
A Study of Domino-Parity and k-Parity
Constraints for the TSP

William Cook, Daniel Espinoza, and Marcos Goycoolea

ISYE, Georgia Institute of Technology

Abstract. Letchford (2000) introduced the domino-parity inequalities
for the symmetric traveling salesman problem and showed that if the sup-
port graph of an LP solution is planar, then the separation problem can
be solved in polynomial time. We generalize domino-parity inequalities
to multi-handled configurations, introducing a superclass of bipartition
and star inequalities. Also, we generalize Letchford’s algorithm, prov-
ing that for a fixed integer k, one can separate a superclass of k-handled
clique-tree inequalities satisfying certain connectivity characteristics with
respect to the planar support graph. We describe an implementation of
Letchford’s algorithm including pruning methods to restrict the search
for dominoes, a parallelization of the main domino-building step, heuris-
tics to obtain planar-support graphs, a safe-shrinking routine, a random-
walk heuristic to extract additional violated constraints, and a tightening
procedure to allow us to modify existing inequalities as the LP solution
changes. We report computational results showing the strength of the
new routines, including the optimal solution of the TSPLIB instance
pla33810.

1 Introduction

Let G = (V,E) be a complete graph with edge costs (ce : e ∈ E). The symmetric
traveling salesman problem, or TSP, is to find a minimum-cost tour in G, that is,
a Hamiltonian cycle of minimum total edge cost. A tour can be represented as a
0-1 vector x = (xe : e ∈ E), where xe = 1 if edge e is used in the tour and xe = 0
otherwise. In the Dantzig, Fulkerson, and Johnson [7] cutting-plane method for
the TSP, a linear programming (LP) relaxation is created by iteratively finding
linear inequalities that are satisfied by all tour vectors. This approach has been
the most successful exact solution procedure proposed to date for the TSP;
surveys of the large body of literature on the approach can be found in Jünger,
Reinelt, and Rinaldi [12] and Naddef [14].

For any S ⊆ V , let δ(S) denote the set of edges with exactly one end in S
and let E(S) denote the set of edges having both ends in S. For disjoint sets
S, T ⊆ V , let E(S : T) denote the set of edges having one end in S and one end
in T . For any set F ⊆ E, define x(F) :=

∑
(xe : e ∈ F).

Every tour of G satisfies the subtour constraints x(δ(S)) ≥ 2 ∀ ∅ �= S � V .
An important property of these constraints is that the corresponding separa-

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 452–467, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Study of Domino-Parity and k-Parity Constraints for the TSP 453

tion problem can be solved efficiently, that is, given a non-negative vector x∗ a
violated constraint can be found in polynomial time, provided one exists.

Much of the TSP literature is devoted to the study of classes of inequali-
ties that are valid for the TSP, extending the subtour constraints in different
ways. Many properties of these classes of inequalities are known, but for the
most part polynomial-time separation algorithms have proven to be elusive. A
notable exception is the separation algorithm for blossom-inequalities by Pad-
berg and Rao [17]; variations of the Padberg-Rao algorithm are included in most
current codes for the TSP. The absence of other efficient separation algorithms
has lead to the use of various heuristic methods for handling TSP inequalities
within cutting-plane algorithms. The heuristics are effective in many cases (see
Padberg and Rinaldi [18], Applegate et al. [1], and Naddef and Thienel [16]), but
additional exact methods could be critical in pushing TSP codes on to larger
test instances.

An interesting new approach to TSP separation problems was adopted by
Letchford [13], building on earlier work of Fleischer and Tardos [8]. Given an
LP solution vector x∗, the support graph G∗ is the subgraph of G induced by
the edge-set E∗ = {e ∈ E : x∗

e > 0}. Letchford [13] introduced a new class of
TSP inequalities, called domino-parity constraints, and provided a separation
algorithm in the case where G∗ is a planar graph. An initial computational
study of this algorithm by Boyd et al. [4], combining a computer implementation
with by-hand computations, showed that the method can produce strong cutting
planes for instances with up to 1,000 nodes.

In this paper we present a further study of Letchford’s algorithm. We begin
by describing a generalization of domino-parity inequalities and Letchford’s al-
gorithm to include certain multi-handled configurations. We also include a range
of procedures for improving the practical performance of the separation routines,
together with computational testing of large TSPLIB instances.

2 The k-Parity Inequalities

Definition 1. Consider a family of sets (T1, T2, . . . , Tk;T) satisfying ∅ �= Ti �

T � V, ∀i ∈ Ik ≡ {1, . . . , k}. We call this family a regular k-domino if for any set
∅ �= K ⊆ Ik, the edges

⋃
{E(Ti : T \ Ti) : i ∈ K} define a |K|+1 (or greater) cut

in the subgraph of G induced by T . The family is called a degenerate k-domino if
(T1, . . . , Tk) defines a partition of T . We refer to the k−domino (T1, . . . , Tk;T)
as T and define βT as 1 if T is regular and as k

k−1 if T is degenerate. In general,
we say that the sets T1, . . . , Tk are the halves of T . Finally, if T is a k-domino,
we say that κ(T) = k.

Lemma 1. Let T = (T1, T2, . . . , Tk;T) be a k−domino. If x satisfies all subtour
constraints, then

βT

2
(x(δ(T)) − 2) +

k∑

i=1

x(E(Ti : T \ Ti)) ≥ k.

