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ON THE MATRIX-CUT RANK OF POLYHEDRA

WILLIAM COOK anp SANJEEB DASH

Lovisz and Schrijver (1991) described a semidefinite operator for generating strong valid inequal-
ities for the 01 vectors in a prescribed polyhedron. Among their results, they showed that n itera-
tions of the operator are sufficient to generate the convex hull of 0-1 vectors contained in a poly-
hedron in n-space. We give a simple example, having Chvital rank 1, that meets this worst case
bound of n. We describe another example requiring n iterations even when combining the semidef-
inite and Gomory-Chvital operators. This second example is used to show that the standard linear
programming relaxation of a k-city traveling salesman problem requires at least [k/8] iterations of
the combined operator; this bound is best possible, up to a constant factor, as & + 1 iterations suffice.

Many structures in combinatorial optimization can be modeled as a set of 0-1 vectors
in a prescribed polyhedron in R”, the n-dimensional Euclidean space. The utility of such
a formulation depends to a large degree on our ability to derive, from the polyhedron,
linear inequalities that are valid for the 0-1 vectors in the polyhedron. In some cases, these
inequalities directly answer important combinatorial questions; in other cases, they permit
linear programming methods to effectively analyze the given structure.

A general approach for obtaining valid inequalities was proposed by Lovész and Schrijver.
The main version of their method uses an operator that lifts a polyhedron P to a higher
dimensional space, applies a semidefinite relaxation, and projects it back to a convex set
that better approximates the convex hull of the 0-1 vectors in P. An important property
of the operator is that it is possible to optimize linear functions over the resulting convex
set in polynomial time (provided we can optimize over the original polytope in polynomial
time). Furthermore, for any polyhedron in [0, 1]*, at most n iterations of the operator are
sufficient to obtain the convex hull of its 0-1 vectors.

The power of this semidefinite operator is illustrated by the result of Lovisz and Schrijver
(1991) that the stable set polytope of a perfect graph can be obtained in a single iteration
from a certain polytope having a defining system of polynomial size (in the number of
vertices of the graph). This implies the polynomial solvability of the weighted stable set
problem for perfect graphs.

For general polyhedra, Goemans (1997) raised the question of determining the worst case
behavior of the operator in terms of the number of iterations required to obtain the con-
vex hull of 0-1 vectors. Stephen and Tungel (1999) showed that a well-known relaxation
of the matching polytope of a complete graph requires roughly /n/2 iterations where n is
the dimension of the problem. Recently Goemans and Tungel (Goemans 1998) presented
an example where n/2 iterations of the operator are necessary. In this paper, we present
two examples where the upper bound of » is attained (one of the examples has also been
discovered by Goemans and Tungel 2000). The first of these examples has Chvital rank 1,
while the second has Chvital rank n. Moreover, if we combine the semidefinite operator
with the Gomory-Chvital cutting-plane procedure, the second example still requires n iter-
ations, We use this result to show that the standard relaxation of the traveling salesman
problem requires at least |k /8] iterations of the combined operator, where k is the number
of cities. We also show that k + 1 iterations of the combined operator suffice.
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The paper is organized as follows. In §1 we describe the semidefinite operator, as well
as two others defined by Lovdsz and Schrijver (1991). Some of the basic properties of this
family of operators are collected in §2, and the worst-case examples are discussed in §3. In
§4 we apply the results to the traveling salesman problem. We will assume that the reader is
familiar with the theory of linear inequalities and polyhedra; an excellent general reference
is the book of Schrijver (1986).

1. The matrix-cut operators. Let @, be the 0-1 cube in R”, that is Q, = [0, 1]". If
the dimension is obvious from the context, we denote the O-1 cube by Q. A system of
linear inequalities a‘.Tx <b (i=1,...,m) in R" is denoted by Ax < b (here A € R™"
and b € R"). Given a set § € R", S, denotes the convex hull of integral vectors in § (also
called the integer hull); in particular, § € Q = §, = conv(5§N{0, 1}") where conv(X) is the
convex hull of vectors in the set X.

For x € R", let ¥ = (!) € R"*'. The additional coordinate will be referred to as the Oth
coordinate; thus i, = 1. Given a convex set § C R”, we define an associated convex cone S
by

0 e[ (1) e ],

where cone(X) is the set of nonnegative linear combinations of vectors in X. If P € Q is
defined by P = {x € R": Ax < b}, it follows that

P= [(J;") € R*! :bx(,-—sz’_Ol.

