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Abstract

A general framework for cutting-plane generation was proposed by Applegate et al. in the
context of the traveling salesman problem. The process considers the image of a problem
space under a linear mapping, chosen so that a relaxation of the mapped problem can be solved
efficiently. Optimization in the mapped space can be used to find a separating hyperplane if
one exists, and via substitution this gives a cutting plane in the original space. We apply this
procedure to general mixed-integer programming problems,obtaining a range of possibilities
for new sources of cutting planes.

1 Introduction

Consider a mixed-integer set

PIP = {x∈ Rn : Ax= d; l ≤ x≤ u; x j ∈ Z, ∀ j ∈ I}, (1)

whereA∈Qm×n, d ∈Qm, l ∈ (Q∪{−∞})n, u∈ (Q∪{+∞})n, andI ⊆ {1, . . . ,n}. As usual,Z, Q,
andR denote the integer, rational, and real numbers, respectively. Given anobjective vectorc∈Qn,
the problem of maximizingcTx subject tox∈ PIP is amixed-integer programming(MIP) problem.
A linear relaxation

PLP = {x∈ Rn : Ax= d; A′x≤ d′; l ≤ x≤ u} (2)
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of PIP is obtained by dropping the integer restrictions on the variablesx j for j ∈ I , and possibly
adding a system of inequalitiesA′x≤ d′ that is satisfied by all vectors inPIP. The additional in-
equalitiesA′x≤ d′ are calledcutting planes, or cuts.

In the cutting-plane method, cuts are added in an iterative fashion, selecting inequalities that
are valid forPIP, but violated by an optimal solutionx∗ to the linear programming (LP) problem
max(cTx : x ∈ PLP). The cutting-plane method is combined with a branch-and-bound search in a
hybrid algorithm, known as branch-and-cut, that is the most successfulMIP solution approach to
date.

Given a basic optimal solutionx∗ to max(cTx : x∈ PLP), an elegant technique of Gomory [20]
efficiently produces a cutting plane wheneverx∗ /∈ PIP. Indeed, the Gomory mixed-integer (GMI)
cuts found by this method are one of the most important practical sources ofMIP cutting planes,
as reported in computational tests by Bixby et al. [11]. In their study, effectiveness is measured by
the improvement in the overall running time of the branch-and-cut algorithm for solving a specific
large collection of MIP instances. In other studies, effectiveness is measured as the increase in the
lower bound produced by the optimal objective value of the LP relaxation problem. With either
measure, the additional value of GMI cuts tends to decrease as more and more cuts are added. The
current practical reply to this decreasing performance is to use a varietyof techniques for producing
cuts in MIP solvers. Classes of MIP cutting planes currently adopted in leading codes include GMI
cuts [9], mixed-integer-rounding (MIR) inequalities [27], knapsack covers [18, 23], flow covers
[22], lift-and-project cuts [8] and{0, 1

2}-Chvátal-Gomory cuts [16].
An alternative approach to cutting-plane generation was proposed by Applegate et al. [5] in

the context of the traveling salesman problem (TSP). This work introduceda local-cuts procedure
that relies on the equivalence of optimization and separation to get cuts fromsmall (graphical)
TSP instances that are the result of linear mappings of the original problem.The general process
was subsequently adopted by Buchheim et al. [14, 15] in the solution of constrained quadratic 0-1
optimization problems and by Althaus et al. [4] in the solution of Steiner-tree problems.

The goal of the current paper is to develop the local-cuts paradigm for general mixed-integer
programming. We begin in Section 2 by presenting a standard LP-based method for generating MIP
cuts using an oracle description of a relaxation of the original problem. In Section 3 we show how
to obtain facets, or high-dimensional faces, from valid inequalities produced by the cut-generation
process, generalizing the tilting procedure of Applegate et al. This is followed, in Section 4, by a
discussion of linear mappings to simplify the mixed-integer setPIP. In Section 5 we present the
overall framework for local cuts for general MIP problems, and discuss results of a computational
study using a simple choice of a mapping function.

2 Separation via optimization

Let P⊆Rn be a rational polyhedron and letx∗ ∈Qn. Theseparation problemfor (P,x∗) is to find an
inequalityaTx≤ b that is valid forP but violated byx∗, if such an inequality exists. A fundamental
result in LP theory is the polynomial-time equivalence of separation and optimization for rational
polyhedra, via the ellipsoid method. This theorem and its many combinatorial applications are
discussed in Gr̈otschel et al. [21]. In this context, polyhedra are represented implicitly. For example,
the convex hull of a mixed-integer setPIP can be represented byAx= d, l ≤ x≤ u andxi ∈ Z, ∀i ∈
I ⊆ {1, . . . ,n}, rather than by an explicit linear description of the polyhedron.
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We say thatOPT is anoptimization oraclefor P if, for any c∈Qn, it asserts thatP is the empty
set, or providesx∗ ∈ P∩Qn such thatcTx∗ ≥ cTx for all x ∈ P, or provides a rayr∗ ∈ Qn of P
such thatcTr∗ > 0. (A vectorr is called a ray of the polyhedronP if there existsx ∈ P such that
x+ λ r ∈ P for all positive scalarsλ .) The output of the oracle is of the form(status,β ,y), where
statusis one ofempty, unbounded or optimal; β contains the optimal value of max(cTx : x∈ P)
if the problem has an optimal solution; andy contains the optimal solution or an unbounded ray if
the status isoptimal or unbounded, respectively.