454 W. Cook, D. Espinoza, and M. Goycoolea

Proof. Assume x satisfies all subtour constraints. Let B1, B2, . . . , Br correspond
to the partition of T obtained by removing the edge sets E(T1 : T \ T1), E(T2 :
T \ T2), . . . , E(Tk : T \ Tk). Then

r∑

i=1

x(δ(Bi)) = x(δ(T)) +
r∑

i=1

x(E(Bi : T \ Bi)).

It follows that

βT

2
(x(δ(T)) − 2) =

βT

2

(
r∑

i=1

(x(δ(Bi)) − x(E(Bi : T \ Bi))) − 2

)

. (1)

However, note that if T is regular, then βT = 1 and

r∑

i=1

x(E(Bi : T \ Bi)) ≤ 2
k∑

i=1

x(E(Ti : T \ Ti)).

On the other hand, if T is degenerate, then βT ≤ 2 and each Ti can be assumed
equal to Bi. Thus, in either case we have

βT

2

r∑

i=1

x(E(Bi : T \ Bi)) ≤
k∑

i=1

x(E(Ti : T \ Ti)). (2)

Finally, note that if T is regular, then r > k and βT = 1. Likewise, if T is
degenerate then r = k and βT = k/(k−1). Thus, in either case, βT (2r−2)/2 ≥ k,
and

βT

2

(
r∑

i=1

x(δ(Bi)) − 2

)

≥ βT

2
(2r − 2) ≥ k (3)

Putting together (1), (2), and (3) we get the desired result. 	

Definition 2. Consider a family of teeth T and a family of handles H, where
each T ∈ T is a κ(T)-domino (with κ(T) ≤ |H|)and each H ∈ H is a proper
subset of V . We say that Λ defines a proper tooth-handle relationship on T
and H if we have the following (symmetric) associations. Each tooth T ∈ T is
associated with exactly κ(T) handles H ∈ H, call this set Λ(T), and each handle
H ∈ H is associated with an odd number of dominoes T ∈ T , call this set Λ(H).
For ease of notation, we index the halves of T according to the handle to which
they are associated, that is, the halves of T are labeled {TH}H∈Λ(T).

Definition 3. Let F= {E1, E2, . . . , Ek}, where Ei ⊆ E for all i ∈ Ik, and define
µe := |{F ∈ F : e ∈ F}| for each e ∈ E. Following Letchford [13], the family F
is said to support the cut δ(H) if δ(H) = {e ∈ E : µe is odd}.

A Study of Domino-Parity and k-Parity Constraints for the TSP 455

Theorem 1. Suppose that Λ defines a proper tooth-handle relationship on T
and H. For each H ∈ H let FH ⊆ E be such that {FH , {E(TH : T \TH)}T∈Λ(H)}
supports the cut δ(H) in G and define µH accordingly. Then the inequality

∑

H∈H
µHx +

∑

T∈T
βT x(δ(T)) ≥

∑

H∈H
|Λ(H)| + 2

∑

T∈T
βT + |H| (4)

is satisfied by all tours.

Proof. We use induction on |H|, the case |H| = 0 following from the validity of
the subtour constraints. Let xc be the incidence vector of a tour. If there exists
Ho ∈ H such that µHoxc > |Λ(Ho)| − 1, then, since µHoxc is even valued (see
Letchford [13]), we have µHoxc ≥ |Λ(Ho)|+1. Note also that for each T ∈ Λ(Ho)
the family {TH : H ∈ Λ(T)\Ho;T} defines a regular (|Λ(T)|−1)−domino. Thus,
by induction, the inequality obtained by removing Ho and redefining β′

T = βT

for T ∈ T \ Λ(Ho) and β′
T = 1 for T ∈ Λ(Ho)

∑

H∈H\Ho

µHx +
∑

T∈T
β′

T x(δ(T)) ≥
∑

H∈H\Ho

|Λ(H)| + (|H| − 1) + 2
∑

T∈T
β′

T

is valid. Then (4) follows since (βT − β′
T)xc(δ(T)) ≥ (βT − β′

T)2, and µHoxc ≥
|Λ(Ho)| + 1.

So we can now assume that µHxc ≤ |Λ(H)|−1 for each H ∈ H. From Lemma
1 we have for each T ∈ T

βT (xc(δ(T)) − 2) ≥ 2|Λ(T)| − 2
∑

H∈Λ(T)

xc(E(TH : T \ TH)).

Hence,
∑

T∈T
βT (xc(δ(T)) − 2) ≥ 2

∑

T∈T
|Λ(T)| − 2

∑

T∈T

∑

H∈Λ(T)

xc(E(TH : T \ TH))

≥ 2
∑

H∈H
|Λ(H)| − 2

∑

H∈H
µHxc

=
∑

H∈H
|Λ(H)| +

∑

H∈H

(
|Λ(H)| − µHxc

)
−

∑

H∈H
µHxc

≥
∑

H∈H
|Λ(H)| + |H| −

∑

H∈H
µHxc.

	

We refer to the constraints (4) as k-parity inequalities, when |H| = k. When
k = 1 this class is precisely the domino-parity inequalities of Letchford [13]. It is
easy to see that not all k-parity inequalities define facets of the TSP polytope, but
the class does provide a common framework for possibly extending Letchford’s
algorithm to superclasses of other inequalities that have proven to be effective in
TSP codes. In particular, k-parity inequalities generalize clique-tree inequalities
(Grötschel and Pulleyblank [10]) in the same way as domino-parity inequalities
generalize combs.

456 W. Cook, D. Espinoza, and M. Goycoolea

Definition 4. Families H and T are said to define a clique-tree if:

(i) H is a family of pairwise disjoint proper subsets of V .
(ii) T is a family of pairwise disjoint proper subsets of V .
(iii) No T ∈ T is contained in

⋃
(H : H ∈ H).

