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It is observed that minimal totally dual integral systems for a class of independencex systems
are closely related to a type of separability. This observation is used to give a short proof, using
Edmonds’ matching polytope theorem, of a theorem of Cunningham and Marsh which gives a
description of the minimal totally dual integral defining system for the matching polytope and
also to show the relationship between that result and a theorem of F.R. Giles.

1. Introduction

Combinatorial optimisation problems are often of the form ‘‘maximise wx over
all vectors x in S’ where S is a set of integer vectors in @” and we Q" is an integer
‘weight’ vector. To solve such a problem in polynomial time it is necessary to have
a good characterisation for this maximum value. One method for obtaining such a
good characterisation is to find a system of linear inequalities which defines the con-
vex hull of S (that is, the convex hull of S is identical to the set of solutions to the
linear system) — the duality theorem of linear programming then gives a min-max
relation, and hence a good characterisation, for the problem (see Pulleyblank [16]).
In fact, Grétschel, Lovasz, and Schrijver [11] have shown that in many cases finding
such a system of linear inequalities also gives a polynomial time algorithm for the
optimisation problem. , :

One way to strengthen a min-max relation obtained in the above way is to require
that the variables in the corresponding dual linear program take on integer values
in an optimal solution, that is, to require that the defining system for the convex
hull of S be a totally dual integral system (Edmonds and Giles [8] defined a rational
linear system Ax=<b to be a totally dual integral system if the dual linear program
min{yb: yA=w, y=0} has an integral optimal solution for each integer vector w
for which the optimum exists). Further motivation for searching for such a totally
dual integral system is provided by the fact that often integer solutions to the dual
linear program correspond to combinatorial objects such as ‘coverings’ or ‘cuts’,
in which case the min-max relation gives a nice combinatorial theorem (see Schrijver
[20,21]).
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Once such a totally dual integral system is found, the min-max relation can be
further strengthened by removing some of the inequalities to obtain a minimal
totally dual integral defining system for the convex hull of S (here ‘minimal’ means
that if any inequality in the linear system is removed, the resulting system is either
no longer totally dual integral or else no longer defines the convex hull of ).
Schrijver [8] has shown that for each polyhedron P of full dimension there exists
a unique minimal totally dual integral system Ax=<bd with A integral such that
Ax<b defines P. Define the Schrijver system for P to be this unique system Ax =<5,
Thus, if the convex hull of S is of full dimension, a ‘best possible’ min-max relation
for S can be obtained by finding the Schrijver system for S. v

In this note, it is observed that Schrijver systems for a class of general indepen-
dence systems are closely related to a type of separability. This observation is used
to give a short proof, using Edmonds’ matching polytope theorem, of a result of
Cunningham and Marsh [4] which gives a characterisation of the Schrijver system
of the matchings of a graph and also to show the relationship between that result
and a theorem of F.R. Giles. This observation is also used extensively in Cook and
Pulleyblank [2].

2. Schrijver systems and separability

Let £ be a finite set and let I be a finite set of nonnegative integer vectors
a=(a,: ec E). The pair (E,I) is a general independence system if 0 e I and for each
a € I and nonnegative integral b < ¢ it is the case that b eI (so a general independence
system with the property that each ae/ is 0, 1-valued is an independence system).
The rank, r(A), of a set A CF is the maximum value of x(A4) over all vectors x ],
where x(A)=Y {x,:e€A}. A set ACE is closed if r(AU {e})>r(4) for each
ecE—A. A separation of a set ACE is a pair of nonempty subsets 4,, 4, of 4
such that 4, UA4,=4 and r(A4;)+r(A4,)=r(A4). If there exists a separation of
A CE, then A is separable (otherwise A is nonseparable). Let C(I') denote the con-
vex hull of I. A characterisation of the Schrijver system for C(J) for a class of
general independence systems is given in the following lemma.

Lemma 2.1. Let (E,I) be a general independerice system such that r({e})=1 for
each ec E. Suppose that the linear system

x(A)=r(A4) VYACE, A+0,

2.1)
X, =0 VeeE

is a totally dual integral defining system for C(I). An inequality x(A)<r(A) is in
the Schrijver system for C(I) if and only if A+8 is a closed non-separable set.

Proof. Since r({e})=1 for each e € E, the polyhedron C(I) is of full dimension. If



Matchings and separability 205

x(A)=r(A) is in the Schrijver system for C(J), then clearly 4 is nonseparable and
closed. Conversely, suppose that D #4 is a nonseparable closed set. By assumption,
for each integral w the linear program

min Y {r(A)Y,: ACE, A+0},.
subject to ) {Y,;:ACE, ecA}=w, VeckEF, 2.2)
Y, 20 VACE, A+

has an integral optimal solution. To prove that x(D) < (D) is in the Schrijver system
for C(I) it suffices to show that for some integer vector w the linear program (2.2)
has no integer optimal solution with Y, =0. Let w,=1 for.each e D and let w,=0
for each ee E~D. An optimal solution to (2.2) is ¥,=1 and Y3 =0 for all other
BCE, B##, with objective value r(D). Any integral optimal solution to (2.2) with
Y,=0 corresponds to a collection of nonempty sets A,,..., 4 ; CE with 4;#D,
i=1,..,/,DcAU-- UA; and r(A;)+---+r(4;) =r(D). Since D is closed, j must -
be at least 2. However, since D is nonseparable, j must be equal to 1. So there does
not exist such a solution. O o

Before applying this lemma to matchings in graphs, several direct applications of
it will be mentioned.

