ORSA Journal on Computing 0899-1499/9] /0302-0149 $01 .25
Vol. 3, No. 2, Spring 199} © 1991 Operations Research Society of America

A Computational Study of the Job-Shop Scheduling Problem

DAVID APPLEGATE School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, ARPANET:
david @ theory.cs.cmy,edy

WILLIAM COOK Combinatorics ang Optimization Reseqrch Group, Bellcore, PO, Boy 1910, Morristown, Ny 07960-1919,
ARPANET: bico@ bellcore.com

(Received: August 1999; final Tevision recejveg: December 1990 accepted: January 1991)

The job-shop scheduling problem i g notoriously difficult problem in combinatorja] optimization, Although even modest
sized instances remain computationally intractable, a number of important algorithmic advances have been made in recent
Years by J. Adams, E, Balas and D. Zawack; J. Carlier and E. Pinson; B, J. Lageweg, J. K. Lenstra and A, H. G, Rinnooy
Kan; and others, Making use of g number of these advances, we have designed and implemented 2 new heuristic procedure
for finding schedules, a cutting-plane method for obtaining lower bounds, and 3 combinatorial branch ang bound
algorithm, Qur optimization Procedure, combining the heuristic method and the combinatorial branch and bound
algorithm, solved the well-known 10 x 10 problem of J. F. Muth and G. L. Thomson in under 7 minutes of computation
time on a Sun Sparestation 1,

. The Job-shop problem is to schedule a set of Jjobs on a take the place of the how solved problem of Muth and {

set of machines, subject to the constraint that each ma- Thompson,
chine can handle at TMOSt one job at a time and the fact that The paper is organized as follows. In Section 1, we
each job has a Specified processing order through the describeacutting-plane method for obtaining lower bounds
machines. The objective is to schedule the jobs so as to on job-shop problems. This work makes use of valid
minimize the maximum of their completion times. inequalities gjven by Balas,””! Dyer ang Wolsey, (111
This problem is not only NP-hard'" jt also has the McGee,"8! and ourselves. In Section 2 we present a
well-earned reputation of being one of the most computa- combinatorial branch and bound algorithm that incorpo-
tionally stubborn combinatorial problems considered to rates the key ideas of Carlier and Pinson!!9 with a number
date. This intractability is one of the reasons the problem of enhancements. Section 3 contains a new heuristic pro-
has been so widely studied. Indeed, some of the excite- cedure for finding schedules, combining the nice heuristic
ment in working on the Problem no doubt arose from the method of Adams, Balas, and Zawack!!! and the kernel of
fact that a specific instance, with 10 machines and 10 jobs, the branch and bound method described in Section 2.
posed in a book by Muth and Thompson!!9 i, 1963 Finally, in Section 4 We report on the status of 3 group of
remained unsolved for over 20 years. This particular test problems described in [1] and [15].

instance wag finally settled in 1985 by Carljer and

Pinson, 10! culminating a steady stream of algorithmic 1. Cutting Planes

improvements over the years, by Ashour and Hiremath, 2! We begin by specifying the Jjob-shop problem in a more
Balas,®! Barker, (6l Barker and McMahon, 17} Bratley, precise manner, Ag input, we have a finjte set J of jobs
Florian and Robillard, ® Fisher, Lageweg, Lenstra and and a finite set of M of machines. For each job jeJ we
Rinnooy Kan, 12 Florian, Trépant and McMahon, 13! are given a permutation (of,..., o) of the machines
Lageweg, Lenstra apd Rinnooy Kan, 114 Lenstra,!16] (where m = | M), which represents the processing or-
Rinnooy Kan, 221 gpq others. der of j through the machines. Thus j must be processed

The purpose of our paper is twofold. Op the one first on o/, then on of, etc. Also, for each job j and
hand, we would like to demonstrate the effectiveness of machine o we are given a nonnegative integer Do, the
the procedures we have developed. On the other hand, we Processing time of j on ¢ The objective is to find a
point out a list of 7 open problems from the literature that schedule of J on Af that minimizes the maximum of the
We were unable to solve and which may be candidates to completion times of the jobs J.

