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ON THE MATRIX-CUT RANK OF POLYHEDRA

WILLIAM COOK AND S A N J E E B DASH

Lov^sz and Schrijver (1991) described a semidcfinile operator for generating strong valid inequal-
ities for the 0-! vectors in a prescribed polyhedron. Among their resuli.s. they showed ihai ii itera-
tions of the operator are .sufficient to generate the convex hull ot" O-l vectors contained in a poly-
hedron in /i-space. We give a simple example, having Chvdtal rank 1. tliat meetii this worst case
bound of ;i. We describe another example requiring « iterations even when combinini; ihe scniidef-
inite and Gomory-Chviltal operators. Thi.s second example is used to show ihai the standard linear
programming relaxation of a A-city traveling salesman problem requires at least [k/^l iterations of
the combined operaior; Lhis bound is best possible, up to a consiani factor, as A H- I iterations suffice.

Many structures in combinatorial optimization can be modeled as a set of 0-1 vectors
in a prescribed polyhedron in R", the n-dimensional Euclidean space. The utility of such
a formulation depends to a large degree on our ability to derive, from the polyhedron,
linear inequalities that are valid for the 0-1 vectors in the polyhedron. In some cases, these
inequalities directly answer important combinatorial questions; in other cases, they permit
linear programming methods to effectively analyze the given structure.

A general approach for obtaining valid inequalities was proposed by Lovasz and Schrijver.
The main version of their method uses an operator that lifts a polyhedron P to a higher
dimensional space, applies a semidefinite relaxation, and projects it back to a convex set
that better approximates the convex hull of the 0-1 vectors in P. An important property
of the operator is that it is possible to optimize linear functions over the tesulting convex
set in polynomial time (provided we can optimize over the original polytope in polynomial
time). Furthermore, for any polyhedron in [0, 1]", at most n iterations of the operator are
sufficient to obtain the convex hull of its O-I vectors.

The power of this semidefinite operator is illustrated by the result of Lovasz and Schrijver
(1991) that the stable set polytope of a perfect graph can be obtained in a single iteration
from a certain polytope having a defining system of polynomial size (in the number of
vertices of the graph). This implies the polynomial solvability of the weighted stable set
problem for perfect graphs.

For general polyhedra, Goemans (1997) raised tbe question of detennining (be worst case
behavior of the operator in terms of the number of iterations required to obtain the con-
vex hull of O-I vectors. Stephen and Tunnel (1999) showed that a well-known relaxation
of the matching polytope of a complete graph requires roughly ,/nJl iterations where n h
Ibe dimension of the problem. Recently Goemans and Tunyel (Gt>emans 1998) presented
an example where n/2 iterations of the operator are necessary, ln this paper, we present
two examples where the upper bound of n is attained (one of the examples has also been
di.scovered by Goemans and Tunnel 2000). The first of these examples has Chvatal rank 1,
while the second has Chvatai rank n. Moreover, if we combine the semidefinite operator
with the Gomory-Chvatal cutting-plane procedure, the second example still requires n iter-
ations. We use tbis result to show that the standard rela.\ation of tbe traveling salesman
problem requires at least [A78J iterations of the combined operator, where it is the number
of cities. We also show that k -h 1 iterations of the combined operator suffice.
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The paper is organized a.s follows. Tn §1 we describe the semidefinite operator, as well
as two otbers defined by Lovasz and Schrijver (1991). Some of the basic properties of this
family of operators are collected in §2. and the worst-case examples are discussed in §3. In
!}4 we apply the results to the traveling salesman problem. We will assume that the reader is
familiar with tbe theoiy of linear inequalities and polyhedra; an excellent general reference
is the book of Schrijver (1986).

1. The matrix-cut operators. Let (?„ be the O-I cube in R". that is Q„ = [0. 1)". If
the dimension is obvious from the context, we denote the 0-1 cube by Q. A system of
linear inequalities ajx <bj ( / = ! , . . . , m) in R" is denoted \>y Ax <b (here A € K"""'
and h e R'"). Given a set 5 C R", S, denotes the convex hull of integral vectors in 5 (also
called tbe integer hull): in particular, S Q Q => S, = conv(Sn(0. 1)") where conv(A!) is the
convex hull of vectors in the set X.

