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ON SOME ASPECTS OF TOTALLY DUAL INTEGRAL SYSTEMS

Abstract

A system of rational linear inequalities Ax < b is defined to
be a totally dual integral system if for each integer vector w for
which the linear program min{yb: yA=w, vy = 0} ‘has an optimal
solution, the optimum can be achieved by an integer vector y. Totally
dual integral systems were introduced by A,J. Hoffman and J. Edmonds
and R. Giles and are closely related to combinatorial min-max theorems.
This thesis deals. with general properties of totally dual integral
systems and with totally dual integral systems related to matching
problems. The topics studied include: 1) operations that preserve
total dual integrality, 2) upper bounds on the number of nonzero
variables needed in integral optimal solutions to dual linear programs
associated with totally dual integral systems, 3) recognition of
totally dual integfal systems, and 4) minimal totally-dual integral

systems for matching polyhedra,
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CHAPTER I

INTRODUCTION

1.

Definition of ‘total dual integral

There are many interesting theorems in combinatorics that equate
the minimum value of some function over some set and the maximum value
of some other function over another set. Indeed, some of the fundamental
results in graph theory are of this nature, e.g. Menger's theorem (on
disjoint paths), the Konig-Egervary theorem (on matchings in bipartite
graphs), and the Tutte-Berge theorem (on factors of graphs). Often
such min-max theorems can be phrased as "a certain linear program and
its dual each have integral optimal solutions." For example, consider
the Konig-Egervary theorem:

(1.1) In a bipartite graph the maximum number of pairwise disjoint

edges is equal to the minimum number of nodes meeting all edges.

Letting A be the edge-node incidence matrix of a bipartite graph G
(i.e. A has a row for each node of G, a column for each edge of G,

and a, =1 if v is an.end node of e .and avg = 0 otherwise), this
e &

result is equivalent to the fact that both sides of the linear programming

duality equation
(1.2) max{wx: Ax < 1, x = 0} = min{yl: yA > w, y = 0}

can be achieved by integer vectors if w = 1, where 1 is the vector
of all 1's (see Section 2 for conventions regarding notation). In fact,
a well-known "weighted" version of the Kﬁninggervéry theorem is
equivalent to the fact that for each integer vector w both sides of

(1.2) can be achieved by integer vectors.



Translating combinatorial min-max theorems into linear programming
results has proven to be very useful, both in unifying known min-max

theorems and in obtaining new theorems.

The first major result in the application of linear programming to
combinatorial min-max theorems is due to Hoffman and Kruskal [56], who,
in 1956, proved that if A is a totally unimodular matrix (i.e. the
determinant of every square submatrik of A dis either 0,1 or -1) then,
for all integer vectors b and w such that the optima exist, both

sides of the equality
(1.3) max{wx: Ax < b} = min{yb: yA = w, y = 0}

can be achieved by integer vectors. The KBnig—Egervéry theorem is a

direct consequence of this result (see Hoffman [60] for other applicatioms).
During the late fifties and sixties, Ford and Fulkerson [62], Edmonds [65,
70], and others used the Hoffman-Kruskal result and other linear programming
ideas to prove combinatorial min-max theorems where the coefficient

matrix of the corresponding linear system was not necessarily totally
unimodular. In each case, the min-max result was obtained by showing

that for a class of linear systems each side of (1.3) can be achieved by
integer vectors. Hoffman [74] was the first to see that, in fact, to

prove min-max theorems it suffices to show that the minimum in (1.3)

always has an integer optimal solution. Indeed, it follows from a result

of Hoffman [74,82] and Edmonds and Giles [77] (see Chapter 2, Section 2),
that if Ax < b is a linear system with b integral and if the minimum

in (1.3) can be acliieved by an integer vector for each integer vector

w for which the optima exist, then the maximum in (1.3) can also be

achieved by an integer vector for each integer vector w for which the

optima exist. This result plays an.important role in a technique



established by Hoffman [74], Younger [69], Lovasz [76], Robertson (see
Lovasz [76]), Johnson [75], Edmonds and Giles [77], and Hoffman and
Schwartz [78] for proving combinatorial min-max theorems (see Chapter 2,
Section 10). This technique has been used quite successfully in recent
years in obtaining very general min—mai results by Edmonds and Giles [77],
Hoffman and Schwartz [78], Frank [79], Schrijver [82a], and others. These
general results include as special cases such well known theorems as

the KSninggervéry theorem, Menger's theorem, the maﬁ—flow min-cut
theorem, Dilworth's theorem, Fulkerson's branching theorem, the
Vidyasankar-Younger théorem.oh longest paths, and the Lucchesi-Younger

theorem on directed cuts. .

Motivated by the above results, a rational linear system Ax <D

is defined to be a totally dual integral system if the minimum in (1.3)

can be achieved by an integer vector for each integer vector w for

which the optima exist (a linear. system {Alx < bl’ Azx > b2f A3x = b3}
is called totally dual integral if {Alx < by =Ayx € -by, Agx < bs,

-Agx < —b3} is totally dual integral). Thus, to prove a combinatorial

min-max theorem it often suffices to show that a certain linear system is

totally dual integral.

This thesis deals with general properties of totally dual integral
systems and with totally dual integral systems related to matching
problems. A summary of the results contained in the thesis is given in

Section 3, following a section.on notation and background material.



2. Background material.

In this section a survey of some well known results, which will
be used throughout the thesis, is presented, together with notational

conventions and references to background material.

Throughout the thesis, linear systems and linear spaces are assumed
to be rational unless otherwise specified. Rational spaces suffice for
the applications mentioned in the thesis. Moreover, two of the key results
in the theory of total dual integrality (the theorem of Hoffman and
Edmonds-Giles and Hilbert's Finite Basis Theorem) do not hold for real
linear systems (see Giles and Pulleyblank [79] and Mandel [81]). The
n-dimensional rational space will be denoted by Qn.

Let a = (al,...,an) and b = (bl,...,bn) be vectors. The
expression "a < b" means a; < bi for i =1,...,n and "ab" denotes
the inner product Z{aibi: i =1,...,n}. When matrix equations and

inequalities are expressed it is assumed that the sizes of the matrices
and vectors involved are compatilbe for matrix multiplication. The - .
expression-"0" will -often be used to denote the vector with the value of =

Z@rd;in'qagh“éomponént. Similarly, "1™ will dencte the vector of all ones,

a) Linear programming

A linear programming problem (or a linear program) is the problem

of ﬁaximizing or minimizing a linear (objective) function subject to a
set of linear inequality constraints. For a history of linear programming

see Dantzig [63].



If Ax < b is a system of linear inequalities and w 1is a vector,
the expression max{wx: Ax < b} is used -to denote both the problem
of maximizing wx subject to Ak.s b and the number wx*, where
x* 1is a vector such that Ax* < b and wx* 2 W§ for all vectors x
for which Ax < b, if such a vector x* exists ,(k* is called an

optimal solution to the limear program). A basic result in linear

programming (see Dantzig [63])is that if P = {x: Ax < b} is nonempty
and there exists a number o such that wx < o for all x ¢ P, then
the number max{wx: Ax < b} exists (i.e. there exists.an optimal solution

to the linear program).

With each linear program max{wx: Ax < b} there is an associated
dual linear program min{yb: yA = w,.y 2 0}. J. von Neumann (see Dantzig [63])
and Gale, Kuhn, and Tucker [51] proved the following fundamental result,

known as the duality theorem.

Theorem 2.1: Let Ax < b be a linear system and w a vector. If

max{wx: Ax < b} exists, then min{yb: yA =w, y = 0} exists and
(2.1) max{wx: Ax < b} = min{yb: yA=w, y = 0}. 0

The duality theorem implies similar results for linear programs in other

forms. For instance, if max{wx: Ax <. b, x = 0} exists then
(2.2) maX{wxf Ax < b, x 2 0} = min{yb: yA > w, y 2 0}

holds. It should be noted that a linear system {Ax < b, x = 0} is
totally dual integral if and only if. min{yb: yA > w, y = 0} can be

achieved by an integer vector for each integral w for which it exists.

