if u(H) = 0,
where H = (V, F); on the other hand, Booth and Lueker [2] proved that a family F of sets
has the consecutive ones property if and only if there is a PQ-tree 7" with B(7") 2 F. In
this way, the consecutive ones property provides a link between the TSP and PQ-trees.

Here is our starting point:

THEOREM 6.1 There is a polynomial-time algorithm that, given any x with properties
(2.1), (2.2), given any PQ-tree T compatible with « and given any subset S of W such that
() §(5) <2,
(b) no PQ-tree T" satisfies B(T') 2 B(T)U {S},
returns either a comb inequality (with precisely three teeth) violated by x or a subtour in-
equality violated by x. a

One application of this theorem is obvious: with z being our optimal solution of the
current LP relaxation and with 7" being the finest PQ)-tree at our disposal that is compatible
with z, we simply scan our archive A, looking for its members S that satisfy both (a) and
(b). Each such S yields a new cut. What our program actually does is more complicated
and more productive; for clarity, we shall describe it in a more general setting.

An independence system is an ordered pair (X,Z) such that X is a finite set and Z is
a nonempty collection of subsets of X that is closed under taking subsets (that is to say,
if RC Sand S € Z then R € 7). Members of Z are referred to as independent and the
remaining subsets of X are referred to as dependent; minimal (with respect to set-inclusion)
dependent sets are called circuits. An independence system may be presented in a variety
of ways; one of them is an oracle that, given any subset S of X, answers correctly the query
“Is S independent?”.

In the independence systems that we are concerned with here, elements of X are sets and
a subset of X is independent if, and only if, it has the consecutive ones property. An oracle
which presents these independence systems is the Booth-Lueker algorithm described in the
Section 4: as mentioned at the beginning of the present section, a family F of sets has the
consecutive ones property if and only if there is a PQ-tree 7" with B(T") 2> F. Trivially, all
two-point subsets of X are independent in these independence systems; it is easy to see that
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a three-point subset {Sy, S, S5} of X is a circuit if and only if
all three of (Sy N Ss) — S, (S N S3) — Sa, (S2 N S3) — Sy are nonempty, (6.1)
or else
all four of SN Sa N S5, S — (SzU Ss), Sz — (S1USs), S5 — (S1US,) are nonempty. (6.2)

Now we are going to characterize all the circuits of size at least four in these independence
systems; for this purpose, we need a few definitions.

We shall say that {Si,S,,S53,S5:} is a family of type 0 if there are pairwise disjoint
nonempty sets A;, As, As, Ay, B such that, with subscript arithmetic modulo 4, each S;
iS 14z U Ai+1 U B

We shall say that {S7,S5,,..., 5.} is a family of type I if m > 4 and there are pairwise
disjoint sets A;,Ch, As,Cs, ..., A, Cp such that A;, A, ..., A, are nonempty and, with
subscript arithmetic modulo m, each 5;1s A; U C; U A;y;.

We shall say that {S1,S2,...,Sm,T1, T2} is a family of type II if m > 2 and there are
pairwise disjoint sets Ay, C1, A1,Cy, Aa, ..., App_1, Cin, A, B such that Ag, Ay, Ay, ... A, B
are nonempty, each S; is A;_; U C; U A;, and Cy,A;,Cs, Ay, ... Ay 1,Cn, B C 11 N T,
ACTh —Ts, A, €Ty, — Ty.

We shall say that {S1,S5s,...,Sm, T} is a family of type III if m > 3 and there are pair-
wise disjoint sets Ao, C1, A1,Cs, As, ..., A1, Cn, A, B such that Ay, Ay, As, ..., A, B are
nonempty, each S; is A; 1 U C; U A;, and Cy, A1,Cy, As, ..., Apn1,Crt, BC T, AgNT =0,
A, NT =0.

We shall say that {H, Ty, T, T5} is a family of type IV if Ty, T, T5 are pairwise disjoint

and if H meets each of T7,T5,T5 but does not contain any.

We shall say that {H,T1,T>, Ts} is a family of type V i Ty NTy, = 0, Ty UTy, C Ts,
HAT,#0, HNTy 0, H2 Ty, H2 Ty, HZ T,

THEOREM 6.2 Let F be a family of at least four sets such that F lacks the consecutive
ones property but every proper subfamily of F has the consecutive ones property. Then F is
a famaly of type 0, I, II, III, IV, or V. O
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Next, let us consider the following problem:

(%) Given an oracle specifying an independence system (X, Z),
given a nonnegative weight assigned to each point of X, and
given a positive threshold ¢,
find circuits whose weights
(with the weight of a set defined as the sum of the weights of its elements)
are strictly below the threshold ¢.

We are interested in the special case of (x) where (X,7) is an independence system of our
kind, the weight of each S’ in X is §(5’), and ¢ = 2; here is why. By Theorem 6.2, each
solution of this special case of (%) is a family F of type 0, I, II, III, IV, or V such that
Yser 0(5) <2. If F turns out to be of type IV then z violates the comb inequality Hoz > 2
with H having handle H and teeth 71, T, T5; if F turns out to be of type V then z violates
the comb inequality Hoz > 2 with H having handle H and teeth T7, T, V —T53; the following
theorem takes care of the remaining cases.