For .V e R". let x = (I) e /f""̂ '. The additional coordinate will be referred to as the Olh
coordinate; thus Jfo = 1. Given a convex set S c /?". we define an associated convex cone S
by

(I) 5 = cone

where cone(X) is the set of nonnegative linear combinations of vectors in X. If /* c Q is
defined by P = {A e R" : Ax < b], it follows that

For the empty set 0 , we adopt the convention that 0 = {0} (here 0(1) refers to the vector
of all zeros (all ones) in the appropriate dimension). Of special interest will be the cone

If K is a convex cone, its polar cone is K*, where K* = [y : y^x > OVJ: e K). Let the ith
unit vector be e, and let /( stand for eQ — e^. Then Q* is spanned by the vectors e^ and /,•,
for ( between 1 and n.

Given a point y e Q with y,, > 0, we define the image of y in R" by y where Ay = (1)

for some A > 0. For a sub-cone K of Q, we let K denote the set {v : y € K]. From this it

follows that for a convex set S £Q,S = 5 (note that 0 = {0) and {0} = 0) .
We now introduce the matrix-cut operators of Lovasz and Schrijver. Let P c. Q he ix

polytope defined by {x e R": aJx < t,. / = 1 m}. We can rewrite aJx < Z>,- as

ujx > 0, where w, =

Since Xj > 0 and 1 — Xj > 0 are also valid for Z' for I < y < n, it follows that the quadratic
inequalities {uJx)Xj > 0 and {ujx)(\ —Xj)>0 are valid for P. Writing Xj as ejx and 1 —x,
as fJ.x, we have

(2) P = {.V : {uj.x)(e]x) > 0. (ujx){f'[x) > 0 V/../}

(the original inequalities u]x > 0 can be recovered by adding (u^x)xj> 0 and {ujx)(\ —
Xj) > 0). Rewriting {u^x)(v^x) as u^ixx^)v, and using the fact that P" is spanned by the
vectors «,, we obtain from (2) that

(3) P = \x : u^(xx^)v > 0 for « G ^ ' . i; e ^ ' 1 .
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All 0-1 vectors in P satisfy .if = J , . Therefore, if x is a 0-1 vector in /*, then setting
Y ~ xx''' and K = F we have that

(4) Y is symmetric.

(5) Ye^ = Y^e,, = diag( Y). that is Y^ = y», = Y, if I < / < n.

(6) u^Yv > 0 for H G A:', u e Q',

(7) Y is positive semidefinite.

(Recall that an n x n matrix A is positive semidefinite iff x^Ax > 0 for all x € R": equiva-
lently A = U^V for some matrix U.) Condition (6) is equivalent to

(8) Ke, e K and Y{ef, - e,) eK ii \<i < n .

Also, if K = (yij) is a matrix satisfying (8). then (since A" c g) we have

v,7>0. yo;>yy. Xo^y,;*

y,7 > y'io + yoj - yw whenever / > 0. y > 0.

Let A" c g be a closed convex cone, and consider the three derived cones:

(10) M{K) ^{Y€ /?<"+'"<('••••" : Y satisfies conditions (4)-(6)}.

(11) MoiK) = {Ye /?<"+')'<("+'>: Y satisfies conditions (5)-(6)},

(12) M^K) = {Y€ /?("+•"'"'+" : Y satisfies condirions (4)-(7)}.

Define N(K) c r + " to be {Ke,,: Y e MiK)]. NQ(K) undJ/^K) are defined analogously.

Given a convex .set S c. Q. define N{S) by N(S) = N{S). Thus N{S) consists of all the
vectors x e /?" such that x = Ye^ where Y G M(S). Whether A'(7') is a cone in ^ or a
convex set in Q will be clear from the context- Both MiP) and M(P) refer to the same
cone. If F is a polytope in Q, then both M{P) and Mt){P) are polyhedral cones (in a higher
dimensional space) and hence both N{P) and /Vf,(P) are polytopes. In general, N^(P) is
nonpolyhedral (it is a convex set).

We will refer to JV. A',) and A'̂  collectively as the matrix-cut operators {N(P) is also
defined in Sherali and Adams 1990, but used in a different setting). Nf^{P) is actually defined
by Lovasz and Schrijver via a geometric characterization (see Lemma 2.3).

Defining N'\P) ^ P and N'^\P) ^ N{N'{P)) if i is a nonnegative integer, it follows
from (8) that P 3 N(P) 3 N'^(P) 2 • • • 2 ^,- Lovdsz and Schrijver (1991) proved the
following important result.