Subject classification: Production/schedu]ing: deterministic, multiple machine,
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150 Applegate and Cook

For each job j and each machine o, let X;, be the
stamng time of j on «. The constraints on the vector
(x;o: j€J, €M) to represent a schedule are as fol-
lows:

>0forall jeJ, aeM (1)
Xjoi, F Pjoj, forall jeJand t =2,---,m (2)
Xio 2 Xjo T Dj, OF Xjo 2

Xjoi Z

Xio T Pig forall i, jeJ,aeM.  (3)

To incorporate the objective function, we introduce an
additional variable z that is constrained as follows:

Z?Xja/"'-i-pja'{' forall jeJ. (4)
The job-shop problem is then
minimize {z: subject to (1), (2), (3), and (4)}. (5)

This formulation is a disjunctive programming problem
(Balas'l), due to the “‘either-or’ constraints (3). By a
straightforward transformation, we can turn this into a
mixed-integer programming problem, introducing a binary
variable Y5 for each of the conditions (3) and imposing
the new constramts

xior>xja+pja_K. Yl7

K-(1-YS)forali,jel, aeM
(6)

where K is some large constant. The interpretation is that
Y,‘j" is 1 if i is scheduled before j on machine «, and 0 if
J is scheduled before i.

We have developed cutting-plane procedures for both
the disjunctive and mixed-integer formulations. Notice
that in the former case, we must check, after solving a
linear programming relaxation, whether or not the con-
straints (3) are satisfied. This differs somewhat from the
normal cutting-plane approach (as in the mixed-integer
formulation), where we check if the integer variables do
indeed take on integer values.

In the disjunctive formulation, we begin with the
linear programming problem

minimize {z: subject to (1), (2),and (4)}.  (7)

xja > xia + pia -

We then successively add inequalities to the formulation
which are valid for all vectors x that represent schedules,
but are not satisfied by the current optimal solution to the
linear programming relaxation. The optimal value of the
linear programming problems provide increasingly
stronger lower bounds on the value of the optimal sched-
ule. (For an account of this type of cutting-plane algo-
rithm, we refer the reader to the text of Nemhauser and
Wolsey29,)

Similarly, in the mixed-integer programming formu-

lation, writing the bounds on the Y’s as
O0<Yj<forali,jel,aeM (8)
we begin with the relaxation
minimize {z: subject to (1), (2), (4), (6), and (8)}.

)

In this case, we can make use of valid inequalities involv-
ing the Y variables as well as the inequalities developed
for the disjunctive programming formulation.

The inequalities we considered are the following:

1. Basic cuts (Dyer and Wolsey,!"! McGee!'?))

For each job j and machine «, let E denote the
earliest pos51ble starting time of j on « (Wthh is just the
sum of j’s processing times on the machines before o in
J’s prescribed ordering) and let F;, denote the minimum
completion time of j after it is processed on « (which is
Just the sum of ,’s processing times on the remaining
machines). Not let S < J be a subset of jobs and let
a €M be a machine, and let Eg, be the minimum of E;,
over all je§, let Fy, be the minimum of F;, over a]l
J€S, and let pg, be the sum of Djo over all jES Then
by considering the order on which the jobs in S are
scheduled on «, it is straightforward to check that the
inequality

Z PjoXjo 2 Eg, Dg, + Z PiaPjq (10)
JjeS i+jeS
is satisfied by all schedules. Similarly, we can obtain the
“‘reverse’’ inequality

ija(z ) FScxpSa + ija + Z plapja
jes i#jeS
(11)

by considering the reverse of the order on which the jobs
are scheduled. A similar ‘‘reverse’’ construction can be
applied to all of the classes of inequalities given below
(with the exception of the triangle cuts).

2. Two-job cuts (Balas!®})

Let / and j be distinct jobs and let o be a machine, and
suppose that E;, < E, + p,; and E;, < E;, + p;,. Then
the basic cut for the pair {i, j} can be sharpcned as
follows:

(Pia + Eig — Ej) X, + (Pja + Ej — E;p) x;

Jje

2pialpjc:z +Eiapja +Ejozpia' (12)

To see that this is valid, it suffices to check that the
earliest possible times for scheduling i and j on « satisfy
the inequality (since, by assumption, the coefficients in
and Xx;,

front of the variables x;, are nonnegative and




any valid schedule must make x;, and x o take on at least
their minimum values). These earliest possible times are
to set x;, = E;, and x,;, = E;, + p,, (corresponding to
scheduling / before j on «), or to set X;o = E;, and
X = E;, + pj, (corresponding to scheduling j before i
on o). By substituting these values into (12) we see that

they do indeed satisfy the inequality.