(iv) For each H ∈ H let Λ(H) = {T : T ∩ H �= ∅}. |Λ(H)| must be odd.
(v) The intersection graph defined by the families H and T is a tree.

In this context, the sets H ∈ H are called handles and the sets T ∈ T are called
teeth. If the intersection graph defined by the families H and T is a forest, we say
that H and T define a clique-forest. Note that if H and T define a clique-forest,
then it is possible to define a |H|-parity constraint as follows. For each T ∈ T
define Λ(T) = {H ∈ H : T ∈ Λ(H)}, and TH = T∩H, ∀H ∈ Λ(T). Clearly (TH :
H ∈ Λ(T);T) defines a |Λ(T)|-domino and (H, T , Λ) defines a proper tooth-
handle relationship. Thus, Theorem 1 implies that the well-known clique-tree
(forest) constraint is valid

∑

H∈H
x(δ(H))+

∑

T∈T
x(δ(T)) ≥ 2|T |+|H|+

∑

H∈H
|Λ(H)|

where
∑

(|Λ(H)| : H ∈ H) is commonly written as |T | + |H| − 1. Clique-tree
inequalities generalize combs inequalities, which are clique trees having a single
handle.

We will focus on special cases of clique trees in the next section, but we
would like to point out that k-parity inequalities also generalize several other
well-known classes of TSP constraints.

Proposition 1. The family of k−parity inequalities generalizes the family of
bipartition inequalities and the family of star inequalities.

3 Planar Separation with Multiple Handles

Throughout this section we assume that the LP solution x∗ satisfies all subtour
constraints. Also, for any set F ⊆ E, we define F ∗ = {e ∈ F : x∗

e > 0}.
Definition 5. For a given x∗∈SEP (n), We say that a k-domino (T1, . . . , Tk;T)
is super-connected if:

(i) T and V \ T are connected in G∗.
(ii) Ti and T \ Ti are connected in G∗ for all i ∈ Ik.
(iii) x∗(E(Ti : V \ T)) > 0 and x∗(E(T \ Ti : V \ T)) > 0 for all i ∈ Ik.
We say that a k-parity constraint having teeth T is super-connected, if every
tooth T ∈ T is super-connected.

While as of yet it is an open problem whether or not the class of k-parity
inequalities can be separated in polynomial time, we extend the ideas of Letch-
ford [13] so as to separate, for fixed k, a subclass of k-parity inequalities which
contains all super-connected clique-trees with k handles or less, under the as-
sumption that the support graph G∗ is planar.

For this we proceed in three steps. First, we characterize violated k-parity
inequalities. Second, we characterize violated k-parity inequalities under the ad-
ditional assumptions that the support graph G∗ is planar, and that teeth are

A Study of Domino-Parity and k-Parity Constraints for the TSP 457

super-connected. Finally, we outline an algorithm for separating a subclass of
k-parity inequalities when G∗ is planar; this subclass (defined with respect to an
LP solution x∗) contains all super-connected clique-tree inequalities which have
k handles or less.

The following two Propositions (the proofs of which are to be included in
a future paper) are not used throughout the following sections. However, they
serve as a motivation for separating classes of super-connected constraints.

Proposition 2. Let x∗ be an LP solution and consider a violated clique-tree
constraint on k handles, having teeth T . Let (T1, T2, . . . , Tq;T) ∈ T . If all clique-
tree constraints having less than k handles are satisfied by x∗, then (a) T is
connected, (b) Ti is connected for all i ∈ Iq, (c) x∗(E(Ti : V \ T)) > 0 and
x∗(E(T \ Ti : V \ T)) > 0 for all i ∈ Iq.

Proposition 3. If all subtour inequalities are satisfied, then there exists a max-
imally violated (if any) comb inequality which is super-connected. If all subtour
and comb inequalities are satisfied, then there exists a maximally violated (if any)
clique-tree inequality on two handles which is super-connected.

Proposition 2 indicates that when clique-tree inequalities on k handles are sat-
isfied, then all violated clique-trees on k+1 handles are almost super-connected.
Proposition 3 shows that once comb inequalities are effectively separated, we
may assume for exact separation purposes that two handled clique-trees are
super-connected.

3.1 Characterizations of Violated k-Parity Constraints

Definition 6. Define the weight of k-domino (T1, T2, . . . , Tk;T) to be w(T) :=
βT (x(δ(T)) − 2) +

∑k
i=1 x(E(Ti : T \ Ti)) − k.

Lemma 2. The slack of a k-parity inequality is
∑

T∈T
w(T) +

∑

H∈H
x(FH) − |H|.

Note that Lemma 1 and Lemma 2 together imply that a violated k-parity con-
straint must satisfy

0 ≤ βT

2
(x(δ(T)) − 2) ≤ w(T) ≤ |H| ∀T ∈ T . (5)

Definition 7. Consider a family of teeth T , where each T ∈ T satisfy κ(T) ≤ k.
We say that Φ defines an abstract tooth-handle relationship over T and Ik if
(i) Φ(T) ⊆ Ik and |Φ(T)| = κ(T) for all T ∈ T , (ii) Φ(i) ⊆ T and |Φ(i)| is odd,
for all i ∈ Ik, and (iii) T ∈ Φ(i) iff i ∈ Φ(T) for all i ∈ Ik, T ∈ T .

