Local cuts for mixed-integer programming

VaSek Chatal
Department of Computer Science and Software Engineering
Concordia University, Canada

William Cook*
School of Industrial and Systems Engineering
Georgia Institute of Technology

Daniel Espinozh
Department of Industrial Engineering
Universidad de Chile

August 10, 2009

Abstract

A general framework for cutting-plane generation was psagoby Applegate et al. in the
context of the traveling salesman problem. The processiadenssthe image of a problem
space under a linear mapping, chosen so that a relaxatite ofi@dpped problem can be solved
efficiently. Optimization in the mapped space can be usechtbdiseparating hyperplane if
one exists, and via substitution this gives a cutting plantaé original space. We apply this
procedure to general mixed-integer programming problexoigining a range of possibilities
for new sources of cutting planes.

1 Introduction
Consider a mixed-integer set
Fp={xeR": Ax=d; | <x<u; xj€Z, Vjel}, 1)

whereAe Q™" d e QM | € (QU{—o})", ue (QU{+w})" andl C {1,...,n}. AsusualZ, Q,
andR denote the integer, rational, and real numbers, respectively. Giveljective vectoc € Q",
the problem of maximizing' x subject tox € Rp is amixed-integer programmingMIP) problem.

A linear relaxation
Ap={xeR": Ax=d; Ax<d; | <x<u} 2)

*Supported by NSF Grant CMMI-0726370 and ONR Grant NO0014-0®40.
TSupported by FONDECYT Grant 1070749 and ICM Grant P05-004F.

of Rp is obtained by dropping the integer restrictions on the variaklder j € I, and possibly
adding a system of inequalitigsx < d’ that is satisfied by all vectors iRp. The additional in-
equalitiesA’x < d’ are callectutting planesor cuts

In the cutting-plane methagdcuts are added in an iterative fashion, selecting inequalities that
are valid forBp, but violated by an optimal solutiox to the linear programming (LP) problem
max(ch: x € Rp). The cutting-plane method is combined with a branch-and-bound search in a
hybrid algorithm, known as branch-and-cut, that is the most succdgd#fukolution approach to
date.

Given a basic optimal solutioxt to maxc'x: x € Rp), an elegant technique of Gomory [20]
efficiently produces a cutting plane whenexérz Rp. Indeed, the Gomory mixed-integer (GMI)
cuts found by this method are one of the most important practical sourdddPofutting planes,
as reported in computational tests by Bixby et al. [11]. In their studyctffeness is measured by
the improvement in the overall running time of the branch-and-cut algorithradiving a specific
large collection of MIP instances. In other studies, effectiveness isurezhas the increase in the
lower bound produced by the optimal objective value of the LP relaxatioblgm. With either
measure, the additional value of GMI cuts tends to decrease as more amdutsare added. The
current practical reply to this decreasing performance is to use a vafigghniques for producing
cuts in MIP solvers. Classes of MIP cutting planes currently adopted imgaddes include GMI
cuts [9], mixed-integer-rounding (MIR) inequalities [27], knapsackers [18, 23], flow covers
[22], lift-and-project cuts [8] andO, %}-ChvétaI-Gomory cuts [16].

An alternative approach to cutting-plane generation was proposed pledgie et al. [5] in
the context of the traveling salesman problem (TSP). This work introdatechl-cuts procedure
that relies on the equivalence of optimization and separation to get cutssirat (graphical)
TSP instances that are the result of linear mappings of the original profileengeneral process
was subsequently adopted by Buchheim et al. [14, 15] in the solutiomstredned quadratic 0-1
optimization problems and by Althaus et al. [4] in the solution of Steiner-trelelgmus.

The goal of the current paper is to develop the local-cuts paradigmefoergl mixed-integer
programming. We begin in Section 2 by presenting a standard LP-basedhf@tigenerating MIP
cuts using an oracle description of a relaxation of the original problemedticé 3 we show how
to obtain facets, or high-dimensional faces, from valid inequalities pextibg the cut-generation
process, generalizing the tilting procedure of Applegate et al. This is fellpin Section 4, by a
discussion of linear mappings to simplify the mixed-integerRBet In Section 5 we present the
overall framework for local cuts for general MIP problems, and disaesults of a computational
study using a simple choice of a mapping function.

2 Separation via optimization

Let P C R" be arational polyhedron and bete Q". Theseparation problenfor (P,x*) is to find an
inequalitya’ x < b that is valid forP but violated byx*, if such an inequality exists. A fundamental
result in LP theory is the polynomial-time equivalence of separation and optiariZar rational
polyhedra, via the ellipsoid method. This theorem and its many combinatoriitams are
discussed in Gitschel et al. [21]. In this context, polyhedra are represented implicitlyeXample,
the convex hull of a mixed-integer d8p can be represented By =d, | <x<uandx € Z, Vi €

I € {1,...,n}, rather than by an explicit linear description of the polyhedron.

We say thaOPT is anoptimization oracldor P if, for any c € Q", it asserts tha® is the empty
set, or providex* € PN Q" such thatc™x* > c"x for all x € P, or provides a ray* € Q" of P
such thaic"r* > 0. (A vectorr is called a ray of the polyhedrdn if there existsx € P such that
x4+ Ar € P for all positive scalarg.) The output of the oracle is of the for(statusf,y), where
statusis one ofempty, unbounded or optimal; B contains the optimal value of mgd x : x € P)
if the problem has an optimal solution; apaontains the optimal solution or an unbounded ray if
the status isptimal or unbounded, respectively.