An optimization oracle can be used as a practical vehicle for solving the separation problem
without resorting to the ellipsoid method (which can be overly time-consuming in thiscontext). This
idea was championed by Boyd [12, 13], who introduced a cutting-plane technique for MIP instances
where the variables are restricted to take on 0 or 1 values. Boyd considers single-row relaxations,
where his access to the corresponding polytope is via an optimization oracle,implemented as a
dynamic-programming algorithm for 0-1 knapsack problems. His separationmethod is a variant of
the simplex algorithm, and he calls the separating inequalities Fenchel cutting planes.

In our work on general MIP instances, we adopt a straightforward approach, based on an LP
formulation of the separation problem. Let us write the rational polyhedronP asPg +Pr , wherePg

is a bounded polyhedron having vertices{gi : i ∈ Ig} ⊂ Qn andPr is a convex cone generated by
rays{r i : i ∈ Ir} ⊂ Qn; hereIg andIr are finite sets, allowing us to index the vertices and rays. A
givenx∗ ∈Qn is an element ofP if and only if there is a solution(λ g,λ r) to the system

∑
i∈Ig

λ g
i gi + ∑

i∈Ir

λ r
i r i = x∗, eTλ g = 1, λ g,λ r ≥ 0, (3)

wheree∈ Qn denotes the vector of all ones. By duality, system (3) has no solution if andonly if
there exista∈Qn andb∈Q such that

aTgi−b ≤ 0, ∀i ∈ Ig,
aTr i ≤ 0, ∀i ∈ Ir ,

aTx∗−b > 0.
(4)

Any cut that separatesx∗ from P corresponds to a solution of (4). To choose among these
possible cuts, we formulate the problem of maximizing the violation subject to the normalization
‖a‖1 = 1, that is, we set theL1-norm ofa to 1. This is a technique described in a number of studies,
for example, Balas et al. [8]. The resulting LP model is

max aTx∗−b
s.t. aTgi−b≤ 0, ∀i ∈ Ig,

aTr i ≤ 0, ∀i ∈ Ir ,
a−u+v = 0, eT(u+v) = 1, u,v≥ 0.

(5)

Its LP dual can be written as

min s
s.t. ∑

i∈Ig
λ g

i gi + ∑
i∈Ir

λ r
i r i +w = x∗,

eTλ g = 1,
−w+seT ≥ 0, w+seT ≥ 0, λ r ,λ g≥ 0.

(6)
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The LP problem (6) has 3n+ 1 constraints other than bounds on individual variables. If we
choose to minimize‖a‖1 subject to the constraintaTx∗ = b+ 1, then we obtain the following for-
mulation for the problem

min eT(u+v)
s.t. aTgi−b≤ 0 ∀i ∈ Ig,

aTr i ≤ 0 ∀i ∈ Ir ,
a−v+u = 0, aTx∗−b = 1, u,v≥ 0,

(7)

whose dual is
max s

s.t. sx∗− ∑
i∈Ig

λ g
i gi− ∑

i∈Ir
λ r

i r i +w = 0,

−s+eTλ g = 0,
λ g,λ r ≥ 0, −e≤ w≤ e.

(8)

Note that (8) has onlyn+ 1 constraints other than bounds on individual variables. Problem (8) is
trivially feasible (the all-zero vector is always a solution); if (8) has an optimal solution, its dual
gives us a separating inequality forP andx∗; if (8) is unbounded, then the unbounded ray provides
us with a decomposition ofx∗ into elements ofPg andPr , thus yielding a proof thatx∗ ∈ P. Finally,
note that problems (5) and (7) are essentially the same, in the sense that anyoptimal solution of (5)
is an optimal solution of (7) (after scaling) and any optimal solution of (7) is anoptimal solution
for (5) (after scaling).

The large number of variables in problem (8) can be handled by employing acolumn-generation
technique. To begin, we select any (possibly empty) subsets of points andrays inP, with index sets
Ig andIr , respectively. We then solve (8) with this newIg andIr . If the LP problem is unbounded,
then we have a proof thatx∗ ∈P. Otherwise, we obtain a tentative inequalityaTx≤ b that is violated
by x∗. The optimization oracle can be called to check whetherP⊆ {x : aTx≤ b} by maximizing
aTx overP. If P⊆ {x : aTx≤ b}, we return with the inequalityaTx≤ b. Otherwise, we either find a
point g j ∈ P such thataTg j > b and addj to Ig, or we find a rayr j of P such thataTr j > 0 and add
j to Ir , and repeat the process. A pseudo-code for the method is given in Algorithm 1. We apply
Algorithm 1 in our local-cuts procedure, after mapping to a space where anefficient optimization
oracle is available.

3 Obtaining high-dimensional faces

Consider a rational polyhedronP 6= /0, a rational vectorx∗ /∈ P, and a separating inequality

aTx≤ b (9)

found by Algorithm 1. We describe an algorithm that transforms (9) into an inequality defining a
facet ofP. The method extends the tilting algorithm for bounded polyhedra given by Applegate et
al. [5] in the context of the TSP.