THEOREM Ll. Let PC^Q„ be a polytope. Then N"iP) = P,. D

Moreover. Lovasz and Shrijver showed that for any fixed value of t, it is possible lo
optimize linear functions over N'(P) in polynomial time (see their 1991 paper for a precise
statement). Identical results hold for the % and N^ operators; we can also replace polytopes
by closed convex sets in Q^.

We follow Liptdk (1999) and define the noncommutative rank of a polytope P to be the
least integer / > 0, such that NI^{P) = P,. The commutative rank (also in Lipt^ 1999) and
semidefinite rank are defined analogously for the N and A'̂  operators, respectively.

Chv^tal (1973) (and implicitly Gomory 1958) defined another method to obtain approx-
imations of the integer hull of a polytope P. If c' x < d i& valid for P and c e Z", then
c^x < [d\ is a Gomory-Chvatal cutting plane for P. Define P' to be the set of points sat-
isfying all Gomory-Chvatal cutting plaaes for P, and let f'"' = P and Z*"̂  " = (/*"")' for
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nonnegative integers / (we will think of P' as defining an operator ' : P -*• P', which we
call Ihe Gomory-Chvdtal operator). Obviously P 2 /"" 2 Pf Chvatal (1973) showed thai
if P is a polytope. there exists some / > 0 such that P' ' ' = P, (see also Schrijver 1980);
the smallest number / for which this holds is the Chvatal rank of P, Bockmayr and Eisen-
brand (1997) proved thai P c.Q,^=^ P '" = P, for some t < 6«Mog» (this upper bound has
been improved to 3;rlogn by Eisenbrand and Schulz 1999). In contrast to the matrix-cut
operators, the separation problem for P' is NP-complete in general (Eisenbrand 1998).

2. Basic properties. We collect some properties of the matrix-cut operators applied to
polytopes. All of these properties also hold for closed convex sets contained in Q.

A function / : R" ~* R" corresponds to -d flipping operation if it "flips" some coordinates.
That is, if y C (1 n\ and / flips the coordinates in J, then

The function / corresponds to an embedding operation if / : / ? " - * /?""*•* and

(14) y=f(x)=^y,
Xi if 1 < I < «,
0 i f n < / < « + it,,
1 if n+A| < ( < n + k.

where 0 < A, <k. Note that we can always renumber the coordinates so that the additional
coordinates with values 0 or 1 are interspersed with the original ones and not grouped at
the end. Given a face F of Q. f^ will denote the embedding function defined by

(15) ff embeds Qa^MF) i" '̂•

Consider a A'-tuple of coordinates ( j , , . . . , / \ } , which are not necessarily distinct, such
ihmj, e { l n) (or i=\ k. If f : R"^ Z?"̂ * and

(16) , = / W = . , v , = j ^ . ^ if „ < / < „ + *,

then / corresponds to a duplication operation.
Given a set 5 c R", we define the set / (S) by f{S) = {f(x): x e 5). It is straightforward

to prove the following lemma (see the discussion on flipping and embedding in LovSsz and
Schrijver 1991 and the discussion on embedding in Stephen and Tunnel 1999).

LEMMA 2.1. Let f : R" —> /?"' correspond to a flipping operation^ an embedding opera-
tion, or a duplication operation and let P 'ZQ he a polytope. Then /^+(/(P)) =f{N+(f))-
This equation is also valid for the NQ and N operators. D

PROOF. We will prove the result on duplication for the N^ operator. Assume / duplicates
only x„, that is f : R" ->• R"^^ and y = f{x) => y^+, = x„ and y^ = x^ for I < i < n. For a
matrix Y = {\\j), let

(we repeat the last row and column in Y and also the last diagonal element). Obviously
M(f(P)) = {Y' :Y G M(P)}. If Y is positive semidefinite, then Y = U^U, for some matrix
U, Let

^ - | ^ 0 ^ 0

then Y' = V'^V and Y' is positive semidefinite. As y is a principal minor of Y', Y is
positive semidefinite if Y' is. We can conclude that Y e M^iP) <^ Y' e M+if{P)) and

( ) •
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A useful properly of the Gomory-Chvdtal operator is that P'HF = F' where F is face of
a (rational) polyhedron P. A similar property holds for the matrix-cut operators.

LEMMA 2.2. ifF is a face of a polytope P^Q, then N^{F) = N^{P)nF. This equation
is also valid for the N and A/Q operators.