For the empty set @, we adopt the convention that @ = {0} (here 0(1) refers to the vector
of all zeros (all ones) in the appropriate dimension). Of special interest will be the cone
O={xeR*:x,-x20,520,1<i<n}

If K is a convex cone, its polar cone is K*, where K* = {y: y"x > 0Vx € K}. Let the ith
unit vector be ¢; and let f; stand for ¢, —¢,. Then Q* is spanned by the vectors ¢; and f,,
for i between 1 and n.

Given a point y € Q with y, > 0, we define the image of y in R" by 7 where Ay = (:)
for some A > 0. For a sub-cone K of'ﬁ. we let K denote the set {¥:y € K}. From this it

follows that for a convex set S € Q, S = S (note that @ = {0} and [6] = ).
We now introduce the matrix-cut operators of Lovidsz and Schrijver. Let P € Q be a

polytope defined by {x € R" :a]x < b,,i=1,...,m}. We can rewrite a] x < b, as
1 )
u; x>0, whereu = y

Since x; = 0 and 1 —x; = 0 are also valid for P for | < j < n, it follows that the quadratic
mequahtles (1] X)x; = 0 and (u] ¥)(1—x;) = 0 are valid for P. Writing x; as e Xand 1 —x;
as f]¥, we have

) P={x: ()R =0, @ =0Vi,j)

(the original inequalities u X = 0 can be recovered by adding (u] ¥)x; =0 and (] X)(1—
x;) = 0). Rewriting (u” x)(v %) as u” (¥x")v, and using the fact that P" is spanned by the
vectors u;, we obtain from (2) that

(3) P={x:ur(.ﬁj)u20 foruel—’-’.vefj'].
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All 0-1 vectors in P satisfy x? = x;. Therefore, if x is a 0-1 vector in P, then setting
Y =ix" and K = P we have that

4) Y is symmetric,

(s) Ye, = YTe, = diag(Y), thatis Yo=Yy=Y, if 1 <i<n,
(6) uYv>0 foruek*,veQ*,

(7) Y is positive semidefinite.

(Recall that an n x n matrix A is positive semidefinite iff x” Ax > 0 for all x € R"; equiva-
lently A = U7 U for some matrix U.) Condition (6) is equivalent to

(8) Ye,e K and Y(e;—e¢)eK ifl<i<n.
Also, if ¥ = (y;) is a matrix satisfying (8), then (since K C Q) we have

¥y 20, Yoj = Yijs Yio = Yijs

9)

Yij = Yo+ Yoj — Yoo Whenever i>0,j>0.

Let K € Q be a closed convex cone, and consider the three derived cones:

(10) M(K) = {Y € R"V*0"+1) . ¥ satisfies conditions (4)~(6)},
(11) My(K) = {Y € R"* ") -y satisfies conditions (5)—(6)},
(12) M, (K) = {Y € R"*"1 . ¥ satisfies conditions (4)~(7)}.

Define N(K) € R*"' to be {Ye,: Y € M(K)}. Ny(K) and N, (K) are defined analogously.

Given a convex set § € Q, define N(S) by N(S) = N(S). Thus N(S) consists of all the
vectors x € R" such that ¥ = Ye, where ¥ € M(S). Whether N(T) is a cone in Q or a
convex set in Q will be clear from the context. Both M(P) and M(P) refer to the same
cone. If P is a polytope in Q, then both M(P) and M, (P) are polyhedral cones (in a higher
dimensional space) and hence both N(P) and N,(P) are polytopes. In general, N, (P) is
nonpolyhedral (it is a convex set).

We will refer to N, N, and N_ collectively as the matrix-cut operators (N(P) is also
defined in Sherali and Adams 1990, but used in a different setting). N,(P) is actually defined
by Lovédsz and Schrijver via a geometric characterization (see Lemma 2.3).

Defining N°(P) = P and N'*'(P) = N(N'(P)) if t is a nonnegative integer, it follows
from (8) that P 2 N(P) 2 N*(P) 2 --- 2 P,. Lovész and Schrijver (1991) proved the
following important result.