Let Po⊆ P be the set of points found in Algorithm 1 satisfying (9) at equality; the assumptions
imply Po 6= /0. For arbitraryyo ∈ P, defineP⊥, the orthogonal complement ofP, as

P⊥ :=
{

x∈ Rn : xT(y−yo) = 0, ∀y∈ P
}

.
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Algorithm 1 Separation through optimization oracleSEP(OPT,x∗, Ig, Ir )

Require: OPT is an optimization oracle forP, x∗ is a point to be separated fromP,
Ig indexes an initial set of points inP, Ir indexes an initial set of rays ofP.

1: loop
2: Solve (8) overIg andIr .
3: if (8) is unboundedthen
4: return x∗ ∈ P.
5: let a,b be an optimal dual solution to (8)
6: (status,β ,y)←OPT(a).
7: if status= unbounded then
8: addy to the set of rays indexed byIr .
9: else if status= optimal andβ > b then

10: addy to the set of points indexed byIg.
11: else
12: return x∗ /∈ P, (a,b)

Let P⊥o := {p1, . . . , pr} be a generating set for a subspace of the linear spaceP⊥, and letx be a point
in P such thataTx < b. If P⊥o generates all ofP⊥, then (9) defines a facet ofP if and only if the
system

w(pT
i yo)+vT pi = 0, ∀pi ∈ P⊥o , (10a)

w−vTxi = 0, ∀xi ∈ Po, (10b)

w−vTx = 0, (10c)

(v,w) ∈ [−1,1]n+1 (10d)

has as unique solution the all-zero vector. Problem (10) can be interpreted as: Is there a hyperplane
that passes throughPo∪{x} and is orthogonal to the set of equations definingP? If the points in
Po define a facet ofP, then the answer is no, that is, the only solution to (10) is the all-zero vector.
Note that condition (10d) is not really needed, but it is included to make the feasible region of (10)
a compact set; on the other hand, condition (10c) ensuresP * {x : aTx = b}, that is, (9) defines a
proper face ofP.

The idea is to iteratively buildPo,P⊥o and candidate inequalities using the conditions in (10). For
that, we start withPo as the active points on our current candidate inequality, and withP⊥o = /0 (or any
previously known subset ofP⊥o ). The facet-finding algorithm ensures that at every iteration either
the dimension of the candidate setsPo or P⊥o is increased, while possibly modifying the current
inequality, or it proves that (9) defines a facet ofP, or it proves that (9) is valid forP as an equation.
We do this in such a way that all access toP is through an optimization oracleOPT.

To determine if our current inequalityaTx≤ b defines a proper face ofP, we maximize−aTx
over P. If the LP problem is unbounded, then we easily find a pointx ∈ P such thataTx < b; if,
on the other hand, the problem has an optimal solution with value different from−b, then such an
optimal solution provides us with the soughtx∈P; otherwise, the optimal value is−b, thus proving
thataTx = b is a valid equation forP that is violated byx∗.

If aTx≤ b defines a proper face ofP, then, usingx, we check if the only solution to (10) is
the all-zero vector. If this is the case, then we have a certificate thataTx≤ b defines a facet ofP.
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Otherwise,(v,w,x), with v 6= 0, certifies that the current inequality is not facet-defining.
Suppose we have a non-facet certificate(v,w,x). In this case we would like to increase the

dimension ofPo or of P⊥o . The idea we use is totilt our current inequalityaTx ≤ b, using as
pivot the setPo, and using as rotating direction the vector(v,w), until we touch the border ofP,
identifying a new affinely independent point. To illustrate this method, consider P′ := {(y,z) ∈ R2 :
∃x ∈ P,y = aTx,z = vTx}, as given in Figure 1. In this example, rotatingaTx≤ b produces the

P′

at
−x≤ b−→

ւat
+x≤ b+

y

z

← aTx≤ b

x∗
Po

x

w

Figure 1: The gray area representsP′; the pointsx,Po andx∗ refer to their projection intoP′.

inequalitiesaT
+x≤ b+ andaT

−x≤ b−, indicated in the figure. If we restrict ourselves to moving in
this two-dimensional space, then these two inequalities are the only ones we can obtain by rotating
aTx≤ b.

P′

at
−x≤ b−→

at
+x≤ b+

y

z

← aTx≤ b

x∗
Po

x

w

(a)

P′
at

=x≤ b=

y

z

← aTx≤ b

x∗
Po

x

w

(b)

P′

at
−x≤ b−→

← at
+x≤ b+

y

z

← aTx≤ b

x∗
Po

x

w

(c)

P′

←at
+x≤ b+

←at
−x≤ b−y

z

← aTx≤ b

x∗
Po

x

w

(d)

Figure 2: Possible ill-behaving outcomes for the mapping ofP.

We must bear in mind that Figure 1 is just one possible outcome forP′. Indeed, Figure 2 shows
four ill-behaving cases. Figure 2(a) is an example where one of the resulting inequalities coincides
with vTx≤ w; Figure 2(b) shows an example wherevTx = w is a valid equation forP, giving us a
new vectorp to add toP⊥o ; Figure 2(c) shows an example where one side of the tilting is in fact our
original inequalityaTx≤ b; and Figure 2(d) shows an example where both sides of the tilting are
our original inequality.
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We provide a tilting algorithm in Section 3.1, but in the meantime, let us assume that wehave a
tilting routine with the following characteristics:

Condition 1 (Abstract Tilting Procedure:TILT(a,b,v,w,x,Po,OPT)).