An optimization oracle can be used as a practical vehicle for solving theadEpaproblem
without resorting to the ellipsoid method (which can be overly time-consuming indhiext). This
idea was championed by Boyd [12, 13], who introduced a cutting-plaheieaee for MIP instances
where the variables are restricted to take on 0 or 1 values. Boyd cosisidgte-row relaxations,
where his access to the corresponding polytope is via an optimization oiraplemented as a
dynamic-programming algorithm for 0-1 knapsack problems. His sepanatidmod is a variant of
the simplex algorithm, and he calls the separating inequalities Fenchel cuttireg plan

In our work on general MIP instances, we adopt a straightforwapidcgeh, based on an LP
formulation of the separation problem. Let us write the rational polyheBrasPy + P, whereRy
is a bounded polyhedron having verticlg : i € lg} € Q" andPR is a convex cone generated by
rays{r':iel} c Q" herelg andl, are finite sets, allowing us to index the vertices and rays. A
givenx* € Q" is an element oP if and only if there is a solutiofA9,A") to the system

)\iggifZ AT =x", eTA9=1, 192" >0, 3)
el

wheree € Q" denotes the vector of all ones. By duality, system (3) has no solution ibalydf
there exista € Q" andb € Q such that

a'g—-b <0, Vi € lg,
aTrI S Oa v' € Il’a (4)
a'x*—b >0.

Any cut that separates’ from P corresponds to a solution of (4). To choose among these
possible cuts, we formulate the problem of maximizing the violation subject to ttmeatiaation
llall1 = 1, that is, we set thke;-norm ofato 1. This is a technique described in a number of studies,
for example, Balas et al. [8]. The resulting LP model is

max a'x* —b
st. a'g —b<0, Vi € lg, 5)
a'ri <o, Viel,
a-u4+v=0,€e (u+v)=1,uv>0.

Its LP dual can be written as

~ min s
st. A+ 5 AT w= X,
i€lg il (6)
efAd=1

—w+se >0, w+se >0, A", A9>0.

The LP problem (6) hasr3+ 1 constraints other than bounds on individual variables. If we
choose to minimize{al|; subject to the constrair’ x* = b+ 1, then we obtain the following for-
mulation for the problem

min e’ (u+v)
st. aTg‘—_bgo Vi € lg, @)
a'rr<o viely,
a—v+u=0,a"x*—b=1, uv>0,

whose dual is

max s
st. sx¥— 3 A% — S A +w=0,
i€lg il (8)
—s+e'A9=0,

AIAT>0, —e<w<e

Note that (8) has onlyn+ 1 constraints other than bounds on individual variables. Problem (8) is
trivially feasible (the all-zero vector is always a solution); if (8) has atinagl solution, its dual
gives us a separating inequality Brandx*; if (8) is unbounded, then the unbounded ray provides
us with a decomposition of* into elements oPy andP;, thus yielding a proof that* € P. Finally,
note that problems (5) and (7) are essentially the same, in the sense togtiaml solution of (5)
is an optimal solution of (7) (after scaling) and any optimal solution of (7) is@imal solution
for (5) (after scaling).

The large number of variables in problem (8) can be handled by employiolyan-generation
technique. To begin, we select any (possibly empty) subsets of pointagmthP, with index sets
Ig andl;, respectively. We then solve (8) with this néyvandl,. If the LP problem is unbounded,
then we have a proof that € P. Otherwise, we obtain a tentative inequakfyx < b that is violated
by x*. The optimization oracle can be called to check whefher {x: ax < b} by maximizing
a'xoverP. If PC {x: alx< b}, we return with the inequalitg” x < b. Otherwise, we either find a
pointg’ € P such thag"g! > b and addj to Iy, or we find a ray’ of P such thag"r/ > 0 and add
j to I, and repeat the process. A pseudo-code for the method is given inithAlgdl. We apply
Algorithm 1 in our local-cuts procedure, after mapping to a space wheedfiaient optimization
oracle is available.

3 Obtaining high-dimensional faces
Consider a rational polyhedrdh=£ 0, a rational vectox* ¢ P, and a separating inequality

a'x<b 9

found by Algorithm 1. We describe an algorithm that transforms (9) into aquality defining a
facet of P. The method extends the tilting algorithm for bounded polyhedra given byegpie et
al. [5] in the context of the TSP.

Let B, C P be the set of points found in Algorithm 1 satisfying (9) at equality; the astiomgp
imply P, # 0. For arbitraryy, € P, defineP+, the orthogonal complement Bf as

plLi= {XGR”:XT(V—Yo) =0,vyecP}.

4

Algorithm 1 Separation through optimization ora’er(OPT,x", g, Iy)
Require: OPT is an optimization oracle fdP, x* is a point to be separated fram
Ig indexes an initial set of points i, I indexes an initial set of rays &f.
1: loop

2: Solve (8) ovelg andl,.

3: if (8) is unboundedhen

4: return x* € P.

5. leta, b be an optimal dual solution to (8)
6: (statusf,y) < OPT(a).