THEOREM 1.1. Let P C Q, be a polytope. Then N"(P)=PF,. O

Moreover, Lovdsz and Shrijver showed that for any fixed value of 7, it is possible to
optimize linear functions over N'(P) in polynomial time (see their 1991 paper for a precise
statement). Identical results hold for the N, and N, operators; we can also replace polytopes
by closed convex sets in Q,.

We follow Liptdk (1999) and define the noncommutative rank of a polytope P to be the
least integer ¢ > 0, such that Nj(P) = P,. The commutative rank (also in Liptdk 1999) and
semidefinite rank are defined analogously for the N and N, operators, respectively.

Chyvital (1973) (and implicitly Gomory 1958) defined another method to obtain approx-
imations of the integer hull of a polytope P. If ¢"x < d is valid for P and ¢ € Z", then
¢’ x < |d] is a Gomory-Chvidtal cutting plane for P, Define P’ to be the set of points sat-
isfying all Gomory-Chvital cutting planes for P, and let P2 = P and PU*V = (PY for
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nonnegative integers ¢ (we will think of P’ as defining an operator ' : P — P, which we
call the Gomory-Chvdtal operator). Obviously P 2 P D P,. Chvital (1973) showed that
if P is a polytope, there exists some 7 > 0 such that P') = P, (see also Schrijver 1980);
the smallest number ¢ for which this holds is the Chvdtal rank of P. Bockmayr and Eisen-
brand (1997) proved that P € Q, = P = P, for some 1 < 6n*log n (this upper bound has
been improved to 3n%logn by Eisenbrand and Schulz 1999). In contrast to the matrix-cut
operators, the separation problem for P’ is NP-complete in general (Eisenbrand 1998).

2. Basic properties. We collect some properties of the matrix-cut operators applied to
polytopes. All of these properties also hold for closed convex sets contained in Q.

A function f: R" — R" corresponds to a flipping operation if it “flips” some coordinates.
That is, if J € {1,...,n} and f flips the coordinates in J, then

s 2= ifigJ,
(13) PRI N . Eied.

The function f corresponds to an embedding operation if f : R" — R"** and

X At l<isn,
(14) y=f(x)=2y={0 ifn<i<n+k,

1 ifntk <isn+k,

where 0 < k; < k. Note that we can always renumber the coordinates so that the additional
coordinates with values 0 or 1 are interspersed with the original ones and not grouped at
the end. Given a face F of Q, f, will denote the embedding function defined by

(15) fr embeds Qg in F.

Consider a k-tuple of coordinates {j,, ..., j.}, which are not necessarily distinct, such
that j,e{l,...,n}fori=1,... k. If f: R" = R"* and

% iRtelien

X . ifn<i<n+k,

(16) )'=f(x)=>,v.-={

then f corresponds to a duplication operation.

Given a set § € R", we define the set f(S) by f(5) = {f(x): x € §}. It is straightforward
to prove the following lemma (see the discussion on flipping and embedding in Lovdsz and
Schrijver 1991 and the discussion on embedding in Stephen and Tungel 1999).

LEMMA 2.1. Let f: R" — R™ correspond to a flipping operation, an embedding opera-
tion, or a duplication operation and let P € Q be a polytope. Then N_(f(P)) = f(N.(P)).
This equation is also valid for the N, and N operators. [

Proor. We will prove the result on duplication for the N, operator. Assume [ duplicates
only x,, thatis f: R" — R"™' and y = f(x) = y,,, =X, and y,=x, for 1 <i<n. Fora

matrix ¥ = (y;), let
s e v Xy
S ( a¥ 8 )

(we repeat the last row and column in ¥ and also the last diagonal element). Obviously
M(f(P))={Y":Y € M(P)}. If Y is positive semidefinite, then ¥ = U U, for some matrix

U. Let o
’ e" .

then ¥ = UTU’ and Y’ is positive semidefinite. As Y is a principal minor of Y’, ¥ is
positive semidefinite if ¥’ is. We can conclude that ¥ € M (P) < Y' € M (f(P)) and
N (f(P) ={(}) : x e No(P)} = f(N.(P)). D
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A useful property of the Gomory-Chvital operator is that P'NF = F’ where F is face of
a (rational) polyhedron P. A similar property holds for the matrix-cut operators.

LemMa 2.2, If F is a face of a polytope P € Q, then N, (F) = N, (P)NF. This equation
is also valid for the N and N, operators.