3. Clique cuts (Balas'®)

Let S J and let aeM. As in the example above
(where | S| = 2) we can write a family of valid inequali-
ties, involving only the variables (x et J€S), which
sharpen the basic cut for the pair S, «. To carry this out,
let us form a matrix K having columns indexed by S and
with a row corresponding to each permutation of S. The
entries in each row are the earliest possible starting times
of the jobs 'S on «, assuming that the jobs are scheduled
on « in the order given by the permutation of S corre-
sponding to this particular row. It is clear that if we look
at any possible schedule X, then there is a row of K such
that the entries in the row are each less than or equal to the
corresponding value X,,. So any > inequality, involving
only the variables (x,,: j€.S) and having only nonnega-
tive coefficients, that is valid for each row of X is also
valid for any vector representing a schedule. Thus, any
vector in the polyhedron P(S, @) = {r: Kt > 1,¢ > 0},
where 1 denotes the vector of all 1’s gives a valid inequal-
ity for the set of all schedules. (We have chosen the
right-hand-side of 1’s, since we may scale any valid
inequality with nonnegative coefficients to force the right-
hand-side to be 1.) The strongest inequalities of this type
correspond to the vertices of the polyhedron P(S, «), and
we call this finite set the clique cuts for S and «. (For
more details, see Balas.!*!)

4. Two-job, two-machine cuts

Using the same approach as in the two-job cuts and the
clique cuts, we can write valid inequalities involving two
fixed jobs and two fixed machines. Although this approach
can, in principle, be extended to larger subsets of jobs and
machines, the size of the matrix involved quickly becomes
too large to handle effectively.

5. Triangle cuts

For any three jobs i, j, and k, and any machine o, we
have the simple triangle inequality

Yi+Yi+ Y32 (13)

arising from the fact that if 7 is scheduled before Jand j
is scheduled before k, then / must be scheduled before k.
In writing this inequality, we may need to substitute, say,
1 — Y3 for Y7, depending on how we have assigned the
Y variables, since we only create one of the two possible
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variables Y, and Y. (This comment applies to all of the
remaining classes of inequalities.)

6. Basic cuts plus epsilon

With the addition of the Y variables, we can use the
following technique to tighten the basic cuts. Let S € J,
a€M, and keJ. (The job k may be in S.) Then, letting
q* denote the maximum of g and O for any real number
g, the inequality -

ij(xxja ? Z piapja + Ekoszoz
Jjes i#jeS

- (,% Y (Era — Ejo) " )psa (14)

is valid for all schedules, since either k is scheduled on o
before all (other) jobs in S, or it is not (in which case a
penalty is paid on the right-hand-side of (14).

7. Half cuts

Again, let S S J and let o € M. For each job k € S the
inequality

xka 2 ESoz + Z szpja (15)
JjesSN {k}

is valid for all schedules, since k& cannot be processed on
a until all jobs in § that are scheduled on o before k are
completed. This class of inequalities is useful for pushing
the values of the Y ’s away from 1/2,

8. Late job cuts (Dyer and Wolsey!")

Let ScJ, aeM, k€S, and /e J. (The job [ may be
in S.) By considering the order in which k, /, and the
remaining jobs in S are scheduled on «, we have that

+
Xe ZE + Y YEp, - Y Yi(E, - E,)
JeS™ {k} Jjes
(16)

is valid for all schedules. m

These eight classes, and the corresponding *‘reverse”’
inequalities, are the only cutting-planes included in our
study. (Several other classes are given in Dyer and
Wolsey!""! and Queyranne.?'") Our separation routines
are straightforward, involving either complete enumera-
tion or simple heuristics. The exception to this is our
method for finding violated clique cuts, which requires the
solution of linear programming subproblems as outlined
above. For this class of inequalities, we limit our search to
those sets S & J and machines o € M such that the
corresponding basic cut is within some fixed tolerance of
being violated.

We group the inequalities into three pools of cufting
planes. The first, Cuts 1, consists of only the basic cuts.
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The second, Cuts 2, consists of the basic cuts, the two-job
cuts, the clique cuts (up to a maximum clique size of 5),
and the two-job, two-machine cuts. These two pools re-
quire only the disjunctive formulation. The third pool,
- Cuts 3, consists of all of the above eight classes, and
therfore requires the mixed-integer programming formula-
tion. The values of the lower bounds we obtained using
each pool are reported in Table 1.

