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We give an upper bound on the number of vertices of Py, the integer hull of a polyhedron P, in
terms of the dimension n of the space, the number m of inequalities required to describe P, and the
size ¢ of these inequalities. For fixed n the bound is O(m"gon_l). We also describe an algorithm
which determines the number of integer points in a polyhedron to within a multiplicative factor of
1+ ¢ in time polynomial in m, ¢ and 1/¢ when the dimension n is fixed.

1. Introduction and Notation

In connection with the family of integer programming problems

: minimize cl'z
(1) subject to z€ P
: z integral

associated with different cost vectors ¢, two sets of integer points are of fundamental
interest. One of these is clearly the set of feasible solutions to the problem (1), the
set of integer points in the polyhedron P. Techniques for solving (1) have taken
advantage of the equivalence between this problem and. the linear programming
problem '

minimize ¢l

subject to x€ P

where Py, the integer hull of P, is the convex hull of all integer points in P. When
problem (1) is bounded, it must have an optimal solution which is a vertex of Py,
and each vertex of Py is the unique optimal solution of (1) for some ¢, so this set of
integer points is also a natural candidate for study.

It is easy to see that the number of vertices of Py cannot be bounded above by
any polynomial p(n,m) in the dimension n of the space and the number m of linear
inequalities required to describe P. In fact, there is no function f (n, m) with this
property. In order to obtain an upper bound, we must also consider the sizes of the
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coefficients appearing in the inequalities which describe P. Following Schrijver [19),
we define the size of an inequality ez < f to be the number of bits necessary to
encode it as a binary string. .

Our algorithm for approximating the number of integer points in a polytope is
a modification of the integer programming algorithm of Kannan [12], which relies
on concepts and results from the Geometry of Numbers. The necessary concepts
are outlined below (for proofs and further results in the Geometry of Numbers, see
Cassels (2], Gruber and Lekkerkerker [9] and Lekkerkerker [13]).

A lattice £ in R™ is the set of all integral linear combinations of m linearly
independent vectors by, ..., by, which in turn are said to form a basis of £ . The de-
terminant d(£) of the lattice £ is the m-volume of the m-dimensional parallelopiped
spanned by by,..., by (when m = n, d(¥) is the determinant of the matrix with
columns by, ..., bp). A consequence of Minkowski’s convex body theorem is that such
a lattice £ must contain a non-zero vector whose length is at most /m d(£)1/™.

Let b],..., b}, be the vectors which result from the Gram-Schmidt orthogonal-
ization process defined by b] = b; and

] T 2
b1 = b1 — 351 (b1 b7 /(167113) b

fori=1,...,m—1, where || - ||2 is the ly-norm. Then (|65 ll2 is the distance from b;
to the subspace spanned by by,...,b;_1 and d(£) = H;”=1 (|67 ]|2- Kannan [12] gives
an algorithm which finds a Korkhine-Zolotoreff reduced basis by,..., by for a given
lattice £, which has the property that b; is a shortest non-zero vector in £ and for
ji>2, ||b;||2 is in fact the length of the shortest non-zero vector in the projection of
£ orthogonal to the subspace spanned by by, ..., bj_1. .

Finally, if S is a set of points, y is a vector and o is a scalar, then |S] is the
cardinality of S, conv{S} is the convex hull of S, S+y = {&+y: € S} is the

translation of S by y, aS = {az : @ € S} is the dilation of S by a factor of a, and
B(y,a) = {z: |z — y||2 < a} is the ball of radius o with center y.

2. Vertices of the Integer Hull

Shevchenko [20] and Hayes and Larman [11] obtained an upper bound on the
number of vertices of the integer hull of the knapsack polytope,

P={zecR". alz< B,z >0},

where @ > 0 and 3 > 0: If the inequality e’z < 8 has size ¢, then the number of
vertices of Py is at most ¢™. This result can easily be ge'i;eralized_to give a bound on
the number of points of an arbitrary lattice ¥ contained in the knapsack polytope,
and as noted by Schrijver [19], this immediately yields an O(m™y™) upper bound for
arbitrary polyhedra for fixed n by triangulation. One is then tempted to ask whether
or not this bound is tight. ‘ ’ o
Previously, Rubin [18] found a class of knapsack polytopes in R2 whose integer
hulls have an arbitrarily large number of vertices. The Ktk polytope in the class is
described by the inequalities Fypx + Fyp o 1y < F22k +1— L z>0andy >0, where Fy,