7: if status= unbounded then

8: addy to the set of rays indexed hy.
9: elseif status= optimal andf3 > b then
10: addy to the set of points indexed By.
11: else

12: return x* ¢ P, (a,b)

LetPy :={p1,..., pr} be a generating set for a subspace of the linear $pacand letx be a point
in P such thal"x < b. If P~ generates all oP*, then (9) defines a facet & if and only if the
system

w(pYo) +VIpi=0, VpePR, (10a)
w—Vvix =0 VxeP, (10b)
w—V'X=0, (10c)

(v,w) € [-1,2)"" (10d)

has as unique solution the all-zero vector. Problem (10) can be intet@®tés there a hyperplane
that passes throudh, U {X} and is orthogonal to the set of equations defirft®g If the points in

P, define a facet oP, then the answer is no, that is, the only solution to (10) is the all-zero vector.
Note that condition (10d) is not really needed, but it is included to make #sie region of (10)

a compact set; on the other hand, condition (10c) endRiggx : a'x = b}, that is, (9) defines a
proper face oP.

The idea is to iteratively buil&,, P,- and candidate inequalities using the conditions in (10). For
that, we start withP, as the active points on our current candidate inequality, andRyitk © (or any
previously known subset ¢%). The facet-finding algorithm ensures that at every iteration either
the dimension of the candidate s&sor P;- is increased, while possibly modifying the current
inequality, or it proves that (9) defines a facefpbr it proves that (9) is valid foP as an equation.
We do this in such a way that all acces$tes through an optimization oractePT.

To determine if our current inequalig/ x < b defines a proper face & we maximize—a'x
overP. If the LP problem is unbounded, then we easily find a pRiatP such thata'x < b; if,
on the other hand, the problem has an optimal solution with value differemt-frb, then such an
optimal solution provides us with the sought P; otherwise, the optimal value isb, thus proving
thata'x = b is a valid equation foP that is violated by*.

If a™x < b defines a proper face &, then, usingk, we check if the only solution to (10) is
the all-zero vector. If this is the case, then we have a certificatealhat b defines a facet of.

Otherwise|v,w,X), with v # 0, certifies that the current inequality is not facet-defining.

Suppose we have a non-facet certificaten,X). In this case we would like to increase the
dimension ofP, or of Py-. The idea we use is ttlt our current inequalitya™x < b, using as
pivot the setP,, and using as rotating direction the vecfeyw), until we touch the border d®,
identifying a new affinely independent point. To illustrate this method, conBide- {(y,z) € R?:

Jx € Py =a'x,z=Vv'x}, as given in Figure 1. In this example, rotatiagx < b produces the

z
1 Jadx<b; 7]
w Po
+ ° ®
X 7 X"

P / y

o
ax<b_ d—a"™x<b

Figure 1: The gray area represeRtsthe pointsx, P, andx* refer to their projection int®’.

inequalitiesalx < b, anda’x < b_, indicated in the figure. If we restrict ourselves to moving in
this two-dimensional space, then these two inequalities are the only oneswbtein by rotating

T
a'x<h.

z z
w| @x<b, /R w| ax<b. R
'x ; o S aX 23 .x*
X
p’
/ y y
/ﬁ
alx<b — J—a'x<b —a'x<b
z @) 7 (b)
\x*%a&xg b,
w F)0 W - ()
- ° ° + e ¢ o
X / X* X . *
24 =% —a x<b_
/ y
//\/ —a. x<bh, //
ax<b_ — —ax<b J—a'x<b

(© (d)

Figure 2: Possible ill-behaving outcomes for the mappinB.of

We must bear in mind that Figure 1 is just one possible outcomi fdndeed, Figure 2 shows
four ill-behaving cases. Figure 2(a) is an example where one of thiingsinequalities coincides
with vTx < w; Figure 2(b) shows an example whefex = w is a valid equation foP, giving us a
new vectorp to add toP;-; Figure 2(c) shows an example where one side of the tilting is in fact our
original inequalitya’ x < b; and Figure 2(d) shows an example where both sides of the tilting are
our original inequality.

We provide a tilting algorithm in Section 3.1, but in the meantime, let us assume thatwee
tilting routine with the following characteristics:

Condition 1 (Abstract Tilting ProcedurerILT(a,b,v,w, X, Py, OPT)).

Input The input of the algorithm should satisfy all of the following:
e a'x < b defines a face of P ang P P is a set of points satisfyind &= b.
e V' x < wis an additional inequality such thaf x = w for all x € P,.
e X Pissuchthatx < band Vx=w.
e OPT is an optimization oracle for P.
Output The output should be:
e (V,wW.X)where(V,w) is a non-negative combination ¢f w) and of(a,b),
maxVTx: x € P) =w, andx belongs to P and satisfy botf'® = w and is
affinely independent fromyP

If we have a non-facet certificate, w,X) for the inequalitya” x < b with point setP, and equa-
tion setP;-, then we can obtain both, ,b, anda_,b_ with the calls

(ay,by,xy) =TILT(a,b,v,w,X, P, OPT), and
(a_,b_,x_) =TILT(a,b,—Vv,—w,X, P, OPT).

With this information, we can finish our facet procedure(Mf,w,) = (v,w), and(v_,w_) =
(—v,—w), then we are in the situation depicted in Figure 2(b), and we cawn tuléy-, increasing its
dimension by one. In any other situation we have two (possibly identical) aliéigs, and we pick
the one which is most violated by!; assuming that, b, is the most violated one, we replace
a,bwith a, ,b, and addk, to P,. Note that the newly added point increases the dimensi&y loy
one.

Since at every step we either increase the dimensi®afr increase the dimension Bf, the
algorithm performs at most iterations, and in every iteration we produce (or keep) a separating
inequality. An outline of the complete method is given in Algorithm 2.