PROOF. Assume F is a face of P. Then there is a supporting hyperplane H = {x :
c'x < d} of P such that F = PNH (we will rewrite ¢"x < d as «” X > 0). By definition
N, (F)=N.(PNH)CS N, (P)NH=N_(P)NF.Let x€ N (P)NH. Then X = Ye, for some
Y € M_(P). As H is a supporting hyperplane of P, we have u’ Ye, > 0 and u" ¥ (¢, —e¢,) = 0
fori=1,...,n.AsxeH,0=u"x=u"Yey,=u"Ye;+u"Y(e,—¢;). Hence, Ye, € H and
Y(ey—e) € H fori=1,...,n. This implies that x € N, (PN H) = N, (F). and the lemma
follows. It is clear that the proof applies to the N and N, operators. [J

For 1 <i<n, let F) and F! be facets of Q defined by F’ = {x € Q: x, = 0} and

F!={x € Q:x,=1}. Lovisz and Schrijver (1991) gave the following characterization of N;,.
LEMMA 2.3. Ny(P)=nNconv((PNF)U(PNF)). O

We can conclude from Lemma 2.3 that if P does not intersect some facet of Q (say F),
then N,(P) is contained in the opposite facet (F;'). This fact, together with Lemma 2.2, has
a useful corollary (note that if F is a face of Q, then N(PNF) = N(P)NF).

CoroLLARY 24. If PNF] =@, then Ny(P) = Ny(P)NF! = Ny,(PNF!). O

If P does not intersect some pair of opposing facets of Q, then Ny(P) =@. As N_(P) C
N(P) € Ny(P), the same (and Corollary 2.4) is true for the N and N, operators.

If a polytope has empty integer hull and Chvatal rank n. then (Eisenbrand and Schulz
1999, Proposition 1) a defining (linear) system for P must have at least 2" inequalities. We
adapt the proof of this result and obtain the following fact.

ProposiTION 2.5. Let P C Q, be a polytope with P, = & and noncommutative (commu-
tative, semidefinite) rank n. Then any system of linear inequalities defining P must contain
at least 2" inequalities different from the bounds 0 < x < 1.

PrOOF. It suffices to prove the result for noncommutative rank. We observe that if
the noncommutative rank of P is n, then both PNF" and PNF! have noncommutative
rank n— 1. For if PNF? (and similarly PN F) has noncommutative rank < n — 2, then
Ni=2(PYNF) = N;"2(PNF) = @ and hence NJ~'(P) = N}~'(PNF]) = @. We can argue
as above for faces of PNF and PNF and obtain by induction that for any 1-dimensional
face F of Q, PNF has noncommutative rank 1 and hence PNF # &. As P, = @, for every
vertex of Q there must be some inequality in any linear system defining P that separates
that vertex from P. If some inequality separates two 0-1 vectors from P, then it separates
some 1-dimensional face of Q from P. But this is a contradiction and hence the proposition
follows. [

Clearly the bound of 2" in Proposition 2.5 cannot be raised; any polytope P € Q, with
P, =@ is contained in a polytope T with 7, = @ that has a defining system of 2" inequalities
(besides the bounds on the variables). In addition, if P has rank n, then so does 7. In §3
we present a family of examples meeting the 2" bound given above.

A nonempty convex set § is said to be of antiblocking type (or has the antiblocking
property) if SC R, and x€ §,0<y<x=yeS. A convex set § is of blocking type if
SCR, and x €S, y=x= yeS. See Schrijver (1986) for a discussion of antiblocking
and blocking polyhedra. Obviously a polytope contained in Q cannot be of blocking type.
However we modify the above definition and say that a nonempty convex set S € Q is of
blocking type if ve Qand y>xe S= v §.
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LeMMma 2.6. Let P € Q be a nonempty antiblocking (blocking) polytope. Then N (P)
is a convex set with the antiblocking (blocking) property. Ny(P) and N(P) are anitblocking
(blocking) polytopes.

