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Solving Large-Scale Matching Problems

DAVID APPLEGATE AND WILLIAM COOK

ABSTRACT. We describe a new implementation of Edmonds’ blossom al-
gorithm for computing minimum weight perfect matchings. Combining
this with specialized pricing techniques, we obtain a solution method for
large-scale graphs. We report on the solution of a set of geometric test
problems (complete graphs, described as points in the plane), the largest
having 101,230 nodes.

1. Introduction

Let G = (V,E) be a graph with node set V and edge set E. A matching
M C E is a subset of the edges such that each node in V' is met by at most one
edge in M. It is a perfect matching if each node is met by exactly one edge. Given
a real weight w, for each e € E, the minimum weight perfect matching problem
is to find a perfect matching M with minimum weight w(M) = 3 (w. : e € M).
Applications of minimum weight perfect matchings are discussed in Ball, Bodin,
and Dial [5], Frederickson, Hocht, and Kim [15], Iri and Taguchi [23], and
Reingold and Tarjan [31].

One of the cornerstones of combinatorial optimization is Edmonds’ [14] poly-
nomial-time blossom algorithm for min-weight perfect matching. This algorithm
has been studied both from the viewpoint of obtaining good bounds on its asymp-
totic running time and from the viewpoint of developing fast computer imple-
mentations. Increasingly better time bounds have been obtained by Ball and
Derigs [6], Gabow [16], Gabow [17], Gabow, Galil, and Spencer [18], Gabow
and Tarjan [19], Galil, Micali, and Gabow [20], and Lawler [25]. The current
best is O(|V|(|E| +]V |log|E|)) by Gabow [17]. (A nice overview of some of these
results is given in Ball and Derigs [6].) Sophisticated computer implementations
are described in Burkard and Derigs [7], Cunningham and Marsh (8], Derigs [9];
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[10], [11], Derigs and Metz [12], Derigs and Metz [13], and Lessard, Rousseau,
. and Minoux [26].

An important class of matching problems are those described by specifying n
points in the plane to match so as to minimize the distance between the pairs.
In terms of graphs, this means we have the complete graph on n nodes with
the weight of each edge being the distance between its end points (under some
metric). Applications of this class of problems include the routing of mechanical
plotters as described in [23] and [31]. Fast heuristics have been proposed for
finding good solutions to these geometric problems (see Assano, Edahiro, Imai,
Iri, and Murota [3] and Avis [4]) and fast exact methods have been developed
for special configurations of points (see Marcotte and Suri [27]). Moreover,
Vaidya [34] has shown that the blossom algorithm can be implemented with an
O(|V|*5(log [V|)*) time bound for this class.

In this paper we describe a new computer implementation of the blossom
algorithm for general graphs, together with specialized methods for the solution
of geometric matching problems. Like the code of Derigs and Metz [12], we use a
fractional matching “jump start” and work with a sparse subgraph of the original
graph G, using linear programming pricing to handle the remaining edges. Our
pricing technique makes use of the least-common ancestor algorithm of Aho,
Hopcroft, and Ullman [2], and we employ a sweep method to reduce the number
of edges that need to be priced explicitly when solving geometric problems.

The paper is organized as follows. In Section 2 we give a brief outline of
the blossom algorithm, and in Section 3 we describe our implementation. The
overall strategy for solving large problems is described in Sections 4, 5, and 6.
Our computational tests are reported in Section 7, including the solution of a
geometric problem containing 101,230 nodes.

2. Blossom algorithm

The blossom algorithm is a primal-dual method based on Edmonds’ linear
programming formulation of the min-weight perfect matching problem. To de-
scribe this, let O denote the set of all odd subsets of V' containing at least 3
nodes (we refer to these sets as blossoms), and for each S C V, let 6(S) denote
the set of edges that meet exactly one node in S. For a vector (z. : e € E) and
aset H C E, let z(H) denote the sum ) (z. : ¢ € H). Edmonds [14] used the
blossom algorithm to show that the convex hull of the incidence vectors of the
perfect matchings in G is precisely the solution set of the linear system

(1) z(6({v})) = 1 forallveV
2) z. 2 0 forallec F
3) z(6(S)) > 1 forall SeO.
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So the minimum weight of a perfect matching is equal to min {wz : = satisfies
(1), (2), and (3) }. The dual to this linear programming problem is

(4) maxZ(yq, tweV)+ Z(YS :5€0)

subject to '

(5) Yutv+ Y (Ys:5€0,(u,v)€6(S) < wpe forall (u,0)€E
(6) Ys > 0 forall S€O.

Given a solution (7, Y) to this dual problem, the reduced cost of an edge e = (u, v)
is

W(y,w) — Yu — Yo — Z(?S :S € Oa (u7 U) € 6(5)),

that is, the slack in the corresponding constraint (5). An edge is called #fight,
with respect to (7,Y), if its reduced cost is 0. Similarly, a blossom S € O
is called full, with respect to a (partial) matching z, if Z(6(S)) = 1. With
these definitions, the complementary slackness conditions for a primal-dual pair
of solutions can be stated as: for all edges e € E, if Z, > 0, then e is tight,
and for all blossoms S € O, if Yg > 0 then S is full. So we can prove that a
given perfect matching is optimal by providing a dual solution such that these
conditions are satisfied. The blossom algorithm produces just such a proof. At
each step, the algorithm has a partial matching and a dual solution that satisfy
the complementary slackness conditions. The matching is grown via augmenting
paths until we reach a perfect matching (which we know is optimal). A good
description of the blossom algorithm can be found in Pulleyblank [29]. We will
not go into all of the details of the algorithm, but we do need to describe some
of its structure to present our implementation below.