Edmonds [7] proved that if M =(E,I) is a matroid with rank function r, then
linear system (2.1) is a totally dual integral defining system for P(M), the convex
hull of the independent sets of M. Thus, Lemma 2.1 implies that the Schrijver
system for P(M) is (2.1) with an inequality x(4)=<r(A4) only for those ACE, A+0
that are closed and nonseparable in the matroidal sense. (Note that Cunningham [3]
has given an algorithm which may be used to test in polynomial time whether or not
A has this property.) This result of Edmonds can be found in Pulleyblank [16]. A
similar result of Giles [10] for matroid intersection polyhedra follows in the same
manner from Lemma 2.1 using the matroid intersection theorem of Edmonds [6].
Lemma 2.1 also provides a characterisation of the Schrijver systems for the convex
hulls of ‘perfect independence systems’ — see Euler [9].

3. Matchings

Let G be a graph and M(G) fhe convex hull of (the incidence vectors of) the
matchings of G. Edmonds [5] proved that M(G) is defined by the following linear

system
x,=20 VeeEG,

x(6w) =1 VveVG, 3.1
x(y(M) < IT|/2] VYTCVG, |T|=3, |T| odd

where EG is the edge set of G, VG is the node set of G, for each v e VG the set of
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edges which meet v is denoted by J(v), for each S C VG the set of edges which have
both ends in S is denoted by y(S), and for any number d, | d | is the greatest integer
less than or equal to d. Moreover, it follows directly from Edmonds’ matching
algorithm that adding the inequalities

x(W(T) <||T|/2] VYTCVG, |T|=3, |T| even (3.2)

to (3.1) gives a totally dual integral system (see Hoffman & Oppenheim [12] and
Schrijver [19,20] for different proofs of strengthened forms of this result).

A matching M of G is perfect if each node in VG is met by an edge in M. If G
is connected, then G is hypomatchable if for each ve VG the graph obtained by
deleting v from G has a perfect matching. For each ve VG let N(v) denote the set
of nodes in VG — {v} which are adjacent to v. Let V'’ be the set of nodes v € VG such
that either [N(v)| =3 or |[N(v)| =2 and y(N(v)) =0 or [N(v)| =1 and v is in a two
node connected component of G.

Since {e} is a matching for each e EG, the polytope M(G) is of full dimension.
Pulleyblank and Edmonds [17] proved that the unique minimal defining system
(unique up to positive scalar multiples of the inequalities) for M(G) is

x, =0 VeeEG,
x@Gw) =1 Yvel

x(y(T) < |IT|/2] VTCVG, |T|=3,
G[T] hypomatchable with no cutnode.

(3.3)

where, for each 7 C VG, G[T] denotes the subgraph of G with node set 7" and edge
set y(T). Cunningham and Marsh [4] proved that this linear system is totally dual
integral, which implies the following result.

Theorem 3.1. The Schrijver system for M(G) is (3.3). -

Using Lemma 2.1, a short proof of this theorem, which does not use the result
of Pulleyblank and Edmonds, can be given.

Proof of Theorem 3.1. Let (£, I) be the independence system with E=EG and 1 the
set of matchings of G. Since Edmonds’ matching algorithm gives that (3.1) and (3.2)
is a totally dual intergral defining system for M(G), Lemma 2.1 implies that the
Schrijver system for M(G) consists of x,=0 for each ee EG and an inequality
x(F)=r(F)foreach F c EG, F+0, which is nonseparable and closed for (£, I'), where
r(F) is the cardinality of a maximum cardinality matching of G contained in F.
Clearly, each set of edges of the form d(v) for some v e VG is nonseparable. A
set 6(v) for some v € VG is closed if and only if v € V. So an inequality x(d(v))=<1
is in the Schrijver system for M(G) if and only if ve V"
"~ Since (3.1) and (3.2) is a totally dual integral defining system for M(G), each
closed nonseparable set of edges not of the form d(v) for some v € VG is of the form
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y(T') for some T C VG with r(y(T)) = | |T|/2]. Suppose that y(T), for some T C VG,
T+#0, is such a closed nonseparable set. The cardinality of 7 must be odd, since
otherwise (6(v) N y(T), y(T) — 6(v)) is a separation of y(T) for any veT. If there
exists a node ve T such that G[T -~ {v}] does not have a perfect matching, then,
again, ()N y(T), y(T)—5(v)) is a separation of (7). So G[T] must be hypo-
matchable. Furthermore, G[T] does not have a cutnode v, since otherwise
(y(T U {v}), »(T —T))) is a separation of y(T) where 7;C T is a set such that G[T}]
is a connected component of G[T —{v}] (note that |T;| must be even, since
G[T — {v}] has a perfect matching). So (3.3) is a totally dual integral defining system
for M(G).