THEOREM 6.3 There is a polynomial-time algorithm that, given any family F of subsets
of W such that

o F lacks the consecutive ones property,

o cvery proper subfamily of F has the consecutive ones property,

o F is neither of type IV nor of type V,
and given any vector x with properties (2.1), (2.2), and

* Yserd(S) <2,

returns a subtour inequality violated by x. a

Our heuristic for attacking problem (*) uses a function fetch that, given any independent
set () sorted in a nondecreasing order of weights and given a point s such that @ U {s} is
dependent, attempts to find a circuit C of weight less than ¢ such that C C Q U {s}. This
function treats () as a queue; its prototype goes as follows:

C = {s};
add s to the front of ;
while C is independent and its weight is less than ¢
do  replace () with its shortest dependent prefix;
add the last element of () to C' and move it to the front of Q;
end
if the weight of C is less than ¢ then return C else return a failure message;

To see that C is a circuit, note that a point p gets included in C only if @) — {p} has been
found independent for some superset () of C'.
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Actually, we use a modification of this prototype. The reason is that we are not collecting
lightweight circuits: what we are collecting are cuts obtained from these circuits either
directly (in case the circuit is a family of type IV or V) or by the algorithm of Theorem 6.3.
The cut can be a comb inequality only if fetch returns a circuit within three iterations of its
while loop; in all other cases, we are in for a potentially long computation with the uncertain
prospect of finding a subtour inequality violated by z. Since subtour inequalities violated
by x are relatively easy to spot by direct methods, we curtail the while loop of fetch by
exiting as soon as C has acquired its fourth element. Here is the resulting version of fetch
with our PQ-tree oracle explicitly built in (and s switched to S):

C = {5}, w = 8(5);
while |C| < 4, w < 2, and there is a PQ-tree T” with B(T") 2> C
do T’ = the coarsest PQ-tree with B(T") O C

S = the first set in the sequence @Q);

while there is a PQ-tree 7" with B(T") 2 B(T") U {S}

do  replace T' with the coarsest such T";

replace S with the set following it in the sequence @);

end

move S from @) to C and increment w by §(S);
end
if C yields a cut then return this cut else return a failure message;

A prototype of the heuristic for attacking (*) goes as follows:

initialize an empty list £ of lightweight circuits;
sort X in a nondecreasing order of weights;
while X is dependent
do @ = longest independent prefix of X;
s = the element of X that follows ();
C = fetch(Q, s);
if C' # failure message then add C to £;
remove s from X
end

Again, we use a modification of this prototype. The reason is that, as s is getting closer and
closer to the end of X, it is becoming more and more likely that fetch will return a failure
message after only one iteration of its while loop, when C turns out to be too heavy even
though its size 1s only two. The following variant avoids these useless calls of fetch:
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initialize an empty list £ of lightweight circuits;
sort X in a nondecreasing order of weights as s1, ss, ..., Sp;
() = the empty sequence;
1=0,5=M+41;
whilez < 7 —1
do if weight(s;y1) + weight(s;_1) <t
then increment ;
if Q U {s;} is independent
then add s; to the end of ();
else C' = fetch(Q, s;);
if C' # failure message then add C to L;
end
else decrement j;
if QU {s;} is dependent
then C' = fetch(Q, s;);
if C' # failure message then add C to L;
end
end
end

As in the application of Theorem 6.1, let T' denote any PQ-tree compatible with z and let A
denote the archive; we choose a subset of X = B(T') U A for our X. Setting X = B(T)U A
could be a bad choice: an excessively large X can slow down all calls of fetch and, since
each -node with d children contributes (¢) sets to B(T'), the size of B(T') can easily reach
a quadratic function of n. We choose X = B’ U A for some reasonably small subfamily B’ of

B(T) such that
every PQ-tree T' with B(T") 2 B’ satisfies B(T") 2 B(T) (6.3)

Depending on how we came by T, we may even have such a B’ readily available; a good
default choice of B’ is the family Bo(T') that consists of

e all sets D(u) such that « is a node of T', and

e all sets D(u;) U D(u;y1) such that wug,us,. .., uq in this order are the children of some
Q-node

of Tand 1 <7 < d.

To see By(T') satisfies (6.3) in place of B’, observe that RUS € B(T") whenever R, S € B(T")
and RN S # 0.
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Some of the expensive calls of fetch can be avoided altogether by relying on the algorithm
of Theorem 6.1 (which is faster than fetch) whenever S satisfies assumptions (a), (b) of
that theorem. The resulting improved version of our algorithm goes as follows.

initialize an empty list £ of cuts;
A = 0;
for all members S of A
do if §(S5) < 2
then if there is no PQ-tree 7" with B(1") 2> B(T)U {S}
then add the resulting cut to £;
else add S to A';
end
end
end

sort A’ in a nondecreasing order of weights as S1,S52, ..., Su;
choose a reasonably small B’ that satisfies (6.3);
() = B’ in an arbitrary order;
1=0,75=M+41;
while: < 7 —1
do if 5(514_1) + 5(Sj_1) <2
then increment ;
if there is a PQ-tree T with B(T") 2 B(T) U {S:}
then replace T with the coarsest such T";
add S; to the end of Q;
else C' = fetch(Q, S;);
if C' # failure message then add C to L;
end
else decrement j;
if there is no PQ-tree T" with B(T") 2 B(T) U {S;}
then C' = fetch(Q, S;);
if C' # failure message then add C to L;
end
end
end

The remainder of this section is devoted to proofs of the three theorems (in a permuted
order).
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PROOF OF THEOREM 6.2. Tucker ([29], Theorem 9) characterized families
without the consecutive ones property as families F with at least one of the following five
properties:

(I) There are a set R consisting of distinct elements aq, a2, ..., a,, and sets S1,Ss,..., S,
in F such that m > 3 and (with subscript arithmetic modulo m) S; N R = {a;, a;41}
for all 2.

(IT) There are a set R consisting of distinct elements ao, a1, as, . . ., a4y, b and sets S1, Ss, ..., Sm,

Ty, Ty in F such that m > 2, S;NR = {a;_1,a;} for all i, and T'NR = {ao, a1, ..., am_1,b},
TN R ={a1,as,...,an,,b}.

(ITI) There are a set R consisting of distinct elements ag, a1, a2, . . ., am, b and sets S1, s, ..., Sm,

T in F such that m > 2, ;N R = {a;_1,a;} for all 4, and TN R = {as,as,...,am_1,b}.

(IV) There are a set R consisting of distinct elements a1, as, a3, b1, bs, by and sets H, T1,T>, T3
in F such that H N R = {ay, as,a3} and T; N R = {a;,b;} for all 4.