-is the n*! Fibonacci number. Rubin shows that the integer hull of the kth polytope
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-has k+3 vertices, and the size of the inequality Fpgz + Fop 1y < F22k 41— 1is clearly

linear in k. Recently, Morgan [17] has obtained a class of polytopes in R3 with m = 5
for which the number of vertices of the integer hull grows as ¢?, and more generally
Bardny, Howe and Lovdsz [1] gave a construction which yields a class of polytopes
in R™ with m = 2n? for which the number of vertices of the integer hull grows as
@™ 1. These examples show that the order of ¢ appearing-in the bound obtained
below is best possible. o ~ ,

Theorem 2.1. If P is a rational polyhedron in R™ which is the solution set of a system
of at most m linear inequalities whose size is at most ®, then the number of vertices
of Py is at most 2m”(6n2<p)”‘1.

Proof. Clearly we may assume that n > 2 and that Pr has at least one vertex
(otherwise the conclusion is trivial). We will first establish a crude upper bound
on the “width” of P; in the directions ai,...,am. Theorem 17.1 of Schrijver
(19] (see the proof of Corollary 17.1a) implies that if v is a vertex of Py, then

[v]loo < (n+ 1)22(""'1)2"”, where || - ||oo is the loo-norm. If we allow each inequality
to have size at most ny, we can assume that P is. described by the inequalities
a;fp:z: < b; for i = 1,...,m, where each a; is an integral n-vector, each b; is integral,
and all vertices of Py lie in the interior of P (we replace the inequality aZTa: < b; by
2D; asz < 2D;b; 4+ 1, where D; is the lowest common denominator of the coefficients
of alT:z: < b;). A rough estimate gives " ‘

2
b; — min{aiTv: v is a vertex of Py} < 2™ 4 n2™¢(n + 1)22(n+1) @

< 25n%¢,
Next we choose real numbers 61, ... ,0m such that
(2) 9—5n’ (bi —min{al z: z is a vertex of PI}) <f; <1
for i = 1,...,m. We first choose 6; = 1, and then inductively suppose that the
values 01,...,0; have been chosen in such a way that the ;1hypér.planes {z: a,z-T:z: =

b; — 2%46;} for j; = 1,...,5n%p and 5 = 1,...,k are in°
J hyperplanes of this form intersect in a set of dimensio j+ 1 or greater, for
J=1,...,min{k,n} + 1. Since there can be at most finitely many values of O+ for
which the inductive hypothesis fails to hold for & + 1; we can choose a value for Ok+1
in the interval (2) which satisfies the inductive hypothesis for k + 1. o
Now for each vertex v of Py and each index i =1, m. there exists an integer
Jiin {1,2,...,5n%p} such that b; — 29i6; < alv b= 2016, Let ‘

eneral position,” i.e., no

-

P, jm) = {:c bi 20, < alw < by P00 =1, . m} |
for integers ji,...,5m in {1,2,...,5n2¢}. Lovasz [15]";ca11s each P(jl,...,jm) a
reflecting set (Hayes and Larman [11]-used similar -sets, but called them “boxes,”

since theirs were rectangular). The name “reflecting set” refers to the fact that the
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reflection of any point p in P(ji,...,jm) about a point q in P(j1,...,Jm) (which is
2q — p) lies in the polyhedron P, since : :

af (2q— p) = 2af q— o p < 2(b; — 27716;) — (b — 276;) = b;
for ¢ = 1,...,m (this is illustrated in Figure 1). Note that no reflecting set can
contain two distinct vertices of Pr; if P(j1,...,Jm) contained the integral point

y # v, then reflecting y about v we obtain the integral point 2v — y which lies in Py,
contradicting the fact that v is a vertex of Pr.

AN [ [ /]

AR //7
N GNT

Fig. 1. Reflecting in a reflecting set
Define the polytope
2
P = {m:bi—25n ?9; < a.ZT:z:S b;—6;, i = 1,...,m}

5n2<p
= U PGy....jm) C P.
Jiyendm=1

If P is bounded, then P’ is described by the inequalities a.;r:z: <bj—-b0;fori=1,...,m
and (P'); = P;. On the other hand, if P is unbounded, then we must work with the
convex hull of the vertices of Py, which may be properly contained in (PHr.