3.1 Solvingthetilting problem

We now describe an algorithm that performs the tilting procedure satisfyongi@on 1. We assume
that we have a valid inequaligx < b for P, a non-empty, finite sé?, C P for which every element
x € P, satisfiesa’x = b. We also have another inequality (although it might not be validPjor
vIx < w and a poink € P, such that alk € P, andx satisfyv'x = w and such thaa'x < b. We
show how to obtaim., b, ; the procedure foa_,b_ is completely analogous.

Our objective is to find a valid inequality”x < w for P and a point’ that is affinely inde-
pendent fromP, and is such that’"x = w. The idea is to use'x < w as our candidate output
constraint, an& as our candidate for an affinely independent point, thus, we only nestbtk if
maxv'x:xeP)=w.

If we maximizev'x over P and there is an optimal solution with value then we are in the
situation depicted by Figure 2(a) or Figure 2(b). In this case, we retlxr< w as our tilted
inequality and report as our new affinely independent point.

litis easy to see that at least one of them must be violated Hythe originalax < b was violated by*

Algorithm 2 FACET(a, b, x*, Py, Py-, OPT)

Require: a'x < b is valid for P anda’x* > b; 0 # P, C P is such thata"x = b for all x € P;
P;- ¢ P+; OPT is an optimization oracle fd®.

1 Xo«—Xe Py /* select some point of B,. =*/
2: loop
3:
/* find proper face certificate */
4. (statusp,y) — OPT(—a).
5. if status= optimal andf3 = —bthen
6: return (equation, a,b) /* PC{x:alx=Db} =*/
7. elseif status= unbounded then
8: X<+ Y+ Xo.
9. dse
10: X<y.
11:
/* get (non-)facet certificate */

12: if (0,0) is the unique solution for Problem (1f)en
13: return (facet, a,b)

14: (v,w) < a non-trivial solution for Problem (10).
15: (ay,by,X;) « TILT(a,b,v,w, X, Py, OPT).

16: (a_,b_,x)« TILT(a,b,—Vv,—w,X, P, OPT).

17:
/% update a,b,P,,Ps- */
18: if (ay,by)=(—a_,—b_) = (v,w) then
19: P — P U{v}. /* grow dimension of Py */
20: €lse
21: Ay — (alx —by) /llar].
22: Ao (@x —b_) /fla_|.
23: if A, > A_then
24: (a,b) — (ay,by).
25: Po — PoU{X;}. /* grow dimension of P, */
26: else
27: (a,b) — (a_,b_),
28: Po — RoU{x_}. /* grow dimension of P, */

If max(v'x: x € P) is unbounded, then we are in the situation depicted by Figure 2(c) or by
Figure 1. In this case, we have a mnapf P returned by the optimization oracle. Singkx < b is
a valid inequality forP, we havea'r < 0. LetX = x+r, wherex is any point inP,, note thatx’ is
affinely independent frorf,, sincev’ x = w for all points inP, andv'r > 0. If, on the other hand,
max(v'x : x € P) exists, then defin® as the optimal solution to mé&x' x : x € P) that is returned
by the oracle; in this case, we have again thag affinely independent frorR,.
z X1 %o z X Xo

e

_g<\

_g<\

Figure 3: Sequence of push stepskor

To continue our algorithm we will find a positive combinationvdk < w and ofa’x < b such
that every point irP, still satisfies it at equality, but such thdtalso satisfies it at equality. For this
letA :==v'xX —w> 0, u:=b—a'x >0, and define the inequality

(V,W) = A(a,b) + p(v,w). (11)

Since (11) is a positive combination ¢& b) and (v,w), every pointx in P, satisfiesv'Tx = w'.
Moreoverx also satisfies (11) at equality. To see this, notewflat —w = A (a"x —b) 4+ (V' X —
w) = —Au+ A = 0. Now we replacév,w) by (V,w') andx by X, and we repeat the previous
process.

Every step where we redefine our tentativev) inequality is called @ushstep. Figure 3 shows
a sequence of push steps that end with the desired inequality.

Algorithm 3 gives an outline of the tilting algorithm, and also defines the outpiit. fd/e now
show that this algorithm satisfies Condition 1.

Lemma 1. In every push step, there existg > 0 and px > 0 such that(vi, wy) = Lk(Vo, Wo) +
Ak(a,b) and whereug + A > 0

Algorithm 3 TILT(a, b, Vo, Wo, X0, X0, OPT)
Require: X, € P, a'Xo < b, V] Xo = Wo, %o € Py, @7 Xo = b, V] Xo = Wo.
a'x < bis a valid inequality foP, (a, b) and(vo, Wo) are linearly independent.
1: k0.
2: loop
(statuspB,y) < OPT(w)
if status= optimal andf3 =wthen
return (Vi, Wk, X«)
if status= unbounded then
X1 < Y+ Xo
else
X1 <Y
10 A VX1 — W, U b—al X1
11: Vkp1 < Aa+ UVk, Wir1 < Ab+ pw.
12 k—k+1.

Proof. We proceed by induction, the case- 0 being trivially true withA, = 0, uo = 1. We assume
now that the result is true fd¢g, and that the algorithm does not stop during this iteration (otherwise
we have finished the proof). We have th¥at 1 is such thatA = vb(kﬂ — W > 0 and thatu =
b—alx, 1 > 0. By definition, (Vi;1,Wk;1) = A(a,b) + (v, Wk), and by assumptiofivi, wy) =
Ak(a,b) + pk(Vo,Wo). Now, by definingAy 1 = A + Axu and L1 = Uk, We obtain our result. [

Lemma 2. At each stepyy and allx € P, satisfy \Zx = Wk, andXy is affinely independent fromy P

Proof. By construction. O

It remains to prove that the algorithm terminates after a finite number of stepshisTend,
we need to make the assumption that for a given polyheBrthe oracle will return only one of a
finite number of rays and points. This assumption is mild in our context, sinceaylyedron with
rational data can be represented as a finitely generated cone plus Yes boli of a finite set of
feasible points. To verify that the algorithm terminates under this assumptishovethat there is
a function that strictly increases in every iteration.