To complete the proof it must be shown that if 7 C VG, |T| =3, is such that G[T]
is hypomatchable with no cutnode, then y(T) is a closed nonseparable set. Suppose
that 7C VG is such a subset. Let e EG—y(T) be an edge with ends vy and v, (if
EG—y(T)=0). If neither v, nor v, is in 7, then clearly r(y(T)U {e})=r(y(T)) + 1.
It cannot be the case that both v, and v, are in 7, so suppose that v, e Tand v,¢ T.
If M is a perfect matching of G[T—{v,}], then MU {e} is a matching of
rank r(y(T))+1in y(T)YU {e}. So y(T) is closed. Suppose that y(T) is separable. Let
Fy, ..., Fy be subsets of y(T) such that F; is nonseparable for each ie{l,...,k},
r(yT) =rF)+--+rF), and y(T)=F U ---UFy. Since r(y(T) ~ 6(v)) = r(y(T))
for each v eT, it can be assumed that for each ie {1, ..., k} there exists a set T, C T
such that F;=y(T;) and r(F))=||T;|/2].

Claim. |Ty| + -+ |Ti|=|T| + k.

Once the claim is shown, the proof will be complete, since it implies that
LIT|72 ]+ + | |T¢|/2|>|IT|/2], a contradiction. To see the claim, let H be a.
graph with nodes ¢y, ..., f, and with an edge (¢, ¢;) for all i #/ such that ;N T; #4@.
Observe that |T||+ -+ |Ti|=|T| + |[EH]|. Since G[T] is connected and each edge
in p(T) is in p(T;) for some i€ {1, ..., k}, the graph H is connected. So |EH|=k—1.
Suppose that |EH | =k —1. Let ¢; be a node of degree 1 in A and let #; be the node
adjacent to ¢ (by assumption, k is at least 2). Since G[T'] has no cutnode, |7;N T; |=2
and |Ty|+ - +|T|=|T| +|EH|+1. O

Part of Theorem 3.1 can be stated in a different way. Let G be a graph and k-
the cardinality of a maximum cardinality matching of G. Let E; and E, be non-
empty subsets of £EG with E|UE,=FEG. Let k; be the cardinality of a largest
matching of G contained in E;, i=1,2. If k; + k,=k, then (&, E,) is a matching
separation of G. Using Lemma 2.1, the above theorem implies the following result
due to F.R. Giles.

Theorem 3.2. A graph G is matching nonseparable if and only if G is isomorphic
to K, , for some n or G is hypomatchable with no cutnode.

In fact, by virtue of Lemma 2.1, this result is the major portion of the content
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of Theorem 3.1 (if one assumes Edmonds’ matching result that (3.1) and (3.2) is a
totally dual integral defining system for M(G)).

Observe that in both the matching case and the matroid intersection case the
Schrijver systems for the polyhedra in question are identical to the minimal defining
systems for the polyhedra scaled so that the left hand sides of the inequalities are
0,1-valued. An example of a class of full dimensional polyhedra where these two
systems differ arise from b-matchings in graphs.

Let G be a graph and b=(b,: v € VG) a positive integer vector. A b-matching of
G is a nonnegative integer vector x=(x,: e EG) such that

x(6(v)) = b, foreach veVG.

Let P(G,b) denote the convex hull of the b-matchings of G. Pulleyblank [13]
characterised the minimal defining system for P(G, b). This minimal system, when
scaled so that the left hand sides are 0,1-valued, is not in general totally dual
integral. Cook [1] and Pulleyblank [15] independently characterised the Schrijver
system for P(G, b) (see also Pulleyblank [14] and Cook and Pulleyblank [2]). This
characterisation, together with Lemma 2.1, gives a generalisation of Theorem 3.2.
If G is connected, then G is b-critical if for each v e VG there exists a b-matching
X of G such that

X(6W) =b,—1 and Xx(5(u))=b, foreach ueVG-{v}.

If G is connected, then G is b-bicritical if for each v e VG there exists a b-matching
X of G such that

x(0(W)=b,—2 and X)) =b, foreach ueVG-{v}.
The result of Cook [1] and Pulleyblank [15] implies the following theorem, where

b-matching separability is defined analogously to matching separability.

Theorem 3.3. A graph G is b-matching nonseparable if and only if either G is iso-
morphic to K, , for some n and either n<1 or b(N(v))=b,+ 1 where v is the node
of degree n or G is b-critical with no cutnode v having b,=1 or G is b-bicritical.

If b,=1 for each v e VG, this result implies Theorem 3.2.
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