Let U = {u: u is a vertex of some P(j1,...,jm)}, and call an element of U
a boundary vertex if it lies on a face of the polytope P'. If P; has M vertices,
we will show that there are-at least M boundary vertices by assigning the labels
1,..., M to some of the reflecting sets in such a way that we can associate each label
with a unique boundary vertex. Since there can be at most 2m (71':__11) (5n2<p + 1)”_1
boundary vertices, this will prove the theorem.

Let vy, ..., ups be the vertices of Py, and let U\conv{vs, ..., vy} ={21,..., un}.
We will also assume (without loss of generality) that u; €conv{vy,...,var,u1,- . %51
for j=1,...,N (choose u; to be an extreme point of conv{vy,...,vpm, U1, -, %}
fori=N,...,1). Foreach k = 1,..., M pick a reflecting set which contains v, and
is not contained in conv{wvi,..., vy} and give it the label & (such a reflecting set
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always exists, since otherwise v would lie in the interior of Pj, a contradiction).
These reflecting sets must be distinct, since no reflecting set contains two vertices of
P;. Next we describe a procedure which constructs M disjoint connected sequences
of similarly labelled reflecting sets by adding the points u, ..., uy to the convex hull
one-at-a-time. The k! sequence begins with the labelled reﬂectmg set containing
v, and ends with a reflecting set that contains a distinguished boundary vertex:
Let Ry,..., Rys be the reflecting sets most recently labelled 1, ..., M, and sup-
pose that for some 7, each of these M reflecting sets intersects but is not con-
tained in- conv{wi,...,vps, U,...,u;}.  Let ' j be the smalfest index for which
Ry, C conv{v,...,vpr, w,...,u;} for some k which has not-yet been associated
with a boundary vertex. Note that the point u; must be a vertex of Ry, since oth-
erwise Ry C conv{vy,...,vps, u1,: .-, uj_1}. It follows that for any point & # u; in
Ry, the point 2u] — z must lie outside of conv{vy,..., vy, u1,.. ,u]} since u; can
be expressed as a convex combination of the points 2u; — ¢ and . Because u; lies

on exactly n hyperplanes of the form {z: aT:l: = b;'— 2i6;}, the index k must be
uniquely determined, and we have one of the followmg two cases:

Case 1: The pomt u; is a boundary vertex. In this case, we associate the label k
with u;.
'

Case 2: For all z € Ry, sufficiently close to 'u,] the points 2u; — z lie in an unlabelled
reﬂectlng set R for which RN conv{wvy,...,vm,u1,. ,'u]} = u;. In this case, we
give the reflecting set R the label k.

Because there are only finitely many reflecting sets, the procedure can be applied
only finitely many times, so since the points u3, ..., uy are added to the convex hull
one-at-a-time, ultimately a unique boundary vertex is associated with each label k.|

Remarks: (2.2) In case Py is not of full dimension, the bound may be improved. If
P; has dimension 0 < d < n, then by an analogous argument using d-dimensional
reflecting sets which lie in the affine space of Py, one can show that the number of
vertices of Py is at most 2mé(6n2yp)d—1

(2.3) Together with the Upper Bound Theorem [16], our result 1mphes that the
number of facets of Py is O(go(" Din/ 2J). The polytopes constructed by Bérany,
Howe and Lovisz [1] have Q(¢™ 1) facets. Whether or not the number of facets of
Py is also O(¢™™1) is an interesting open problem. B

(2.4) The decomposition of the polytope P’ into reflecting sets when ==

=1 can be used together with Lenstra’s algorithm [14] for integer programming
to ﬁnd a list &,...,x) of integral points which contains the vertices of Py, since a
reflecting set tha.t contains more than one integer point cannot contain a vertex of
P;. This yields an O((m)?"?) algorithm which finds the vertices of P; when n is
fixed (see Hartmann [10] for detalls)

(2.5) If the polytope P is only given by an optimization oracle, we . can stﬂl
find the vertices of Pr in time polynomial in ¢ and the number of vertices of P;
when n is fixed using a slight generalization of a method used by Edmonds, Lovész
and Pulleyblank [6] to find the affine hull of a polytope given by an optimization
oracle. Given a partial list of vertices of Py, we first find a list of inequalities
a,ZTa: < b;, i = 1,...,m which describes their convex hull, and then find vertices
of Pr maximizing a,;-ra: over Py for i =1,...,m.