The following result, known as the complementary slackness

theorem, will be used in Chapter 2.



Theorem 2.2: Let Ax < b be a linear system of m inequalities and

let w be a vector. Suppose that x* is a member of {x: Ax < b} and
that y* is a member of {y: yA = w, y 2 0}. The vector x* achieves
the maximum in (2.1) and the vector y* the minimum in (2.1) if and

only if for all i =1,...,m, y§->'0 implies that aix* = bi’ where

a,x < bi is therifthvinéquality,in?the_system Axréab. 0
For a proof of this theorem and for additional material on linear

programming see Dantzig [63].

b) Polyhedra

A polyhedron is a subset of Qn of the form {x: Ax < b}, where
A is an mXn matrix and b is a vector. For an account of the
theory of polyhedra see Rockafellar [79] and Stoer and Witzgall [70],
énd the papers Bachem and.Grdtschel'{82]méhdfPulleyblank [82].

'If P is a polyhedron, then a linear system Ax < b such that
P = {x: Ax < b} is a defining system for P. A polyhedron P is bounded

if there exist vectors £ and u such that £ < x < u for all x in
P. A hyperplane is a polyhedron of the form{x: gx = B}, where o is
a vector and ‘B is a scalar. The intersection of finitely many hyper-

planes is an affine subspace, i.e. a polyhedron of the form {x: Ax = b},

where Ax =b 1is a system of equations.

A finite set of vectors M is an affinely independent set if

the only vector A =_(Am: m ¢ M) such that Z{Amm: me M} = 0 and
Z{xm: me¢ M}=0 dis the zero vector. The dimension of a polyhedron P

(denoted by dim P) is one less than the cardinality of a maximal set of



affinely independent vectors in P. A polyhedron P ¢ Qn is of full

dimension if dim P = n.

Let P be a polyhedron defined by a linear system Ax < b. A
linear inequality Ox < B is valid for P if each x € P satisfies

ox SB. A hyperplane H = {x: ox = B} is a supporting hyperplane of P

if HnP # § and ox < B is a valid inequality for P. A face of P

is a subset which is the intersection of P with a supporting hyperplane
of P. Equivalently, a face of P is a nonempty set of the form

‘{x e P: A'x = b'}, where A[k < b' dis a subset of the inequalities

Ax < b. A face, F, of P is called a facet of P 4if dim F = dim P-1.

A valid inequality ox < B ‘is facet-inducing for P if {x: ax = B}nP

is a facet of P. An inequality dx < B 1is essential for P if every
defining system of P ‘must include some positive scalar multiple of

ox < B. If P dis of full dimension, then there exists a minimal defining
system for P that is unique up to positive scalar multiples. Moreover,
if P is of full dimension then there exists a one to one correspondence
between the facets of P and the essential inequalities of P (each
essential inequality induces a different facet of P and each facet-

inducing inequality is an essential inequality for P).

Each minimal face of P (minimal with respect to inclusion)
is of the form. {x: A'x =b'}, for some subsystem A'x <b' of Ax<b
(thus, each minimal face is an affine subspace). A face of P consisting

of exactly one point is called a vertex.

The convex hull of a finite set of vectors, M, dis the intersection
of all convex sets containing M. A well known result is that the convex

hull of a finite set of vectors is a polyhedron.

If w is a.vector such that max{wx: x ¢ P} exists, then the



maximum is aChiéVEd-by each member of some face of P. The polyhedron

P 1is an integer polyhedron if max{wx: x € P } can be achieved by an

integer vector for each vector w for which the maximum exists. The

following well known result follows immediately from this definition.

Lemma 2.3: A polyhedron P is an integer polyhedron if and only if

each minimal face of P contains an integer point. 0

A polyhedral cone is a polyhedron of the form {x: Ax = 0}, where

A is a matrix. By a theorem of Weyl [35] and Minkowski [96], a set C
is a polyhedral cone if and only if there exists a finite set of vectors

{al,...,ak} that generate G, i.ew C=:{Alal+...+Xkak: Ai = 0,

i=1,...,k}. A polyhedral cone C is pointed if x e C, %x#0 ifiplies that
-x ¢ C. If C 4is a pointed polyhedral cone then there exists a vector

w such that wx > 0 for each nonzero x ¢ C.

c) Complexity

Results in complexity theory and formal definitions of polynomial-
time algorithm, NP, and co-NP can be found in S. Cook [77], Garey and
Johnson [79], and Karp [72,75] (see also Edmonds [65b]). Informally, a
class .of objects is in the class NP if there is some information which
can be supplied about an object in the class so that one can verify in
an amount of time polynomially boundedvby the size of the object that
the object is in the class., - (The size of the'infdrmatioh'ﬁﬁSt be Bounded
by a polynomial in the size of the object.) Similarly, a class of objects
is in the class co-NP if there is some information which can be supplied
about an object not in the class so that ome can verify in'polynomial time
that the object is not in the -~class. A polynomial—time;aigorithm is one

which has a running time which is bounded by some polynomial in the size



of the input.

Most of:the complexity resﬁlts given in this thesis involve linear
systems. The size of a linear system Ax < b. is the number of binary

digits needed to write the system in binary notation.

Two important polynomial-time algorithms, which will be used often
in Chapter 2, are the ellipsoid algorithm for linear programming and

Lenstra's integer programming algorithm.

Khachian [79] showed that it is possible to solve linear programming
problems in polynomial time using the ellipsoid method of Shor [70] and
Yudin and Nemirowskii [76] (see Akgul [81] and Bland, Goldfarb, .and
Todd.{81] for surveys of results on the ellipsoid method); Grotschel,
Lovasz, and Schrijver [81,82] later showed that a modification of this
algorithm can be used to solve many combinatorial optimization problems

in polynomial time.

H.W. Lenstra [81] proved that for any fixed positive integer r,
there exists a polynomial-time algorithm which, for any linear system
Ax <b with A a matrix of rank r, finds an integer point in {x: Ax < b}
or proves that no such point exists. See Grotschel, Lovasz, and
Schrijver [82] and Lenstra, Lenstra and Lovasz [82] for results related

to this algorithm of Lenstra.

d) Smith and Hermite normal forms .

Let A be an mxn integer matrix of ramk r. Hermite [51]
showed that there exists a unimodular U (an nXn integer matrix is

called unimodular if it has determimant 1 or -1) such that
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LO
(2.3) AU = IB o’
where L is an rXr lower:triangular matrix, B 1is an (m-r)Xr matrix,
and the O's are matrices of all zeros (the matrix AU is said to be

in Hermite normal form). Smith [61] proved that there exist unimodular

matrices .V and {U}ﬂsuch that

where D 1is an rXr diagonal matrix and the 0's are matrices of all

zeros (VAU is infsmithfnqrmal form).

There are many applications of Smith and Hermite normal forms (see,
for example, Bachem and Kannan [79]). One application that will be
used in Chapter 2 is the following result, which appears as an exercise

in yan der Waerden [40](cf. Bachem and von Randow : [79]).

Theorem 2.4: Let Ax = b be a system of linear equations. There exists

an integer vector x such that Ax =b if and only if there does not

exist a vector y such that yA is integral and yb is nonintegral. [

This theorem follows directly from the result of Smith [61] mentioned

above. It will be referred to as the Smith-van der Waerden theorem.

Polynomial-time algorithms for computing the Hermite and Smith
normal forms of an integer matrix were found by Kannan and Bachem [79].

These algorithms will be used at several points in Chapter 2.

Let a;,...,3, be vectors. The set L ="{Klal+...fkkak; A, s

an integer for i = 1,...,k} is the lattice generated by Bpseeesdy.
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A basis for a lattice L 1is-a set of linearly independent vectors that
~generate L. It follows from the result of Hermite [61] that every

lattice has a basis. For results on lattices see Lekkerkerker [69].

e) Graph theory

A graph G is an ordered triple (VG,EG,WG) consisting of a
nonempty. finite set of nodes, a finite set EG of edges, disjoint from
VG, and an incidence fﬁnction WG that associates with each edge an
unordered pair of distinct nodes of G (loops are not permitted). Often,

an edge e such that TG(e) = (4,v) will be identified by the unordered
pair (u,v). For an edge e with WG(e) = (u,v), u and v are called
the ends of - e. For graph theory terminology see Bondy and Murty [76].
Special notation, which will be used in Chapter 3 is given below.