We start with a simplified version of the blossom algorithm, solving the frac-
tional matching problem min{wz : z satisfies (1) and (2)}. This will serve two
purposes. First, it builds a framework that will be useful in our discussion of
the blossom algorithm below. Secondly, fractional matchings are used at several
points in the scheme for solving large matching problems described in Section 4.
So let us suppose there exists a solution to (1) and (2). The fractional match-
ing algorithm finds a 0,1/2,1 valued solution Z and a dual solution % such that
E(uw) > 0 only if (u,v) is tight, that is, w(yy) = Ju + F» (there are no vari-
ables Ys). So, by complementary slackness, Z will be an optimal solution to the
fractional matching pi'oblem. Moreover, Z will have the property that the edges
e with £, = 1/2 form node disjoint odd circuits. (Notice that the fractional
matching problem can also be solved by reducing it to a bipartite matching
problem.)

Initially, let Z. = 0 for all edges e and for each node v let §, = (1/2)min{w, :
e € 6(v)}. At each iteration, choose an unmatched node r (that is, Z(6(r)) = 0)
and grow a tree T rooted at r having the following properties: each edge in T
is tight and for each node v in T, the unique path in T from v to r alternates
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between matched edges (Z. = 1) and unmatched edges (Z. = 0). Such a tree T'
is called an alternating tree. The nodes of T' are labeled “+” and “—” according
to the parity of the number of edges in the path back to the root r, that is, node
r and all nodes of even distance from r receive the label “+” and all nodes of

odd distance receive the label “—”. We grow T by appending matched edges
that meet “—” nodes or tight unmatched edges that join “+” nodes to nodes not
yet in T'.

If we reach an unmatched node v in T' (other than r), then Z can be augmented
along the path from v to r, replacing Z. by 1 — Z. for each edge e in the path.
Such an augmentation increases the size of Z by 1 (that is, > .(Z. : e € E)
increases by 1). It is 'also possible to increase 7 if we reach a node v that meets
an edge e with Z, = 1/2. In this case, by the way we build Z, we know that v
lies on an odd circuit C all of whose edges have value 1/2. Thus, the size of &
can be increased by 1/2 by augmenting along the path in T' from v to r and,
starting with node v, alternately flipping the 1/2-valued edges in C to 0 and 1
as we traverse the circuit back to v (see Figure 1).

—0
e | (2

r

FIGURE 1. A 1/2 - augmentation

A third, and final, way to increase the size of % involves the formation of
1/2-valued odd circuits. Suppose there exists no node in T’ meeting a 1/2-valued
edge and suppose there does exist a tight edge (u,v) joining two “+” nodes. Let
P; denote the path in T from u to r and let P, denote the path from v to r. The
union of Py, Py and (u,v) forms an odd circuit C and a path, P, from w (the
first node in P we meet as we traverse P;) to r. Again, T can be increased by
1/2 by augmenting along P (so w is now unmatched) and setting Z = 1/2 for all
edges in the circuit C (see Figure 2). Since we have assumed that no node of T
meets a 1/2-valued edge, we know that C is node disjoint from any other 1/2-
valued circuits that may exist. Now suppose we cannot grow T any further and
we have reached neither an unmatched node, nor a node meeting a 1/2-valued
edge, nor a tight edge joining two “+” nodes. At this point we must alter the
dual solution to create a new tight edge that allows us either to grow the tree or
augment the fractional matching. The constraints on the dual change are that
all edges in T', as well as all other edges having . > 0, remain tight and that
# remains a dual solution (that is, Ju + Ju < Wy, for all edges (u,v)). These
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FIGURE 2. Creating a 1/2 - valued circuit

conditions can be met by adding some ¢ > 0 to the g-value of all “+” nodes
and subtracting € from all “—” nodes, making € as large as possible subject to
§ remaining a dual solution. What stops us from making e arbitrarily large is
that some edge, joining a “+” node and a node not yet in T or joining two “4”
nodes, becomes tight. (If no edge becomes tight, then there is no solution to (1)
and (2).) In the first case we can grow T and in the second case we can create a
1/2-valued circuit. It is useful to remark that if all edge costs are integral, then
the 7 values remain 1/2 integral throughout the procedure. This follows easily
from the form of the dual changes. Indeed, suppose that at a general stage all
values (and, hence, all reduced costs) are 1/2 integral and that we are about to
. make an € dual change. If ¢ is bounded by the reduced cost on an edge joining a
“+” node and a node not yet in the tree, then it is certainly 1/2 integral. The
only problem seems to be when € is bounded by 1/2 of the reduced cost of an
edge joining two “+” nodes. But notice that since all edges in the alternating
tree are tight, we must have §, = 7, (modulo 1) for any two nodes in the tree. It
follows that the reduced cost of the edge joining the two “+” nodes is integral,
and hence € is again 1/2 integral.