32 W. COOK, M. HARTMANN, R. KANNAN, C. McDIARMID

3. Estimating the Number of Integer Points

. It is easy to see that determining the number of integer points in'a polytope is
# P-complete, since determining the number of matchings in a bipartite graph is #P-
complete [21]. There is, on the other hand, the possibility that when the dimension 7
is fixed the number of integer points in a polytope described by m. inequalities of size
at most ¢ can be determined in time polynomial in m and ¢. In a series of papers,
Zamansky and Cherkassky [22-25] develop algorithms for determining the number of
integer points in a polytope. In [23], they describe an algorithm which determines the
number of integral points in a polytope in R?2 described by m inequalities of size at
most  in time O(me) and in [25] they give an algorithm that determines the number -
of integer points in a polytope in R3 which is, however, not shown to be polyncmial.
Recently, Dyer [4] has:given several reductions of the problem of determining the
number of integer points in a polytope. He first reduces this problem 1o the problem
of determining the number of integer points in polynomially many-integral simiplices
using the algorithm described in Remark (2.4), and then further reduces the problem
of determining the number of integer points in an integral simplex to the problem
of determining the number of integer points in O(n!) integral simplices of a special
type. Generalizing a method of Mordell, he shows that in R3 this reduces to the
computation of Dedekind sums, which can be evaluated in polynomial time, yielding
a ?olynomial algorithm for determining the number of integer points in a polytope in
R°. He also reduces the problem in even dimensions to the next lower odd dimension,

which yields a polynomial algorithm for determining the number of integer points in
~ a polytope in R4, Whether there is a polynomial algorithm in dimension n > 4 is
unknown. ‘

We will give an algorithm which estimates the number of integer points in a

polytope to within a multiplicative factor of 1 + ¢ in polynomial time when the
dimension n is fixed. More precisely, we prove the following theorem:

Theorem 3.1. For any fixed integer n > 1, there exists an algorithm that, for any
polytope P described by m inequalities of size at most ¢ and any positive rational
number ¢, finds, in time polynomial in m, ¢ and 1 /€, two integers I and U such that
LL|PNI™ <U andU < (1+¢)L.

Proof. First we do some preprocessing to ensure that the polytope is “well-rounded.”
As in Lenstra’s algorithm, we determine whether the polytope is full-dimensional, and
if not, find a unimodular tranformation which projects it down to a lower dimensional
space in which it is full-dimensional. - Then an invertible linear transformation is .
~ applied to both the polytope and the integral lattice so that the polytope gets
-sandwiched between two concentric spheres whose radii differ by a multiplicative
factor of n3/2. Since all of the preprocessing is-described in -Grétschel, Lovisz
and Schrijver [8], we will simply state precisely the problem at the end of the
‘preprocessing: Given independent rational vectors vy, ..., v, and a rational polytope
P, find integers L and U such that L < |PN£L| < U and U < (1 +¢€)L, where £ is
the lattice generated by vy,..., v, and the following additional condition is satisfied
by the input: There is a rational vector p such that B(p, 1) C P C B(p,n3/?).
At this point, Lenstra’s alogorithm uses Lov4sz’s basis reduction algorithm
to find a reduced basis by,..., b, of the lattice £ which has the property that
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i1 llbslle < c“zd(éf). Then if max{||bi|l2,...,||bn|l2} is sufficiently small, one
can easily obtain a point & € PN¥ . Otherwise, the number of certain hyperplanes
containing lattice points which intersect P can be bounded by a number depending
only on n. It is not difficult to modify this part of Lenstra’s algorithm to estimate
the number of lattice points in P, since if max{||b1||2,...,||br]l2} is sufficiently small,
the number of lattice points in P is very nearly vol{P}/d(¥). However, the modified

algorithm has an O(nﬁcnzs_n) running time. Our algorithm, which is a modification
of the integer programming algorithm of Kannan [12], uses a stronger reduced basis
to cut the running time down to O(n"¢™"). The bulk of the proof of Theorem 3.1
will be broken up into Propositions 3.2-3.6.