Each of the test problems has 10 machines and 10
jobs. The problem MTI10 is the well-known 10 by 10
problem of Muth and Thompson; the problems ABZ5 and
ABZ6 are two problems from Adams, Balas and
Zawack!"l; the problems LA19 and LA20 are problems of
Lawrence!'), reported in [1] as problems 19 and 20 of
their Table 2; the problems ORBI through ORB5 were
generated in Bonn in 1986: the prescribed processing
orders for each problem were created by guests (with the
challenge to make the problems *‘difficult’’) and for each
problem we generated two sets of processing times at
random and retained that set which gave a problem having
the greatest gap between the optimal value and a standard
lower bound).

The entries in the table under the headings ‘‘ Preempt”’
and ‘‘1-Mach” report the values of two standard lower
bound techniques for the job-shop problem. The first is a
preemptive lower bound, which consists of looking at
each machine o individually as processing a set of jobs
having release dates E;, and finishing times F,,, with

objective to minimize the maximum of the completion
times, where we are allowed to interrupt a job while it is
being processed and complete its processing at a later
time. (For a discussion of this bound, see Carlier.!!) The
second, a one-machine lower bound, is defined in a
similar manner, except that we are not permitted to inter-
rupt a job while it is being processed. (Our implementa-
tion of this bounding procedure is based on the algorithm

of Carlier.”) This bound is always at least as strong as the
preemptive lower bound, and in some instances (although
not in the test set reported in Table I) it is significantly
stronger. In each case, we take the maximum of the
bounds over all machines «. (For a detailed discussion of
these techniques, see Lenstra!’s! or Rinnooy Kan.!?2])

The running times, on an IBM 3081D computer, are
given in seconds, following each entry in the table. The
linear programming problems were solved using the IBM
package MPSX. In each of the three cut pools, we used a
heuristic method for guiding our search for violated basic
cuts. In Cuts 2 and Cuts 3, the clique cuts were generated
by solving, for each subset S and machine o for which
the basic cut was close to violation, a linear programming
problem over the polyhedron P(S, a). (See Balas.))

In 8 out of the 10 problems, the cutting-plane bounds
were superior to the standard methods, but in all cases
they required a greater computational effort. For all prob-
lems, the observed improvement by moving from Cuts 1
to the larger cut pools was quite small, particularly when
one considers the large jump in running time incurred
from moving from one pool to the next. The computa-
tional difficulty is partly due to the fact that the clique cuts
tend to have coefficients of large magnitude (which make
the linear programming problems difficult to solve). One
promising aspect of the cutting plane work is that in 6 of
the 10 cases, the (quickly computable) bound of Cuts 1 is
by itself superior to the standard bounding techniques.

It is clear that the running times of the cutting-plane
implementations can be brought down considerably (using
a more modern linear programming package), but it re-
mains as a research challenge to find classes of valid
inequalities that will close the large gap between the lower
bound values and the optimal values of the scheduling
problems, within a reasonable amount of computation
time.

Table I
Ten 10 X 10 Problems: Lower Bounds
Problem Preempt 1-Mach Cuts 1 Cuts 2 Cuts 3 Optimal
MT10 808 (0.10) 808 (0.12) 823 (5.23) 824 (305.58) 827 (7552.34) 930
ABZ5 1029 (0.10) 1029 (0.12) 1074 (5.61) 1076 (611.29) 1077 (4971.42) 1234
ABZ6 835 (0.10) 835 (0.12) 835 (4.87) 837 (334.72) 840 (5257.35) 943
LAI19 709 (0.10) 709 (0.11) 709 (5.57) 716 (917.07) — 842
LA20 807 (0.10) 807 (0.12) 807 (5.13) 807 (806.16) — 902
ORB1 929 (0.10) 929 (0.10) 930 (7.16) 931 (358.08) — 1059
ORB2 766 (0.10) 766 (0.12) 768 (10.02) 769 (326.86) — 888
ORB3 865 (0.10) 865 (0.11) 869 (5.95) 870 (449.00) — 1005
ORB4 833 (0.10) 833 (0.12) 891 (5.58) 895 (555.51) — 1005
ORBS 801 (0.10) 801 (0.12) 801 (6.90) 801 (323.23) - 887




2. Branch and Bound

Branching schemes for the job-shop problem have been
well-studied in the literature. One of the most successful
schemes discussed can be derived directly from the dis-
junctive formulation: We choose some machine o €M
and a pair of jobs i, jeJ, and enforce the constraint (3),
creating one subproblem, P,, where / is scheduled before
Jjon « and a second subproplem, P,, where j is sched-
uled before i. The idea is that if we can make a good
choice of « and i, j, then we settle some essential conflict
in the schedule and thus make a significant improvement
in the lower bound.