Definef(A,u) : Ry xRy — Ry U{o} asf(A,u) = % where we sef = w, vt > 0.

Lemma 3. For all integers kz 0, f(Ak, k) < F(Aks1, Hkr1)-

Proof. Note thatf (Ao, o) = 7 =0, moreover, by the proof of Lemma 1 we have th@ 1, tk+1) =

“Ak“ s ﬁt Note that ifux = 0 then (v, wi) = Ak(a,b), thus ensuring (by hypothesis of the
algorlthm) that the algorithm will stop in |terat|dn+ 1. Then, we may assume that+# 0. By the
previous equations, we have thdy 1, k1) = uuk + f(Ak, k). SinceA > 0 andu > 0, we have

that 7. > 0. This proves our claim. O

w
ax

Lemma 4. Atevery iteration, A, L) = g5

Proof. Note that the statement is true fo= 0. For any othek we havef (g1, Uy, 1) = "kxktluiﬁ"fkk““\k

andvii 1 — Wi + UAk = MA@ 1 + UkV¥cr 1 — AkD — LW+ (0 — @%c; 1) Ak = (VX1 — W). Since
U = b—ax. 1, we obtain the result. O

10

Theorem 5. If the optimization oracle returns only a finite number of distinct feasible paimttor
rays, then Algorithm 3 terminates in a finite number of steps.

Proof. First, note that if in step 3 of Algorithm 3 the oracle retufngbounded, r¢; 1), thenxy,;1 =

Mer1+ Xo, and sinceax, = b, vx, = w we obtain thatf (A, 1, Uy 1) = %ﬁl On the other hand, if

the oracle returngoptimal, X, 1) and f (Axy 1, txs1) = ‘ﬁ;ﬂ’f This proves thaf provides a total
order for all possible outputs of the oracle. Since at every iteration werestbp or increasg, and

the possible answers of the oracle are finite, the algorithm must terminate. O

3.2 Moreon thefacet procedure

The inequality produced by our facet procedure can have arbitrandyl siolation, as illustrated in
Figure 4. However, the distance frothto the set of points satisfying bosﬂrx <b, anda’x<b_

V4
T | /agLXS b+

-~

—+ °
Pl =
1 Na x<b_

—a'x<b

Figure 4: Rotated inequalities with small violation.

is at least the distance frori to the set of points satisfying our original constra@ix < b. We
therefore choose to record bcﬁbx <hb, anda’x<b_inour implementation, but we proceed with
the facet procedure only on the most violated of the two inequalities. Notevthatight take this
approach even further and iterate both inequalities through the faadane. The advantage of
such a modification is that we find a set of facet®dhat ensure the same violation as the original
inequality, but the drawback is that it may require many more calls to the oracle.

High-dimensional faces. While the appeal of facets is clear, it may be that the computational
cost of the overall procedure is too large. This suggests that we maytovsiop the process after
a certain number of steps. In this setting, an interesting question is how sheuttioose our
non-trivial solutionv,w to perform each tilting round?

Let us take a closer look into the facet certificate LP. Suppose we hagmiexp € P in the
affine space defined by the pointsHaU {X} = {X : i = 1,...,K}. Then, by definition, there exists
AieRi=1,...,Ksuchthaty (A :i=1,...,K)=1and such thag (Aix; : i = 1,...,K) =X*. This

11

allows us to re-write the facet certificate LP as

wlysp)+vip=0 VpePs, (12a)
W—VIx=0 VxePRU{X} (12b)
w—Vv'x = 0. (12c)

Note that (12) is equivalent to our original formulation (10) except ferbrmalizing constraints
in v,w. Moreover, by replacingv in equation (12b) we obtain

wyip)+Vvip=0, VpeP, (13a)
VI —X) =0, V%€ PRU{X} (13b)
w—Vv'x = 0. (13c)

Now by choosingk* as thelL,-projection ofx* in the affine space generated ByU {x}, we have
that(x* —x*)Tx < (x* —x*)Tx" is the best inequality separatirgand the affine space generated by
P, U{X}, in the sense of violation of the inequality and assuming that its nofjxiis X*||».

This suggests that we consider solving the problem

max V' (x"—X") (14a)
wylp)+vip=0 VpeP, (14b)
VI —X)=0, VxePRU{X}, (14c)
w—V'X =0, (14d)

V]2 < 1. (14e)

Note that a solution to (14) gives us a closest approximation (undeptherm) to the ideal solution
X" —X* that also satisfies equation (14b).

However, if we are to take this approach, there remains the problem ofutmgg*. Fortu-
nately, that is not needed at all. Indeed, by back-substituting (14dhenceliminating the linearly
dependent equation (14d), we end with the equivalent problem

max Vv'x*—w (15a)
wWygp)+V pi=0, Vp € Py, (15b)
w—Vvix =0, VxePRU{X}, (15¢)

vl < 1. (15d)

A difficulty with (15) is that constraint (15d) is not linear, but note that if ve@lace it with
an L,-normalization we should also obtain an approximatiow*te- X*. This is the approach that
we take in our implementation. At every step of the facet procedure deddnbAlgorithm 2, we
choose a non-trivial solution (if one exists) of the problem

max V' x*—w (16a)
W(ysp)+Vvipi=0, VpePR, (16b)
w—Vvix =0, VxePU{X}, (16c)
_1<vi<1l (16d)

12

This technique can be viewed as a greedy approach for choosingattemativev’ x < winequal-
ity. It would be interesting to find procedures to choose bo#md (v,w) such that the final facet
satisfies certain properties, for example, that its area is large.