So that is the algorithm: we repeatedly grow T, alter the dual solution, and
grow T some more, until we can perform an augmentation. The full blossom
algorithm works in the same way, but with two extra operations to handle the
blossom variables Yg. The key idea is that when we set Y5 > 0 for some set S, we
then treat S as a single node. The intuition is that the complementary slackness
condition Z(6(S)) = 1 is the same as the constraint Z(6(v)) = 1 for individual
nodes v. Thus, one of the new operations is to shrink a subset of nodes S into
a pseudonode by contracting all edges having both ends in S. This operation
will arise when we have a tight edge joining two “+” nodes (or pseudonodes) in
the current alternating tree. Where in the fractional algorithm we performed a
1/2-augmentation around the odd circuit C that is formed, we instead shrink the
nodes of C into a pseudonode. The converse operation is to delete a pseudonode
S, bringing a subset of the nodes (and pseudonodes) we previously shrunk back
into the current alternating tree T. This occurs when the Y-value corresponding
to S goes to 0 after a dual change. In this situation, S is a “~” node and




562 D. APPLEGATE AND W. COOK

thus is met by exactly two edges in 7: a matched edge e and an unmatched
edge f. We need to match the nodes of 9, other than the node w € S that is
already matched by e, with edges that were previously contracted. This step is
straightforward, since: S is spanned by an odd circuit C of tight edges (and any
dual changes made after S is shrunk will not effect the reduced costs of the edges
that were contracted in the shrink operation). To maintain the alternating tree
T, we replace S by the even length path in C from the node u € S that meets
the unmatched edge f to the node w that meets the matched edge e, labeling the
nodes “~" and “+” as we move from u to w. (So the internal nodes and edges
of the odd path from u to w will not be part of the tree.) This entire operation
will be referred to as ezpanding the pseudonode S (see Figure 3).

FIGURE 3. Expanding a pseudonode

At a general stage of the blossom algorithm we have carried out some number
of shrinkings and expansions, resulting in a current surface graph. The procedure
is such that a perfect matching amongst the tight edges in this graph (tight is
still defined in terms of the original graph G) translates directly to an optimum
matching in G. Initially, the surface graph is G itself, # and Y are 0, and §
is set as in the start of the fractional algorithm. At each step we choose an
unmatched node r in the surface graph and grow an alternating tree T rooted
at . If we reach an unmatched node in T, then we augment the matching in
the surface graph and continue from another unmatched node 7. If there exists
a tight edge joining two “+” nodes, then we shrink the nodes of the odd circuit
that is formed and continue growing the tree T'. If neither of these operations are
possible and we can no longer grow T, we perform a dual change, again adding
as large as possible € > 0 to the §-value of the “+” nodes (or the Y-value of the
“+” pseudonodes) and subtracting € from the “~” nodes. If a new tight edge
appears we can continue the algorithm as in the fractional case. But it may
happen that € is bounded by the Y-value of a “—” pseudonode § (since these
variables must remain nonnegative). In this case, we expand S and continue the
algorithm. (If € can be made arbitrarily large, then G has no perfect matching.)
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When the algorithm terminates, we have a perfect matching of the final surface
graph. To find the implied optimum matching of G, we just need to clean up
the pseudonodes, matching their spanning circuits appropriately. Since all edges
in this matching are tight and all pseudonodes correspond to full blossoms, we
know that the matching is optimal. As in the fractional matching case, it again
follows from the form of the dual changes that if all edge costs are integral, then
§ and Y remain 1/2 integral throughout the course of the algorithm.

3. Implementation

Our implementation of the blossom algorithm is straightforward. In partic-
ular, we do not make use of priority queues for handling the dual changes and
determining what action should be taken while growing the alternating trees. It
would be interesting to see a direct comparison of a sophisticated implementa-
tion of a priority queue approach with the implementation presented here. In our
description below, we will assume that the reader is familiar with a the C (see
Kernighan and Ritchie [24]) and with basic data structures (see Aho, Hopcroft,
and Ullman [1] and Tarjan [33]).

The input to our implementation is a list of edges, giving their endpoints and
costs. We assume that the costs are integral. Thus, by multiplying each of them
by 2 at the start of the algorithm we may assume that the dual variables take
on only integer values (using the argument that shows they are 1/2 integral on
general integer input).

The graph, G, is stored internally as a list of edges and a list nodes, each.
node having an adjacency list consisting of a linked list of pointers to the edges
it meets. (Linked lists are used to allow us to add edges to G in the procedures for
large problems and to rebuild adjacency lists after a shrink or expand operation.)
The adjacency lists can be implemented with an edgeptr structure having two
fields: a pointer to an edge and a pointer to the “next” edgeptr. Since we
need two such edgeptrs for each edge (the edge appears in two lists), we may as
well include them directly in our edge structure. With this setup, however, the
following trick can be made. We include the edgeptrs as the first two fields in
our edge structure. Because the e‘dgeptrs are now part of the edge structure, the
pointer to the edge can be directly determined from a pointer to the edgeptr.
Thus, we save the space for storing the pointer to the edge, and the time to
look up that pointer, at the expense of some computation to convert edgeptr
pointers to edge pointers. We refer to this convention as using ugly edgeptrs and
incorporate it in our implementations.
~+ As before, we first give the details of the fractional matching algorithm, and
afterwards the changes needed to handle blossoms. The implementation of the
fractional matching algorithm is simple. The alternating tree, T', is grown using
depth-first search from an unmatched node r. For each node v in T, we store a
pointer to the first edge in the path from v to r. Thus, it is an easy matter to
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trace an augmenting path from v back to 7. To make 1/2-valued circuits easy to
traverse, we orient the circuits and use a field in the edge structure to allow each
1/2-valued edge to point to the next edge in its circuit. We also keep a pointer
from each node to the matching edge that meets it, if one exists, to allow us to
skip over “—” nodes in the grow steps. Dual changes are made by traversing T
in depth-first order, computing the bound on € obtained from the edges meeting
each “+” node and keeping a linked list of the nodes meeting edges that give the
~ minimum bound. After making the change (by again traversing the tree) we need

to grow T from each node on the linked list. And that is the implementation,
. except for minor details that we do not want to discuss.