To test this scheme, we implemented the following
simple algorithm: Suppose we have created the subprob-
lems Py,..., P,. Choose the (unprocessed) subproblem
P, such that preemptive lower bound, LB(P)), is mini-
mum. Process P,, creating the new subproblems P, .,
and P,,, by branching on the machine « and jobs i, j
such that minimum {LB(P,,), LB(P,,,)} is maxi-
mized. That is, naively try all possible choices of branch-
ing, and greedily choose that branch which gives the
greatest direct increase in the lower bound. Whenever a
problem P, has LB(P,) 2 UB (the value of the best
schedule known), it can be deleted from the list of sub-
problems. Surprisingly, given the history of the Muth and
Thompson problem, this greedy procedure proved the
(optimal) 930 lower bound for MTI10 in just over 1 hour
on a Sun Sparcstation 1. Based on this, and some testing
of a preliminary implementation of the main competing
branching scheme (based on ‘‘active schedule generation’’,
see Lenstra!®! or Rinnooy Kann!®!), we decided to adopt
the disjunctive formulation in our branch and bound work.

We then developed a more sophisticated branch and
bound method using the following edge-finding algorithm
based on the work of Carlier and Pinson!'%: At each node,
if there exists a machine «, a subset S € J, and a job
i € J such that

_min_E;, + ps, + Fs, 2 UB (17)

JjesSN{i}
then i must be processed on « before any other job in S.
The ‘“‘reverse’’ inequality also applies. In addition, for
each machine «, maintain the set C, < J of the jobs not
yet ordered for a, and subset E, (and F) € C, of jobs
in C, that could be scheduled first (respectively last).
Initially, C, = E, = F, = J. If there exists a machine o
and a job i € E,, such that

Eia + pCaot + Fﬁaa 2 UB (18)

then i can be removed from E. If E, contains only one
element 7, then i must be processed on « before any other
jobin C,.

Whenever (17) or (18), or their ‘“‘reverse’’, imply
that i must be processed before j on «, this eliminates
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one of the disjuncts in (3) from consideration, simplifying
the problem. When all the disjuncts involving i/ on « have
been decided, then remove i from C,, since i is com-
pletely ordered for a.

When no more disjuncts can be decided by (17) or
(18), then select a machine « and jobs i and j on which to

“branch. Restrict attention to the machine that had the

worst initial preemptive bound until that machine is com-
pletely scheduled, and then conmsider all remaining ma-
chines. Subject to this, choose the set E, of F, of
smallest cardinality, and within that set, choose a pair of
jobs by computing:

d;; = max(0, E;, + piy + Djo + Fi — LB) (19)
dj; = max(0, Ej, + pjo + Pio + Fio — LB) (20)
a;; = min(d,;, d;;) (21)
vy = |di = dj| (22)

and selecting the pair with maximum v
selecting the pair with maximum a;;.

The main difference between edge-finder and the
algorithm described by Carlier and Pinson in [10] is that
edge-finder tests (17) for all Sc J, i€S, and €M,
while Carlier and Pinson only test it for all doubletons S,
and one additional heuristically determined S and i€ S for
each o € M. However, from comparisons of our computa-
tional experience with theirs, it appears that there are also
many implementation differences.

breaking ties by

ij?