4 Themapping problem

Rather than directly computing inequalities g, the local-cuts procedure works on related sets
designed to be easier to handle via optimization methods. Consider a fumcti&h — R and

a setP, C R" such that for all points € Rp we havert(x) € P)». We call T a mapping function
and we callP, avalid mappingfor Rp. We denote by;p andP,p the convex hull op andPp,
respectively.

If mis a linear (affine) function, then any valid inequaliy < b for P, yields a potential
cutting plane for the original problem, namedy ri(x) < b. Indeed, if we writerr(x) = Mx — my,
then the cut in the original space can be writtera@blx < b+ a'm,. Note also that any linear
mapping function satisfies(Pip) C I5{p. We call T aseparatingmapping function ifri(x*) ¢ Pp.

Many of the well-known techniques for producing general MIP cutting ggaran be framed
as methods for obtaining valid inequalities in suitably mapped spaces, includihg@s, MIR
inequalities, and Fenchel cuts. The local-cuts paradigm provides a nfethextending and com-
bining these procedures, giving the possibility of strengthening the LRatidas, at the expense
of increased computation in the construction of the cuts.

A general discussion of separating mappings is given in the Ph.D. thésspofoza [19]. Here
we illustrate the procedure by considering a simple class catipticit mappings

Implicit mappings. A natural way to obtain a mapping is to defiRg as the set of pointg that
are a linear combination of pointsatisfying a set of linear combinations of the original constraints.
More precisely, we say that a mappingnplicit if

Pp= {ye]R”' :IXeR" | <x<u, RAX=Rd,y=MXx,y; € Z,Vi € I’}

whereRandM are matrices and C {1,...,n’}. In this case the mapping function is jugtx) = Mx.
By considering the systeflRAx= Rd obtained by taking linear combinations Ak = d, the class
of implicit mappings includes those relaxations created by selecting rowsiwipdes tableau for
max(c'x: x € A p), such as the GMI cuts. In the case of GMI cuts, the mappjpdas a single
integer variable, obtained by aggregating the integer variables appé@atiregtableau row.

A sufficient condition for an implicit mapping to be valid is to havig =0,v¥i €1’ j ¢ 1, and
Mij € Z,Yiel',j e l. Thatis, all integer variables iR, must be integer combinations of integer
variables inRp. A necessary condition for an implicit mapping to be separating is that thests ex
some objective functiop # 0 such that ma Ty : y € P/p) = u" Mx*, wherex* is the point that we
are separating. If we also have thdk*) is the unique optimal solution to mgx"y:y € F/), and
some integer-constrained varialste<*); = yi',i € I, is fractional, then the mapping is separating.

Simplelocal cuts. The well-known result of Lenstra [25] provides a polynomial-time algorithm
for solving MIP instances having a fixed number of integer variables. Juggests the following
implicit mapping. SetM andR as identity matrices, and defimeC | such thatl’| < k for some

13

fixed k. We show in a computational study that this simple process can productweffeuts, with
k as small as four.

5 Thelocal-cutsprocedure

We are now in position to describe the full scheme for MIP local cuts. Wewttr a given MIP
problemBp, a linear relaxatiorP_p, and a fractional basic optimal solutieti to R p. We choose
some linear mappingr and an image spadg, for which we provide an oracle descriptiar .
We then call Algorithm 1 asSEP(Op., 11(X"),0,0). If the algorithm finds a separating inequality,
we proceed to call Algorithm 2 using as input the separating inequality foymdgorithm 1, and
using ad>, the set of points satisfying the separating inequality at equality. We then &kesthiting
inequalities and map them back to the original space and add them to ourtcetexation.

In our implementation we try six mappings before re-solving the LP relaxatidsn, Anstead
of asking for facets of the mapped problem, we ask only for faces with dilbemt least ten, but
keeping all intermediate constraints produced by algori#AGET.

Precision. Any error in the solution of the separation LP, or in the solutions providethby
oracle, may lead to invalid inequalities. Applegate et al. [5] deal with this isguesimg integer
representations of the inequalities and of solutions, and by using an evhoke solutions are
always integer. We follow their strategy, using rational representatiodgtee exact rational LP
solver described in [6].

A point to note when working with rational inequalities is that their represematiay grow as
we go along in the algorithm. From our experiments we know that even LP gestamith simple
coefficients can generate solutions that need a long encoding to beesta®, and it seems to be
the case that as we allow more and more complicated inequalities, the situationayang. To
settle this point, we choose to accept only cuts such that the denominatoumedator of each
coefficient can be expressed using at most some fixed number of bdar tasts we set this limit
at 3200 bits.

Improving oracles. In the tilting procedure described in Algorithm 3, at each iteration we have a
candidate inequality and we ask whether or not it is valid for the polyhedfdtris not valid, then

it is sufficient to find a point irP that violates the candidate inequality. In particular, an optimal
LP solution is not required. We have seen in practice that working with anamnproving oracle
speeds-up the overall performance of the local-cut procedure.