Naturally, the full blossom algorithm requires some additional data struc-
tures. Our implementation follows the basic framework of the Blossom II code
of Pulleyblank [29]. To begin with, we maintain more information about the
alternating tree T, since in practice we need to traverse T' more often than in
the fractional algorithm. Besides the “parent edge” pointers we used above, we
also keep parent, child, and sibling node pointers, that is, for each node we keep
a pointer to its parent p (in the rooted tree T'), a pointer to its first child, under
some ordering of its children, and a pointer to the next child of p, under some
ordering of p’s children. We use the same system to record the current set of
blossoms that have been shrunk to pseudonodes, where “parent”, “sibling”, and
“child” refer to the nesting of the blossoms. When a pseudonode is formed from
an edge (u,v) joining two “-+” nodes, we call (u,v) the blossom forming edge.
Tracing the path from u back to r, we call the first node, w, that also lies on
the path from v to r, the blossom root (see Figure 4). Given the blossom form-

blossom root

M blossom forming edge

FIGURE 4. A blossom

ing edge and the blossom root, it is an easy matter to use the alternating tree
information to traverse the spanning circuit of the blossom when needed during
an expand operation. Thus, for each pseudonode v we let its “nest” child be the
_ blossom root, w, of the blossom we shrunk to obtain v and we let w’s “parent
edge” pointer be the address of the corresponding blossom forming edge.
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The surface graph is maintained by keeping a pointer from each original node
to the surface node that contains it, and keeping pointers from each edge to its
surface ends (if the edge appears in the surface graph). ‘But this information is
not sufficient to grow the alternating tree in a depth-first manner, since we must
have access to adjacency lists for the surface nodes. This complication is avoided
in some earlier codes by growing the tree (or multiple trees) by running through
the edge list at each grow step, checking for tight edges joining a “+” node and an
unlabeled node, or joining two “+” nodes. Instead we form explicit adjacency
lists for the pseudonodes. Thus, when we shrink a set S we must gather the
edgeptrs from the nodes in S, and when we expand S we must distribute them
back to the individual nodes. Note that we do not make new edgeptrs, but rather
reuse the existing ones. (Indeed, with ugly edgeptrs it is not possible to create
new edgeptrs as we go along.)

As we mentioned above, T is grown using depth-first search from an un-
matched node r. Whenever we reach a tight edge that joins a “+” node and an
unlabeled node, we immediately add the edge to T and continue to grow from
the unlabeled end of the edge (checking if it is matched, etc.). But when we
find a tight edge e joining two “+” nodes, we do not shrink the blossom that
is formed. Instead, we add e to a “shrink list” of potential pseudonodes. Only
when we can no longer grow the tree do we go back and attempt the shrink
operations, one at a time. After each shrink, we grow the tree from the newly
created pseudonode, perhaps adding new edges to the shrink list in the process.
(Notice that some of the edges on the list may have been contracted in earlier
shrinks.) When the list is empty, we proceed with a dual change. The delayed
shrinking is an attempt to cut down on the total number of blossoms used in
the final dual solution, which is an important consideration in the procedure for
large problems discussed in the next section.

A dual change is again carried out by first traversing T' to compute the bound
on €, keeping a linked list of those nodes that meet edges giving the minimum
bound, and then traversing T a second time to make the actual change. If ¢
is bounded by the Y-value on some “—” pseudonodes, then we expand all such -
nodes and iterate the dual change procedure. Otherwise, we attempt to grow the
tree from each node on the linked list we created during the first traversal of T',
again delaying any shrinking until the tree can be grown no further. This grow-
shrink-dual change loop continues until we find an augmenting path to match
the node r. This completes the description of our blossom implementation.

~ Given the relative simplicity of the fractional algorithm, we should expect it
to run much faster in practice than the full blossom algorithm. This is indeed
the case, as is indicated in Table 1. The test problems reported in the table
arise as sparse subgraphs (either the union of a set of Hamilton circuits, or one
Hamilton circuit plus the 5 nearest neighbors to each node) of a set of geometric
problems. (The source of the problems is given in Section 7.) The running times
are reported in CPU seconds on a Dec 5000/200 workstation (which is based on
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a 256 MHz MIPS 3000 micropressor). The Dec 5000/200 performs the DIMACS
benchmarks [28] wmatch test 1 in 1.9 CPU seconds and wmatch test 2 in 18.0
CPU seconds. The codes were written in the C programming language and
compiled using cc with the -O optimizer provided with the Ulirix 4.2 operating
system. To compare the performance of the blossom code, we have also included
the running times of the SAP code of Derigs [11] in Table 1. The SAP code
was shown in Derigs [9], [10], [11] to be superior to other codes in the literature
for sparse problems. (For dense problems, Derigs [10] reports improved running
times with a two-stage approach such as we describe in the next section. Also, it
should be noted that Derigs and Metz [12], [13] have improved the SAP code by
adding a “jump start”, as we describe below.) This code is written in Fortran,
and was compiled using 77 with the -O3 full optimizer, provided with Ultrix
4.2. The reported times do not include the time for reading the input file.

Nodes | Edges Fractional Blossom SAP
(CPU Seconds) | (CPU Seconds) | (CPU Seconds)
1002 3241 0.07 0.27 10.74
2392 7236 0.15 0.80 147.28
3038 5915 0.23 4.53 524.04
4040 9532 0.28 9.48 417.17
5934 10459 0.40 26.68 2072.07
7396 22148 1.50 9.90 3133.66
8064 26323 0.60 15.88 2934.30
11848 35453 0.82 78.15 10695.46
18092 56023 1.22 87.53 72246.99
20726 66872 1.27 878.20 106039.00
80864 | 255173 5.85 3733.87 FFEE
101230 | 315677 7.37 4182.68 FEEF

TABLE 1. Fractional, Blossom, and SAP (Derigs) Times (Dec 5000).