Input The input of the algorithm should satisfy all of the following:
• aTx≤ b defines a face of P and Po⊂ P is a set of points satisfying aTx = b.
• vTx≤ w is an additional inequality such that vTx = w for all x∈ Po.
• x∈ P is such that aTx < b and vTx = w.
• OPT is an optimization oracle for P.

Output The output should be:
• (v′,w′,x′) where(v′,w′) is a non-negative combination of(v,w) and of(a,b),

max(v′Tx : x∈ P) = w′, andx′ belongs to P and satisfy both v′Tx′ = w′ and is
affinely independent from Po.

If we have a non-facet certificate(v,w,x) for the inequalityaTx≤ b with point setPo and equa-
tion setP⊥o , then we can obtain botha+,b+ anda−,b− with the calls

(a+,b+,x+) = TILT(a,b,v,w,x,Po,OPT), and

(a−,b−,x−) = TILT(a,b,−v,−w,x,Po,OPT).

With this information, we can finish our facet procedure. If(v+,w+) = (v,w), and(v−,w−) =
(−v,−w), then we are in the situation depicted in Figure 2(b), and we can addv to P⊥o , increasing its
dimension by one. In any other situation we have two (possibly identical) inequalities, and we pick
the one which is most violated byx∗1; assuming thata+,b+ is the most violated one, we replace
a,b with a+,b+ and addx+ to Po. Note that the newly added point increases the dimension ofPo by
one.

Since at every step we either increase the dimension ofP⊥o or increase the dimension ofPo, the
algorithm performs at mostn iterations, and in every iteration we produce (or keep) a separating
inequality. An outline of the complete method is given in Algorithm 2.

3.1 Solving the tilting problem

We now describe an algorithm that performs the tilting procedure satisfying Condition 1. We assume
that we have a valid inequalityax≤ b for P, a non-empty, finite setPo⊂ P for which every element
x ∈ Po satisfiesaTx = b. We also have another inequality (although it might not be valid forP)
vTx≤ w and a pointx ∈ P, such that allx ∈ Po andx satisfyvTx = w and such thataTx < b. We
show how to obtaina+,b+; the procedure fora−,b− is completely analogous.

Our objective is to find a valid inequalityv′Tx≤ w′ for P and a pointx′ that is affinely inde-
pendent fromPo and is such thatv′Tx′ = w′. The idea is to usevTx≤ w as our candidate output
constraint, andx as our candidate for an affinely independent point, thus, we only need tocheck if
max(vTx : x∈ P) = w.

If we maximizevTx over P and there is an optimal solution with valuew, then we are in the
situation depicted by Figure 2(a) or Figure 2(b). In this case, we returnvTx ≤ w as our tilted
inequality and reportx as our new affinely independent point.

1It is easy to see that at least one of them must be violated byx∗ if the originalax≤ b was violated byx∗
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Algorithm 2 FACET(a,b,x∗,Po,P⊥o ,OPT)

Require: aTx≤ b is valid for P andaTx∗ > b; /0 6= Po ⊂ P is such thataTx = b for all x ∈ Po;
P⊥o ⊂ P⊥; OPT is an optimization oracle forP.

1: xo← x∈ Po /* select some point of Po. */

2: loop
3:

/* find proper face certificate */

4: (status,β ,y)←OPT(−a).
5: if status= optimal andβ =−b then
6: return (equation, a,b) /* P⊆ {x : aTx = b} */

7: else if status= unbounded then
8: x← y+xo.
9: else

10: x← y.
11:

/* get (non-)facet certificate */

12: if (0,0) is the unique solution for Problem (10)then
13: return (facet, a,b)
14: (v,w)← a non-trivial solution for Problem (10).
15: (a+,b+,x+)← TILT(a,b,v,w,x,Po,OPT).
16: (a−,b−,x−)← TILT(a,b,−v,−w,x,Po,OPT).
17:

/* update a,b,Po,P⊥o */

18: if (a+,b+) = (−a−,−b−) = (v,w) then
19: P⊥o ← P⊥o ∪{v}. /* grow dimension of P⊥o */

20: else
21: λ+←

(

aT
+x∗−b+

)

/‖a+‖.
22: λ−←

(

aT
−x∗−b−

)

/‖a−‖.
23: if λ+ > λ− then
24: (a,b)← (a+,b+).
25: Po← Po∪{x+}. /* grow dimension of Po */

26: else
27: (a,b)← (a−,b−),
28: Po← Po∪{x−}. /* grow dimension of Po */

8



If max(vTx : x ∈ P) is unbounded, then we are in the situation depicted by Figure 2(c) or by
Figure 1. In this case, we have a rayr of P returned by the optimization oracle. SinceaTx≤ b is
a valid inequality forP, we haveaTr ≤ 0. Letx′ = x+ r, wherex is any point inPo, note thatx′ is
affinely independent fromPo, sincevTx = w for all points inPo andvTr > 0. If, on the other hand,
max(vTx : x∈ P) exists, then definex′ as the optimal solution to max(vTx : x∈ P) that is returned
by the oracle; in this case, we have again thatx′ is affinely independent fromPo.