Let G .be a graph. For eéch. v ¢ VG, SG(V) denotes the subset
of edges of G which meet v (i.e. have v as an end node) and NG(V)

denotes the subset of nodes u e VG\{v} for which there exists an
edge  (v,4) € EG. For each S ¢ VG, YG(S) denotes the subset of edges
of G having both ends in S. If it is clear which graph is being

considered, the '"G" subscripts on WG,GG,NG, and Yo will not be
used.

For each 8§ c VG, G[S] denotes the subgraph of G induced by
S, i.e. G[S] = (8,Y(S), ¥), where ¥ is the restriction of ¥ to

If S 4is a set of subsets of VG and e is an edge of G, then

S(e) denotes the set {5 € S: eeY(S)}.
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If H dis a set of subgraphs of G and e is an edge of G,
then H(e) denotes the set {H ¢ H: e € EH}.

If x = (xi;ji € I) and S ¢ I, where I is a finite set, then
x(S) denotes.the sum Z{Xi: i e S}.

If B is a number, then |[B] denotes the largest integer less than
or equal to B and [Pl denotes the smallest integer greater than or

equal to B. If x = (xl,...,xn) is a vector then |x]  denotes the

vector ([le,...,an]) and [x1 denotes the vector ([xl],...,[xn]).
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3. Summary of results.

This thesis deals with general properties of totally dual integral
systems and with totally dual integral systems related to matching

problems.

The theory of totally dual integral systems is developed in Chapter 2.
The presentation is meant to be as complete as possible. Hence, in
sections 2 and 5, proofs of key results due to Hoffman [74,82] and Edmonds
and Giles [77], Giles and Pulleyblank [79], and Schrijver [81] are
presented. The proofs of these results do not differ substantially from
those givén in the above papers and in Schrijver [80], but it is hoped
that having the material collected here with standard terminology will .
be .of benefit to the reader. Also, it is pointed out in two places
how the results may be generalized from the lattice of all integer

points to arbitrary lattices.

To apply results of total dual integrality to combinatorial
problems it is necessary to find totally dual integral defining systems
for classes of polyhedra. In the analogous situation for integer
polyhedra certain operations which may be applied to a linear system,
such that if the linear system defines an integer polyhedron then the
derived system does as well, have been used often. Section 6 of Chapter 2
investigates whether or not these operations also preserve total dual
integrality of linear systems. Among the results in that section, it
is shown that adding slack variables to linear systems with integer
left hand sides, setting some inequalities to equalities (to obtain a
defining system for a face of a polyhedron), and applying Fourier-Motzkin
‘e limination. to eliminate a variable with'Ovand +*1 coefficients
from a linear system (to obtain a defining system for a projection of
the polyhedron) all preserve total dual integrality,:?(fhe fact that
setting inequalities to equalities preserves total dual integrality is

also given in Schrijver [82h];{}.1t is also shown that the only
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nontrivial scalar multiplication of inequalities that preserves total
dual integrality is multiplication by scalars of the form 1/k for

some positive integer k.

Suppose that Ax < b 1is a totally dual integral system with b
integral and that w is an integer vector such that max{wx: Ax < b}
exists. In Section 7 of Chapter 2 the problem of finding integer vectors

x and y that achieve the optima in the equation
(3.1) max{wx: Ax < b} = min{yb: yA = w, y = 0}

is considered. It is shown that there exists .a polynomial-time algorithm
which, for any linear system Mx = d and any vector c¢ for which

max{ex: Mx < d} exists, either finds an integer vector which achieves

the maximum or shows that Mx < d does not define an integer polyhedron.

This easy result implies that an integer vector x which achieves the
maximum in (3.1) can be found in polynomial time. A result of

Chandrasekaran [8l] is presented which shows that for integral-A an integral y

which achieves the minimum in (3.1) can also be found in polynomial time

Totally dual integral systems associated with combinatorial problems
are often very large with respect to the size of the combinatorial objects.
Thus, the above integer programming results are often not sufficient to
find, in polynomial time, combinatorial objects which achieve the maximum
vand minimum in a min-max equality. Grotschel, Lovész, and Schrijver [81,82]
have shown in various cases that the ellipsoid algorithm can be
used to overcome the difficulty of having large linear systems associated
with combinatorial problems. However, unlike.the case of finding integer
optimal solutions to primal linear programs whese solution set is a
bounded polyhedron, they were not able to derive under general conditions

a polynomial-time algorithm for finding integer optimal dual solutions.
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One difficulty in finding such an algorithm is the problem of expressing
the ‘integer optimal dual solution. In general, there may be exponentially
many dual variables associated with a linear system for a combinatorial
problem. Thus, there may_be.integer optimal solutions to the dual

linear program that cannot be described in polynomial time. A result
of Cook, Fonlupt, and Schrijver [83] presented in Section 8 resolves

this difficulty for totally dual integral systems. This result is that
if Ax < b 1is a totally dual integral system, with A an integer '
matrix of rank r, such that P = {x: Ax < b} is of full dimensioh,

then for each integer vector w for which min{yb: yA = w, y > 0}

exists the minimum can be achieved by an integer vector with at most

2r-1 nonzero components (it is also shown that if P is not of full
dimension then there is no upper bound on the number of nonzero dual
variables needed in an integer optimal solution.to mih{yb: yA = W, y 2 o}
in terms of r). This result improves several known results when

specialized to particular combinatorial problems.

A basic problem in the study of any. type of mathematical object
is that of recognizing the object. TIwo easy results on recognizing linear
systems that define integer polyhedra are presented in Section.9 of
Chapter 2. It is shown that the class of linear systems that define
integer polyhedra is in co-NP and that for any fixed positive integer r,
there exists a polynomial-time algorithm which, for any linear system
Ax
Ax
showed that the class of linear systems Ax < b with A integral that

A

b with A a matrix of rank r, determines whether or not

IA

b defines an integer polyhedron. Cook, Lovasz, and Schrijver [82]

are totally dual integral is in co-NP and that for any fixed positive
integer r, there exists a polynomial-time algorithm which, for any
linear system Ax < b with A an integer matrix of rank r, determines

whether or not Ax < b 1is totally dual integral. These two results
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are also presented in Section 9.

Schrijver [81] showed that each polyhedron of full dimension is
defined by a unique minimal totally dual integral system with integer
left hand sides. A result given in Section 9 of Chapter 2 is that for
any fixed positive integer r, there exists a polynomial-time algorithm
which, for any linear system Ax < b with A a matriﬁ of rank r which
defines a polyhedron of full dimension and any inequality dk < B deter-.
mines whether or not ax < B is in the unique minimal totally dual inte-

gralkdefiniﬁg system with integer left hand sides for P.

A well known "uncrossing" technique for proving that combinator-
ially described linear systems are totally dual integral is presented

in Section 10.

The results on linear systems for matching problems center around
the objects known‘as simple b-matchings. If G is a graph and
b = (bV: v € VG) 1is a nonnegative integer vector, a simple b-matching
of G dis a subset of the edges of G such that each node v of G

meets at most bV edges in the subset. A simple b~matching of G

which meets each node v in exactly bv edges is often called a b-factor
of G (b-factors have been studied by Tutte[47,52], Gallai[50], Lovéasz[70]
and others). A description of a totally duai integral defining system

for the convex hull of (the incidence vectors of) the simple b-matchings

of a graph follows easily from a result of Edmonds and Johmnson [70].

In Chapter 3, the unique minimal totally dual integral defining system
with integer left hand sides<'for'thisfconvexahﬁllaisfﬁharacterized; - This
result yields a "best possible" min-max theorem for simple b-matchings.