5.1 Computational results

The goal of our computational study is to demonstrate the feasibility of cgrotihthe local-cuts
process in general MIP instances, and to evaluate if effective cuttingplzan be obtained via the
simple mappings described in Section 4.

Recall that simple mappings select a small nunibef integer variables and relax the inte-
grality conditions for all othek;, i € I. To carry out the local-cuts process, we need to create an
optimization oracle for these relaxations. For this purpose, we have implemamtexkact ratio-
nal branch-and-cut MIP code on top of the exact LP solver. The impitien includes a form of

14

pseudo-cost branching as discussed in [26, 2, 1], K-cuts as ex@lmifl 7], GMI cuts derived from
the aggregation of two tableau rows, and super additive lifted coveratitgs as in both [23, 7].

To test the effectiveness of the local cuts, we first computed defauklaRations by repeatedly
applying the cutting-plane routines listed above. A great advantage &irwgdn rational arithmetic
is that we can run these routines until no violated cuts are produced; th#meterminating them
after several rounds in an effort to limit numerical difficulties. Each tbof cutting works by
sequentially looking for lifted cover inequalities, then K-cuts, and then Ggroats derived from
the aggregation of two tableau rows. If one of the procedures is sfataken we add up to 500
of the cuts, re-solve the resulting LP, and start the process anew.

When testing local cuts, we also use our default cutting-plane-generatthods, that is, the
local cuts are generated after default cuts have failed. If acceptalaleciats are found, our default
routines are first tried again during the next round of cutting, until ndtleeccutting-plane schemes
can produced acceptable cuts.

To select thek variables in the simple mappings, we order the integer variablescording to
the distance ok’ to the nearest integer value, whetds the current optimal LP solution. The first
mapping uses thiemost fractional variables, and each subsequent mapping is obtainaddnnly
choosing one of thk variables and replacing it by a random choice among the remaining fralctiona
variables.

Test bed. Since our procedure is fully rational, there are no rounding errorsodrgms caused by
cutting off feasible solutions. This advantage comes at a price: our compgtatio be very time
consuming. For this this reason we use as our test bed a set of smallecésstdntained from the
MIPLIB 3.0 [10], MIBLIB 2003 [3], and Mittleman [28] collections. Fromithfull set, we removed
any instance that could not be solved in under five minutes with CPLEX 1@]0 Rurthermore,

to restrict to instances where cutting is heeded to obtain a good relaxatiaisoveliminated the
instances having an integrality gap of less than 1%, that is, the differetaedn the MIP optimal
value and the optimal value of the original LP relaxation is less than 1% of tievdlue. The

remaining 38 instances are listed in Table 1.

aflow30a air05 bcl blend2 fiber fixnet6
flugpl gt2 [152lav Iseu mas76 misc03
misc07 mod008 neosl0 neosl neos20 neos2l
neos7 nug08 p0033 p0201 p0282 pkil
pp08aCUTS pp08a giu gnetl gnedl rentacar
rgn rout setlch stein27 stein4d5 swathl
swath2 vpm2

Table 1: Test set instances

Improved LP bounds. We tested the following three configurations.
e LO: Our default set of cutting planes.
e LS 4: Local cuts from simple mappings wikh= 4 integer variables.

e LS 6: Local cuts from simple mappings wikh= 6 integer variables.

15

For each configuration and all 38 test instances, we computed LP refa@timbranching allowed)
using up to seven days computing time for each instance and recordingaheRitbound. If the
configuration did run to termination, then we recorded the LP value foutiteand of the seven-
day period. The tests were carried on computes nodes equipped with@RzZ3atel Xeon E5345
processor and 8GB of random-access memory.

To compare the results, for each instance and each configuration mytaxd the ratio of the
LP bound obtained versus the best of the LP bounds obtained by alldbmégurations. The full
set of ratios is plotted in the performance profile presented in Figure 5isliplidt, the horizontal

100 P g . |
S : : Lo
LS4 ----
LS6 -~
5
3
2
i i |
0 20 40 60 80 100

% of instances

Figure 5: Performance profile for percentage of best LP values @dkain

axis gives the percentage of test instances and the vertical axis geaveB4bound ratios scaled by
100. For each of the three configurations, a poiny) in the plot means that on all bxo instances
the LP bound for this configuration was at legi#t of the best of the three LP bounds. Thus a higher
curve gives a better performing configuration.

It can be seen from the plot that simple local cuts with 4 attained a reasonable overall
improvement over the default cutting routine, while the runs kith6 were superior on a number
of instances. On average, LO attained 97.6% of the best lower bound,dttained 99.2%, and
LS_6 attained 97.8%. The lower value for l&sScompared with LS4 is due to the fact that many
more of the LS6 runs did not complete in the allowed time period. If we restrict our results to the
12 instances where all three configurations ran to completion, then thdtdefde attained 96.6%
of the best lower bound, L8 attained 99.0%, and L6 attained 99.9%.

The improved LP bounds obtained by simple local cuts come at increaseditaiiopal costs
and we cannot make a claim that the method is one that can be adopted indtieapsmlution
of large MIP instances. The positive results do however suggest thawtrall local-cuts process
is one that could be considered in settings where the best-possible LBti@tais required, for
example, in a preliminary step to a large-scale parallel branch-and-atg¢hsevhere individual
processors can be devoted to evaluating potential mappings.