3. Heuristics

In an optimization procedure, it is important to have a
good heuristic method for obtaining an initial schedule.
Thus, based on the computational experience reported in
Adams, Balas and Zawack,!! we implemented their
“‘shifting-bottleneck’’ scheduling algorithm. A rough out-
line of the method is the following: Suppose we have
scheduled all jobs J on the machines o, ..., o (that is,
for each of these machines, we have fixed the order on
which we process the jobs). Now, for each of the remain-
ing (unscheduled) machines, we calculate the values of
E;, and F;,, respecting the schedules on the machines
a,,"**, o, and compute its one-machine lower bound.
We then fix the schedule of that machine which has the
greatest lower bound, ordering the jobs as prescribed in
the one-machine schedule, and perform a local reoptimiza-
tion of the k scheduled machines (see [1]). The entire
process is repeated until all 7 machines are scheduled.
This basic algorithm performs quite well, as indicated
in Table II, under the heading ‘‘Bottle.”” (The running
times, in seconds on a Sun Sparcstation 1, are reported
after the values of the schedules.) Moreover, Adams,
Balas and Zawack [1] were able to produce still better
solutions by adding a certain backtracking scheme and
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Table II
Ten 10 X 10 Problems: Heuristics
Problem Bottle Bottle-4 Bottle-5 Bottle-6 Shuffle
MTI10 952 2.7) -952 (11.4) 944 (46.0) 944 (218.6) 930* (57.6)
ABZ5 1270 (2.3) 1250 (27.4) 1245 (100.3) 1245 (503.5) 1245 (113.7)
ABZ6 952 (2.8) 952 (22.0) 943* (67.3) 943* (351.3) 943* (68.0)
LA19 863 (2.9) 863 (35.1) 848 (125.7) 847 (657.5) 848 (161.6)
LA20 918 (2.9) 918 (16.9) 918 (97.6) 913 (491.2) 911 (133.2)
ORBI1 1176 (2.6) 1125 (25.2) 1092 (87.8) 1073 (265.9) 1070 (103.1)
ORB2 927 (3.0) 894 (31.7) 894 (117.6) 894 (497.0) 890 (194.1)
ORB3 1090 2.7) 1053 (16.4) 1031 (59.1) 1022 (262.1) 1021 (137.8)
ORB4 1065 (2.6) 1040 (26.6) 1031 (63.1) 1019 (236.5) 1019 (78.1)
ORB5 939 (1.1) 899 (16.0) 896 (68.1) 896 (277.6) 896 (128.0)

allowing for more computation time. Thus, in our imple-
mentation, for each of the final ¢ machines scheduled
(where ¢ is an input parameter), we try not only the
machine having the greatest lower bound, but each of the
other unscheduled machines as well. (That is, for all
s=1,...,t, after scheduling m — s machines, we try
each of the remaining s machines as the m — s + 1’st
machine to be scheduled.) The performance of this method
for t=4,5 and 6 is reported in Table II under ‘‘Bottle-
4,” “‘Bottle-5,”” and ‘‘Bottle-6."> These values are slightly
worse then those obtained by the more sophisticated
method used in [1], but they reflect the possible improve-
ments one can obtain by a repeated use of the basic
algorithm.

Although the values reported in Table II and in [1]
are very good, in most cases the best solutions obtained
are still far from optimal. Thus, there may be some room
for improvement, particularly when one considers that
increasing the level of backtracking adds a considerable
amount of computation time to the process. With this in
mind, we developed a method which takes a given sched-
ule and attempts to produce one of shorter length.

The basic idea of our method, as suggested in Carlier
and Pinson,!"% is that the kernel of the edge-finder algo-
rithm can quite often quickly complete a full schedule,
once the schedules of a relatively small number of ma-
chines are fixed. The algorithm, shuffle, we adopted
proceeds as follows. Given a full schedule, we fix the
processing orders of the jobs on a small number, ¢, of the
machines and apply edge-finder to optimally complete the
schedule. If the new schedule is shorter then the original,
then we repeat the process, with the restriction that we do
not choose to fix any of the machines whose schedules we
have currently held fixed.

The best strategy for choosing the ¢ machines to fix .

is not at all clear. In our initial implementation we ran-
domly selected the machines, but this seldom led to an
improved schedule. After some experimenting, we adopted

a strategy based on the trivial lower bounds, E ja T Pjo +
Fj. To start off, for each machine we calculate the
maximum of these bounds, where the E’s and F's are
computed with respect to holding the processing orders on
all remaining machines fixed. In the first pass, we select
those ¢ available machines having the greatest bounds.
After iterating with this selection rule until no further
improvement in the schedule is obtained, we then make a
second pass where we reverse the rule and choose the ¢
machines having the minimum lower bounds.

Our rule for choosing the number, ¢, of machines to
fix is dictated by the need to have enough structure to
allow edge-finder to rapidly fill in the remainder of the
schedule, while, at the same time, leaving a sufficient
amount of freedom for improving the processing orders.
From empirical observations, we choose f = 1 if m = 10,
and =2, 3 or more if m = 15, and 7 = 5 or more if
m = 20.