ProoF. Let x € N, (P). Then X = Ye, with ¥ € M, (P). Consider K C {1,...,n} and
define ¥’ by
Y'—{O ifieKorjek,
#71Y, otherwise.
Let the ith column of ¥ be y, and let z; = y, — v, (we define y; and z; analogously). Then
v, <y, =y, € P (as P is an antiblocking polytope). Similarly z, € P (z] < z; with the Oth
coordinate being the same). The matrix Y’ is positive semidefinite as the nonzero elements
in ¥’ form a principal minor of ¥ and Y is positive semidefinite. Hence Y' € M _(P).
Defining x* = ¥, it follows that x* € N, (P) (x* is the same as x with the components in K
being set to zero). Since 0 <y <x = yeconv({x* : K € {1,...,n}}) € N, (P), the result
for antiblocking polytopes follows. A nonempty blocking polytope can be transformed into
an antiblocking one, by flipping all coordinates; one can then apply the above result and
Lemma 2.1. O
Let P be a polytope in Q and let ¢"x < d be an inequality, with ¢ > 0,d > 0, which
is valid for PNF' whenever ¢, > 0. It is shown in Lovdsz and Schrijver (1991, Lemma
1.5), that the above assumptions imply ¢”x < d is valid for N, (P). We use this result to
obtain an upper bound on the semidefinite rank of an antiblocking polytope (we generalize
Corollary 2.19 in Lovdsz and Schrijver (1991) which provides a similar bound for stable
set polytopes). This can also be derived from a result of Goemans (1998, Theorem 2).

LemMA 2.7. Let P € Q be a nonempty antiblocking polytope with max{1"x:x € P,} =
k. Then the semidefinite rank of P is at most k + 1.

ProOF. We prove the theorem by induction on max{17x : x € P,} (which we denote
by k). Let k =0. Then P, = {0}. For 1 <i < n we have PNF} = @; since PNF' # @
would imply (via the antiblocking property) that e; € P,. This implies (by Corollary 2.4)
that N, (P) € N,F" = {0} = P,. Now consider some k > 0 and assume that the theorem is
true whenever max{17x : x € P,} < k. Let P satisfy the conditions of the theorem (with
this value of k). As P is an antiblocking polytope, so is P,, and P, = {x € Q : Ax < b} for
some matrix A > 0 and vector b > 0. If f = f for some i, then PNF! = f(P;) where
P, is a lower-dimensional antiblocking polytope satisfying max{1"x:x € (P,);} < k- L.
Hence N*(P)NF! = NY(PNF!)=P,NF. Let ¢"x < d be an inequality in the system
Ax < b; ¢"x < d is valid for P, and also for Nf(P)NF/'. We can conclude (from the
lemma of Lovdsz and Schrijver referred to above) that ¢’ x < d is valid for N**'(P); thus
N ePr. O

3. Rank of polytopes. Consider the polytope defined by
(17) P,=[xeQ,: %+ -+x,2> 1},

It is obvious that (P,), ={x € Q, : x, +---+x, = 1} and the Chvital rank of P, is 1.

n

Tueorem 3.1.  Let P, be defined as in (17). Then the semidefinite rank of P, is n.
Further, Nj(P,) = N*(P,) = NX(P,) for all integers k > 0.

Proor. We first show that

1
2n—k

(18) 1e N*(P,) ifk<n,
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by induction on n. Certainly (18) is true for n=1 and k=0,1. Let n > 2 and k < n
be given, and assume (18) holds for P,_,. We may assume k > 0. Consider the matrix
Y = (y;) € R+1*+D defined by

| if I f =10,
(19) Yy = 2"—'_5 if-i=00f>1ari>]Jd=00ri=j>1,
0 otherwise.

Let the ith column of ¥ be y,. Then y, =¢, € (P,), fori> 1=y, e N“'(P,). Let z;, = y, — ¥,.
L 2n—k— 1 ! ’ 1
A +j§omej =g = E_‘:U )
Now Z, € F{. Let f = fpo; then P,NF = f(P,_;). By the induction hypothesis,
| Bk 1
In—k-1 _ 2a-D—=1)
= € f(N“'(P,.)) =N (P,NF)) cN*'(P,).

LN P 1)

Hence ¥ € M(N*~'(P,)) and (18) follows (take the vector Ye,). Since n/(2n—k) < 1 for
k < n, it follows that (1/(2n—k))1 & (P,); for k < n and the commutative rank of P, is
exactly n.