Poxo x∗
y

z

P

x1 x2

x3

x4

(a)
Poxo x∗

y

z

P

x1 x2

x3

x4

(b)

Poxo x∗
y

z

P

x1 x2

x3

x4

(c)
Poxo x∗

y

z

P

x1 x2

x3

x4

(d)

Poxo x∗
y

z

P

x1 x2

x3

x4

(e)
Poxo x∗

y

z

P

x1 x2

x3

x4

(f)

Figure 3: Sequence of push steps forP.

To continue our algorithm we will find a positive combination ofvTx≤ w and ofaTx≤ b such
that every point inPo still satisfies it at equality, but such thatx′ also satisfies it at equality. For this
let λ := vTx′−w > 0, µ := b−aTx′ ≥ 0, and define the inequality

(v′,w′) = λ (a,b)+ µ(v,w). (11)

Since (11) is a positive combination of(a,b) and (v,w), every pointx in Po satisfiesv′Tx = w′.
Moreover,x′ also satisfies (11) at equality. To see this, note thatv′Tx′−w′ = λ (aTx′−b)+µ(vTx′−
w) = −λ µ + µλ = 0. Now we replace(v,w) by (v′,w′) andx by x′, and we repeat the previous
process.

Every step where we redefine our tentative(v,w) inequality is called apushstep. Figure 3 shows
a sequence of push steps that end with the desired inequality.

Algorithm 3 gives an outline of the tilting algorithm, and also defines the output for it. We now
show that this algorithm satisfies Condition 1.

Lemma 1. In every push step, there existsλk ≥ 0 and µk ≥ 0 such that(vk,wk) = µk(vo,wo) +
λk(a,b) and whereµk +λk > 0
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Algorithm 3 TILT(a,b,vo,wo,xo,xo,OPT)

Require: xo ∈ P, aTxo < b, vT
o xo = wo,xo ∈ Po, aTxo = b, vT

o xo = wo.
aTx≤ b is a valid inequality forP, (a,b) and(vo,wo) are linearly independent.

1: k← 0.
2: loop
3: (status,β ,y)←OPT(vk)
4: if status= optimal andβ = w then
5: return (vk,wk,xk)
6: if status= unbounded then
7: xk+1← y+xo

8: else
9: xk+1← y

10: λ ← vT
k xk+1−wk, µ ← b−aTxk+1

11: vk+1← λa+ µvk, wk+1← λb+ µwk.
12: k← k+1.

Proof. We proceed by induction, the casek = 0 being trivially true withλo = 0,µo = 1. We assume
now that the result is true fork, and that the algorithm does not stop during this iteration (otherwise
we have finished the proof). We have thatxk+1 is such thatλ = vT

k xk+1−wk > 0 and thatµ =
b− aTxk+1 ≥ 0. By definition,(vk+1,wk+1) = λ (a,b) + µ(vk,wk), and by assumption(vk,wk) =
λk(a,b)+ µk(vo,wo). Now, by definingλk+1 = λ +λkµ andµk+1 = µµk, we obtain our result.

Lemma 2. At each step,xk and all x∈ Po satisfy vTk x = wk, andxk is affinely independent from Po.

Proof. By construction.

It remains to prove that the algorithm terminates after a finite number of steps. To this end,
we need to make the assumption that for a given polyhedronP the oracle will return only one of a
finite number of rays and points. This assumption is mild in our context, since anypolyhedron with
rational data can be represented as a finitely generated cone plus the convex hull of a finite set of
feasible points. To verify that the algorithm terminates under this assumption weshow that there is
a function that strictly increases in every iteration.

Define f (λ ,µ) : R+×R+→ R+∪{∞} as f (λ ,µ) = λ
µ , where we sett0 = ∞, ∀t ≥ 0.

Lemma 3. For all integers k≥ 0, f (λk,µk) < f (λk+1,µk+1).

Proof. Note thatf (λo,µo)= 0
1 = 0, moreover, by the proof of Lemma 1 we have thatf (λk+1,µk+1)=

λ+λkµ
µµk

= λ
µµk

+ λk
µk

. Note that ifµk = 0 then(vk,wk) = λk(a,b), thus ensuring (by hypothesis of the
algorithm) that the algorithm will stop in iterationk+1. Then, we may assume thatµk 6= 0. By the
previous equations, we have thatf (λk+1,µk+1) = λ

µµk
+ f (λk,µk). Sinceλ > 0 andµ ≥ 0, we have

that λ
µµk

> 0. This proves our claim.

Lemma 4. At every iteration, f(λk,µk) = vxk−w
b−axk

.

Proof. Note that the statement is true fork= 0. For any otherk we havef (λk+1,µk+1)= vkxk+1−wk+µλk
µµk

andvkxk+1−wk + µλk = λkaxk+1 + µkvxk+1−λkb− µkw+(b−axk+1)λk = µk(vxk+1−w). Since
µ = b−axk+1, we obtain the result.
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Theorem 5. If the optimization oracle returns only a finite number of distinct feasible pointsand/or
rays, then Algorithm 3 terminates in a finite number of steps.