The values and running times of the heuristic are
reported in Table II under the heading ‘Shuffle.”’ In these
runs, we gave the bottle-5 shedule as input to shuffle (thus
the reported running times are the sum of the bottle-5 time
and the shuffle time). In one instance, ORB3, the first pass
of shuffle was halted after the maximum allowed computa-
tion time of 60 seconds, without completing a schedule.
For each of the other problems, both passes terminated
after only a modest amount of computation, with solutions
comparable to the longer backtracking runs of bottle-6.

4. Results

Our optimization routine consists of a run of bottle-5,
followed by a run of shuffle, to determine the initial
bound, then a run of edge-finder to find and prove the
optimal solution. The total running times for the ten 10 by
10 problems, on a Sun Sparcstation 1, are reported in
Table III. In all cases, the problems were solved in under
an hour of computation time. One point worth noting is
that, judging by the times in Table III, it is apparent that
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Table Il
Solution of Ten 10 X 10 Problems
Problem Heuristic Optimal Running Time (Seconds) .No. Nodes Max Depth
MTI0 930 930 372.4 16055 47
ABZ5 1245 1234 951.5 57848 68
ABZ6 943 943 90.9 1269 37
LA19 848 842 1462.3 93807 88
LA20 911 902 1402.3 81918 97
ORBI 1070 1059 1482.6 71812 58
ORB2 890 888 2484.6 153578 91
ORB3 1021 1005 2297.6 130181 88
ORB4 1019 1005 1013.3 44547 43
ORB5 896 887 526.0 23113 74
Table IV Table V
Edge-Finder on MT10 Ten Tough Job-Shop Problems
Running Time Best
Initial Bound (Seconds) No. Nodes Max Depth . Best Lower
10000 5676.1 310392 339 Problem Size Solution  Bound Status
1000 4951.5 268903 87 ABZ7 15 x 20 668 654 OPEN
950 833.3 43778 71 ABZS8 15 x 20 687 635 OPEN
940 559.5 28954 61 ABZ9 15 x 20 707 656 OPEN
929 314.8 16055 47 LA21 10 X 15 1053 1040 OPEN
LA24 10 x 15 935 935 SOLVED
LA25 10 X 15 977 977 SOLVED
the problem MTI10 is not more difficult than many other LA27 10 x 20 1269 1235 OPEN
10 by 10 problems one can construct. LA29 10 x 20 1195 1120 OPEN
The quality of the solution found by shuffle is cru- LA38 15 % 15 1209 1184 OPEN
LA40 15 x 15 1222 1222  SOLVED

cial in the optimization routine. This is demonstrated in
Table IV, where we compare the times of edge-finder on
problem MT10 with successively stronger upper bounds.

Including the ten 10 by 10 problems, we tested our
routines on a total of 53 problem instances (3 from Muth
and Thompson,'”! 5 from Adams, Balas and Zawack!!!
(ABZ5-9), 40 from Lawrence!"”! (LA1-40), and 5 that we
generated ourselves (ORBI1-5)). As reported in [1], the
problems ABZ5-9 (following the numbering in Table 1 of
[1]) and 21 of the problems LA1-40 (following the number
of Table 2 of [1]), were unsolved.

We were able, through a combination of bottle, shuf-
fle, and edge-finder, to solve all but 7 of these instances.
In Table V, we report the best solutions and lower bounds
we obtained for each of the 7 remaining open problems. In
each case, the solution was obtained by a run of shuffle
and the bound was obtained by edge-finder (except for
LA27, which is the same one-machine lower bound as
reported in [1]). We also included the optimal values of
three problems from the test set that were particularly
difficult for us to solve.

Each of the 10 problems in Table V poses a more

difficult computational challenge than the 10 by 10 prob-
lem MTIO (at least for out techniques). For example, to
establish the 930 lower bound on MTI0, edge-finder
required 16,055 nodes in its search tree, whereas to
establish the bound of 935 for LA24, it required
16,115,842 nodes, a difference of factor of 1000.

The routines bottle, shuffle, and edge-finder were all
coded in the C programming language. The source codes
to these routines, as well as the data sets for the 53
problem instances, are available, by request, from the
authors. (The cutting-plane methods were coded in PL1
and depend heavily on the interface to IBM’s MPSX
package, and therefore are not really portable.)
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