(V) There are a set R consisting of distinct elements ay, as, as, by, b and sets H, 11,15, T3 in
F such that H N R = {a1,a2,as} and T1 N R = {a1,b1}, To. N R = {as2,b2}, TsN R =
{al, as, , bl, bz}

Consider an arbitrary family F of at least four sets such that F satisfies one of (I), (II),
(III), (IV), (V), but no proper subfamily of F satisfies any of (I), (II), (III), (IV), (V). We
shall prove that

F is of type 0 or X if it satisfies (X) with X=I or II
and that

F is of type X if it satisfies (X) with X=III or IV or V.
For this purpose, let F(u) denote the family of all the members of F that include point u;
in each of Tucker’s five cases, let ¢ denote an arbitrary point (if any exists) such that F(c)
is distinct from all F(v) with v € R.

Case I: Here, |F(c)| < 1 or F(c) = F. [Else symmetry allows us to assume that S; €
F(c), S2 € F(c). Now consider the smallest j other than 1 such that S; € F(c). Since
F(c) # F(am), we have j < m; condition (I) is met by j in place of m and by ¢ in place of
a.|

Subcase 1.0: There is a ¢ with F(c) = F.

Here, F is of type 0: we have m = 4 [else condition (III) with m = 2 is met by S, in
place of T' and by a1, ¢, as, a4 in place of ag, a1, as,b] and there is no u with |[F(u)| =1 [else
symmetry allows us to assume F(u) = {S1}, in which case condition (III) with m = 2 is met
by S4 in place of T and by wu, ¢, as, a4 in place of ag, a1, az, b].

Subcase I.1: There is no ¢ with F(c¢) = F.

Here, F is of type L.
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Case II: Here, there are subscripts ¢ and k such that S; € F(c) if and only if ¢ < j < k.
[Else there are subscripts ¢ and k such that ¢ < k—1, S;, S, € F(c) and S; € F(c) whenever
i < 7 < k. But then condition (I) is met by S;, Sit1,..., Sk with R = {¢, a;, ai41,...,ap-1}.]
Symmetry allows us to distinguish between three subcases.

Subcase I1.0: T1 &€ F(c), T> ¢ F(c).

Here, F(c) = 0 or else m = 2 and F(c) = {51, S2}. [Assume the contrary. Now if there
is a subscript j with ¢ < j < k and 1 < j < m then condition (III) with m = 2 is met by
S;,T1,T5 in place of Sy, 52, T and by ¢, a;, ag, ., in place of ag, a1, az, b; else symmetry allows
us to assume that ¢ = k = m, in which case condition (III) is met by substituting ¢ for a,,
and T, for T'.]

If m =2 and F(c) = {S1, S2} then F is of type 0 since we find ourselves in Subcase 1.0
with ag, ¢, a2, b in place of aq, as, as, aq, with S7, 55, T, T7 in place of S1, 55, 53,54, and with
ay in place of c.

Subcase IL.1: T € F(c), Tz € F(c).

Here, F(c) = {T1}. [Assume the contrary. If £ = m then condition (I) with m = 3 is met
by Sm,T1,T5 1n place of S1, 55,55 and by a,,,c,b in place of a1, ay,a3; 1f 1 < k < m then
condition (II) is met by Sk, Skt1,.-.,Sm, 1, T2 with R = {c, ax, @Gxt1,...,0m,b}; if bk =1
then F(c¢) = F(ao).]

Subcase I1.2: T € F(c), Tz € F(c).

Here, F(c) = {S;, T1,T>}. [Since F(b) = {T1, T}, we must have ¢ < k. If = k — 1 then
F(c) = F(a;); if i < k—1 then condition (II) is met when all S; with ¢ < j < k are removed
and c is substituted for the sequence a;, a;y1,. .., ar_1.]

Case III: As in Case II, there are subscripts ¢ and k such that S; € F(c¢) if and only if
1 <j <k

Subcase II1.0: T ¢ F(c).

Here, F(c) = 0. [Assume the contrary. If K = 1 then F(c) = F(ag). If 1 < k < m then
condition (III) is met by Sk, Sk41,- .-, Sm, T with R = {¢, ak, ar41,...,am,b}. Hi=k=m
then F(c) = F(am). If i = m —1 and k = m then condition (III) is met when S, is removed
and @m-1, am are replaced with ¢; if # < m — 1 and k = m then condition (I) with m = 3 is
met by Sp—2,Sm, T in place of S1, S2, S5 and a3, ¢, @m—1 in place of a;, ay, as.]

Subcase IIL.1: T € F(c).

Here, F(¢) = {S;,T}. [Since F(b) = {T}, we must have ¢ < k. If ¢ = k — 1 then
F(c) = F(a;); if ¢ < k—1 then condition (III) is met when all S; with ¢ < j < k are removed
and c is substituted for the sequence a;, a;y1, ..., ar_1.]

Case IV: Here, F is of type IV: we have F(c) C {H} [else condition (I) with m = 3 or
condition (IIT) with m = 2 is met].

Case V: Here, F is of type V: we have T1 & F(c), T2 ¢ F(c) [else condition (I) with m = 3
or condition (III) with m = 2 is met]. 0
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A set-function is a real-valued function defined on all subsets of some set; a set-function
f defined on all subsets of V' is called submodular if f(RNS)+ f(RUS) < f(R)+ f(S) for
all choices of subsets R, S of V. To see that

d is a submodular set-function, (6.4)

observe (as in the proof of Lemma 2.1) that §(RNS)+6(RUS) = §(R)+6(S)—2z(R—S,S—R).

It is a routine matter to verify that

0(S1US3US5)+6((S1NS3)—S3)+6((S1NS3)—52)+6((S2NS3)—S1) < 8(S1)+6(S2)+6(S3)—2;
(6.5)
substituting V — S; for each S; in (6.5), we obtain

8(S1NS3NS5)+8(S1—(S2US3))+6(S2—(S1US3))+8(S5—(S1US2)) < §(S1)+6(S2)+6(S3)—2.
(6.6)
Properties (6.4), (6.5), (6.6) are the only properties of § that we rely on in our next proof.

PROOF OF THEOREM 6.3. First, let us dispose of the case where F includes
precisely three sets. If (6.1) holds then (6.5) guarantees that at least one of S; U S U Ss,
(51N S2) — Ss, (51N S3) — S,, (S2NSs5) — Sy is bad; if (6.2) holds then (6.6) guarantees that
at least one of S1 N Sy N S5, S1 — (S2 U Ss), Sa — (51U Ss), S5 — (51U S2) is bad.