We use the algorithm SHORTEST of Kannan [12] to find a Korkhine-Zolotoreff
reduced basis by, ..., by of the lattice £ (since SHORTEST requires integral input;
the vectors wvy,..., v, are first multiplied by the lowest common denominator D
of their components, and subsequently the vectors in the reduced basis found by
SHORTEST are multiplied by D). Letting ||b}|l2 = max{||bf||2,...,||b%]l2} and
6 = min{e, 1}/4n, we consider the following two cases:

Case 1: || b}||2 < 26/+/n. In this case, we give the lower and upper bounds explicitly:

~[(1_2&U;I{P}] <|Png|< [(1+<Z);v)ol{P}},

where vol{P} is the volume of P. When the dimension n is fixed, vol{P} can be
computed in polynomial time (see Cohen and Hickey [3]), so the bounds can be .
computed in polynomial time. We also have (1 + §)*/(1 — §)® < (1 -6)~2" <
(1 -2n8)~! <1+e. To show that the bounds are valid, we first note that if

R= {E}‘zwﬂ’; -3 <yi<bi= 1n}

then R has volume d(£), R is contained in B(0,8) and the rectangular prisms
{R+ «: € £} form a partition of R™. In the first proposition below, we show that
if # € PN, then a slight dilation of P about p contains R + . In the second, we
show that if # ¢ PN¥, then a slight contraction of P about p does not intersect
R+ z. Propositions 3.2 and 3.3 are Propositions 1 and 2 of Dyer, Frieze and Kannan
[5], although the proofs we give below are new.

Proposition 3.2. : If ¢ € P, then B(z,6) C (1+ 6§)(P — p) + p.

Proof. Without loss of generality, assume that p = 0. Let y satisfy ||y||2 < 6. Since
z € P and y/||y||2 € B(0,1) C P, the point

1 lulls v
@ty = z+
T T Y = TR T vl Tol
lies in P. Then 1+ ||y|l2 < 1+ 6 implies that z+y € (1+§)P. . ‘ B |

For any z € PN&£, we have R+ C B(z,6),s0 R+ C (1+6)(P—.p)+pbby' the
above claim: Therefore, B '

d&)|IPN&L| < vol{(1 + 5)(P p) + p} = (14 8)"vol{ P},
which gives the upper bound.
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Proposition 3.3. If B(z,6)N(1— §)(P—p)+ p+#0, then z € P.

Proof. Again we may assume that p = 0. Suppose that € — 2z € (1 — §)P and
llzl|2 < 6. Since (1 —§)P C (1 — ||z||2)P and z/||z||2 € B(O, 1) C P,

expresses « as a convex combination of two points in P. ]

Since R+ a C B(z,6), applying this to those z in PN<£ implies that d(éﬁ NPNL] >
(1 & §)™vol{ P}, which gives the lower bound.

Case 2: ||b}{|2 > 26/+/n. In this case, we will argue that the number of certain i — 1
dimensional affine spaces intersecting P is small. Since every € £ can be expressed
uniquely as = 21 by + -+ + 2nbp With 21,..., 2n € £, we have :

” Ianl=Z{|P(bo)nZ"—1| Db = zib; + -+ + 2nbn, 24, 2n el},

where P(by) = {y € R" 1 : y1b1 +--- +y;_1b;_1 + by € P}. If we can find a finite
subset T C R™ such that |P(by) N Z*~1| = 0 for all such by ¢ T, then the algorithm
will recursively find numbers L(bp) and U(by) such that L(bg) < |P(bp) N Z%71| <
U(bp) and U(bg) < (1+¢)L(bp) for all by € T', so we can set L =} 7~ L(bp) and
U = 3 poer U(bo). The following proposition, which is similar to Prop051t10n 2.13
of Kannan [12], indicates how to generate the subset T

Proposition 3.4. Suppose that 21, ..., 2n are fixed integers for some j > ¢. Then
-there is a number Z; such that for a]] integers 11,...,Yj—1 and z; for which

| Zk:l yLby + Zk:g zpby — pll2 < n3/2, we must have

2 — 7 < ZC0Bl
N T P
Proof. Since by,...,b;—1 are orthogonal to the vector b"f projecting the vector

i:l ypbp+ 1 k=j %k b, — p along the direction b;‘ we obtaln the vector (z; — zj)bj,
,_'where z]b is the projection of the vector p — Ek:] +1 2k by, along the direction b

We must have |z; — Zj|[|bjl2 < n3/2, 5o that

7 < T mlbflle 20l
e PR A PR T

Th1s can be used as the basis of a recursive procedure which generates the values of
Z;, ..., 2zp corresponding to by € T'.