Lemma 3. There exists a violated k-parity inequality iff there exist (T , Φ) defin-
ing an abstract tooth-handle relationship, and sets Ri ⊆ E∗ for all i ∈ Ik such
that:

458 W. Cook, D. Espinoza, and M. Goycoolea

(i) {E∗(Ti : T \ Ti)}T∈Φ(i) and {Ri} support a cut in G∗ for all i ∈ Ik.
(ii)

∑

i∈Ik

x∗(Ri) +
∑

T∈T
w(T) − k < 0.

Proof. From Theorem 1 and Lemma 2, a k-parity inequality is violated iff there
exist (H, T , Λ) defining a proper tooth-handle relationship, and sets FH ⊆ E for
H ∈ H such that:

(a) {E(TH : T \TH)}T∈Λ(H) and {FH} support the cut δ(H) in G for all H ∈ H
(b)

∑

H∈H
x∗(FH) +

∑

T∈T
w(T) − |H| < 0

We first prove necessity. Assume that (H, T , Λ) defines a violated k-parity in-
equality. We know that there exists FH ⊆ E for H ∈ H satisfying (a)-(b). Assume
H = {Hi : i ∈ Ik}. For each i ∈ Ik define Φ(i) = Λ(Hi), Φ(T) = {i : Hi ∈ Λ(T)}
and Ri = FHi

∩ E∗. Note that Φ and T define an abstract tooth-handle rela-
tionship, and |H| = k. Hence, conditions (a)-(b) imply (i)-(ii).

We next prove sufficiency. Assume that T , Φ define an abstract tooth-handle
relationship, and sets Ri ⊆ E∗, i ∈ Ik are such that (i) and (ii) hold. For each
i ∈ Ik let Hi ⊆ V be one shore of the cut supported by {E∗(Ti : T \ Ti)}T∈Φ(i)

and Ri, and let Λ(Hi) = Φ(i). Likewise, for T ∈ T define Λ(T) = {Hi : i ∈
Φ(T)}. Note that Λ define a proper tooth-handle relationship on T ,H. Define
FHi

⊆ Ri∪{e ∈ δ(Hi) : xe = 0} such that (a) holds. Thus (b) must also hold. 	

For the remainder of this section, assume that G∗ is a planar graph and let
Ḡ∗ denote the planar dual of G∗. For any subset F ⊆ E(G∗), denote by F̄ the
corresponding edges in Ḡ∗ . For each ē ∈ Ḡ∗ let x∗

ē = x∗
e.

Definition 8. A graph H is called Eulerian if every node has even degree. (As
in Letchford [13], we do not require that H be connected.)

Definition 9. Let r be a positive integer and suppose that E1, . . . , Er are edge-
sets satisfying Ei ⊆ E∗, i ∈ Ir. The collection {Ēi : i ∈ Ir} is said to support
an Eulerian subgraph in Ḡ∗ if the edges ē for which µe is odd form an Eulerian
subgraph in Ḡ∗ .

This definition implies that {Ēi : i ∈ Ir} supports an Eulerian subgraph in
Ḡ∗ iff {Ei : i ∈ Ir} supports a cut in G∗. Hence we have the the following dual
version of Lemma 3.

Lemma 4. A k-parity inequality is violated iff there exist T , Φ defining an ab-
stract tooth-handle relationship, and sets R̄i ⊆ Ē∗ for i ∈ Ik such that:

(i) {E∗(Ti : T \ Ti)}T∈Φ(i) and {R̄i} support an Eulerian subgraph in Ḡ∗ for all
i ∈ Ik.

(ii)
k∑

i=1

x∗(R̄i) +
∑

T∈T
w(T) − k < 0

A Study of Domino-Parity and k-Parity Constraints for the TSP 459

Lemma 5. A k-domino (Ti : i ∈ Ik;T) is super-connected iff (a) C(T) = δ∗(T)
is a simple cycle in Ḡ∗ , (b) for each i ∈ Ik the edges Pi(T) = E∗(Ti : T \ Ti)
define a simple path in Ḡ∗ with end-points {sT

i , tTi } in C(T) (where sT
i �= tTi)

and all other nodes not in C(T), and (c) all of the paths Pi(T) are in the same
side of the cycle C with respect to the planar embedding.

Definition 10. Consider two distinct super-connected k-dominoes T and L. If
the end-points of Pi(T) and Pi(L) are the same for i ∈ Ik and w(T) < w(L) we
say that T dominates L.

Lemma 6. Consider two distinct super-connected k-dominoes T and L. If T
dominates L, and if L is used in some violated k-parity constraint, then L may
be replaced by T to obtain another violated k-parity constraint has less slack.

Proof. By removing each path Pi(L) and replacing it with Pi(T) for i ∈ Ik,
condition (i) of Lemma 4 is not changed, and w(T) < w(L) implies condition
(ii) is not changed - in fact, the violation, given by (ii), will improve from the
substitution. 	

From Lemma 6 it follows that a maximally violated super-connected k-parity
constraint will only have non-dominated teeth.

3.2 Separating Super-Connected Clique Tree Constraints

Given a fixed k ∈ Z+ and a fractional LP solution x∗ satisfying all subtour
constraints, the algorithm proceeds in two steps. First, a minimal family of
non-dominated teeth is generated. Next, a violated super-connected k-handle
constraint is generated (if such exists) by solving an odd Eulerian subgraph
problem in an appropriate graph.

In order to describe the tooth generation procedure, it is important to estab-
lish two results.

Lemma 7. Every tooth T in a violated k-handle clique-tree constraint must sat-
isfy 2 ≤ x∗(δ(T)) < 2(k + 1).