Proof. First, note that if in step 3 of Algorithm 3 the oracle returns(unbounded, rk+1), thenxk+1 =
rk+1 + xo, and sinceaxo = b,vxo = w we obtain thatf (λk+1,µk+1) = vrk+1

−ark+1
. On the other hand, if

the oracle returns(optimal,xk+1) and f (λk+1,µk+1) = vxk+1−w
b−axk+1

. This proves thatf provides a total
order for all possible outputs of the oracle. Since at every iteration we either stop or increasef , and
the possible answers of the oracle are finite, the algorithm must terminate.

3.2 More on the facet procedure

The inequality produced by our facet procedure can have arbitrarily small violation, as illustrated in
Figure 4. However, the distance fromx∗ to the set of points satisfying bothaT

+x≤ b+ andaT
−x≤ b−

P′

ւat
+x≤ b+

տat
−x≤ b−

y

z

← aTx≤ b

x∗

Po

x

w

Figure 4: Rotated inequalities with small violation.

is at least the distance fromx∗ to the set of points satisfying our original constraintaTx≤ b. We
therefore choose to record bothaT

+x≤ b+ andaT
−x≤ b− in our implementation, but we proceed with

the facet procedure only on the most violated of the two inequalities. Note thatwe might take this
approach even further and iterate both inequalities through the facet procedure. The advantage of
such a modification is that we find a set of facets ofP that ensure the same violation as the original
inequality, but the drawback is that it may require many more calls to the oracle.

High-dimensional faces. While the appeal of facets is clear, it may be that the computational
cost of the overall procedure is too large. This suggests that we may want to stop the process after
a certain number of steps. In this setting, an interesting question is how shouldwe choose our
non-trivial solutionv,w to perform each tilting round?

Let us take a closer look into the facet certificate LP. Suppose we have a point x∗ ∈ P in the
affine space defined by the points inPo∪{x}= {xi : i = 1, . . . ,K}. Then, by definition, there exists
λi ∈R, i = 1, . . . ,K such that∑(λi : i = 1, . . . ,K) = 1 and such that∑(λixi : i = 1, . . . ,K) = x∗. This
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allows us to re-write the facet certificate LP as

w(yT
o pi)+vT pi = 0, ∀pi ∈ P⊥o , (12a)

w−vTxi = 0 ∀xi ∈ Po∪{x,} (12b)

w−vTx∗ = 0. (12c)

Note that (12) is equivalent to our original formulation (10) except for the normalizing constraints
in v,w. Moreover, by replacingw in equation (12b) we obtain

w(yT
o pi)+vT pi = 0, ∀pi ∈ P⊥o , (13a)

vT(xi−x∗) = 0, ∀xi ∈ Po∪{x}, (13b)

w−vTx∗ = 0. (13c)

Now by choosingx∗ as theL2-projection ofx∗ in the affine space generated byPo∪{x}, we have
that(x∗−x∗)Tx≤ (x∗−x∗)Tx∗ is the best inequality separatingx∗ and the affine space generated by
Po∪{x}, in the sense of violation of the inequality and assuming that its norm is‖x∗−x∗‖2.

This suggests that we consider solving the problem

max vT(x∗−x∗) (14a)

w(yT
o pi)+vT pi = 0, ∀pi ∈ P⊥o , (14b)

vT(xi−x∗) = 0, ∀xi ∈ Po∪{x}, (14c)

w−vTx∗ = 0, (14d)

‖v‖2≤ 1. (14e)

Note that a solution to (14) gives us a closest approximation (under theL2-norm) to the ideal solution
x∗−x∗ that also satisfies equation (14b).

However, if we are to take this approach, there remains the problem of computing x∗. Fortu-
nately, that is not needed at all. Indeed, by back-substituting (14d) andthen eliminating the linearly
dependent equation (14d), we end with the equivalent problem

max vTx∗−w (15a)

w(yT
o pi)+vT pi = 0, ∀pi ∈ P⊥o , (15b)

w−vTxi = 0, ∀xi ∈ Po∪{x}, (15c)

‖v‖2≤ 1. (15d)

A difficulty with (15) is that constraint (15d) is not linear, but note that if wereplace it with
anL∞-normalization we should also obtain an approximation tox∗− x∗. This is the approach that
we take in our implementation. At every step of the facet procedure described in Algorithm 2, we
choose a non-trivial solution (if one exists) of the problem

max vTx∗−w (16a)

w(yT
o pi)+vT pi = 0, ∀pi ∈ P⊥o , (16b)

w−vTxi = 0, ∀xi ∈ Po∪{x}, (16c)

−1≤ vi ≤ 1. (16d)
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This technique can be viewed as a greedy approach for choosing the new tentativevTx≤w inequal-
ity. It would be interesting to find procedures to choose bothx and(v,w) such that the final facet
satisfies certain properties, for example, that its area is large.

4 The mapping problem

Rather than directly computing inequalities forPIP, the local-cuts procedure works on related sets
designed to be easier to handle via optimization methods. Consider a functionπ : Rn→ Rn′ and
a setP′IP ⊆ Rn′ such that for all pointsx∈ PIP we haveπ(x) ∈ P′IP. We callπ a mapping function
and we callP′IP a valid mappingfor PIP. We denote byPIP andP

′
IP the convex hull ofPIP andP′IP,

respectively.
If π is a linear (affine) function, then any valid inequalityaTy≤ b for P

′
IP yields a potential

cutting plane for the original problem, namelyaTπ(x) ≤ b. Indeed, if we writeπ(x) = Mx−mo,
then the cut in the original space can be written asaTMx≤ b+ aTmo. Note also that any linear
mapping function satisfiesπ(PIP)⊂ P

′
IP. We callπ aseparatingmapping function ifπ(x∗) /∈ P′IP.