1"

A similar result for the slightly more general "capacitated" b-matching

problem is also given. This general result is then used to prove a
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theorem which characterizes the unique minimal totally dual integral
defining system for the convex hull of the matchings of a graph due to
Cunningham and Marsh [78], and to prove a theorem which characterizes
the unique minimal totally dual integral defining system for the convex
'hﬁll of the b-matchings of a graph due to Cook [81] and Pulleyblank [81].
The proof techniqﬁé used is simpler than those used by Cook [81] and
Pulleyblank [81] in that it does not require the knowledge of a complete
list of the facet-inducing inequalities for the polyhedron in question.
An essential result used throughout Chapter 3 is a connection between
minimal totally dual integral systems and separability. This simple
result is presented in Section 2 of that chapter and is used to prove

a result of R. Giles on matching separability, a result of Edmonds and
Giles (see Pulleyblank [82]) on matroid polyhedra, a result of Giles [75]

on matroid intersection polyhedra, and a result on b-matching separability.

In the final section of Chapter 3, the unique minimal totally dual
integral system with integer left hand sides that defines the convex

hull of the triangle-free 2-matchings of a graph is characterized.



CHAPTER II

TOTALLY DUAL INTEGRAI SYSTEMS

1. Introduction

Properties of totally dual integral systems are presented in this
chapter. For completeness, the presentation includes proofs of key
results due to Hoffman [74,82], Edmonds and Giles [77], Giles and
Pulleybank [79], and Schrijver [81].

The relationship of totally dual integral systems and integer poly-
hedra is presented in Sections 2 and 5. This relationship provides
motivation.for the study of totally dual integral systems. Further
motivation is provided in Sections 3 and 4, which contain some well
known results on classes of totally dual integral systems. Results of
Hoffman and Kruskal [56] and Fulkerson, Hoffman, and Oppenheim [74] on
totally unimodular and balanced matrices are presented in Section 3,
without proof. Fulkerson's anti-blocking theory is presented in
Section 4, including proofs of most of the results (Fulkerson
developed this theory before general totally dual integral systems were
studied, so his papers do not use the terminology of total dual
integrality nor do they make use of the results on general totally dual
integral systems). Section 4 includes a generalization of a theorem of
Fulkerson [71,72] to h-perfect graphs. Section 6 deals with the problem
of determining what operations can be performed on a totally dual
integral system such that the derived system is also .totally dual integral.
Integer programming problems related to totally dual integral systems
are studied in Section 7. Section 8 contains results on the number of
nonzero dual variables needed in an integer optimal solution to the
dual linear program of a linear program with a totally dual integral

constraint set. Section 9 deals with the problem of recognizing a

-18-
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totally dual integral system. In Section 10, a well known "uncrossing"
technique for proving that combinatorially described linear systems

are totally dual integral is presented. This technique is illustrated
with several examples which make use of results on totally unimodular

and balanced matrices.

A property of linear systems that is stronger than total dual
integrality and which will not be dealt with here is' box: total dual

integrality. A linear system Ax < b 1is called box totally dual integral

if for all vectors ¢ and 'd, the linear system {Ax < b, c < x < d}
is totally dual integral. For results on box total dual integrality see

Edmonds and Giles [77].

Another related concept that will not be dealt with here, except
for an application to matroid theory given in Section 8, is that of

integer rounding. A linear system is said to have the integer rounding

property (Baum and Trotter [77], Chandrasekaran [81]) if
(1.1) min{yb: yA = w, y > 0, y integral}l= [min{yb: yA = w, y = 0}]

for each integer vector w for which the right hand side exists. One
reason for not dealing with integer rounding is that Giles and Orlin [81]
have shown that a linear system has the integer rounding property if and
if only if a corresponding system is totally dual integral. 1Indeed, it
follows from the definitions of total dual integrality and integer
rounding that Ax < b has the integer rounding property if and omnly if
{Ax—bxo <0, X, < 0} is totally dual integral. Thus, results on
recognition, integer programming, etc., for integer rounding follow
from the corresponding results for total dual integrality. It should

be noted that Giles and Orlin [81l] also proved & converse result:

‘Given a linear system Ax < b, there exists a positive integer M such
that "‘Ax = b is totally dual integral if and only if Ax < Mb has the

integer rounding property.
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2. 1Integral Polyhedra

Motivation for the study of total dual integrality is provided by
the relation of totally dual integral systems to integer polyhedra.
This relationship'is presented in this section and in Section 5. A

good reference for. the material presented here is Schrijver [80a].

The starting point for the study of integer polyhedra and total
dual integrality is the Smith-van der Waerden Theorem (Theorem 2.4,
Chapter 1). This theorem implies the following geometric result (cf.
Schrijver [80]).

Theorem 2.1: Let K be an affine subspace of Qn that does not contain

integer points. Then K lies in a hyperplane that contains no integer

points.

Proof: Since K 1is an affine subspace, K = {x: Ax = b} for some
integral A and b. By the Smith-van der Waerden Theorem, there exists
a rational vector o such that oAx = gb has no integral solutionms.

Since K is contained in {x: 0Ax = ob}, the result follows. 0

It is quite easy to extend this result from the lattice of all

integer points to arbitrary lattices.

Corollary 2.2: Let L be a lattice in Qn and let K be an affine

subspace of Qn. If K does not contain any points in L, then K

lies in a hyperplane that contains no points in L.

Proof: Suppose that the dimension of L is n. Let {al,...,an} be
a basis for L. Consider the linear transformation T given by the

. . . n . . .
matrix with columns a A point x €. Q is an integer point

TERRREETE
if and only if T(x) is a point in L. The pre-image of K, T_l(K),
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is an affine subspace of_‘Qn Which does not contain any
integer points. By Theorem 2.1, T—l(K) lies in a hyperplane H that
contains no integer points. So K lies in the hyperplane T(H) and

T(H) .contains no points in L.

Now suppose that the dimension of L is d and d< n. Let

{al,...,ad} be a basis for L and let M be the linear space spanned

by a 8y By the above argument, the affine subspace KnNM 1lies in

1oece
an affine subspace H of dimension d-1 that contains no points in L.
The subspace H can be extended to a hyperplane that contains K but

contains no points in L. 0

The Smith-van der Waerden Theorem will be used to obtain the fol-
lowing fundamental theorem of Hoffman [74,82] and Edmonds and Giles [77]

(this particular form of the theorem is due to Schrijver [801]).

Theorem 2.3: A polyhedron P is an integer polyhedron if and only if

every supporting hyperplane of P contains integer points.

Proof. Suppose that P is an integer polyhedron. The intersection of
P with a supporting hyperplane is a face and every face of 'P. contains
integer points, so every supporting hyperplane of P contains integer
points. Conversely, suppose that every supporting hyperplane of P
contains integer points. Suppose also that P contains a minimal face
F that contains no integer points. Since F is an affine subspace,

by Theorem 2.1 F lies in a hyperplane H that contains no integer
points. Let P = {x: Ax < b}, where A and b are integral. By
adding a large positive iﬁteger to»each component of the vector o in

the proof of Theorem 2.1, it can be assumed that H dis of the form
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{x:.uAlx = abl} where Alx < bl is a subsystem of Ax < b and

F = {x: Alx = bl} and o is positive. Each point x € P satisfies

- 1 -
Alx £ b, so each point also satisfies uAlx < abl. So H is a
supporting hyperplane of P, a contradiction. a

This theorem is a special case of a result of Schrijver [80], which
gives a geometric description of the work of Chvatal [75] related to the

cutting plane’algorithm of -Gomory[63].

As in Corollary 2.2, Theorem 2.3 can be used to show that if L  is
a lattice of dimenéion n in Qn and P 1is a polyhedron in Qn, then
évery face of P contains points in L if and only if every supporting
hyperplane contains points in L. As examples, L can be taken to be
the set of all half integer‘points in Qn or the set of all even integer

. . n
points in Q.

Theorem 2.3 has several equivalent forms which are given in the

following -theoréems.

Theorem 2.4: - A polyhedron P 1is an integer polyhedron if and only if

max{wx: x ¢ P} is an integer for each integral w for which the maxi-

mum exists.