Now we may assume that F includes more than three sets; here, Theorem 6.2 guarantees
that F 1s a family of type 0, I, II, or III. Finding out the type of F is a trivial matter; to
spell out its details, let the degree of a point mean the number of members of F in which
this point is included, and let D(F) denote the set of degrees of all the points in UgerS.

Since
2,4} whenever F is of type 0,

D(F) =A{
{2} € D(F) C{1,2} whenever F is of type I,
{2,4} € D(F) C{1,2,3,4} whenever F is of type II,
{1,3} € D(F) C{1,2,3} whenever F is of type III,

the type of F is determined by D(F) except when D(F) = {2,4}; in the exceptional case,
F is of type 0 if and only if |F| = 4 and no member of F contains another. Once the type
of F has been determined, labeling the members of F properly (as Si, S2, S3, 54 if F is of
type 0, as S1,S5%,...,5nm if F 1s of type I, as S1,52,...,5m, 1,15 if F is of type II, and as
51,52, ...y Sm, T if F is of type III) is another trivial matter.

If F 1s of type 0, I, or III then the following algorithm either returns a bad set or reduces
F to a family with three sets that lacks the consecutive ones property.

while F includes more than three sets
do 1if S,,_1 NS, 1s bad

then return this bad set;

else replace S,, with S,,_; U S,, and then decrement m;
end
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Submodularity of § guarantees that the invariant Y gc 7 6(S) < 2 is maintained throughout.

If F is of type II then we set T' = T1 N Ty and replace 11, T, with T'; unless 77 U T5 is bad,
submodularity of § guarantees that 72, 6(S;) +6(T) < 2. If m > 3 then {S1,S2,...,5m, T}

is of type III; else it has precisely three sets and lacks the consecutive ones property. a

PROOF OF THEOREM 6.1. If (b) holds then the polynomial-time algorithm at the

end of Section 4 returns one of the following:

(1) a node w of T' and children vy, v, v3 of u such that
S meets each of D(v1), D(vs), D(vs) but does not contain any.

(i1) a node u of T' and children vy, v5 of w such that

SND(v1)#£0, SND(v2)#0, S2 D(v1), S2 D(va), SEZ D(u).

(iii) a Q-node of T' with children wy,us,. .., uq in the left-to-right order
and subscripts 7, 7, k with ¢« < j < k such that
SN D(u;) #0, §2 D(u;), SN0 D(uz)#0.

(iv) a Q-node w of T' with children wuq, us, ..., us in the left-to-right order such that
S Z D(u), S 2 D(ul)v S 2 D(ud)v SN (U1<t<dD(ut)) 7£ 0.

If the algorithm returns (i) then the comb H with handle S and teeth D(v1), D(v2), D(vs)
satisfies Hoz = §(5); if the algorithm returns (ii) then the comb H with handle S and teeth
V — D(u), D(v1), D(v2) satisfies H o x = §(5); in either of these two cases, assumption (a)
guarantees that the comb inequality is violated by .

If (ii1) holds then set F = {Us<; D(us), Us>; D (uy), S}; if (iv) holds then set F = {UcqaD(us),
Ugs1D(ut), S} in either of these two cases, assumption (a) guarantees that F and z satisfy
the assumptions of Theorem 6.3. O
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7 FINDING CUTS: GLUING

In the last section, we described one way in which the cutpool may help us in finding new
cuts; the purpose of the present section is to describe another way, one which amounts to
“gluing together” old constraints into a conglomerate cut. Grotschel and Pulleyblank [16]
used a notion of gluing in the analysis of their clique tree inequalities. (These inequalities are
satisfied by incidence vectors of all tours; their class includes all the subtour inequalities and
all the comb inequalities; in fact, the class of all subtour inequalities and all comb inequalities
is just a speck in the universe of clique tree inequalities.) On the one hand, we glue in a way
that is slightly more restricted than the Grotschel-Pulleyblank way; on the other hand, we
start out with a wider class of elementary building blocks. The resulting recursively defined
class of clique-tree-like inequalities nearly but not quite subsumes the class of clique tree
inequalities; to reduce confusion, we postpone all discussion of clique tree inequalities and
their relationship to clique-tree-like inequalities till the very end of this section.

Unlike Grotschel and Pulleyblank, we use gluing not only as an analytical tool but also
as an algorithmic tool; it 1s the algorithmic use of gluing that is the focal point of this section.

To define clique-tree-like inequalities, we shall first define clique-tree-like hypergraphs, and
we shall do that recursively. Two special kinds of hypergraphs serve as elementary blocks
in building up clique-tree-like hypergraphs. A comb is a hypergraph with vertex-set V' and
edge-set {H,To,T1,...To} such that k > 1 and

o Ty, T1,... Ty are pairwise disjoint,

e H meets each of Ty, Ty, ... T, but does not contain any;

a flipped comb is a hypergraph with vertex-set V and edge-set {H, T, T4, ... Tor} such that
k>1 and

e H-To#0, HUTy #V,and To D T; for all : = 1,2, ..., 2k,

e H meets each of T1,...T5, but does not contain any,

o T1,...Ty, are pairwise disjoint;
in combs and flipped combs, H is called a handle and Ty, Ty, ... Ty, are called teeth. We say
that a hypergraph H arises from hypergraphs Hi, Hs, ..., H.,n by gluing along edge C' if

e H; = (V,F;) for all i and H = (V,U, F;),

e C belongs to each F;,

¢ AN B =0 whenever A€ F, — {C}, Be F; — {C}, and i # j,

e some vertex in C' belongs to no edge of H other than C,

e some vertex in V' belongs to no edge of H.

A clique-tree-like hypergraph is any hypergraph H, with edge-set partitioned into a set of
handles and a set of teeth, such that either

e H is a comb or a flipped comb,
or else

e H arises from at least two clique-tree-like hypergraphs by gluing along a tooth.