We now show, by induction on k, that

(20) Nj(P,)=N}(P,) fork<n

(we will refer to P, as P as we do not need to consider P, for varying n any more). The case
k =0 is trivial. Assume (20) is true for k— 1 and let T = N}~ '(P) (T, = P,). Consider some
XENYT). If 3 x;>1then x € P, = x€ N,(T). So assume Y,  x;, < 1. Now ¥ =VYe,
for some Y = (y;) € My(T). For 1 <i < n both y, and y,—y, € T. Define ¥' = (v;;) by

P = y,‘, ifi=j0r1'=00rj=0,
B Yi=10  otherwise.

Then ¥/ = e, € P, =y, € T. Now Yo — ¥ equals y, —y, in the Oth coordinate and
Yo—¥ = Yo=Y (as y; <y and y; = y,). Further, X = y; and ¥/, x; < | together imply
that y, —y, € Q. Since P is a nonempty blocking polytope, it follows from Lemma 2.6 that
T is also a nonempty blocking polytope. Therefore v, — v/ € T. ¥’ is obviously symmetric.
Now consider any u € R"*'. We have from (21) that

n n
uT Y’u = zu?yﬁ“‘zzunu'_\’m.

=0 =1

Using ygo =1 and y;; = y; = X,

YU Y 2
i=
n n
= zxi(“tzl y - “? +2uu) = Z-“-.‘(“n'i' u)? = 0.

=l i=1
The first inequality follows from that fact that 3_"_, x; < | and the second from x; > 0. Hence

Y' is positive semidefinite and Y' € M_(T). But X = y, = y; = x € N_(T). This implies
that N,(7) € N.(T). Hence Nj(P,) = N*(P,) = N*(P,) and the theorem follows, [J



26 W. COOK AND S. DASH
The polytopes of the previous example have high semidefinite rank, but low Chviital
rank. There exist examples where the reverse is true. Some polytopes however have high

semidefinite rank as well as high Chvital rank, as we now discuss.
Consider the polytope P,, with empty integer hull, defined by

(22) Pn=[er,,:Z:x,-+Z(l—x,-)z—;-. for all Jg{l....,n}’.

iel itd

If F is a face of Q with dim(F) = q, and f; is defined as in (15), then

(23) P,NF = fp(P,).
THEOREM 3.2.  Let P, be defined as in (22). Then the semidefinite rank of P, is n.
Proor. We will prove by induction on n, that

(24) %1 € N-I(P,).

The case n = 1 is trivial; assume %1 € N*“*(P,_,). Consider the matrix ¥ = (y;;) defined by

I fi=j=0,
(25) yy=43 ifi=0j=lorizl,j=00ri=j21,
1 otherwise.

Let the ith row of ¥ be y, and let g, = y, —y;. Then, if i = 1,5, € P,NF]; the ith
coordinate of y, has value 1 while the rest have value % Let f = f;1. By the induction
hypothesis and (23), ¥, = f (11) € f(NI"2(P,_,)) = N2-2(P,NF}) € N-*(P,). Similarly
one shows that Z; € N/7*(P, N F?) € N!7(P,). To show that ¥ is positive semidefinite,
consider u € R""', Then

' Yu = u§+%2uf+2muo+%22uiui
i=l i=1

i=l j>1

= (u(,-l-lZu,.) +-I-):u,-1 >0.
2 =1 4 f=1

Hence Y € M (N]*(P,)) and (24) follows. This implies that the semidefinite rank of P,
is n (since (P,), =@). O

This result has also been obtained by Goemans and Tungel (2000). The Chvital rank of
P, is shown in Chvital et al. (1989) to be at least n; that the rank is exactly n follows
from the fact that (P,), = @ (such polytopes have Chvital rank at most n; see Bockmayr
and Eisenbrand 1997). Hence we have a family of polytopes that have high Chvital rank
as well as high semidefinite rank. Let us combine both the operators to obtain a stronger
operator N, defined by

(26) N,(P)=N,(P)NP.

The rank of a polytope with respect to N, will be defined as in the case of the other
operators. We will show that even with this strengthened operator, P, has rank n.

We define S, to be the set of all vectors which have j components equal to -% and the
remaining components equal to 0 or 1.
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Chvital et al. (1989, Lemma 7.2), show that the rank of P, is at least n by proving that
S; € PY~V for all j=1,...,n. Their proof technique establishes the auxiliary result that
for a polytope P,

(27) S;CP=5,CP forj=1,...,n
To obtain a similar result for the N, operator observe that the proof of (24) yields
(28) 51 P38, = {31} E N, (P)

for any P C Q (since the vectors ¥, and Z; defined in the proof belong to S, _,). We use (28)
to prove the following lemma.