R_lgopomtxon 3.5. At the end of the procedure,

[ 4nPl16 (2n)T(n—i+1)/2

g=i




INTEGER POINTS IN POLYHEDRA 35

Proof. The first part follows from Proposition 3.4. For the second. part,

i (4n3ub;-*u2) < (23D i

el 552 et T 15lle

Then because by, ..., b, is a Korkhine-Zolotoreff reducéd'basis, |63 ]|2 is the length

of the shortest non-zero vector in the lattice which is the projection of £ orthogonal
to the subspace spanned by by,...,b;_;. Since H;;Z ||b;‘||2 is the determinant of
this lattice, Minkowski’s convex body theorem implies that

(2n)3(n—i+1) (n—i+ 1)(n—z’+1)/2 (2n)7(n—i+1)/2
s S =5y

j=i

IT| <

Proposition 3.6. For any fixed integer n > 1, the runm’hg time of the algorithm is
polynomial in m, ¢ and 1/e.

Proof. The proof is by induction on n, the case n = 1 being trivial. By Corollaries

5.3b and 15.6a of Schrijver [19], the preprocessing can be done in time polynomial

in m and ¢; therefore vy,...,v,, P and p must be of size polynomial in m and Q.
Theorems 2.16 and 3.9 of Kannan [12] ensure that the algorithm SHORTEST runs
in time polynomial in m and ¢. ' ‘
In Case 1, the numbers L and U can be computed in time polynomial in m and
. In Case 2, we first note that the numbers z; from Proposition 3.4 can be computed
in time polynomial in m and ¢, since the vectors b;f themselves are computed in time
polynomial in m and ¢, and the vectors bji1,..., by and p are all of size polynomial
inm and ¢. By Proposition 3.5, we have to estimate the number of integer points in
at most (2n)7(n—i+1)/2.—(n+i-1) polytopes in R*~1, and by the induction hypothesis
this can be done in time polynomial in m,  and 1/g, since the polytopes P(bp) can
be described by inequalities of size polynomial in m and ¢. 1

Remarks: (3.7) As in Kannan [12], a more careful analysis of the running time
shows it to be O((2n)™/ Zg—my,

(3.8) This algorithm can be modified to estimate the number of integer points in
any bounded convex body K given by a well-guaranteed (strong) separation oracle.
First of all, if K is well-rounded, then for any 0 < p < 1 the volume of K can be
estimated by p"|K N pL™| using Propositions 3.2 and 3.3, which can be computed
in O(p™™) calls to the oracle when n is fixed. It is also an easy matter to construct
a separation oracle for the intersection of K with an affine space. The only real
difficulty is in obtaining a'guarantee, but the ellipsoid method can be used together

with simultaneous diophantine approximation (as described in Grotschel, Lovész and-

Schrijver [8]) to find a maximal set of affinely independent points which lie in the in
the convex hull of those lattice points contained in the intersection. o
(3.9) For any integer-valued polynomial p(n), the following problem is NP-hard:

BOUNDS: Given a polytope P = {z : Az < b}, find integers L and U such - -
that L < |PNZ"| 4+ 1< U and U < 22, : ~
First note that this problem s easier than the corresponding problem with [P N

L7 + 1 replaced by |P N Z™|, for which there is a trivial reduction from INTEGER
PROGRAMMING FEASIBILITY.
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The reduction will be from SUBSET SUM, which is known to be NP-complete

(see Gary and Johnson [7]). Let non-negatlve integers a1,...,an and b give any
instance of SUBSET SUM (i.e., decide if there is a set I C {1,...,n} such that
216 10; = b). Without loss of generality, assume that ai,...,an and b are all

positive. Let P C R™*2 consist of those (z1,...,2n,¥, z) for which 0 < z; < 1 for
i=1,...,my>0,2>20,y+2<M-1, andzz_lMa,zz+y+z—‘Mb+M 1,
where M 27(") 1. Tt is easy to see that |PNZ™*2| = M N, where N is the number
of solutions to the instance of SUBSET SUM, so that L > 1 if and only if N > 0.
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