THEOREM 7.1 If H is a clique-tree-like hypergraph with t teeth then p(H)=t—1. O
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By a clique-tree-like inequality, we mean any inequality
Hozx>t—-1

such that H is a clique-tree-like hypergraph with ¢ teeth; Theorem 7.1 guarantees that all
clique-tree-like inequalities are satisfied by all incidence vectors & of tours.

Before proving Theorem 7.1, let us describe the way we use it. We sweep through the
archive; given each new set C' from the archive, we search for hypergraphs in our cutpool
that can be glued together along their common tooth C' into a conglomerate hypergraph H
such that the optimal solution  of our most recent LP relaxation satisfies H o ¢ < p(H).
For this purpose, let Hy, Hs, ..., Hasr denote all the hypergraphs in the cutpool that contain
C as a tooth; let us write H; = (V, F;) for all i. We want to find a subset S of {1,2,..., M}
such that

(i) AN B =0 whenever Ac F;—{C}, Be F; —{C},andi€ S, j€S5,i#7],
and, with H = (V, U;es Fi),
(ii) some vertex in C' belongs to no edge of H other than C,
(iii) some vertex in V belongs to no edge of H,
(iv) Hoz < u(H).

The problem of finding such a set S may be cast in the more general setting of independence
systems (see Section 5 for the standard definition): given an independence system (X,Z),
given an assignment of nonnegative weights a; to points 7z of X, and given a nonnegative
number b, find an independent set S that satisfies

(v) b+ Xies(ai —b) <0

or show that no such S exists. To see that our particular problem fits this general paradigm,
write X = {1,2,..., M} and set S € T if and only if S satisfies (i), (ii), (iii). Trivially,
(X,Z) is an independence system: () € Z and Z is closed under taking subsets. Now write

a; = H;ox — p(H;), b=0,(C),

and let t; denote the number of teeth in H;. Theorem 7.1 guarantees that u(H;) = ¢; — 1 for
all 4 and that, as long as (i), (ii), (iii) are satisfied, u(H) = X ;cs(t;i — 1). Since

'Ho:z::b—l—Z(ai—l—,LL('Hi)—b),

1€ES

(iv) and (v) are equivalent whenever S is independent.
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Let us describe our search algorithm in the general setting of independence systems.
To begin, we may remove from X all points j such that a; > b: removal of all such points
transforms each independent set .S into an independent set R with Y ;cp(a;—b) < > ;cs(a;—b).
After this clean-up, let us write X = {1,2,..., M} and, for future reference,

M

C; = Z ((Li—b).

i=7+1

The algorithm itself is recursive. Its idea may be easiest to grasp in terms of the enumeration
tree, a complete binary tree of depth M, whose 2/ nodes at level j are in a one-to-one corre-
spondence with the 27 subsets of {1,2,...,5}: if a node at level j — 1 corresponds to a subset
R of {1,2,...,5 — 1} then its left child corresponds to R and its right child corresponds to
R U{j}. This tree gets pruned by removing all the descendants of a node whenever it is
blatantly obvious that none of these descendants corresponds to an independent set S with
property (v). Here, “blatantly obvious” can mean one of two different things. First, if a
node corresponds to a set R that is not independent then no superset of R 1s independent,
and so we may safely disregard all the descendants of this node; second, if a node at level
j corresponds to a set R such that b+ > ;cgp(a; — b) + ¢; > 0 then no superset S of R has
property (v), and so we may safely disregard all the descendants of this node. Recursive calls
of the algorithm are in a one-to-one correpondence with the nodes of the resulting pruned
enumeration tree except for leaves at level M: each of these leaves that persists in the pruned
tree corresponds to an independent set S with property (v).

Common sense seems to suggest that our chances of discovering at least one indepen-
dent set S with property (v) increase as the value of b increases; for this reason, we sweep
through the archive in a nonincreasing order of é,(C). Independently of this stratagem, the
algorithm as described so far may come across a member C' of the archive that yields an
overwhelmingly large number of independent sets S with property (v); to stop this kind of
good luck from turning into a disaster, we terminate the search whenever it has produced
90 new cuts.

Next, let us get started on proving Theorem 7.1. To establish the lower bound, p(H) >
t — 1, we prove a more general theorem:

THEOREM 7.2 If H arises from Hy, Hs, ..., Hm by gluing along any common edge then
p(H) 2 X2y n(Hi)-

PROOF. We may restrict ourselves to the case of m = 2. Let C' denote the common edge
of Hy and Ha; let us write H; = (V, F;) and H, = (V, F; — {C}); furthermore, let us write
v € V; if v € V and v belongs to at least one edge of H}; let us set Vo = V — (V3 U W),
D=V -C,and C;=CnNV, D;=DnNYV,for:=0,1,2. By assumption, V;, V5, are disjoint

and Cy, Dy are nonempty.
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Now consider a tour T through H, whose incidence vector z satisfies H oz = p(H). If
this tour has the form ...ab...cd... such that

eac(C,beD,ceC,de D,

ead Ciorb¢ D,

ecg Ciord¢ D,
then replace the pair of edges ab, cd with the pair of edges ac,bd. It is a routine matter to
verify that the incidence vector y of the resulting tour satisfies 6,(.5) < 8,(5) for all edges S
of H;. Similarly, if the tour has the form ...ab...cd... with

eacD beC,ceD,deC,

ea¢ Dyorbéd(Ch,

ec¢ Dyordé(Ch,
then replace the pair of edges ab,cd with the pair of edges ac,bd. Again, it is a routine
matter to verify that the incidence vector y of the resulting tour satisfies 6,(S) < 8,(S5) for
all edges S of H;. Repeating these transformations as many times as possible, we eventually
obtain a tour 7 through V', whose incidence vector ¢, satisfies