PROOF. Assume F is a face of P. Then there is a supporting hyperplane H = {.v ;
c^x < d] of P such that F — PHH (we will rewrite c^x <d as u^x > 0). By definition

Y eM_^{P). As H is a supporting hyperplane of P, we have M'"Kt', >Oand M' 'K(^( ,-£ ' , ) > O

f o r / = l . - . - j^" - As X e H, 0 = iJ X = u^ Yea = u^Yei + u^Y{eo-ei). Hence. Ye^ e H and
y(e , , -c , )e W fo r /= I, n. This implies that x € N+(PnH) = N^{F). and the lemma
follows. It is clear that the proof applies tn the N and A',, operators. D

For I < / < n, let Fj^ and f;' be facets of Q defined by Fj' - {x € Q : jc, = 0} and
F,- ={xeQ:x,= l]. Lovdsz and Schrijver (1991) gave the following characterization of N^.

LEMMA 2.3. A ,̂,(/') =n,-conv((Pnf/')U(/'nf;,')). D

We can conclude from Lemma 2.3 that if P does not intersect some facet of Q (say /^").
then A/,,(/') is contained in the opposite facet (F.'). This fact, together with Lemma 2.2. has
a useful corollary (note that if F is a face of Q, then N(Pr)F) = N{P)r\F).

COROLLARY 2.4. ifPn F/' = 0 , then NQ{P) = N^{P) n f,' = /V,,(/' n Fj). D

If P does not intersect some pair of opposing facets of Q. then N^i P) = 0 . As N^{P) c
N{P) c /Vo(P), the same (and Corollary 2.4) is true for the Â  and A'̂  operators.

If a polytope has empty integer hull and Chvatal rank n. then (Eisenbrand and Schulz
1999, Proposition 1) a defining (linear) system for P must have at least 2" inequalities. We
adapt the proof of this result and ohtain the following fact.

PROPOSITION 2.5. Let P£Q„bea polytope with P, = 0 and noncommutative {commu-
tative, semidefinite) rank n. Then any system of linear inequalities defining P must contain
at least 1" inequalities different from the bounds 0 < A: < 1.

PROOF. It suffices to prove the result for noncommutative rank. We observe that if
the noncommutative rank of P is n. then both PHFj^ and PHF^' have noncommutalive
rank n-l. For if PH/^ ' (and similarly PHF-^) has noncommutative rank < n - 2 , then
N;:-HP)nFJ' = N,rHPr\Fj') = 0 and hence A';-'(P) = ^ r ' ( P n F , ' ) = 0 . We can argue
as above for faces of P n F " and PHF- and obtain by induction that for any l-dimensional
face F of Q, PDF has noncommutative rank 1 and hence PHF ^0. As P, = 0, for every
vertex of Q there must be some inequality In any linear system defining P that separates
that vertex from P. If some inequality separates two O-I vectors from P. then it separates
some 1-dimensional face of Q from P. But this is a contradiction and hence the proposition
follows. D

Clearly the bound of 2" in Proposition 2.5 cannot be raised; any polytope P c Q^^ with
P,=0'}s contained in a polytope T with T,=0 that has a defining system of 2" inequalities
(besides the bounds on the variables). In addition, if P has rank «, then so does 7". In §3
we present a family of examples meeting the 2" bound given above.

A nonempty convex set 5 is said to be of antiblocking type (or has the antiblocking
property) if S c. R"^ and .v € S, 0 < y < x => y e 5. A convex set S is of blocking lypc if
S c R'l and A- e S, y > X ̂  y e S. See Schrijver (1986) for a discussion of antiblocking
and blocking polyhedra. Obviously a polytope contained in Q cannot be of blocking type.
However we modify the above definition and say that a nonempty convex set 5 c 0 is of
blocking type if y e ^ and y >.x eS =^ y eS.
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LEMMA 2.6. Let P C Q he a nonempty' antihiocking {blocking) polytope. Tfien N^_(P)
is a convex set wilh the antiblocking {blocking) property. N^^iP) and N{P) are aniibhcking
(blocking) polytopes.

PROOF. Let A: e N+{F). Then .v = Kf,, with Y € M+{P). Consider A: c [I «} and
define Y' by

j o if i e K OT, _ j
'^ ~ \ ^ Otherwise.