The times reported in Table 1 indicate that it is feasible to consider using
. fractional matchings to “jump start” the blossom algorithm, as in Derigs and
Metz [13]. The idea is to solve the fractional matching problem to get good initial
primal and dual solutions to begin the blossom algorithm. The dual solution is
straightforward, we just let 7 be the optimal fractional dual solution and set
Ys = 0 for all odd sets S. Thus, tight edges in the fractional problem are also
tight at the start of the blossom algorithm. So any 1-valued edge in the optimal
fractional matching can be set to 1 in the initial primal solution. Moreover, from
each odd circuit of 1/2’s in the fractional solution we can also include edges that
match all but one of the nodes in the circuit in the initial primal solution. The
running times using the jump start are reported in Table 2 (the jump start code
of Derigs and Metz [13] was not available for a direct comparison). The last
column in the table reports the total number of alternating trees grown in the
blossom phase (so all but twice this number of nodes were matched in the initial
primal solution). Again, the CPU times do not include the time for reading the
input file. In 8 of the 12 cases, we see an improvement in the running time over
the straight blossom implementation reported in Table 1.
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Nodes | Edges | CPU Seconds | Number of Augmentations
1002 3241 0.20 33 .
2392 7236 0.70 84
3038 5915 4.08 56
4040 9532 4.97 64
5934 10459 22.05 86
7396 22148 20.65 70
8064 26323 17.00 215
11848 35453 66.37 387
18092 56023 69.20 646
20726 66872 1023.08 916
80864 | 255173 3491.32 © 3209

101230 | 315677 3475.58 8348

TABLE 2. Matching with fractional jump start (Dec 5000)

4, Strategy

When solving large matching problems, it quickly becomes impractical to work
with the edge set of any graph, G, that is not extremely sparse. Simple storage
requirements are one obvious reason, but equally important is the fact that the
running time of the blossom algorithm is greatly influenced by the number of
edges in G. For this reason, we follow a standard procedure in combinatorial
optimization and use a two-stage approach to solve large problems. We first
choose a sparse subgraph, G, of G and find the optimal matching contained in
it. Next, we compute the reduced costs of the edges in G that have not been
included in G’ {we call this the pricing step). If any edge e has negative reduced
cost, then we must repair the matching by adding e to G' and recomputing
the primal and dual solutions. After repairing all negative edges, we repeat the
pricing step, and again make repairs, continuing these price-repair rounds until
we have no edges with negative reduced cost. At this point, the complementary
slackness conditions hold for the entire graph G (setting Z. = 0 for all edges
not in G') and thus we have the overall optimal matching. This price-repair
approach was used to solve matching problems by Grotschel and Holland [21] in
a cutting-plane algorithm, and by Derigs and Metz [13] in a procedure based on
the blossom algorithm. In the next two sections we discuss the price and repair
phases in some detail. The remainder of this section is devoted to the choice of
the sparse graph G'.

The criteria for selecting a sparse subgraph are that it should be easy to
generate and it should have the property that, given an optimal dual solution,
not too many of the non-included edges have negative reduced cost. An obvious
choice is the k-nearest neighbor graph of G (for some positive integer k), where
for each node v we include in the edge set of G' the k edges of minimum weight
meeting v. This initial graph is used by Grotschel and Holland [21] (with k =
5,10,15) and Derigs and Metz [13] (with k = 6,8), and works well, especially
on problems where the distances are evenly distributed (that is, there is no
clustering of the nodes) such as (uniform) randomly generated problems. A
potentially better subgraph, however, can be constructed by making use of the
fact that fractional matching problems can be solved very quickly in practice.
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The idea is to first solve the fractional matching problem over the k’-nearest
neighbor graph (for some %) and then build a new edge set consisting of the &
edges of minimum reduced cost meeting each node. In other words, after finding
a fractional dual solution §, we select the k-nearest neighbors in G relative to
the edge weights w(, ) — Ju — §»- We refer to this sparse graph as the fractional
k-nearest neighbor graph. In both cases, we take a greedy matching from G and
add it to the sparse edge set, to avoid the complications that arise when G does
not contain a perfect matching.

The choices of sparse graphs are compared in Table 3, with k& = 5, 10, and
15, on a set of five geometric test problems (described in Section 7). In the

Problem Subgraph Price-Repair | Edges Added | Price-Repair Time Total Time
Rounds (CPU Seconds) (CPU Seconds)

7396 Nearest 5 13 651 646.2 707.0
Nearest 10 5 53 250.2 358.3

Nearest 15 4 15 244.8 401.5
Fractional 5 11 613 592.1 725.2
Fractional 10 5 35 ~ 250.1 439.5
Fractional 15 2 9 107.2 360.9

8064 Nearest 5 13 687 495.2 524.2
Nearest 10 6 84 170.8 200.8

| Nearest 15 5 23 92.2 1583
Fractional 5 9 332 239.1 281.0
Fractional 10 5 35 102.7 128.0
Fractional 15 2 4 66.7 112.6

11848 Nearest 5 10 1120 1237.5 1349.7
Nearest 10 5 77 244.8 537.5

Nearest 15 3 14 198.3 562.2
Fractional 5 6 654 580.0 674.6
Fractional 10 3 32 116.4 444.3
Fractional 15 2 13 53.4 521.2