Hioxzy < Hjoxz (7.1)
and

The same procedure with C5, Dy in place of C1,D; yields a tour T3 through V., whose
incidence vector , satisfies

le O Ts S le ox (73)

and

If 2,(C,D) + z5(C,D) < &(C,D) + 2 then (7.1) and (7.3) guarantee that

Hiozi+Heomy = (Hyoz+ 21(C,D)—2)+ (Hyozs + z2(C, D) — 2)
< Hyou+Hyow+u(C,D) -2 = u(H),

and the desired conclusion follows. Hence we may assume that
21(C, D) + z5(C, D) > z(C, D) + 2.
Now, since
21(C, D) + z5(C, D) < (2(Cy, Dy) +2) + (2(Cs, Ds) + 2) < z(C, D) + 4

(the first inequality follows from (7.2) and (7.4); the second inequality is trivial) and since
z1(C, D), z2(C, D), (C, D) are all even, we must have

z1(C,D) = =z(Ci1,D1)+ 2, (7.5)
z3(C,D) = z(Cs, Ds) + 2, (7.6)
z(C,D) = z(Ci1,D1)+ z(Cs, D). (7.7)
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Let us say that an edge of T' is of type I if one of its endpoints belongs to C; and its other
endpoint belongs to D;; let us say that an edge of T is of type 2 if one of its endpoints
belongs to Cy and its other endpoint belongs to Ds. By (7.7), each edge of T' that crosses
the boundary of C is either of type 1 or of type 2; by (7.5),

the number of edges of type 1 is even; (7.8)

by (7.6),
the number of edges of type 2 is even; (7.9)

by (7.1), (7.3), (7.5), (7.6), (7.7), we have
H1 oz + Hz O To S [L(H) + 2. (710)

Let us choose once and for all one of the two cyclic orientations of 7. We shall say that
an edge of type 1 or type 2 is outward (with respect to our fixed orientation of T') if its
endpoint in C precedes its endpoint in D; otherwise we shall say that the edge is nward.
Now consider the cyclic sequence S of symbols + and — that arises from the cyclic sequence
of edges of type 1 on T by writing a + for each outward edge and writing a — for each inward
edge. If

(*) S contains two consecutive identical symbols
then S = aaS’ for some S’, whose length is even by virtue of (7.8). The block-substitution
rules

—I_—I_'_)A) __'_)A7 +_+'_)+7 _—I__'_)_)

with A standing for the null sequence, transform S’ into one of A, +—, —+, and so they
transform the cyclic sequence S into A. Each of these block-substitutions translates into
a replacement of a pair of edges ab, cd of type 1 with the pair of edges ac, bd; the entire
sequence of these replacements transforms 7' into a tour 7, through V', whose incidence
vector !, satisfies

Hyozy < H,oz and z4(C,D) = z(Cs, D,).
Now, by virtue of (7.1), (7.5), and (7.7),
Hiozy +Hpoxy = (Hyowz +24(C, D) —2) + (Hy oz, + 25(C, D) —2)
< Hioz+Hyoz+=z(C,D)—2=pu(H),

and the desired conclusion follows again. Hence we may assume that (x) fails; to put it
differently, we may assume that

in the cyclic sequence of edges of type 1 on T', outward and inward edges alternate.
(7.11)

Similarly, we may assume that

in the cyclic sequence of edges of type 2 on T', outward and inward edges alternate.

(7.12)
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(Note that (7.11) is a strengthening of (7.8) and that (7.12) is a strengthening of (7.9).)

In addition, we may also assume that
there is an edge of type 2: (7.13)
else £(Cy, D3) = 0 and T7 = T, contradicting (7.5) and (7.7). Similarly, we may assume that

there is an edge of type 1. (7.14)

Digressing for a while, consider an arbitrary tour 7", whose vertex-set V is partitioned
into pairwise disjoint sets Co, C1, Cs, Do, D1, Dy, and let us write C = Co U C; U Cy, D =
Do U Dy U Dy. Again, let us say that an edge of this tour is of type 7 if one of its endpoints
belongs to C; and its other endpoint belongs to D;; let us assume that

(1) each edge of T” with one endpoint in C' and the other endpoint in D
is of type 1 or type 2,

(i) there are an edge of type 1 and an edge of type 2.

Again, let us say that an edge of type 1 or type 2 is outward (with respect to a fixed
orientation of 7") if its endpoint in C precedes its endpoint in D and let us say that the edge
is inward otherwise; let us assume that

(iii) in the cyclic sequence of edges of type 1 on 7", outward and inward edges alternate,
(iv) in the cyclic sequence of edges of type 2 on T”, outward and inward edges alternate.

Removal of all the edges of type 1 from T’ breaks T" into a family P; of paths; assumption
(iii) guarantees that each of these paths either begins and ends in C; or begins and ends in
D,. Similarly, removal of all the edges of type 2 from T” breaks T into a family P, of paths;
assumption (iv) guarantees that each of these paths either begins and ends in C or begins
and ends in D,. Let Alc denote the union of vertex-sets of all the paths in P; that begin
and end in Cp; let AP denote the union of vertex-sets of all the paths in P; that begin and
end in Dy; let AS denote the union of vertex-sets of all the paths in P, that begin and end
in Cq; let AP denote the union of vertex-sets of all the paths in P, that begin and end in
D,. We claim that

AS U AS =V orelse APUAD =V. (7.15)

To justify this claim, we shall use induction on the number of edges of type 1 and type 2.
We may assume that some point u of V is outside AY U AY, and so it belongs to AP N AD;
let ab be the first edge of type 1 or type 2 that we encounter proceeding from u along 7",
and let the b be the successor of a. Since u € AP N AP we have either @ € D;,b € C; or
a € Dy, b € Cy; symmetry allows us to assume that a € D1,b € C;. Let cd be the first edge of
type 1 or type 2 that we encounter proceeding from b along 7", and let the d be the successor
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of ¢. Trivially, we have ¢ € C,d € D, and so either ¢ € C;,d € D, or ¢ € Cy,d € D,; the
latter case is excluded since u € A2; hence ¢ € C1,d € D;. If ab and cd are the only two
edges of type 1 then AP U AP = V and we are done; else the tour 7" obtained from T"
by transferring all the interior points of the segment ab...cd from C to D satisfies (i), (ii),
(iii), (iv) in place of T”. The transformation of 7" into 7" transfers all the interior points
of the segment ab...cd from AY N AD to AP N AL but otherwise it leaves A, A, AP AD
unchanged; in particular, with respect to 7", we still have AY U A # V. Now the induction
hypothesis guarantees that, with respect to 7", we have AP U AP = V; it follows that, with
respect to 7", we also have AP U AP =V,

By virtue of (7.7), (7.13), (7.14), (7.11), and (7.12), our original tour T satisfies (i), (ii),

(iii) and (iv) in place of T". Hence (7.15) allows us to distinguish between two cases.