Proof: If P is an integer polyhedron then max{wx: x € P} is achieved
by an integral x for each. w for which the maximum exists so if w
is integral then max{wx: x ¢ P} is an integer. Now suppose that
max{wx: x ¢ P} is an integer for each integral w for which the maxi-
mum exists. Let H be a supporting hyperplane of P and let

H = {x:ax = B} for some integral o. Now. max{ox: x ¢ P} =8, so

B dis an integer. But since it can be assumed that the components of

o are integers with greatest common divisor 1, f -can be expressed
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as an integer combination of the components of o. So H contains an

integer point. By Theorem 2.3, P is an integer polyhedron. 0

Theotem 2.5: If Ax < b i#s a totally dual integral system and b  is

integral, then P = {x: Ax < b} is an integer polyhedron.

Proof: This follows from theﬁduélifyf@heoiém and Theorem 2.4. ]

Theorem 2.6: " If Ax <b is a totally dual integral system and - b

is integral, then each side of the equation
max{wx: Ax < b} = min{yb: yA = w, .y > 0}

can be achieved by an integer vector for each integral w for which the

optima exist.

Proof: This is just an interpretation of - Theorem 2.5. g
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3. Totally unimodular and balanced matrices.

It is not clear from the definition of total dual integrality that
nontrivial totally dual integral systems exist. Therefore, in this
section, some familiar classes of totally dual integral systems will be

studied. Further examples will be considered in Section 10.

Totally unimodular and balanced matrices are two important classes
of matrices that give rise to totally dual integral systems. These
classes can be used to build classes of totally dual integral systems
which include systems arising from many different combinatorial problems

- see Section 10.

A matrix A is totally unimodular if the determinant of every

square submatrix of A is either 0,1, or -1. Hoffman and Kruskal [56]
showed the importance of total unimodularity in the study of integer

polyhedra by proving the following theorem.

Theorem 3.1: An integer matrix A is totally unimodular if and only

if for every integral b the polyhedron {x: Ax < b, x 20} is an
integer polyhedron. » 0

Thus, if A is totally unimedular then Ax < b is tbtally dual

integral for every vector b.

A short proof of this theorem is given in Veinott and Dantzig [68],

where the following result is also proven.

Theorem 3,2: Let A be an mXn integer matrix of rank m. The

polyhedron {x: Ax =b, x =2 0} is an integer polyhedron for every
integral b if and only if each mXm submatrix of A has

determinant 0,1, or -1.
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The following corollary is a restatement of Theorém 3.2.

Corollary 3.3: Let A be én m*n matrix of rank m.. The linear

system Ax < b is totally dual integral for every integral b if

and only if each mn®*m_ submatrix of 'A has determinant 0,1, or -1.

Proof: The system Ax < Db dis totally dual'integral for every integral
b if and only if for every integral w the polyhedron
{y: yA =w, y 2 0} is an integer polyhedron. O

For applications of total unimodularity see the papers of
Baranyai [73], Hoffman [60,76,75], and Lovasz [79].

It does not follow directly from the definition that there exists
a method to determine whether or not a matrix is totally unimodular in
time polynomial in the size of the matrix - there are too many square
submatrices. However, a polynomial time recognition algorithm for
totally unimodular matrices does follow from Seymour's deep characteri-

zation of regular matroids - see Seymour [80].

Much work has been done on finding simple sufficient conditions
for total unimodularity as well as finding characterizations of total
unimodularity - see Padberg [75] and Truemper [78] for surveys. A
sufficient condition for total unimodularity due to Hoffman and Kruskal
will be used in Chapter 3. The following well known result is due to

Heller and Tompkins [56] (see also Egervéry [31]).

Lemma 3.4: If A is a 0-1 matrix whose rows can be partitioned into
two sets Al and A2 such that each column has at most one nonzero

component in each part of the partition, them A is totally unimodular.



-26—
This result will be used to prove the following theorem of Hoffman and

Kruskal [56].

Theorem 3.5: Let E be a finite set and F,,F families of subsets of

1’72
E. For i = 1,2, suppose that if C,D « Fi then either CnD = @,
CcD, or Dc C. The incidence matrix. A of the family Fl u F, 1is

2

totally unimodular.

Proof; Let M be a square submatrix of A and let Ai be the rows

of A corresponding to sets in Fi (i =1,2). Let D be a minimal row
of Ai (i =1o0r 2). Subtract D from each other row in Ai that is
greater than D. Repeating this procedure, a matrix which statisfies the
conditions in Lemma 3.4 is obtained. So the matrix obtained has

determinant 0,1, or -1, which implies that M has determinant 0,1, or -1.

Total unimodularity has been generalized to the notion of local
unimodularity by Hoffman and Oppenheim [78]. For results on local

unimodularity see Hoffman [79] and Truemper and Chandrasekaran [78].

By Lemma 3.4, the edge-node incidence matrix of a bipartite graph
is totally unimodular. Berge [72] introduced balanced matrices as a
generalization of these edge-node incidence matrices. A 0-1 matrix
A 1is balanced if A contains no square submatrii of odd size which
has exactly two ones in every column and exactly two ones in every
row. Since a bipartite graph contains no odd cycles, it is clear that
the edge-node incidence matrix of a bivartite graph is balanced. In fact,
since the determinant of any minimal (with respect to taking submatrices)
0-1 matrix of odd size with exactly two ones in every row and column is
two, every 0-1 totally unimodular matrix is balanced. The following
example of Berge [72] shows that not all balanced matrices are totally

unimodular.
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Many nice min-max theorems for: bipartite graphs generalize to the
context of balanced matrices - see Berge [72,73,80], Lovasz [72], and
the surveyiin Schrijver [79]. The importance of balanced matrices to
total dual integrality lies in the following theorem of Fulkerson,

Hoffman and Oppenheim [74].

Theorem 3.6: If A is a balanced matrix, then. Ax <1, x =20 is

totally dual intégrak-and Ax -2 1, x > 0 is totally dual integral.

Berge .[72,80], Berge and Las Vergnas [70], Lovasz [72], and others
have given characterizations of balanced matrices, but, as yet, there

is no: known way to test whether a given matrix is balanced or not in

polynomial time. Polynomial time recognition algorithms have been found

for a class of balanced matrices that generalize the edge-node incidences

matrices of trees (the so called totally balanced matrices), by Anstee

and Farber [82], Hoffman, Kolin, and Sakarovitch .[82] and Lubiw [82].
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4, Anti-blocking and the perfect graph theorem.

The theory of blocking and anti-blocking polyhedra was developed
by Fulkerson [68,70,71,72} and Lehman [79]. A brief account of the
anti~blocking portion of this theory is presented in this section, since
bit contains several interesting results concerning total dual integrality
which provide further motivation for the study of totally dual integral
systems. These results include Fulkerson's pluperfect graph theorem and
the perfect graph theorem of Lovasz. The theory of blocking polyhedra
will not be studied here, but several differences in this theory and

anti-blocking theory will be pointed out.

Let M be a nonnegative matrix with no .column of all zeros and let

P be the polyhedron  {x: Mx <1, x 2 0}. Define the anti-blocking poly-
hedron of P to be the poiyhedron o

A(P) ={y: y=20 and yd <1 for each d e P}.

It is possible to give a more compact description of A(P). Let

al,...,ak be the vertices of P and let A be the matrix with rows
apseeeray Since every point in P can be expressed as a convex linear

combinatiofl of a A(p) = {y: Ay < 1, y 2 0}. Since every

TEREREL

point in P is nonnegative, A 1is nonnegative. Furthermore, if mij

is the largest element in column j of the matrix M, then a vector with

l/mij in the jth position and zero in every other position is a vertex

of P. So A has no column of all zeros and the expression AA(P))

is meaningful. Fulkerson [72] gave the following result and pfoof.

Theorem 4.1: If M and P are defined as above, then A(A(P)) = P.
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Proof: It follows immediately from the definition of A(P) that
P c A(A(P)). Suppose that there exists b ¢ A(A(P)) such that b ¢ P.

Since b ¢ P, there exists some row, m,, of M such that mib > 1.