LemmA 3.3, Let P C Q be a polytope and let S, C P, where 1 < j < n. Then §,,, €
N (P

PrROOF. Assume S; C P for some j = 1. Let x € §;,, and consider the face F of Q
defined by
F=ived:y.=1ix=1%=01fx=0).

Then dim(F) = j+ 1. Let §] denote the collection of vectors in R/*' with j components
equal to % and the remaining component equal to 0 or 1. The polytope PN F can be written
as fp(P,) for some polytope P, € Q,,, where f; is defined as in (15). (P, is obtained by
dropping the fixed components of PN F). Then §;NF = f(S}) and §; € P,. From (28) we
obtain that x = f(31) € fx(N,(P,)) = x € N,(P). Hence §,,, SN, (P). O

Since §, belongs to P,, we can combine Lemma 3.3 with (27) and conclude that §; €

NIFY(P,).

CoroLLARY 3.4. Let P, be defined as in (22). Then 1 € N!~'(P,) and the rank of P,
is n with respect to the N, operator. [

The following easy result will be useful in applying Corollary 3.4 to the traveling sales-
man problem.

LeEmMMA 3.5. Let f:R" — R™ be a function defined as a composition of the embedding,
Mipping and duplication operations. Let S € Q, and T  Q,, be polytopes such that f(5) €
T. Then for any positive integer t, f(N!(S)) € N(T).

Proor. Lemma 2.1 implies that f(N{(S)) =N(f(S)) € N/ (T). Itis obvious that f can
be represented by f(x) = Ax+b for some integral A and b. It is known that (see Chvital et
al. 1989, Lemma 2.2) for such f, f(5) € T implies f(5") € 7). Hence f(S"'NNL(S)) S
F(SYNF(NL(S)) € TONNL(T) and the result follows. O

4. The traveling salesman problem. Let G = (V, E) denote a complete graph with
vertex-set V and edge-set E. If x € R* and D C E, we define x(D) to be the sum ¥, x,.
For a subset § of V, let 8(S) = {(v.,w)€ E:ve S, we V\S} and let y(S) = {(v,w) € E:
v, w € §}. Consider the polytope H(G) (or H) defined as the set of all x € RF satisfying

x(8({v}))=2 forallveV,
(29) x(6(W))=>2 foral WCVwith@£W=£V,
O <x, <1 for all e € E.

The integral vectors in H are the incidence vectors of Hamiltonian circuits in G; the problem
of maximizing a linear function over this set of integral vectors is the traveling salesman
problem (TSP). Dantzig et al. (1954) introduced H as a relaxation of the TSP and developed
the cutting-plane method for optimizing over H,. The most successful algorithms for solving
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large TSP instances all adopt the Dantzig et al. approach (see Jiinger et al. 1995 for a survey
of this work).

Chvital (1973b) conjectured that the Chvdtal rank of H(G) tends to infinity with the
number of vertices n; Chvatal et al. (1989) proved this by establishing that the Chvital rank
of H(G) is at least [n/8]. We will adapt the proof in the above paper to show that the
N, rank of H((G) is also at least |[n/8]. This bound cannot be improved by more than a
constant factor; we establish an upper bound of n+ 1 on the N, rank of H(G) (as pointed
out by a referee, this can be improved slightly to n —2 using a result in Goemans 1998).
The dimension of H(G) is %n(n —3) (see Grotschel and Padberg 1985), so these results
establish that the N, rank of H(G) is within a constant factor of the square root of its
dimension. This is similar to the Stephen and Tungel (1999) result for the semidefinite rank
of the standard relaxation of the matching polytope; note however that the Chvital rank
(and hence the N, rank) of the matching relaxation is 1.

We begin by identifying two subsets of edges used in Chvital et al. (1989). Let k = |n/8|
and r = n— 8k. Label the n vertices in V as a;, b, ¢;, d;, e;, fi, g, h; fori=1,... .k, and
w; for j=1,...,r: for convenience we set w, = ¢, and w,,, =a,. Let E,, denote the
edge-set

(a;s b,). (by c)). (cin dy), (d;, ;). (e, £
(fis8)s (80 b))y (hyva),  i=1,... 0k,
and let £, denote the edge-set

(h;, d,), (b, fi), i PR .