Case 1: AU A =V.

Consider an arbitrary vertex e in Dy. By assumption of this case, e belongs to at least
one AY; symmetry allows us to assume that ¢ = 1. It is a routine matter to verify that the
sequence of operations transforming 7" into 7% maintains the following invariant:

the current tour has the form ...aPd... such that a € Dy, d € Dy, and

P is a path that begins and ends in C1, contains no edges of type 1, and includes e.

In particular, T, is a concatenation of paths P and () such that

e P begins and ends in 7, contains no edges of type 1, and includes e,

e () begins and ends in Dy, and contains no edges of type 1.

Let b denote the first point of P, let ¢ denote the last point of P, let d denote the first point
of (), let a denote the last point of (), and let f denote the successor of e on T5. Now T3 has
the form

o.ab.ef.ied. .

let y denote the incidence vector of the tour obtained from 7% by replacing the three
edges ab, ef, cd with the three edges ae, df, bec. It is a routine matter to verify that
y(C,V —C) = z5(C,V — C) — 2 and that y(S,V — S) < 2(S,V — §) for all edges S of
H., (since none of a,b, ¢, d, e belong to an edge of H}); hence Hy oy < Hy 0 x5 — 2, and the
desired conclusion follows from (7.10).

Case 2: APUAD =V.
Replacing C' with D in each of F;, F» and F, we find ourselves in Case 1. O

To establish the upper bound, u(H) < ¢ — 1, of Theorem 7.1, we first prove several easy
lemmas of independent interest. Let H be a hypergraph (V,F) and let D be a subset of
V. By H\D, the hypergraph obtained from H by deleting D, we mean the hypergraph
(V—D,{S—D:S¢cF}).
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LEMMA 7.1 u(H\D) < u(H) for all H and D.

PROOF. Since H\(D; U Dy) = (H\D1)\ D2, we may restrict ourselves to the case where
D = {v} for some point v of V. Given any tour ...wvw... through V, skip v to obtain a
tour ...uw... through V — {v}; with z standing for the incidence vector of the old tour and
with y standing for the incidence vector of the new tour, observe that

y(§ —{o}, (V —{o}) = (§ = {v})) < =(5,V - §)

for all subsets S of V; this inequality implies at once that p(H\{v}) < p(H). a

Every hypergraph (V,F) defines an equivalence relation on V' by putting two points of
V in the same equivalence class if and only if no member of F includes precisely one of
these two points; we refer to these equivalence classes as the atoms of (V,F). By the type
of a hypergraph H, we mean the hypergraph that arises from H by deleting a subset of size
|A| — 1 from each atom A of H.

LEMMA 7.2 If G is the type of H then u(G) = p(H).

PROOF. Repeated applications of Lemma 7.1 show that p(G) < p(H). To see that
p(H) < p(G), consider an arbitrary tour wy,us, ..., %m,u; through G and let z denote the
incidence vector of this tour. For each ¢, let P; denote any path through the atom of H that
contains u;. The concatenation of Py, Ps, ..., P, yields a tour through H, whose incidence
vector y satisfies Hoy =G o . a

By an optimal tour through a hypergraph H, we shall mean any tour through H, whose
incidence vector z satisfies H o z = pu(H).

LEMMA 7.3 For every hypergraph H and for every nonempty subset B of an atom of 'H
there is an optimal tour through H, whose incidence vector x satisfies 6,(B) = 0.

PROOF. Let A be the atom of H that contains B; let P be the concatenation of an
arbitrary path through B and an arbitrary path through A — B. Let G be a hypergraph
obtained from H by deleting a set of |A| — 1 points in A; consider an optimal tour through
G and let = denote the incidence vector of this tour. Substituting P for the single point of
A 1in this tour, we obtain a tour through H, whose incidence vector y satisfies Hoy = G o x;

by Lemma 7.2, G oz = p(H). O
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By an end of a clique-tree-like hypergraph H, we shall mean any hypergraph H’ such that
e H' is a comb or a flipped comb, and
e H arises from H' and some clique-tree like hypergraph H”

by gluing along their common tooth.

LEMMA 7.4 Let 'H be a clique-tree-like hypergraph. If H is neither a comb nor a flipped

comb then H has at least two ends.

PROOF. By induction on the number of edges of H. By definition, H arises from clique-
tree-like hypergraphs Hi, Has, ..., H,, by gluing along their common tooth 7'. We propose
to find hypergraphs G,,Gs, ..., G, such that each G; is an end of H and all its edges come
from H;. If H; is a comb or a flipped comb then we may set G; = H;; else the induction
hypothesis guarantees that H; has distinct ends, say, G;; and G;5. If at least one G;; does
not include 7' in its edge-set then this G;; is an end of H; else both G;; and G;; are ends of H. O

PROOF OF THEOREM 7.1. Let us write H = (V,F) and proceed by induction on
the number of edges of H. In Section 5, we observed that u(H) = ¢ — 1 whenever H is a
comb with ¢ teeth; since p(H) is invariant under a substitution of V — S for any S in F,
it follows that u(H) = ¢t — 1 whenever H is a flipped comb with ¢ teeth; hence Lemma 7.4
allows us to assume that H arises from a comb or a flipped comb H; and a clique-tree-like
hypergraph H, by gluing along their common tooth 7'. With ¢; standing for the number
of teeth of H;, we have u(H;) = t; — 1 and, by the induction hypothesis, u(Hs) = ¢t — 1;
trivially, ¢ = ¢; + ¢, — 1.

Theorem 7.2 guarantees that p(H) > ¢ — 1.