But this is a contradiction, since m, € A(p). 0

Theorem 4.1, together with the alternative description of A(P)
given above, implies that if a row m, is an essential row of M (that

is, if m X < 1 is a facet inducing inequality of P), then miwis a

vertex of A(P). It is not true that every vertek of A(P) must be a
row of M. However, Fulkerson [72] has shown that every vertex of A(P)
that is not an essential row.of M can be obtained from an essential
row of M by setting some components of the row to zero. Consequently,

if every row of M is integral then every vertex of A(P) is integral.

To prove the above mentioned result of Fulkerson, first note that
Farkas' Lemma implies that a row m, of M 4is an essential row of
M if and only if it is not .less than. or equal to.a convex linear
combination of the other rows of M. So all that needs to be shown is

the folléwing theorem of Fulkerson [72].

Theorem 4.2: Let M and P be defined as above and let d be a vertex

of P. If d 4is less than or equal to a convex linear combination of

1. s

f7,¢..,f € P, then d can be obtained from some fl(l <£4i<3s) by

. i
setting some components of £ to zero.

Proof: Suppose that d is less than oriequal to c¢ = Z{@ifl: i= l,...,s},

where fl,...,fs € P, Z{&i: i=1,...,8} =1, and al,...,as 2 0. The
result is trivial if d = 0.. So it may be assumed that dl""’dk are
the positive components of d. Let d' = (dl,...,dk) and c' = (cl,...,ck).
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Since d 1is a vertex of. P, there exists a kxk submatrix E of M

such that Ex' = 1 has d' as its unique solution. But Ec' < 1 and

d' < c'. So Ed' = Ec' and d' =c¢'. Thus d can be expressed as
a convex linear combination of fl,...,fs, where f- is obtained from
£ - by setting the components other than fl,...,f; to zero. Since

d 1is a vertex, d 1is equal to ' for some i e {1,...,s} and the

result follows. : O

The theory of anti-blocking polyhedra is connected to total dual
integrality by the. following theorem of Fulkerson [72], which is known
as the "Pluperfect graph theorem." If M is a nonnegative matrix
with no zero column, call a matrix A an anti-blocking matrix of M if

AP) = {x: Ax <1, x < 0}, where P = {x: Mx < 1, x = 0}.

Theorem 4.3: . Let M be a 0-1 matrix having no zero columm, let

P={x: Mx <1, x20}, and let A be an anti-blocking matrix of M.
The polyhedron P is an integer polyhedron if and only if Mx < 1,
x 2 0 is totally dual integral and Ax < 1, x 2 0 is totally dual

integral.

Proof: By Theorem 2.5, if Mx <1, x 20 dis totally dual integral
then P is an integer polyhedron (Fulkerson [72] gives a direct .proof
of this). Since M is integral, it follows from Theorem 4.1 and
‘Theorem 4.2 that A(P) is an integer polyhedron. Suppose that P is
an integer polyhedron. Let A' consist of the essential rows of A.
If A'x <1, x 20 is totally dual integral then Ax <1, x>0 is
also totally dual integral. Now since each vertek of P is 0-1
valued, A' is a 0-1 matrix. Thus, to prove the theorem it suffices

to show that the fact that P  is an integral polyhedron implies that
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Mx < 1,.x 2 0 is totally dual integral. The following short proof of
this is due to Baum and Trotter [82] and Korach [82].

It must be shown . that. for each nonnegative integral w,
min{l*y: yM 2 w, y = 0} can be achieved by an integral vector. The

proof is by induction on
(4.1) z* = max{wx: Mx < 1, x =2 0} = min{ley: yM > w, y = O}.

Clearly z* is nonnegative and integral. -If z* = 0, then the
result is true since vy = 0 attains the minimum in (4,1)3 ‘Suppose that
for all integral w such that 2% £ k-1 the result is true and that

w 1is such that z* = k(k =2 1). Since 2z% > 0, there exists some row

m, of M such that mx =1 for each vector x that ~achieves the

maximum in (4;&) (by the complementary slackness:theorem)., Consider the
linear programming duality equation

- (4.2) vk = maX{(W—mi)x: Mx £ 1, x < 0} = min{ley: yM > wem,, ¥ 2 0}.

By the choice of m, v¥ = k-1, So the minimum in (4.2) is achieved
by an integral vector y'. Let yg = y£+l and y; = yg for all other
j, where vy is the variable corresponding to row m, . Since

ley' = k-1, 1ley" =k and y" achieves the minimum in (4.1). 0

A generalization of this theorem is given in Korach [82].

Lovasz [72] proved the following result, which is closely related

to Theorem 4.3.

- Theorem 4.4: Let M be a 0-1 matrix with no zero column and let A
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be an anti-blocking matrix of M. If min{ley: yM >w, y = 0} is
achieved by an integral vector for each 0-1 valued w, then
Mx <1, x 20 is totally dual integral and Ax < 1, x > 0 is totally

dual integral.

This result is the "Perfect graph theorem." It can be proven using
Theorem 4.3 and a duplication lemma of Lovasz [72]. A proof of this
theorem which does not use Theorem 4.3 is also given in Lovasz [72].

Other broofs can be found in Chvatal [75] and Lovasz [79].

Lovasz' Perfect graph theorem is so named for the following reason.

Berge [62] defined a perfect graph as a graph G such that for each

induced subgraph H of G. the maximum cardinality of an independent -
set in H is equal to the minimum cardinality of a family of cliques
such that each node of G is in some clique of the family. Based on
the properties of some known classes of perfect graphs, Berge [62]
conjectured that if a graph G 1is perfect then its complement G is
also perfect. Lovasz' Perfect graph theorem proves this conjecture.
Indeed, if M is the incidence matrix of maximal cliques of a perfect
graph G, then min{ley: yM > w, y = 0} is achieved by an integral
vector for each 0-1 valued w. Thus, the vertices of

{x: Mx < 1, x < 0} are precisely the incidence vectors of the independent A
sebs of G. So the incidence matrix, A, of maximal cliques in G is
an anti-blocking matrix of M. Since {x: Ax < 1, x > 0} is totally

dual integral, it follows that G is perfect.

So, by specializing M to clique-node incidence matrices, Theorem 4.3
and Theorem 4.4 give results on perfect graphs. 1In fact, Fulkerson [71,73]
showed that no gemerality is lost by assuming that M dis the clique-

node incidence matrix of a graph.
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Theorem 4.5: Let M be a 0-1 matrix with no zero column. If

P={x:Mx<1, x=20} is an integer polyhedron, then there exists a
~graph G such that the essential rows of M are precisely the

incidence vectors of the maximal cliques of G.

Proof: Suppose that P = {x: Mx < 1, x = 0} is an integer polyhedron.
Define a graph G as follows. The nodes of G correspond to the
columns of M and nodes j and k are joined by an edge if there

exists an essential row m, of M such that m = mij = 1. Clearly,

each essential row of M. 1is the incidence vector of a clique of G.
Suppose that there is a clique C of G which is not contained in any

clique that corresponds to an essential row of M. Let %i = 1/(k~1)

for each i € C and. %i =0 for each 1 ¢ VG-C, where k dis the
cardinality of C. The vector x is contained in P, since

mi§ < 1 for each essential row m:.L of M. Let Wi =1 for each 1i ¢ C
and w, =0 for each 1 e VG-C. Now wx = k/(k-1), but ‘wx <1

for each integral point in P. So P 1is not an integer polyhedron, a

contradiction. O

Fulkerson [71,73] gives a different proof of Theorem 4.5, based

on the faithful graph representation theorem of Gilmore.

The above proof téchnique can be used to generalize Theorem 4.5
to h-perfect graphs. Sbihi and Uhry [81] and Fonlupt and Uhry [82]
define an h-peffect graph as a graph G such that the following

-linear system defines an integer polyhedron:

Z{xv: veC<lVCecC

IA

(JH]-1)/2 vH ¢ H
0 Y v eVG

'1‘4]3) Z{xv: v e H}

v

X
v
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where C is the set of maximal cliques of G and H < V is a member

of fl if the subgraph G[H]. induced by H is an odd cycle (i.e. H

is an "odd hole"). Clearly, perfect graphs are h-perfect and if G

is h-perfect then (4.3) defines the convei‘hull of the incidence vectors
of the independent sets of G. The concept of h-perfection is motivated
by a result of Boulala and Uhry [79] which shows that series-parallel
graphs are h-perfect. The following generalization of Theorem 4.7 shows
that if a system appears to come from an h-perfect graph then it actually

does come from an h-perfect graph.