Proof. Follows from (5), the subtour constraints, and the fact that clique-trees
have no degenerate teeth. 	

Lemma 8. Consider a violated super-connected k-handled clique-tree constraint
with tooth set T . Let (Ti : i ∈ Iκ(T);T) be a κ(T)-domino in T , and define Pi to
be the path E(Ti : T \ Ti) for all i ∈ Iκ(T). Then,
(i) Paths Pi and Pj don’t cross with regards to the dual embedding, for i �= j ∈

Iκ(T).
(ii) Paths Pi and Pj can’t have the same end-points, unless κ(T) = 2 for i �=

j ∈ Iκ(T).
(iii) If paths Pi and Pj have the same end-points, then Pi �= Pj, for i �= j ∈ Iκ(T).

460 W. Cook, D. Espinoza, and M. Goycoolea

Proof. For (i) If paths Pi and Pj cross, then halves Ti and Tj must intersect.
For (ii) assume that Pi and Pj have the same end-points. If there exists a path
Pk with k �= i, j, given that it can’t intersect paths Pi or Pj , it must either
run between Pi and Pj , or must run the side of either Pi or Pj . In either case,
this implies that Tk intersects Ti or Tj . For (iii) if Pi and Pj have the same
end-points and the paths coincide, then the tooth must be degenerate. However,
this is contradictory with the definition of clique-trees. 	

Lemma 7 and Lemma 8 suggest a natural algorithm by which to enumer-
ate a minimal set of teeth for a violated super-connected k handle clique-tree
constraint. First, enumerate all connected sets T ⊆ V which satisfy the con-
dition in Lemma 7 using an algorithm such as that of Nagamochi et. al [15].
Keep those sets T for which V \ T is connected. Let C = δ(T). Choose a side
of C with regard to the planar embedding, and let W represent the nodes of
that side minus the nodes in C. Next, for each pair of nodes u, v ∈ C com-
pute the shortest path and second-shortest path from u to v in W . Choose
q ∈ Ik and a set of end-points {(si, ti) : i ∈ Iq} in C. Check that that no
two pairs of end-points are crossing (that is, such that it is impossible to take
a path from si to ti without crossing a path from sj to tj). If q = 2 and
s1 = s2 = s, t1 = t2 = t, let P1 be the shortest s to t path, and let P2

be the second-shortest s to t path. Otherwise, define P̂i as the shortest si to
ti path for i ∈ Iq. If the paths P̂1, . . . , P̂q cross each other, un-cross them so
as to define paths Pi, i ∈ Iq. At this stage, C and the paths Pi, i ∈ Iq,
define a q-domino. If the weight is larger than k, or, if there is another q-
domino which dominates it, discard the tooth. Keep iterating until all possi-
ble combinations of end-points, sides of the cycle, and sets T have been ex-
hausted. It is not difficult to see that this algorithm is polynomial, and that
it enumerates a minimal set of non-dominated teeth (which is polynomially
sized).

For the specific case in which k = 1, a faster tooth generation procedure
is presented in Letchford [13]. First, if k = 1, it is shown that a tooth T is
super-connected iff δ(T) and E(T1 : T \ T1) define three node-disjoint paths in
Ḡ∗ . In order to construct the teeth, a network N is constructed from the graph
Ḡ∗ so that the nodes of N and Ḡ∗ coincide. Then, for each edge in Ḡ∗ , two arcs
(one in each direction) of capacity one are added to N . By solving the min-
cost three-unit flow problem between each pair of nodes in N , it is possible to
generate a minimal set of non-dominated teeth. The fact that paths in a solution
may possibly cross is not a problem, for it is shown that if an optimal solution
is crossing, then for the given pair of nodes there can be no tooth satisfying
condition (5). In our implementation of Letchford’s algorithm we use this idea,
which will be further discussed in Section 4. This brings us to our main result.

Theorem 2. Suppose G∗ is planar and x∗ satisfies all subtour constraints. Con-
sider a fixed integer k ≥ 1. It is possible to separate in polynomial time a subclass
of k-parity constraints which contains all violated super-connected clique-tree in-
equalities on k handles.

A Study of Domino-Parity and k-Parity Constraints for the TSP 461

The sketch of the proof of this theorem consists of two parts. First we outline
a two-stage algorithm which runs in polynomial time, and then we enunciate
an algorithm that separates a subclass of k-parity constraints which contains all
violated super-connected clique-tree inequalities.

The two steps of the algorithm are as follows:

(i) Construct a minimal non-dominated family of teeth L.
(ii) Construct a graph M [k] using L and Ḡ∗ . Solve the min-weight 1k-Eulerian

Subgraph problem in M [k].

Given G = (V,E), edge weights w : E → R+, and edge parities p : E →
{0, 1}k, the min-weight 1k-Eulerian Subgraph problem asks for an Eulerian sub-
graph M∗ of G of minimum weight with parity p(M∗) :=

∑
(p(e) : e ∈ M∗) = 1k

mod 2. If we obtain a solution in step (ii) having weight less than k, then we have
found a violated k-parity constraint. The intuition of the algorithm is as follows:
From Lemma 4 we know that a violated k-parity inequality can be characterized
by a set of Eulerian-subgraphs of G∗, one for each handle, and each utilizing an
odd number of teeth. For every path Pi(T) = E∗(Ti : T \ Ti) define an odd edge
whose end-points coincide with the end-points of Pi(T), and whose weight coin-
cides with the weight of the tooth. Thus, the problem can be modeled as that of
searching for a set of odd Eulerian subgraphs (those that use an odd number of
odd edges), one for each handle, whose combined weight is minimized, subject
to side constraints (defined by the teeth) which link these subgraphs to each
other. The side constraints would impose that either all of the paths associated
to a tooth are used (in different handles), or none at all. The proposed algorithm
works by defining a graph M [k] which contains the Cartesian product of k copies
of Ḡ∗ ; the idea being that any path in M [k] corresponds to k individual paths
in Ḡ∗ , one in each of the components (or layers) which make up the Cartesian
product. By defining special edges in M [k] associated to teeth in L, it is possible
to associate certain Eulerian subgraphs in M [k] to k-parity inequalities defined
in Ḡ∗ . Note that M [1] coincides with the graph M∗ as defined in Letchford
[13]; in this case Letchford proved that the condition of being Eulerian can be
replaced by the condition of being a simple cycle.