Let the (th column of Y be v̂  and let z, = y,, - .Vy (we define .v,' andj:) analogously). Then
y'l < yi => y', e /* (as /* is an antiblocking polyiope). Similarly z] ̂  P (z'^ < Zj wilh the Oth
coordinate being the same). The matrix Y' is positive semidefinite as the nonzero elements
in Y' form a principal minor of Y and Y is positive semidefinite. Hence Y' € M^{P).
Defining .v" = y,',, it follows that x^ e N+{P) (J:''' is the same as .v with the components in K
being set to zero). Since 0 <y < jc => y G conv({.v^ • K £ {^ "}}) £ -V+i/^). the result
for antiblocking polytopes folk>ws. A nonempty blocking polytope can be transformed into
an antiblocking one. by Hipping all coordinates; one can then apply the above result and
Lemma 2.1. D

Let Z' be a polytope in Q and let c^x < d he ^n inequality, with c >0.d >0, which
is valid for PDFj whenever t, > 0. It is shown in Lovlsz and Schrijver (1991, Lemma
1.5), that the above assumptions imply c^x < rf is valid for N^{P). We use this result to
obtain an upper bound on the semidefinite rank of an antiblocking polytope (we generalize
Corollary 2.19 in Lovasz and Schrijver (1991) which provides a similar bound for stable
set polytopes). Thi.s can also be derived from a result of Goemans (1998. Theorem 2).

LEMMA 2.7. Let P Q Q he a nonempty antiblocking polytope with max{l^.i:: .v € P/] =
k. Then the semidefinite rank of P is at most k-\-l.

PROOF. We prove the theorem by induction on max{l^.¥ : x e P,] (which we denote
by k). Let k=0. Then P, = {0}. For \ <i <n we have PHF,^ = 0 ; since PHF-^ ^ 0
would imply (via the antiblocking property) that e, e P,. This implies (by Corollary 2.4)
that N^{P) c n.F" = {0} = P,. Now consider some A- > 0 and assume that the theorem is
true whenever max{l^.r \ x ^ P,\ < k. Let P satisfy the conditions of the theorem (with
this value of k). As P is an antiblocking polytope, so is P,, and P, — {x € Q : Ax < b] for
.some matrix A >0 and vector h > 0. If / =//.-i for some /, then /TiF,' = f{Pi) where
PI is a lower-dimensional antiblocking polytope satisfying max{l^x : x € (Pj)/} < A: — I.
Hence NliP)nFl =/V}:(/'nf;.') = P, n F,'. Let c'x<d be an inequality in the system
Ax < b: c''x < d h valid for P, and also for N'l{P)f\Fl. We can conclude (from the
lemma of Lovdsz and Schrijver referred to above) that c'^x < (/ is valid for /V*''"'(/*); thus

P,. n , -

3, Rank of polytopes. Consider the polytoj>e defined by

(17) P . = \ x e Q , , : x , - ^ - - + x , , > { ] .

It is obvious that (P^), = [x eQ„:x^A H Jĉ  > 1} and the Chvatal rank of P^ is 1.

THEOREM 3.1. Let P,, be defined as in (17). Then the semidefinite rank of /*„ is n.
Further, N^{P„) = /V*(P,) = N!l(P„) for all integers k>0.

PROOF. We first show that
I

(18) : ^ ^ l e N ' i P J i f k < n , ''' "
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by induction on n. Certainly (18) is true for n = I and k = 0, I. Let n >2 and k < n
be given, and assume (18) holds for P„_^. We may assume k > 0. Consider the matrix
Y = iyij) G /fC+U-c-M) defined by

(19)
if/• = ; = ( ) ,

if i = O.j> I or y > I. y = 0 or I = > > 1.
0 otherwise.

Let Ihe/th column of K be >•,-Then y, =e , e (/»„), for/> 1 => y, € A'''"'(/',,). Lelz, =>'o-y;.
Then

2n-k-l , ^ 1 . ^ I
^'~ 2n-k ^° ^ 7n~k^^^^'~ ^ '>n_l-_ I >̂"

Now Zj G F". Let f = fp>y, then P„ n Ff — fiP^^x )• By the induction hypothesis.

Hence K e W(A''^-'(''n)) and (18) follows (take the vector Ke,,). Since nl{2n-k) < I for
k < «, it follows that {\/{2n-k))l ^ (PJ, tor k < /i and the commutative rank of P^ is
exactly n.