Theorem 4.6 Let C and H be families of subsets of V such that if
Hetl, then |H|= 2k+tl for some k > 2, JHnC] <2 for each C & C,

and the elements of H may be labeled h h. . such that for each

0*" "’ n-1

i=20,...,0-1 there exists C e C with hi’hi+l € C (subscripts should
be taken module n). . If the linear system (4.3) defines .an dinteger
polyhedron P, tﬁen there exists a graph G such that the maximal
cliques of G are the sets in C that define facet-inducing inequalities

for P and the odd holes of G are the sets.in H that define facet-—

inducing inequalities for P.

Proof: Suppose (4.3) defines an integer polyhedron P. Let G be the
graph with node set V with two distinct nodes u,w joined by an edge
if there is a set C ¢ C such that u,w € € As in the proof of
Theorem 4.5, each maximal clique of G is a set in C that defines

a facet-inducing inequality for P. Similarly, each odd hole of G is
a set in H that defines a facet-inducing inequality for P. Also,
each C e: C is a clique of G. It is straightforward to check that
each set H ¢ H which defines a facet-inducing inequality for P is

an odd hole of G (use the labelling h h of 'H to show that

O,ouo, n—l
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G[H] contains a cycle which meets all of the nodes in H and note that
if G[H] contains an edge which is not in this cycle then

Z{xv: v € H} < ([H]—l)/Z‘ is implied by other valid inequalities for P),

which completes the proof. O

;Analogeus to anti-blocking theory, Fulkerson developed a theory of
blocking polyhedra. Blocking theory involves systems of the form
Bx 21, x 20 where B is a nonnegative matriﬁ. One of the main dif-
ferences in blocking theory and anti-blocking theory is that the
analogue of the result in Theorem 4.3 that Mx < 1,2 2 0 is totally dual
integral if and omly if Ax < 1, x 2 0 dis totally dual integral does
not hold in the blocking case. Nevertheless, some very interesting results
involving blocking theory and total dual integrality can be found in

Fulkerson, Hoffman, and Oppenheim [74] and Seymour [77].
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5. Hilbert bases and totally dual integral defining systems.

Let S be a finite set of integer vectors in Qn. Suppose that
S corresponds to some set of combipatorial objects (S could be the set
of incidence wvectors of matchings in a graph, for instance). Let
W€ Qn be an integer "weight' vector - the weight of an object
s € S being ws. A well known method for finding a min-max relation
for the maximum weight of an object in S is to find a linear system
that defines the convex hull of S and then apply the duality theorem
of linear programming (see Chapter 1). If this linear system is also
totally dual integral, then the min-max relation can be strengthened
by requiring the dual variables to take on integer values (often integer
solutions to the dual linear program correspond to combinatorial objects,
such as ''coverings" of>ﬂ¢uts"). There always exists a linear system that
defines the convex hull of. 8, but does there always exist a totally
dual integral defining system for this polyhedron? A result of Giles
and Pulleyblank [79] given below shows that the answer to this question
is yes and, in fact, that this system can be taken to have integer left

hand sides.

Let C be a polyhedral cone and let A be an integer matrix such

that C = {x: Ax < 0}. Consider the linear program

(5.1) max{wx: Ax < 0}

3

where w 1is an integer vector. An optimal solution to the dual linear
program of (5.1) corresponds to an expression of w as a nonnegative

linear combination of al,...,am (the rows of A). So Ax £ 0 is

totally dual integral if and only if each integer vector in the cone C#*

~ generated by {a ,am} can be expressed as a nonnegative integral

R
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combination of al,...,am. Furthermore, if {bl,...,bt} is any set of

vectors that generates C*, then C = {x: Bx < 0}, where the rows of

B are bl,...,bt. So there exists a totally dual integral defining
system for C if and only if there exists a set of vectors {cl,...,cq}

that generates C* such that each integral w in C* can be expressed

as a nonnegative integer combination. of cl,...,cq. Hilbert [90] proved

that such vectors always exist.

Theorem 5.1 (Hilbert's Finite Basis Theorem): If G is a polyhedral
hk}

cone then there exists a finite set of integer vectors {hl,...,

such that each integral v € C can be expressed as a nonnegative integer

combination of hl""’hk'

Proof: By the theorem of Weyl[35] and Minkowski[96], there exists a finite
set of integer vectors, {dl,...,dj}, that generate C. Let H be

the set of integer vectors in the bounded set {Aldl,+...+Ajdj: 0 < ki <1,

i=1,...,j}. Let v ¢C be an integer vector. Since {d ..,dj}

1’

generates €, v can be expressed as Yldl+...+dej for some non-
negative rational Yy i=1,...,j. The vector v' = (Yl—LYlJ)dl+...

+(Yj-IYj])dj is in H,  so v'+({Yi}dl+...+£yj]dj) expresses Vv as a

nonnegative integer combination of vectors in H. Thus, H is the

required set of vectors. 0

The proof of Theorem 5.1 given above is contained in Giles and
Pulleyblank [79]. Proofs of this theorem which do not make use of the
Weyl-Minkowski Theorem can be found in Bachem [77] and Jeroslow [781.
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h, }

In view of Theorem 5.1, a set of integer vectors {hl,..., X

is called a Hilbert basis if each integer vector in the cone generated

by '{hl,...,hk} can be expressed as a nonnegative integer combination
of hl""’hk (so Theorem 5.1 implies that every polyhedral cone is
generated by a finite Hilbert basis). Theorem 5.1 will now be used to
prove a result of Giles and Pulleyblank [79].

Let Ax < b be a linear system with A integral. If F is a
face of the polyhedron. P = {x: Ax < b}, then a row a; of A is
active for F if ai§ = bi for each x € F (if a; is active for F

then a,x < bi is an active inequality for F). Let CF be the cone

generated by the active rows of A for F. It follows from the

complementary slackness theorem that CF is the set of all those vectors
w such that max{wx: Ax < b} is achieved by each point in F. So Cy
does not depend on the defining system for P. The complementary slack-

ness theorem also implies the following lemma.

Lemma 5.2: If A- is an integral matrix, then Ax < b is totally dual
integral if and only if for each minimal face of {x: Ax < b} the set

of active rows .of A is a Hilbert basis. a

Giles and Pulleyblank [79] proved the following theorem.

Theorem 5.3: Let P be a polyhedron. There exists a totally dual

integral system Ax < b, with A integral, such that. P = {x: Ax < b}.
Furthermore, if P 1is an integer polyhedron then b can be taken to be

integral.
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Proof: Let A'x £b' be a defining system for P. For each minimal

face F of P let CF denote the come generated by the active rows

of A' for F and let HF be a Hilbert basis for C (i.e. H

F F

generates CF). Also, for each h ¢ HF' let 4 = hex where x is

. . ce 2 . .
some point in .F (note that if xl and x~ are any two points in F

then hxl = hxz). The inequality hx S‘ahv is valid for P since

it can be obtained by taking nonnegative multiples of the active in-

equalities in A'x < b' for F.

Let Ax < b be the system of inequalities hx < Ay for each

h e HF and each minimal face F of P. Each facet-inducing inequality

for P in A'x <b' can be obtained by taking nonnegative multiples
of inequalities in Ax < b (since the inequality must be active for
some minimal nonempty face of P). So Ax <b is a defining system for
P. If F 1is a minimal face of P, then each h ¢ H is active for

F
F in A. So Lemma 5.2 implies that Ax < b is totally dual integral.