4 Implementation and Computational Results

In this section we briefly describe our computational tests. First we discuss
the implementation of Letchford’s algorithm for separating domino-parity con-
straints, emphasizing the techniques we adopted to improve its practical perfor-
mance, and presenting some computational results. Next, we discuss the imple-
mentation of a simple heuristic for separating 2-parity constraints.

4.1 Domino-Parity Constraints

Domino Searching. Teeth were generated by using the network flow approach
described in Section 3.2 and Letchford [13]. To find the min-weight node-disjoint

462 W. Cook, D. Espinoza, and M. Goycoolea

paths between pairs s, t ∈ V (Ḡ∗) we used the augmenting-shortest-path network-
flow algorithm (See Ahuja et al [3] for details). For this, we build a network N
for the graph Ḡ∗ defining two arcs for each edge (one in each direction), as-
signing a capacity of one to each. This algorithm computes the s − t flow by
solving three successive s − t shortest path problems on reduced capacity net-
works successively derived from N . Using this algorithm several speed-ups were
possible. Firstly, for fixed s ∈ V (Ḡ∗) the first s − t flow for all nodes t can be
obtained by solving a single Dijkstra algorithm in N rooted at s. The additional
shortest-path computations need only be computed for nodes t at distance not
greater than 4/3 from s. Finally, when computing the s− t three-flow in N , one
only need consider intermediary nodes at distance not greater than 2 from s and
t. This follows from the fact that every cycle in Ḡ∗ corresponds to a cut in G∗,
and hence, has weight at least 2 (due to subtour constraints). Thus, if a node is
used which has distance at least 2, since the other two paths will define a cycle,
the bound of 4 would be exceeded. A useful heuristic idea is to further restrict
the set of intermediary nodes to those of distance no greater than 2α for some
α < 1; this restriction can cause the algorithm to miss violated DP-cuts, but it
greatly improves the speed and appears to work well in practice (we have set
α = .55 in our tests).

Parallelization. Dominoes may be computed in parallel. In fact, one may divide
the nodes s ∈ V (Ḡ∗) among different machines so that each one computes all of
the (s, t) three-disjoint paths. We found the domino-computation stage to be (by
far) the most time consuming part of the algorithm, making this parallelization
crucial for obtaining acceptable running times on large instances when using
α = 1. Our parallel implementation is a master–worker system based on message
passing.

Random Walk. The algorithm as formally defined in Letchford [13] computes
exactly one constraint. In practice, one would like the algorithm to compute as
many violated constraints as possible. To achieve this, instead of just solving the
shortest odd-cycle problem in M∗ we additionally run a random walk algorithm
that attempts to find small-weight odd cycles. This algorithm is fast, easy to
implement, and in our tests generally produced a large number of additional
cuts, only the best of which were kept.

Safe Shrinking. The size of the graph G∗ has a dramatic impact on the running
time of our implementation. Following the work of Padberg and Rinaldi [18],
we attempt to reduce the size of G∗ by contracting edges in G∗, redefining the
vector x∗, and solving the separation problem in the new, smaller, graph. In this
shrinking process, a contraction is called safe if we know that the existence of a
violated DP-inequality implies the existence of one in the graph we obtain after
the contraction. Although it is not always the case that shrinking is safe, it is
possible to give conditions under which it will be.

Theorem 3. Consider x∗ satisfying all subtour constraints, a DP-inequality
ax ≤ b satisfying ax∗ > b, and nodes u, v, t ∈ V (G∗) such that x∗

uv = 1, and

A Study of Domino-Parity and k-Parity Constraints for the TSP 463

x∗
ut + x∗

vt = 1. If au,v �= 0 there exists another DP-inequality a′x ≤ b′ such that
a′

u,v = 0 and (a′x∗−b′) ≥ (ax∗−b). Thus, we can contract edge {u, v} and ensure
the existence of a maximally violated DP inequality with zero {u, v} coefficient.

As a pre-processor to our implementation, we repeatedly contract edges {u, v}
while there exist nodes u, v, t satisfying the conditions of Theorem 3.

Planarity. The safe-shrinking procedure can greatly reduce the size of the graph
over which we work, but if the original graph G∗ is non-planar then the shrunk
may too be non-planar. If this is the case, our implementation does non-safe
shrinks until a planar graph is obtained, as in Boyd et al. [4]. If G∗ is not planar,
we identify a forbidden K3,3 or K5 minor M ⊆ E(G∗). We then take two nodes
in the minor with degree at least 3 and contract them (and thus eliminating the
minor), iterating until a planar graph is obtained. An alternative is to eliminate
an edge e ∈ M from G∗, iterating until a planar graph is obtained. There are
several ways in which M and e ∈ M may be selected, and we found that the
way in which the selection is made can make an important difference in the
performance of the algorithm.