18092 Nearest 5 15 1408 1173.0 1263.8
Nearest 10 7 73 851.2 1145.5

Nearest 15 3 6 318.0 774.2
Fractional 5 11 628 864.2 1062.0
Fractional 10 2 6 260.2 585.0
Practional 15 1 0 56.2 472.2
20726 Nearest 5 10 3391 22431.9 23419.2
Nearest 10 5 289 3727.55 6021.6

Nearest 15 4 83 2427.7 7830.6
Fractional § 9 2029 14382.7 15396.5
Fractional 10 4 182 3908.1 6697.4
Fractional 15 3 49 2031.6 7504.9

TABLE 3. Choice of sparse subgraph (CPU Seconds, Dec 5000)

fractional matching graphs, the initial fractional matching was found over the
5-nearest neighbor graph (so &’ = 5).

The tests indicate that the fractional k-nearest graph has an advantage over
the corresponding k-nearest graph. Although there is not a clear winner between
the fractional 10-nearest and the fractional 15-nearest, we will use the fractional
10-nearest in our procedure for geometric problems since this will allows us to
keep our memory usage on very large problems at an acceptable level.
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5. Making repairs

We begin our discussion with the easy case of fractional matching problems.
Suppose we have optimal fractional primal and dual solutions, Z and §, for a
graph G, and we need to introduce an edge (u,v) that is not yet contained in F.
Let ¢ = w(y,v) — Ju — J» be the reduced cost of the new edge. If t > 0, we have no
work to do. Otherwise, we alter the dual solution by replacing ¥, by 7, — . So,
to maintain complementary slackness, we must also alter the primal solution. If,
u meets an edge e having T, = 1, then we simply set . = 0. Otherwise, u lies
in a 1/2-valued circuit C, and we replace the 1/2 values on the edges of C by
a matching that leaves only u unmatched. In either case, all edges. (including
(u,v)) will have nonnegative reduced cost and all edges e with Z, > 0 will be
tight, so we can use the fractional algorithm (growing an alternating tree from
u) to compute new optimal primal and dual solutions.

Repairing (integral) matchings is more difficult. Again, suppose we have a
graph G and optimal primal and dual solutions, Z and (%,Y) (with surface
graph G) and we need to add the new edge (u,v). If either u or v is itself a
node in G (say node u), then we can follow the procedure used above: decrease
the value of §,, set T = 0 for the matching edge meeting u, and apply the
blossorn algorithm to compute a new optimal pair of solutions. The difficulty
arises when both u and v are contained in pseudonodes of G. In this case, we
cannot simply alter the value of g, (or §,), since this will disturb the structure of
G, for example, the minimal pseudonode containing u will no longer be spanned
by a tight odd circuit. To handle this, we can make dual changes to bring u (or
v) to the surface, expanding all pseudonodes containing u. Ball and Derigs [6]
gave an elegant procedure for this task, simplifying earlier work of Weber [35].
(An alternative “primal” approach to this problem is described in Cunningham
and Marsh [8].) Their idea is to add a new node p and an edge e joining p and u

(giving e reduced cost 0), and grow an alternating tree from node p. Of course,

we will find no augmenting path, but during the search we will perform dual
changes that allow us to expand pseudonodes. We stop the process as soon as u
reaches the surface (that is, v is no longer contained in any pseudonodes). Then,
deleting p and e, we proceed as above.

This repair strategy is very simple to describe and implement, but it does
cause some problems in the overall price-repair strategy. The trouble is that it
introduces many changes in the dual solution. Besides being time consuming,
these changes affect the number of price-repair iterations we need to make. In
this regard, we would like to keep the dual solution as stable as possible, to
avoid introducing new negative reduced cost edges. For this reason, we employ a
slightly more complicated repair procedure. The main idea is to allow matched
edges to have negative reduced costs. This can be justified by either adding the
redundant constraints
(7N 2. <1 forallec E
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to the linear system (1), (2), (3) and considering the new primal-dual pair of lin-
ear programming problems, or simply noting that the reduced cost of a matched
edge e can always be raised to 0 by increasing the g-value of one of its ends. (Note
that this modification cannot be done during the course of making repairs, since
this would disturb the structure of the surface graph, as we mentioned above.)
The added freedom of having negative reduced costs can be an advantage
in making repairs. For example, if the maximal pseudonodes containing u and
v are joined by an alternating path of tight edges in G (starting and ending
with matched edges) then we can set T, = 1 — Z. for each edge in the path
and insert the edge (u,v) in the graph as a matched edge with negative reduced
cost (see Figure 5). The price of this freedom is the additional overhead needed

FIGURE 5. Inserting an edge

to maintain the negative edges. This manifests itself in two ways. First, we
must modify the grow step of the blossom algorithm to only bring matched
edges into the alternating tree when they have 0 reduced cost, since augmenting
paths through the tree will flip some matched edges to unmatched edges, and
these cannot be negative. Secondly, when computing the dual change bound ¢
we must take into consideration the reduced costs of the matched edges joining
either two “—” nodes or a. “—” node and an unlabeled node, since we do not want
the reduced cost of such edges to become positive afier the dual change. These
complications slow down the algorithm somewhat, so in our implementation we
compute the initial optimal matching and dual solution without allowing negative
reduced costs, and switch to the negative version only when we begin the repair
phase.