(€is 8is1)s (€10 @14y),s im0 0l=1,
(€. 81)s

(w), wyy), o i R

The two sets are illustrated in Figure 1.

It is easy to verify that no Hamiltonian circuit contained entirely in E,,, UE,; can use
every edge in E,. In other words, each 0-1 vector in H satisfies the inequality

(30) X(E ;) +2x(E)) < (n—=1)+|E,|.
&2 f? €,
hz dz[
a, bz €y
€, d, ¢, a, 3 L
f[ bf b3 fj
h d
g, L e, w, 3 4 €5 W
w "

FiGure 1. Dark edges are in E, and light edges are in E, ;: n=26.
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Notice that this inequality is violated by the vector x* obtained by setting x} =1 if e € E,,
x;= ; if e € £, and x7 =0 otherwise; therefore, x* is not a member of H,. We will
oblam a lower bound on the N, rank of H by showing that N*~'(H) contains x*.

THEOREM 4.1.  Let G be a complete graph with n vertices. The rank of H(G) (as defined
in (29)) with respect to the N, operator is at least |n/8| and at most n+ 1.

Proor. Consider the polytope T(G) (or T) defined as the set of all x € R® satisfying

x(6({v}))) <2 forallveV,
x(y(W))<|W|—1 forall WSV with@#W=#V,
0 <34 for all e € E.

Let F={xe Q:x(6({v})) =2 for all ve V}. It can be shown that H(G) is a face of T(G)
(see Grotschel and Padberg 1985 for a discussion); in particular we have H = TN F and
H,=T,NF. Any 0-1 vector in T can have at most n ones; thus max{1’x: x € T;} = n.
Since T is an antiblocking polytope, it follows from Lemma 2.7 that the semidefinite rank
of T is at most n+ 1. By Lemma 2.2 we have N*'(H) = N/'*' (TNF) = N"* (T)NF =
T,NF = H,. Hence the N, (or N_) rank of H is at most n+ 1.

To obtain the lower bound, we show the existence of a function f : Q|, 5, = R® satisfying
the following properties (let k = |n/8]):

(i) f is a composition of the embedding, flipping, and duplication operations;

(ii) f(Py) € H, where P, is defined as in (22);

(iii) x* = f(31) & H,.
Given such an f, Corollary 3.4 and Lemma 3.5 together imply that x* = f (.',l) €
F(NE1(P,)) € N¥“'(H). Hence (iii) implies that the N, rank of H is at least k.

We will construct f as in Chvital et al. (1989). If y € Q,, let f(y) be the vector x € RF
defined by

1 ifeck,,
& A if e € {(a;, b)), (¢;, d,), (e, f,), (g;» b))}
R 1—y, if e € {(b;,¢;), (d}, €), (f5» &), (hi.a)},
0 otherwise.

It is clear that (i) and (iii) hold for f defined in this way, A short proof that (ii) holds can
be found in Lemma 8.2 of Chvital et al. (1989); for completeness we repeat the argument
below.

Consider an arbitrary vector y € P, and let x’ denote f(y). We must show that x’ satisfies
each inequality in (29). Clearly 0 < x’ < 1 and x'(8({v})) = 2 for all v € V. It remains to
show that x' satisfies x(8(W)) = 2 for all proper subsets W € V.

For J € {1,...,k}, let y, € Q, denote the incidence vector of J and observe that f(y,)
is the incidence vector of two circuits in G, one spanning the set

W, = (U{g,-, hivd,, c,-}) U (U{gj.fi. b, c,-}).

i€l igJ

and the other spanning V \ W,. Therefore, f(v,) satisfies x(8(W)) = 2 for each proper
subset W C V other than W,. Let W be any proper subset of V.

Case 1. W = W, for all J. Since y is a convex combination of vectors y, (as y is in Q,),
we can conclude that x* satisfies x(6(W)) = 2.

Case 2. W = W, for some J. We have

X(B(W))=43(1-y)+4Y v,

ieJ ig]

Therefore, since y satisfies the inequalities (22), we know that x'(8(W,)) =2. O



30 W. COOK AND S. DASH

A similar result can be proven for the standard relaxation of the asymmetric traveling
salesman problem; the proof is again an easy application of Corollary 3.4 and the proof
method used in Chvdtal et al. (1989).
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