Tightening. After adding a cutting plane to an LP and re-solving, it is possible
that we may obtain another fractional solution that differs very little from the
one just separated. In this case, rather than generating new cuts all over again,
it may be desirable to attempt to “fix up” some tight constraints currently in
the LP or in the cut-pool by slightly modifying them in such a way as to make
the new fractional point infeasible (or make an already violated constraint more
violated). This is certainly much faster than separating from scratch, and also
does not require G∗ to be planar. This type of approach has been very successful
on other classes of inequalities (see Applegate et al. [2]) and it had a great impact
in our computational results.

To formalize this notion of simple modifications for DP-inequalities, recall
that every DP-inequality is completely defined by a family of dominoes
{Ai, Bi}k

i=1 and a handle H. Thus, adding and/or deleting a node from any
of those sets will result in slight changes of the constraint which potentially
could result in a new, violated cut.

In our implementation we consider the following set of simple modifications.
Given a node in G∗, we can (i) add it/remove it from a domino; (ii) have it
switch sides in a domino; (iii) add it/remove it from the handle; (iv) do some
combinations of the previous modifications. We implemented a greedy heuristic
which computes the best move for every relevant node1, and while the best move
(among all nodes) reduces the slack of the constraint, perform the move, and
update the best move for the relevant nodes in the graph. If all remaining best
moves are zero-valued (that is, they do not change the slack), we first do moves
that enlarge either the handle or a domino, then do moves that flip elements

1 A node u is relevant in the heuristic if ∃e ∈ δ(u) such that it has a non-zero coefficient
in the DP-inequality.

464 W. Cook, D. Espinoza, and M. Goycoolea

within a domino and then do moves that shrink a domino or a handle. We
repeat this until some improving move is found or until we cannot make any
more moves.

TSPLIB Tests. In Tables 1, 2, and 3 we report on a set of tests on all instances
from the TSPLIB having at least 3,000 cities. The computations were performed
on a single processor of a dual 2.66 GHz Intel Xeon Linux workstation. The LP
solver used was ILOG CPLEX 6.5. The algorithm used for planarity testing was
Boyer and Myrvold2 [5].

Table 1. DP-Cuts on TSPLIB Instances

Name Optimal Concorde DP Gap ∆ Concorde Hours DP Hours

pcb3038 137694 137660 137687 79% 24.9 8.6
fl3795 28772 28697 28772 100% 21.2 8.2
fnl4461 182566 182555 182559 36% 7.9 3.4
rl5915 565530 565384 565482 67% 103.7 46.1
rl5934 556045 555929 556007 67% 17.5 48.3

pla7396 23260728 23255280 23259532 78% 133.7 106.9

Table 2. DP-Cuts on Larger TSPLIB Instances

Name Optimal Concorde Concorde+DP Gap ∆ Concorde Hours DP Hours

usa13509 19982859 19979209 19981173 54% 81.2 72.0
brd14051 469385 469321 469352 48% 53.2 72.0
d15112 1573084 1572853 1572956 45% 114.0 72.0
d18512 (645238) 645166 645193 38% 74.0 72.0

Table 3. DP-Cuts on Largest TSPLIB Instances

Name Optimal Concorde (with pool) Concorde+DP (with pool) Gap ∆

pla33810 66048945 66018619 66037858 63%
pla85900 (142382671) 142336550 142354693 39%

In the tests in Tables 1 and 2, we used the Concorde command line option
-mC48 to allow Concorde to repeatedly call the local-cuts routine up to size
48 (see Applegate et al. [2]); this setting requires additional CPU time over the
default version of Concorde, but it allows Concorde to obtain substantially better
lower bounds. For each instance in Table 2 we also ran Concorde together with
the DP-cut code starting from Concorde’s final LP (cutting off the runs after
72 hours), while for each instance in Table 1 we ran Concorde with the DP-cut
code starting from scratch.

2 We give special thanks for J.M. Boyer for allowing us to use his implementation of
the planarity testing algorithm.

A Study of Domino-Parity and k-Parity Constraints for the TSP 465

In Table 3 we consider the two largest examples in the TSPLIB. Rather
than working from scratch on these instances, we study the effectiveness of DP-
cuts in improving the best available LP relaxations. In each instance, we begin
with an LP found by Applegate et al. by gathering cuts into a pool during a
sequence of 3 branch-and-cut runs (stopping each run after it reached 1,000
active subproblems). The LP was then improved by applying DP-cuts, with new
cut pools gathered using 2 branch-and-cut runs for pla33810 and a single short
run (to 75 active subproblems) for pla85900.

As a case-study, starting from the 66,037,858 LP, we have established the op-
timal value of 66,048,945 for pla33810. The optimal tour is a slight improvement
on the best reported tour of value 66,050,499, found by Helsgaun [11] with a vari-
ant of his LKH heuristic. The branch-and-cut run that solved the instance used
577 subproblems (given the upper bound of 1 larger than Helsgaun’s LKH tour).
We also solved the instance a second time starting with a 66,037,858 LP (ob-
tained using the cuts from the earlier run) and an upper bound of 1 greater than
the optimal value; the branch-and-cut run in this case used 135 subproblems.

Our solution of pla33810 should be viewed only as evidence of the potential
strength of the new procedures; the computational study was made as we were
developing our code and the runs were subject to arbitrary decisions to terminate
tests as the code improved. The total CPU time used in the solution of pla33810
was approximately 15.7 CPU years (the additional branch-and-cut run of 135
nodes took 86.6 days).