To make use of the negative reduced costs, we need a different mechanism for
carrying out the repairs. To start off, we add a new node p and new edges (p, u)
and (p,v), giving (p,u) reduced cost 0 and setting the reduced cost of (p,v) to
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0 if ¥, = %, (modulo 2) and otherwise setting the reduced cost of (p,v) to 1.
This choice of reduced costs ensures that the dual variables will continue to take
on only integer values in the modified graph (recall the 1/2-integral argument
and the fact that we have doubled the integral edge costs at the start of the
algorithm). We grow an alternating tree from p, with the following two stopping
rules. First, we stop if either u or v becomes a surface node, as in the Ball
and Derigs procedure. Second, we stop whenever we find a blossom forming
edge where p is the blossom root. This latter case corresponds to the situation
depicted in Figure 5 (namely, we have a tight alternating path from u to v,
starting and ending in matched edges) and we proceed as described above.

Nodes | Negative (Pricing Time) | Negative (Rounds) | BD (Pricing Time) | BD (Rounds)
7396 249.75 (seconds) ) 510.87 (seconds) 11
8064 102.55 5 354.40 9
11848 116.58 3 1437.33 7
18092 260.17 2 577.92 4
20726 3910.67 4 26541.10 8

TABLE 4. Price-repair Mechanism (Dec 5000)

We tested both the Ball and Derigs method and the negative reduced cost
method on a series of geometric problems. The results are reported in Table 4,
and show the advantage of negative reduced costs, both in total running time
and in the number of price-repair rounds required.

6. Pricing

At the start of the pricing step, we have optimal primal and dual solutions, Z
and (7,Y), for a sparse subgraph of our original graph G. Let B denote the set
of blossoms § € O with Y5 > 0, and let B be the rooted tree representing the
nested structure of B. The nodes of B consist of a root node ry (representing the
entire node set V'), the original nodes V, and the pseudonodes B. The children
of each node S are the maximal members of V U B that are properly contained
in S. (So each original node is a leaf of the tree, the children of each pseudonode
are the nodes (and pseudonodes) that were shrunk to form it, and the children
of ry are the nodes (and pseudonodes) of the surface graph.) For each original
node v € V we compute

(8) sum(v) = g, + Z{f’s :SeBve S}

by traversing the path in B from v to the root. For any pair of nodes u,v let
lca(u,v) denote the least common ancestor of u and v in the tree B. Then, the
reduced cost of an edge (u,v) is

9) W(a,w) — SUM(u) — sum(v) + 2 - sum(lca(u, v)).

So the work in compﬁting the reduced costs can be reduced to least common an-
cestor calculations. We carry these out with an off-line version of Aho, Hopcroft,
and Ullman’s [2] algorithm, using path compression to implement the set union
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operations in near-linear time (Tarjan [32]). (We chose this method, over the
linear-time least common ancestor algorithm of Harel and Tarjan [22], for its
low overhead and programming ease.)

Although the least common ancestor algorithm is quite efficient, for large
problems we need to take care not to overwhelm the method by simply pricing
every edge on each round. A first step in this direction is to take advantage of
the fact that we know exactly what occurs between the pricing rounds, namely
a series of repair operations. Thus, if the reduced cost of an edge goes down
between rounds, then we know it must go down during the dual changes in one
of the operations. For this to happen, one of the ends of the edge must be
contained in a “+” node in the operation’s final alternating tree. (Newly formed
pseudonodes are always labeled “+”, so a “—” pseudonode does not hide any
nodes labeled “4+” duing the operation, and only “—” pseudonodes are expanded,
so any nodes that leave the tree were not labeled “+” earlier in the operation.)
So if we start with all nodes unmarked, and, after each repair operation, mark
every node contained in a “+”, then during the next pricing phase we need only
price those edges that meet at least one marked node.

In the special case of geometric problems, the idea of pricing only when neces-
sary can be carried much further. Suppose we have coordinates (v, vy) for each
node v € V and that the weight of an edge (u, v) is the distance from (us, Uy) to
(vz,vy) under some norm || - ||. (Higher dimensional problems can be handled
in the same manner.) Suppose further that || - || is such that the weight of edge
(u,v) is at least |uy — vg|. (This holds for any L, norm, such as the Euclidean
and max norms.) Then the reduced cost of (u,v) is bounded below by

(10) [tg — vg| — sum(u) — sum(v).

To make use of this fact we maintain two sorted lists, the first, LIST1, sorted by
' increasing values of v;.— sum(v), andthe second, LIST?2, sorted by decreasing
values of v; + sum(v), where each node in V' appears in exactly one of the
lists. With this setup, we can readily determine which edges meeting a given
node u make the expression (10) nonnegative (and so need not be explicitly
priced). The process is to scan from the top of LIST1, letting v be the next
node in the list, and consider pricing each edge (u,v) until we reach the point
when v, — sum(v) > u; + sum(u) (so (10) is nonnegative). We then do the
corresponding scan of LIST2, stopping when v, + sum(v) < ug — sum(u). When
we consider pricing an edge (u,v), we compute w(,,) and only add (u,v) to a
“checkout list” if w(y ») —sum(u)—sum(v) < 0. (This is a stronger condition than
(10) being negative.) Once the checkout list gets too long (in our implementation,
100,000 edges), we price all edges on the list with the least common ancestor
algorithm, making repairs on those having negative reduced cost, and then come
back and continue the pricing phase. To maintain the sorted lists, we alternate
the pricing rounds with forward passes and backward passes. A forward pass
begins with all nodes on LIST1, and moves each node from LIST1 to LIST? after
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it is processed. A backward pass begins with all nodes on LIST2, and moves
nodes from LIST2 back to LIST1. At the end of a pass, we price the edges in
the checkout list, repairing those that are negative. The entire process stops
when we go through a paés without finding any negative edges. Node marking
can be included in the scheme by simply not processing a node if it is unmarked
(just move it from one list to the other). During the procedure we need only
recompute the value of sum(v) when we start the processing of v. This will mean
that some of the sum() values will be out of date in the middle of the procedure,”
but whenever sum(v) is less than it should be we know that v has been marked
by one of the repair operations, and thus will be processed at a later point.