We now show, by induction on k. that

(20) Ni{P„) = NiiP„) for k < n

(we will refer to P^ as P as we do not need to consider P^ for varying n any more). The case
* = 0 is trivial. Assume (20) is true for A - I and lei T=N,';-^(P) (T, = Z',). Consider some
-r G N^~^{T). If X:,'L, x, > 1 then .v e P, =^ x e N^(T). So assume L"=i •*", < '• Now x = Kfo
for some Y = (y,̂ ) e JWO(7~). For I < ( < n both y, and yo-.V( G T. Define K' = {y'-j) by

0 otherwise.

Then y'. — e, e P, =^ y,' € 7". Now y,', - yj equals y,, - y, in the 0th coordinate and
y'o - y'i > yo -Ji ( ^ y'l - •>". ^** -̂o = yo)- Funher. ^ = y;, and X:"=i x^ < ' together Imply
that y'n-y', e 0. Since P is a nonempty blocking polytope, it follows from Lemma 2.6 that
T is also a nonempty blocking polytope. Therefore Vy - y,' G T. Y' is obviously symmetric.
Now consider any u 6 /f" '̂. We have from (21) that

1} n

u^Y'u = ^ u^y^i + 2 X^ MflW.y/o-
( = 0 y = l

Using yoo = 1 and y,, = y,-Q = x,.

The first inequality follows from that fact that Y!'^^ ^< ^ ' ^"'̂  **̂^ second from J*-, > 0. Hence
y is positive semidefinite and Y' e M+(T). But .v = Vy = y,', ^ .v e /V, (7"). This implies
thai No(7") c /V^(r). Hence A'(}(/'J = /V*(PJ = /VK/'J and the theorem follows. D
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The polytopes of the previous example have high semidefinite rank, but low Chvdtal
rank. There exist examples where the reverse is true. Some polytopes however have high
semidetinite rank a.s well as high Chvdtal rank, as we now discuss.

Consider Ihe polytope P,,, with empty integer hull, defined by

(22) P, = \xeQ^.Tx: + T{\-X:)>-, fora l I7c( i «) .
I ieJ Hi 2 J

If F is a face of Q with dim(F) = q., and /^ is defined as in (15). then

(23) P.^P = 5AP^)-

THEOREM 3.2. l^t P,, be defined as in (22). Tlien the semidefinite rank of P^ is n.

PROOF. We will prove by induction on n, that

(24) ^le^v;- ' ( />„).

The ease n = 1 is trivial; assume ^1 e N"~^iPn..i)- Consider the matrix Y = (y^j) defined by

(25)
if / = 7 = 0.
if / = 0. ;• > 1 or / > l.j = 0 or i = j > 1.

otherwise.

Lei the ith row of Y be v, and let z^ = yn~ .V,. Then, if / > 1, .y, e /*„ n F,'; the I'th
coordinate of v, has value I white the rest have value \. Let f = f^^,. By the induction
hypothesis and (23), y, = f (\l) € / ( i V r - ( n _ , ) ) = N^-HP^nFl) C 'N^^HP^I Similarly
one shows that z, € N^-^{P„nFf) c N^-~{PJ. To show that Y is positive semidefinite.
consider (/€/?"+'. Then

= («„
= 1 ^ ( = 1

Hence Y G M+(A'^"^(/»„)) and (24) follows. This implies that the semidefinite rank of P^
is n (since [P,,), = 0). D

This result has also been obtained by Goemans and Tunnel (2000). The Chvalai rank of
P„ is shown in ChvdtaJ et al. (1989) to be at least n: that the rank is exactly n follows
from the fact that (/*„), = 0 (such polytopes have Chvdta! rank at most n: see Bockmayr
and Ei.senbrand 1997). Hence we have a family of polytopes that have high Chv^lal rank
as well as high semidefinite rank. Let us combine both the operators to obtain a stronger
operator N, defined by

(26) • NAP)^N4P)np'.

The rank of a polytope with respect to N^ will be defined as in the case of the other
operators. We will show that even with this strengthened operator. P„ has rank n.

We define 5̂  to be the set of all vectors which have j components equal to ̂  and the
remaining components equal to 0 or I.
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Chv^lal et al. (1989. Lemma 7.2), show that the rank of P„ is at least n by proving that
Sj C Pj^"" for all 7 = I , . , . , n. Their proof technique establishes the auxiliary result that
for a polytope P,

(27) S^<zp^S^^,^P' f o r y = l n.