Many of the well-known techniques for producing general MIP cutting planes can be framed
as methods for obtaining valid inequalities in suitably mapped spaces, including GMI cuts, MIR
inequalities, and Fenchel cuts. The local-cuts paradigm provides a methodfor extending and com-
bining these procedures, giving the possibility of strengthening the LP relaxations, at the expense
of increased computation in the construction of the cuts.

A general discussion of separating mappings is given in the Ph.D. thesis ofEspinoza [19]. Here
we illustrate the procedure by considering a simple class calledimplicit mappings.

Implicit mappings. A natural way to obtain a mapping is to defineP′IP as the set of pointsy that
are a linear combination of pointsx satisfying a set of linear combinations of the original constraints.
More precisely, we say that a mapping isimplicit if

P′IP =
{

y∈ Rn′ : ∃x∈ Rn, l ≤ x≤ u, RAx= Rd, y = Mx, yi ∈ Z,∀i ∈ I ′
}

whereRandM are matrices andI ′⊆{1, . . . ,n′}. In this case the mapping function is justπ(x) = Mx.
By considering the systemRAx= Rd obtained by taking linear combinations ofAx= d, the class
of implicit mappings includes those relaxations created by selecting rows of a simplex tableau for
max(cTx : x∈ PLP), such as the GMI cuts. In the case of GMI cuts, the mappingP′IP has a single
integer variable, obtained by aggregating the integer variables appearingin the tableau row.

A sufficient condition for an implicit mapping to be valid is to haveMi j = 0,∀i ∈ I ′, j /∈ I , and
Mi j ∈ Z,∀i ∈ I ′, j ∈ I . That is, all integer variables inP′IP must be integer combinations of integer
variables inPIP. A necessary condition for an implicit mapping to be separating is that there exists
some objective functionµ 6= 0 such that max(µTy : y∈P′LP) = µTMx∗, wherex∗ is the point that we
are separating. If we also have thatπ(x∗) is the unique optimal solution to max(µTy : y∈ P′LP), and
some integer-constrained variableπ(x∗)i = y∗i , i ∈ I ′, is fractional, then the mapping is separating.

Simple local cuts. The well-known result of Lenstra [25] provides a polynomial-time algorithm
for solving MIP instances having a fixed number of integer variables. Thissuggests the following
implicit mapping. SetM andR as identity matrices, and defineI ′ ⊆ I such that|I ′| ≤ k for some
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fixed k. We show in a computational study that this simple process can produce effective cuts, with
k as small as four.

5 The local-cuts procedure

We are now in position to describe the full scheme for MIP local cuts. We start with a given MIP
problemPIP, a linear relaxationPLP, and a fractional basic optimal solutionx∗ to PLP. We choose
some linear mappingπ and an image spaceP′IP, for which we provide an oracle descriptionOP′IP

.
We then call Algorithm 1 asSEP(OP′IP

,π(x∗), /0, /0). If the algorithm finds a separating inequality,
we proceed to call Algorithm 2 using as input the separating inequality foundby Algorithm 1, and
using asPo the set of points satisfying the separating inequality at equality. We then take the resulting
inequalities and map them back to the original space and add them to our current relaxation.

In our implementation we try six mappings before re-solving the LP relaxation. Also, instead
of asking for facets of the mapped problem, we ask only for faces with dimension at least ten, but
keeping all intermediate constraints produced by algorithmFACET.

Precision. Any error in the solution of the separation LP, or in the solutions provided bythe
oracle, may lead to invalid inequalities. Applegate et al. [5] deal with this issue by using integer
representations of the inequalities and of solutions, and by using an oraclewhose solutions are
always integer. We follow their strategy, using rational representations and the exact rational LP
solver described in [6].

A point to note when working with rational inequalities is that their representation may grow as
we go along in the algorithm. From our experiments we know that even LP instances with simple
coefficients can generate solutions that need a long encoding to be represented, and it seems to be
the case that as we allow more and more complicated inequalities, the situation only worsens. To
settle this point, we choose to accept only cuts such that the denominator and numerator of each
coefficient can be expressed using at most some fixed number of bits. Inour tests we set this limit
at 3200 bits.

Improving oracles. In the tilting procedure described in Algorithm 3, at each iteration we have a
candidate inequality and we ask whether or not it is valid for the polyhedron. If it is not valid, then
it is sufficient to find a point inP that violates the candidate inequality. In particular, an optimal
LP solution is not required. We have seen in practice that working with suchan improving oracle
speeds-up the overall performance of the local-cut procedure.

5.1 Computational results

The goal of our computational study is to demonstrate the feasibility of carrying out the local-cuts
process in general MIP instances, and to evaluate if effective cutting planes can be obtained via the
simple mappings described in Section 4.