7. Cofnputational tests

Our test bed of geometric problems is listed in Table 5. The majority of the
problems are described in Reinelt [30], and are available over the Internet (see
[30]). In two cases, the original data sets contained an odd number of points.
For these instances, we sorted the z,y coordinates and deleted the last point.

Nodes Norm Source

1002 Euclidean TSPLIB [30

2392 Euclidean TSPLIB (30

3038 Euclidean TSPLIB {30

4042 Max Circuit board (University of Bonn)
5934 | Euclidean TSPLIB [30]

7396 | Euclidean TSPLIB [30]

8064 Max Circuit board (University of Bonn)
11848 | Euclidean TSPLIB [30]

18092 | Euclidean Locations in USA

20726 Max Map of Tokyo [3]

80864 Max VLSTI (Bellcore)
101230 Max VLSI (University of Bonn)

TABLE 5. Geometric Test Problems

The solution times for the geometric problems are given in Table 6. The
times are reported in seconds on a Dec 5000/200 workstation (as are the times
in the remaining tables). The second column reports the time for computing
the fractional 10-nearest graph (including the input time); the third column
gives the time needed to compute the fractional matching “jump start” on the
fractional 10-nearest graph; the fourth column gives the time needed to compute
the integral matching; the fifth column reports the time in the price-repair phase;
and the last column gives the total running time of the process (including the
input time).

The extremely long pricing times for the two largest examples suggests that
for problems of this size we probably should spend more time selecting our initial
sparse graph, perhaps using an “integral nearest k-neighbor graph” (where we
first compute the optimum matching on a sparse graph, then compute the k-
nearest graph with respect to the reduced costs derived from the matching’s
dual solution).
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Nodes | Fractional Nearest | Jump start | Matching | Price-Repair Total
1002 4.08 0.12 0.17 0.47 6.2
2392 15.10 0.32 2.65 2.87 24.2
3038 22.34 0.57 14.23 3.20 45.5
4040 - 8.21 0.47 13.47 5.25 33.1
5934 39.82 0.72 81.88 118.73 261.2
7396 123.62 2.98 47.65 249.75 438.9
8064 25.25 1.17 20.10 102.25 164.0
11848 120.08 1.68 168.02 116.9 445.1
18092 58.83 2.43 230.85 260.23 584.7
20726 77.60 2.63 2678.13 3919.33 6710.2
80864 991.30 12.52 10207.27 136166.37 147535.1
101230 1069.90 15.42 7977.35 457839.98 467544.9

TABLE 6. Solution Times of Geometric Problems (Complete Graphs)

In our final two tables, we report on the solution times for two common classes
of randomly generated data. The first type are (Euclidean) geometric problems
with integral coordinates drawn uniformly from the 100,000 by 100,000 square.
(The generator we use is described in McGeoch [28] as dcube.c.) The second
class are graphs with 2|V|log|V'| edges drawn uniformly from the set of possible
edges, with each edge having a random integral edge cost drawn uniformly from
(0, 100000). (This generator is described in McGeoch [28] as random.c.) For
most of the problem sizes in each class, we made a series of 10 independent runs,
and report the average, the minimum, and maximum CPU times. (The times
include the time spent to generate and read the input files.) The last column in
each of the tables gives the average number of blossoms that had positive value
in the final dual solution. These numbers are a good indicator of the complexity
of a problem instance. From this viewpoint, one can see that the sparse random
graphs do not really provide a good test of a matching code.

Nodes | Trials | Average Time | Min Time | Maz Time | Average Blossoms
210 10 11.9 7.2 15.6 299.5
210-5 10 215 14.5 28.5 392.0
211 10 43.9 33.3 63.0 575.0
211.5 10 83.9 39.8 128.6 747.2
212 10 156.6 92.4 212.7 1079.7
212.5 10 324.7 150.2 522.2 1526.1
213 10 586.6 366.8 741.7 2132.8
213.5 10 1867.8 1185.4 3578.7 2999.3 -
214 10 2883.3 2200.4 3664.9 4170.5
240 10 9407.5 5555.7 17117.9 8279.1
216 10 49060.5 26969.1 70670.4 16183.8
217 10 254955.3 160094.4 398992.2 32001.0
TABLE 7. Random Geometric Problems with Euclidean Norm
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Nodes | Trials | Average Time | Min Time | Maz Time | Average Blossoms
210 10 9.8 7.9 23.8 23.9
2190 10 12.8 10.8 23.2 12.5
211 10 23.6 20.9 29.8 7.4
2115 10 50.7 36.5 91.5 41.7
212 10 81.5 61.8 129.1 43.3
2125 10 155.3 103.7 424.9 72.6
213 10 194.8 169.5 300.2 25.8
2133 10 667.9 298.2 2631.7 276.3
217 10 884.1 500.0 2795.8 170.6
21% 10 1919.2 1459.7 4004.8 164.4
218 5 6101.8 5573.2 6970.3 105.6

TABLE 8. Random Costs (0,100000) with 2|V|log|V| Edges
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