16

5.2

I mplementation I ssues

In several instances we were unable to add cuts to our LP relaxationdsettee encoding of the
inequalities exceeded our bit-length limits. This raises the question of whethgraoiblem of
long encodings is common and unavoidable, or if there are techniguese@akrelaxations) that
naturally yield inequalities with short descriptions. The question is not jusétorical one, since
in the case of the TSP the local-cuts procedure usually finds inequalitiesheithdescriptions. An
interesting research topic is to find mappings that are both good in this nuhsensz and achieve
strong cuts.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

T. ACHTERBERG SCIP: solving constraint integer programMathematical Programming
Computation, 1 (2009), pp. 1-41.

T. ACHTERBERG T. KOCH, AND A. MARTIN, Branching rules revisitedOperations Re-
search Letters, 33 (2005), pp. 42-54.

T. ACHTERBERG T. KOCH, AND A. MARTIN, MIPLIB 2003 Operations Research Letters,
34 (2006), pp. 1-12.

E. ALTHAUS, T. POLZIN, AND S. V. DANESHMAND, Improving linear programming ap-
proaches for the Steiner tree problem Experimental and Efficient Algorithms, Second In-
ternational Workshop, WEA 2003, K. Jansen, M. Margraf, M. Mdslitand J. D. P. Rolim,
eds., Springer, 2003, pp. 1-14.

D. APPLEGATE R. E. BiXBY, V. CHVATAL, AND W. COOK, The Traveling Salesman Prob-
lem: A Computational StugiPrinceton University Press, Princeton, New Jersey, 2006.

D. APPLEGATE W. COOK, S. DasH, AND D. EspINOzA, Exact solutions to linear program-
ming problemsOperations Research Letters, 35 (2007), pp. 693—-699.

A. ATAMTURK, Sequence independent lifting for mixed—integer programm@ygrations
Research, 52 (2004), pp. 487-490.

E. BALAS, S. CERIA, AND G. CORNUEJOLS A lift-and-project cutting plane algorithm for
mixed 0-1 programaviathematical Programming, 58 (1993), pp. 295-324.

E. BALAS, S. CERIA, G. CORNUEJOLS AND N. NATRAJ, Gomory cuts revisitedperations
Research Letters, 19 (1996), pp. 1-9.

R. E. BxBY, E. A. BoyD, AND R. R. INDOVINA, MIPLIB: A test set of mixed integer
programming problemsSIAM News, 25 (1992), p. 16.

R. E. BIXBY, M. FENELON, Z. GU, E. ROTHBERG, AND R. WUNDERLING, Mixed-integer
programming: A progress repqrin The Sharpest Cut: The Impact of Manfred Padberg and
His Work, M. Gibtschel, ed., SIAM, Philadelphia, 2004, pp. 309-325.

17

[12] E. A. BoyD, Generating Fenchel cutting planes for knapsack polyhe8tAM Journal on
Optimization, 3 (1993), pp. 734-750.

[13] ——, Fenchel cutting planes for integer prograp@@perations Research, 42 (1994), pp. 53—
64.

[14] C. BUCHHEIM, F. LIERS, AND M. OSWALD, Local cuts revisitedOperations Research Let-
ters, 36 (2008), pp. 430-433.

[15] ——, Speeding up IP-based algorithms for constrained quadratic 0—1 optimigatech.
Rep. zaik2008-578, Zentrunif Angewandte Informatik BIn, Germany, 2008.

[16] A. CAPRARA AND M. FISCHETTI, 0,1/2-Chwatal-Gomory cutsMathematical Programming,
74 (1996), pp. 221-235.

[17] G. CORNUEJOLS Y. LI, AND D. VANDENBUSSCHE K-cuts: A variation of Gomory mixed
integer cuts from the LP tablealNFORMS J. on Computing, 15 (2003), pp. 385—-396.

[18] H. P. CROWDER, E. L. JOHNSON, AND M. W. PADBERG, Solving large-scale zero-one linear
programming problemsOperations Research, 31 (1983), pp. 803-834.

[19] D. G. EspiNOzA, On Linear Programming, Integer Programming and Cutting Plari&sD
thesis, School of Industrial and Systems Engineering, Georgia Institecbhology, March
2006.

[20] R. E. GOMORY, An algorithm for the mixed integer problemech. Rep. RM-2597, RAND
Corporation, 1960.

[21] M. GROTSCHEL, L. LOVASZ, AND A. SCHRIJVER Geometric Algorithms and Combinato-
rial Optimization, 2nd EditionSpringer, Berlin, Germany, 1993.

[22] Z. Gu, G. L. NEMHAUSER, AND M. W. P. SAVELSBERGH, Lifted cover inequalities for 0-1
integer programsMathematical Programming, 85 (1999), pp. 437-467.

[23] ——, Sequence independent lifting in mixed integer programpiogrnal of Combinatorial
Optimization, 4 (2000), pp. 109-129.

[24] ILOG, User’'s Manual, ILOG CPLEX 10,0LOG CPLEX Division, Incline Village, Nevada,
2006.

[25] H. W. LENSTRAJR., Integer programming with a fixed number of variahl®tathematics of
Operations Research, 8 (1983), pp. 538-548.

[26] J. T. LINDEROTH AND M. W. P. SAVELSBERGH, A computational study of search strategies
for mixed integer programmingNFORMS J. on Computing, 11 (1999), pp. 173-187.

[27] H. MARCHAND AND L. A. WOLSEY, Aggregation and mixed integer rounding to solve MIPs
Operations Research, 49 (2003), pp. 363—-371.

[28] H. MITTELMANN, Mixed integer linear programming benchmark (free codes)
/Ihttp://plato.asu.edu/ftp/milpf.html, (2008).

18