To obtain a similar result for the N^ operator observe that the proof of (24) yields

(28) S,_,^P^S,, = \\\\<ZN^{P)

for any P c ^ (since the vectors y, and li defined in the proof belong to S„^•^). We u.se (28)
to prove the following lemma.

Lt-MMA 3.3. Let P CQ be a polytope and let Sj c p, wherv i < j < n. Then Sŷ ., C
N^iP).

PROOF. Assume Sj c p for some y > 1. Let .t e S^+| and consider the face F of Q
defined by

F=\yeQ:yy^i if .x, = 1, y, = 0 if .t; = 0 } .

Then dim(F) = j+l. Let 5J denote the collection of vectors in R^^^ with j components
equal to j and the remaining component equal to 0 or 1. The polytope PHF can be written
as f,,{Pi) for some polytope P^ c QJ^^ where /^ Is defined as in (15). (Ẑ , is obtained by
dropping the fixed componenls oi PHF). Then SjHF =f^-{S\) and 5̂  C /»,. From (28) we
obtain that x = fp(\_l) e MN^(P,)) => x e N+{P). Hence 5^ ,̂ c N.^{P). D

Sinee S, belongs to P,,, we can combine Lemma 3.3 with (27) and conclude that Sj c

COROLLARY 3.4. Let P,, be deflned as in (22). Then \ I e A',"-' {PJ and the rank of P^
is n with respect to the N, operator. D

The following easy result will be useful in applying Corollary 3.4 to the traveling sales-
man problem.

LhMMA 3.5. Let f : R" —>• R'" be a function deflned as a composition of the embedding,
flipping and duplication operations. Let SC^Q^ and T c Q^^ be polytopes such that f(S) C
r . Then for any positive integer t, f{Nl{S)) C Af,'(7*).

PROOF. Lemma 2.1 implies that f(Ni{S)) = W;(/(5)) c ^ | ( 7 ) . It is obvious that / can
be represented by f{x) = Ax + b for some integral A and b. It is known that (see Chvdtal et
al. 1989, Lemma 2.2) for such / , / ( 5 ) c T implies /(5^") c r ' " . Hence / (5" 'n /v ; (5 ) ) c

*'O n/(Af|(S)) C r<" n /V;(r) and the result follows. O

4. The traveling salesman problem. Let G := {V, E) denote a complete graph with
vertex-set V and edge-set f. If .v G R^- and DC E, we define x{D) to be the sum Xl̂ e/j-'̂ .'-
For a subset S of V. let S{S) = {(L% w)eE:v&S,w€ V\S] and let y(S) = {{v. w) € E :
v,we S}. Consider the polytope H(G) (or H) defined as the set of all x e R'' satisfying

x(di{v])) = 2 for all i'€ V.

(29) x{d{W)) >2 for all W c V with 0 # W 56 V,
0 < J:, < I for all f 6 £.

Tbe integral vectors in // are the incidence vectors of Hamiltonian circuits in G; the problem
of maximizing a linear function over this set of integral vectors is the traveling salesman
problem (TSP). Dantzig et al. (19S4) introduced // as a relaxation of the TSP and developed
the cutting-plane method for optimizing over H[. The most successful algorithms for solving
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large TSP instances all adopt the Dantzig et al. approach (see Junger et al. 1995 for a survey
of this work).

Chvdtal (1973b) conjectured that lhe ChvjStal rank of H(G) tends to infinity with the
number of vertices n; Chvatal et al. (1989) proved this by establishing that the Chviital rank
ol H(G) is at least [/t/8j. We will adapt the proof in the above paper to show that the
A', rank of H{G) is also at least | .H/8J. This bound cannot be improved by more than a
constant factor; we establish an upper bound of n+\ on the A', rank of H{G) (as pointed
out by il referee, this can be improved slightly to n—2 using a result in Goemans 1998).
The dimension of H(G) is ^ / i ( " -3 ) (see Grotschel and Padberg 1985). so these results
establish that the N, rank of H{G) is within a constant factor of the square root of its
dimension. This is similar to the Stephen and Tunnel (1999) result for the semidetinite rank
of the standard relaxation of the matching polytope; note however that the Chvatal rank
(and hence the N, rank) of the matching relaxation is I.