Recall that simple mappings select a small numberk of integer variables and relax the inte-
grality conditions for all otherxi , i ∈ I . To carry out the local-cuts process, we need to create an
optimization oracle for these relaxations. For this purpose, we have implementedan exact ratio-
nal branch-and-cut MIP code on top of the exact LP solver. The implementation includes a form of

14



pseudo-cost branching as discussed in [26, 2, 1], K-cuts as explained in [17], GMI cuts derived from
the aggregation of two tableau rows, and super additive lifted cover inequalities as in both [23, 7].

To test the effectiveness of the local cuts, we first computed default LPrelaxations by repeatedly
applying the cutting-plane routines listed above. A great advantage of working in rational arithmetic
is that we can run these routines until no violated cuts are produced, rather than terminating them
after several rounds in an effort to limit numerical difficulties. Each round of cutting works by
sequentially looking for lifted cover inequalities, then K-cuts, and then Gomory cuts derived from
the aggregation of two tableau rows. If one of the procedures is successful, then we add up to 500
of the cuts, re-solve the resulting LP, and start the process anew.

When testing local cuts, we also use our default cutting-plane-generationmethods, that is, the
local cuts are generated after default cuts have failed. If acceptable local cuts are found, our default
routines are first tried again during the next round of cutting, until none of the cutting-plane schemes
can produced acceptable cuts.

To select thek variables in the simple mappings, we order the integer variablesxi according to
the distance ofx∗i to the nearest integer value, wherex∗ is the current optimal LP solution. The first
mapping uses thek most fractional variables, and each subsequent mapping is obtained by randomly
choosing one of thek variables and replacing it by a random choice among the remaining fractional
variables.

Test bed. Since our procedure is fully rational, there are no rounding errors or problems caused by
cutting off feasible solutions. This advantage comes at a price: our computations can be very time
consuming. For this this reason we use as our test bed a set of smaller instances obtained from the
MIPLIB 3.0 [10], MIBLIB 2003 [3], and Mittleman [28] collections. From this full set, we removed
any instance that could not be solved in under five minutes with CPLEX 10.0 [24]. Furthermore,
to restrict to instances where cutting is needed to obtain a good relaxation, wealso eliminated the
instances having an integrality gap of less than 1%, that is, the difference between the MIP optimal
value and the optimal value of the original LP relaxation is less than 1% of the MIP value. The
remaining 38 instances are listed in Table 1.

aflow30a air05 bc1 blend2 fiber fixnet6
flugpl gt2 l152lav lseu mas76 misc03
misc07 mod008 neos10 neos1 neos20 neos21
neos7 nug08 p0033 p0201 p0282 pk1
pp08aCUTS pp08a qiu qnet1 qnet1o rentacar
rgn rout set1ch stein27 stein45 swath1
swath2 vpm2

Table 1: Test set instances

Improved LP bounds. We tested the following three configurations.

• LO: Our default set of cutting planes.

• LS 4: Local cuts from simple mappings withk = 4 integer variables.

• LS 6: Local cuts from simple mappings withk = 6 integer variables.
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For each configuration and all 38 test instances, we computed LP relaxations (no branching allowed)
using up to seven days computing time for each instance and recording the final LP bound. If the
configuration did run to termination, then we recorded the LP value found atthe end of the seven-
day period. The tests were carried on computes nodes equipped with a 2.33GHz Intel Xeon E5345
processor and 8GB of random-access memory.

To compare the results, for each instance and each configuration, we computed the ratio of the
LP bound obtained versus the best of the LP bounds obtained by all threeconfigurations. The full
set of ratios is plotted in the performance profile presented in Figure 5. In this plot, the horizontal
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Figure 5: Performance profile for percentage of best LP values obtained

axis gives the percentage of test instances and the vertical axis gives the LP-bound ratios scaled by
100. For each of the three configurations, a point(x,y) in the plot means that on all butx% instances
the LP bound for this configuration was at leasty% of the best of the three LP bounds. Thus a higher
curve gives a better performing configuration.

It can be seen from the plot that simple local cuts withk = 4 attained a reasonable overall
improvement over the default cutting routine, while the runs withk = 6 were superior on a number
of instances. On average, L0 attained 97.6% of the best lower bound, LS4 attained 99.2%, and
LS 6 attained 97.8%. The lower value for LS6 compared with LS4 is due to the fact that many
more of the LS6 runs did not complete in the allowed time period. If we restrict our results to the
12 instances where all three configurations ran to completion, then the default code attained 96.6%
of the best lower bound, LS4 attained 99.0%, and LS6 attained 99.9%.

The improved LP bounds obtained by simple local cuts come at increased computational costs
and we cannot make a claim that the method is one that can be adopted in the practical solution
of large MIP instances. The positive results do however suggest that the overall local-cuts process
is one that could be considered in settings where the best-possible LP relaxation is required, for
example, in a preliminary step to a large-scale parallel branch-and-cut search, where individual
processors can be devoted to evaluating potential mappings.
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5.2 Implementation Issues

In several instances we were unable to add cuts to our LP relaxation because the encoding of the
inequalities exceeded our bit-length limits. This raises the question of whether the problem of
long encodings is common and unavoidable, or if there are techniques (or special relaxations) that
naturally yield inequalities with short descriptions. The question is not just a rhetorical one, since
in the case of the TSP the local-cuts procedure usually finds inequalities with short descriptions. An
interesting research topic is to find mappings that are both good in this numerical sense and achieve
strong cuts.
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