To show that u(H) < t—1,let H denote the handle of H; and enumerate the teeth of H;
other than T as 11,75, ..., Tox; note that 177,75, ..., T, are pairwise disjoint whether H; is
a comb or a flipped comb; set B=T, UT5,U...UTs, U H. It is easy to construct a path P
through B that

e starts in 77 — H and ends in Ty, — H,
crosses the boudary of 77 precisely once,
crosses the boudary of each T; with 1 < 7 < 2k precisely twice,
crosses the boudary of Ts; precisely once,
crosses the boundary of H precisely 2k times,

e crosses from H NT to H — T precisely twice.

Now set 7" = T'— H if H; is a comb and T’ = TU H if H; is a flipped comb; in either case, let
‘H' denote the hypergraph obtained from H, by substituting 7" for 7. By Lemma 7.3, some
optimal tour through H’ is the concatenation of a path @) through V— B and a path R through
B. Substituting P for R, we obtain another optimal tour through H’'. The incidence vector
z of this new tour satisfies 8,(7;) = 0 for all ¢, §,(H) = 2k—2, and 8,(T") = 8,(T")+2. Hence
Hoz = pu(H')+2k and the desired conclusion follows since p(H') = p(Hz2) by Lemma 7.2. O
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Let us close this section with a brief discussion of clique tree inequalities and their rela-
tionship to clique-tree-like inequalities.

The intersection graph of a hypergraph (V, F) is the graph with vertex-set F, where two
vertices are adjacent if and only if they have a nonempty intersection. A clique tree is any
hypergraph ‘H such that

o the intersection graph of H is a tree
and such that the edge-set of H can be partitioned into a set of “handles” and a set of
“teeth” with the following properties:

e there is at least one handle,

e the handles are pairwise disjoint,

e the teeth are pairwise disjoint,

e the number of teeth that each handle intersects is odd and at least three,

e cach tooth includes a point that belongs to no handle.

It 1s easy to show that a clique-tree-like hypergraph H 1s a clique tree if and only if

o cach vertex of H belongs to at most two edges.
In the reverse direction, it is easy to show that a clique tree H is a clique-tree-like hypergraph
if and only if H has at least one of the following two properties:

e some vertex of H belongs to no edge of H,

e H is a comb.

A clique tree inequality is any inequality
Hozx>t—1

such that H is a clique tree with ¢ teeth. Grotschel and Pulleyblank [16] proved (among many
other things) that every clique tree inequality is satisfied by all incidence vectors z of tours.
As we have just observed, this result is not a corollary of our Theorem 7.2. (Nevertheless, it
can be derived from Theorem 7.2 with just a little additional effort.)
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8 FINDING CUTS: TIGHTENING

If the mechanism that drives a solution of an LP relaxation of a TSP instance to the minimum
level of its objective function is likened to the force of gravity that drives a stream of water to
the sea level, then each new cut added to the relaxation may be likened to a new obstacle in
the way of the stream. The stream may change its course just slightly to get around the new
obstacle and then go on its way; optimal solutions z of successive relaxations often exhibit an
exasperating tendency to sidestep each new cut in a similar way. Fortunately, we may fight
back with the same weapons and respond to each slight adjustment of = with a slight adjust-
ment of the cut: in the metaphor, we may extend previously built dams rather than blowing
them up and building new ones from scratch. Given z, we may scan our cutpool and try
to adjust each of its hypergraphs H, so that resulting hypergraph H’' satisfies H' oz < p(H').

LEMMA 8.1 Let 'H be a hypergraph, let S be an edge of H, and let v be a vertezx in S;
assume that the atom of H that contains v has size at least two; in the edge-set of H, replace

S with S — {v} and call the resulting hypergraph H'. Then p(H') > p(H).

PROOF. Let G be the type of H and let G’ be the type of H'. By assumption, either G = G’
or G arises from G’ by deleting a single vertex. Hence the desired conclusion follows from
Lemma 7.2 and Lemma 7.1. O

Here is a function shrink(H,S) that, given any hypergraph H and its edge S, replaces
S in the edge-set of H with a subset S’ of S and returns the resulting hypergraph H'; in a

greedy way, this function attempts to minimize 6,(S’) subject to constraints p(H') > p(H)
and S’ C S.
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initialize an empty queue;
for all v in §
do f(v) = a({v}, 5);
if f(v) <1 then place v in the queue;
end
while the queue is nonempty
do  v= the first vertex in the queue;
remove v from the queue;
if the atom containing v has size at least two
then in the edge-set of H, replace S with S — {v};
for all neighbors w of v such that w € S
do t = f(w);
decrement f(w) by z({v}, {w})
if f(w) <1 <t then place w in the queue;
end
end
end
return H;

Function grow(H, S) is a mirror image of shrink(H, S):

initialize an empty queue;
for all v outside S
do f(v) = a({v}, 5);
if f(v) > 1 then place v in the queue;
end
while the queue is nonempty
do  v= the first vertex in the queue;
remove v from the queue;
if the atom containing v has size at least two
then in the edge-set of H, replace S with S U {v};
for all neighbors w of v such that w ¢ S
do t = f(w);
increment f(w) by z({v}, {w})
if t <1 < f(w) then place w in the queue;
end
end
end
return H;
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Function tighten(H, S) makes S wane and wax as long as its §(S) keeps getting smaller;
we insist on waning first and waning last to improve our chances of ending up with a relatively
small S, and so easing the burden of our LP solver.

H=shrink(H, S);

do t = 6(95);
H=grou(H, S);
H=shrink(H, S);

while §(S5) <t

We have also implemented more sophisticated versions of tighten that tighten edges by
solving max-flow min-cut problems; however, the greedy versions described here turned out
to perform quite adequately.

Given a hypergraph H in our cutpool, we arrange its m edges in a cyclic sequence; then
we go through this cyclic sequence edge by edge, applying tighten(H, S) to each term S;
we stop only when the last m calls of tighten together made the value of H o z drop by
an insignificant amount or not at all. We refrain from struggle for lost causes: if the initial
value of H o # — pu(H) is unreasonably large (say, greater than two) that we do not even
attempt to tighten H.
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