The two remaining open problems in the TSPLIB are d18512 and pla85900;
the tour values reported in our tables for these instances were obtained by
Tamaki [19] and Helsgaun [11], respectively.

4.2 2-Parity Constraints

To test the efficacy of 2-parity constraints, we developed a heuristic that works by
taking tight (or almost tight) domino-parity constraints, and attempts to grow
a second handle. For this, consider a super-connected domino-parity constraint
with teeth T . The heuristic works in two stages. First, for every tooth T ∈ T
shortest paths are computed between pairs of nodes in δ(T). Then, in a second
stage, the algorithm attempts to connect an odd number of these paths into a
simple cycle with edges in Ḡ∗ , by using a random-walk which gives preference
to edges having small weight (with regard to the values given by the fractional
vector x) and which forbids taking two different paths associated to a same
tooth T ∈ T . It is not difficult to see from Lemma 3 that such a structure in
Ḡ∗ corresponds to a 2-parity cut.

In Table 4 we report results using an implementation of the 2-parity sep-
aration heuristic on a selection of small TSPLIB instances that are not easily
solvable at the root node. The “DP” column gives the LP value using Concorde
with DP-cuts and with local cuts of size 32; the “DP+2P” column reports the
LP value obtained by starting with the “DP” LP and running Concorde with
the 2P-cut separator. The improvement in the LP gap varied widely, but it is
promising that 2P-cuts can often strengthen these already very good LP bounds.

466 W. Cook, D. Espinoza, and M. Goycoolea

Table 4. 2-Parity Cuts on TSPLIB Instances

Name Optimal DP DP+2P Gap ∆

pcb442 50778 50765 50765 0%
att532 27686 27685 27686 100%
dsj1000 18660188 18659299 18660093 89%
u1060 224094 224044 224054 20%

vm1084 239297 239294 239297 100%

References

1. Applegate, D., R. Bixby, V. Chvátal, W. Cook. 1998. On the solution of
traveling salesman problems. Documenta Mathematica Journal der Deutschen
Mathematiker-Vereinigung, International Congress of Mathematicians. 645–656.

2. Applegate, D., R. Bixby, V. Chvátal, W. Cook. 2003. Implementing the Dantzig-
Fulkerson-Johnson algorithm for large traveling salesman problems. Mathematical
Programming 97, 91–153.

3. Ahuja R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, New Jersey.

4. Boyd, S., S. Cockburn, D. Vella. 2001. On the domino-parity inequalities for the
STSP. Computer Science Technical Report TR-2001-10. University of Ottawa.

5. Boyer, J. M., W. Myrvold. 2004. On the cutting edge: simplified O(n) planarity by
edge addition. Journal of Graph Algorithms and Applications. To appear.

6. Chvátal, V. 1973. Edmonds polytopes and weakly hamiltonian graphs. Mathemat-
ical Programming 5, 29–40.

7. Dantzig, G., R. Fulkerson, S. Johnson. 1954. Solution of a large-scale traveling
salesman problem. Operations Research 2, 393–410.

8. Fleischer, L., É. Tardos. 1999. Separating maximally violated comb inequalities in
planar graphs. Mathematics of Operations Research 24, 130–148.

9. Grötschel, M., O. Holland. 1991. Solution of large-scale symmetric travelling sales-
man problems. Mathematical Programming 51, 141–202.

10. Grötschel, M., W. R. Pulleyblank. 1986. Clique tree inequalities and the symmetric
travelling salesman problem. Mathematics of Operations Research 11, 537–569.

11. Helsgaun, K. 2000. An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European Journal of Operational Research 126, 106–130.

12. Jünger, M., G. Reinelt, G. Rinaldi. 1995. The traveling salesman problem. M.
Ball, T. Magnanti, C. L. Monma, G. Nemhauser, eds. Handbooks on Operations
Research and Management Sciences: Networks. North Holland, Amsterdam, The
Netherlands. 225–330.

13. Letchford, A. N. 2000. Separating a superclass of comb inequalities in planar
graphs. Mathematics of Operations Research 25, 443–454.

14. Naddef, D. 2002. Polyhedral theory and branch-and-cut algorithms for the symmet-
ric traveling salesman problem. G. Gutin, A. Punnen, eds. The Traveling Salesman
Problem and Its Variations. Kluwer, Dordrecht, pp. 29–116.

15. Nagamochi, H., K. Nishimura, T. Ibaraki. 1997. Computing all small cuts in undi-
rected networks. SIAM Journal on Discrete Mathematics 10, 469–481.

16. Naddef, D., S. Thienel. 2002. Efficient separation routines for the symmetric trav-
eling salesman problem II: separating multi handle inequalities. Mathematical Pro-
gramming 92, 257–283.

A Study of Domino-Parity and k-Parity Constraints for the TSP 467

17. Padberg, M. W., M. R. Rao. 1982. Odd minimum cut-sets and b-matchings. Math-
ematics of Operations Research 7, 67–80.

18. Padberg, M., G. Rinaldi. 1991. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review 33, 60–100.

19. Tamaki, H. 2003. Alternating cycle contribution: a tour-merging strategy for the
travelling salesman problem. Max-Planck Institute Research Report MPI-I-2003-
1-007. Saarbrücken, Germany.

	Introduction
	The k-Parity Inequalities
	Planar Separation with Multiple Handles
	Characterizations of Violated k-Parity Constraints
	Separating Super-Connected Clique Tree Constraints

	Implementation and Computational Results
	Domino-Parity Constraints
	2-Parity Constraints

	References