We begin by identifying two subsets of edges used in Chvdtal ei al. (1989). Let A: = L/1/8J
and r = n —8Jt. Label the n vertices in V as aj,bi,Ci,di,ei,fi.,gj,hf for 1= I k. and
Wj for ; = I , . . . . r; for convenience we set u',, = ê  and w,.^f = a
edge-set

Let £,,2 denote the

and let E^ denote the edge-set

y. ft^-i). (e,, a,-+j). J = 1 fc - 1,

The two sets are illustrated in Figure 1.
It is easy lo verify that no Hamiltonian circuit contained entirely in f^i^iU

every edge in E^. In other words, each 0-1 vector in H satisfies the inequality

(30)

can use

82

PtouRE t. Dark edges are in £, and light edges are ia £,,j: n = 26.



MATRIX-CUT RANK OF POLYHEDRA 2 9

Notice that this inequality is violated by the vector x' obtained by setting jc; = I it> € £,.
jr; = J if e 6 £,/2. and x' = 0 otherwise; therefore, x' is not a member of //,. We will
obtain a lower bound on the N, rank of H by showing that ^*"'(W) contains x*.

THEOREM 4.1. Let G be a complete graph with n vertices. The rank of H(G) {as defined
in (29)) with respect to the N, operator is at least ["/8J and at most n+ I.

PROOF. Consider the polytope T{G) (or 7") defined as the set of all .v e R'^ satisfying

A(S({f}))<2 for all veV,

x{yiW)) <\W\-l for all W c V with 0 # W # V,

0 < .V, < 1 for all e e £.
— • • * •

Lex F={x&Q: x{5{[v])) = 2 for al! v e V}. It can be shown that H{G) is a face of T(G)
(see Grbtschel and Padberg 1985 for a discussion); in particular vye have H = TP\F and
H, = T,nF. Any 0-1 vector in T can have at most n ones; thus max{l^A': x eT,] = n.
Since T is an antiblocking polyiope. it follows from Lemma 2.7 that the semidefinite rank
of T is at most H-I- I. By Lemma 2.2 we have A';:''(//) = ^^-^ ' ( rnF) = A^;'^'(7)nF =
T,nF = H,. Hence the N, (or W+) rank of// is at most « + l .

To obtain the lower bound, we show the existence of a function / : 0[,,/aj -»• /?^ satisfying
the following properties (let k = [n/Sj):

(i) / is a composition ofthe embedding, flipping, and duplication operations;
(ii) f(Pk) ^ ff' where F^ is defined as in (22);

(in) x'=f{{l)^H,.
Given such an / , Corollary 3.4 and Lemma 3.5 together imply that x' = / ( ^ l ) 6
f(Nl;~\P^)) c N*-'(/ /) . Hence (iii) implies that the N, rank of H is at least k.

We will construct / as in Chvatal et al. (1989). If v G Q^. let /(>•) be the vector ;c e ^^
defined by

I -.V, if f e {(/?,, c,), {d,, e,). (/,,

0 otherwise.

It is clear that (i) and (iii) hold for / defined in this way. A short proof that (ii) holds can
be found in Lemma 8.2 of Chvatat et al. (1989); for completeness we repeat the argument
below.

Consider an arbitrary vector y e P^ and let x' denote / (y ) . We must show that x' satisfies
each inequality in (29). Clearly 0 < x' < I and x'(fi({y})) = 2 for all y € V. It remains lo
show that .v' satisfies .v(fi(W)) > 2 for all proper subsets W CV.

For J c. [\,.. . ,k], [el yj e Qi^ denote the incidence vector of J and observe that f{yj)
is the incidence vector of two circuits in G. one spanning the sei

and the other spanning V \Wj. Therefore, f{yj) satisfies xiS{W)) > 2 for each proper
subset W C.V other than Wj. Let IV be any proper subset of V.

Case I. W / Wj for all J. Since y is a convex combination of vectors yj (as y is in (3^),
we can conclude thai x' satisfies .T(5(W)) > 2.

Ca.se 2. W = Wj for some ,/. We have

Therefore, since _v satisfies Uie inequalities (22), we know that x'{8{Wj)) > 2.



3 0 W. COOK AND S. DASH

A similar result can be proven for the standard relaxation of the asymmetric traveling
salesman problem; the proof is again an easy application of Corollary 3.4 and (he proof
melhod used in Chvdtal et al. (1989).

Ai-knowledgmcnts. The authors would like lo ihank Yann Kieffer for his helpful com-
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