Finally, if P dis an integer polyhedron then each minimal nonempty

face F of P contains an integer. point, which implies that @h is
integral for each h ¢ HF.. So if P is an integer polyhedron then b

is integral. N

Consider again the finite set S of integer vectors. Suppose
that a min-max relation forAthe maximum weight of an object in S has
been obtained by finding a totally dual integral defining system,
Ax < b, for the convex hull of S, with A integral. As was mentioned
earlier, the min-max relation can be strengthened by restricting the

dual variables to integer values. The min-max relation can be further
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strenghtened if some of the inequalities in Ax < b can be removed to
.obtain a smaller totally dual integral defining system for the convex
hull of S. This process can be repeated until a minimal totally dual
integral defining system for the convek hull of S is obtained, i.e.
until a totally dual integral system is obtained such that if any
inequality is removed from the system then it either no longer defines
the convex hull of S or is no longer totally dual integral. If the
convex hull of S 1is a polyhedron of full dimension, then a result of
Schrijver [81] dimplies that such a minimal totally dual integral
system is uniquely determined by S. So, if the convex hull of S is
of full dimension, a "best possible" min-max relation for S can be

obtained in this way (see Chapter 3).

The following theorem, given in Jeroslow [78] and Schrijver [81],
is needed in order to prove the above mentioned result of Schrijver

(the proof is taken from Schrijver [80a]).

Theorem 5.4: If C 1is a pointed polyhedral cone then C is generated

by a unique minimal Hilbert basis.

Proof: Suppose that C 1is a pointed polyhedral cone (recall that C
is pointed if x ¢ C dimplies =-x ¢ C. for each x # 0 ) and that C

is generated by distinct minimal Hilbert bases Hl’HZ' Since C 1is

pointed, there exists a vector w such that wc > 0 for each nonzero

c € C. Let h be a vector in the symmetric difference of Hl and H2

with wh minimized. It can.be assumed that h ¢ Hl' Since H2 is

a Hilbert basis, h can be expressed as thl+..,+7\khk where

{hl,...,hk} <H,

wh = llwhl+...+kkwh

and Ai is a positive integer, i = 1,...,k. Since

and h ¢ {h hk}, wh, <wh, i=1,...k.

k_ l,-on,
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So, by the choice of h, for i =1,...,k hi is in H nHz, which

1

implies that H, dis not minimal, a contradiction. N

1
Suppose that P = {x: Ax £ b} is of full dimension. Let F be a
minimal face of P and let CF be the cone generated by the active

rows of A for TF. Suppose that there exists a nonzero c¢ € CF such

that -c € CF. Let o = cx where X is a point in F. Now c¢x < g

and -cx £ -o  are valid inequalities for P. So P 1lies on the hyper-
plane c¢x = o, which is impossible since P is of full dimension. So
C. is a pointed cone. This fact will be used in the proof of the

F
following theorem of Schrijver [81].

Theorem 5.5: Let P be a polyhedron of full dimension. There exists

a unique minimal totally dual integral system Ax <b with A integral
such that P = {x: Ax < b}. Furthermore, P 1is an integer polyhedron

if and only if b dis integral.

Proof: Proceed as in the proof of Theorem 5.3, but for each minimal
nonempty face F of P let HF be the unique minimal Hilbert basis

for the pointed cone C The system Ax < b that is obtained as in

F*
the proof of Theorem 5.3 is a totally dual integral defining system for
P with A integral. Suppose that A"x <b" is a totally dual integral
defining system for P with A" integral. It will be shown that each
inequality in Ax < b must be present in the system A"x < b" (it will
then follow that Ax < b is the unique minimal totally dual integral
defining system for ‘P with integer left hand sides).

Let F be a minimal face of P and let h ¢ HF; Suppose that

hx =<0, ds not an inequality in the system A"x < b". Consider the
~h q y y :
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linear program
(5.2) max{hx: A"x < b"}.

Each vector in F 1is anoptimal solution to this linear program, so

the complementary slackness theorem implies that each optimal solution
to the dual linear program of (5.2) corresponds to an expression of h
has a nonnegative linear combination of the rows in A" ' that are active

for F. Each active row in A" for F dis in the cone CF' Since h

cannot be expressed as a nonnegative integral combination of other

integer vectors in CF’ there does not exist an integer optimal solution

to the dual linear program of (5.2). So A'"x < b" is not totally dual

integral, a contradiction.

It only remains to be shown that P 1is an integer polyhedron if
and only if b is integral, but this follows directly from the
theorem of Hoffman and Edmonds-Giles (Corollary 2.5 of this chapter)

and the second part of Theorem 5.3. U

This result is the analogue of the well known theorem that there exists
a.unique (up to positive scalar multiples of the inequalities) minimal
defining system for each full dimensional polyhedron. If P is a
polyhedron of full dimension and Ax £ b 1is the unique minimal totally
dual integral defining system for P with integer left hand sides,

then call Ax < b the Schrijver system for P. - The Schrijver systems

for various combinatorial polyhedra associated with matchings will

be studied in Chapter 3.

It should be noted that a result for non-full dimensional polyhedra,

analogous to Theorem 5.5, is also given in Schrijver [81].
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6. Operations that preserve total dual integrality.

The result of Giles and Pulleyblank [79] given in the previous
section shows.thét for any finite set of integer vectors a min-max
relation for S can be obtained by finding a totally dual integral
defining system for the convex hull of S. However, how can such a
system be found? Consider»the.analogous,problem‘offfinding‘a linear sys-
tem that defines the convex hull of §S. . Certain operations that can be
performed on a linear system such that if the linear system defines an
integer polyhedron then the derived system does as well are quite useful.
Some of these operations, such as adding slack variables or taking
scalar multiples of inequalities, are useful because they allow certain
assumptions to be made on the form of a linear system without losing
any generality. Others, such as setting inequalities to equalities
or applying Fourier-Motzkin elimination, are useful because often a
system of interest arises by applying the operations to a system which
is known to define an integer polyhedron. The problem of determining
whether or not these operations . preserve total dual integrality of linear
systems is dealt with in this section (cf. Cook [83]). Other aspects
of finding totally dual integral defining systems are studied in

Section 10 of this chapter.

The first type of operations that will be looked at are those that
allow assumptions to be made on the form of a system. It may be assumed,
without loss of generality, that systems are of the form Ax < b.

Throughout this section let f denote a vector and B a scalar.

a) Adding slack variables.

In linear programming, linear systems are often transformed by

adding 'slack" variables to obtain problems which are in the correct
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form for the simplex algorithm. The following result shows that, with
integral data, such a transformation maintains total dual integrality

of a linear system.

Proposition 6.1: Let f be integral. The system {Ax < b, fx < B}

is totally dual integral if and only if the system {Ax < b, fxts = B,
s 2 0} is totally dual integral.

Proof: Let D1 denote the linear program mih{yb+z8: yAtzf=w, vy 2 0,
z 2 0} and let D2 denote the linear program. min{yb+zf: yA+zf = w,

z2wW, ¥ 2 0}. Suppose that the system {Ax < b, fx+s = 3, s < 0} is

totally dual integral and let w be an integer vector such that DI
has an optimal solution. An integral optimal solution to Dl can be

found by setting v = 0 in D2. Now suppose that {Ax < b, fx < B}

is totally dual integral and let (w,WS) be an integral vector such

that D2 has an optimal solution. An integral optimal solution to: D2 .
is - (y*;z*+ws),‘Where' (y*,z*) 1is an integral optimal solution to . DlL-

with  right hand side w' = w-w _f. A 0

This result does mnot hold in general for nonintegral £, ‘e.g.

{xl < 0, (2/3)xl < 0} is totally dual integral but '{xl < 0,

(2/3)xl+x =0, x, > 0} dis not.

2 2

b) Splitting unrestricted variables.

Another transformation that is often used in linear programming
is the replaéement of variables which are- not restrictéd,to~nonnegative
values by the difference of two nonnegative variables. This transfor-

mation allows the assumption to be made that all variables are nonnegative.
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However, it does not preserve total dual integrality of linear systems,
e.g. the systemf{xl+5x2 s l,.xl+6x2 < 1} is totally dual integral but

o U
1 by X %
11

where Axi > 0,.Xl =0, xé >0, xg > 0, dis not totally dual integral

(this example also shows that the property of defining an integer

L

the system obtained by replacing x 5 o

and X, by x

polyhedron is not preserved under such a splitting operation, since

x3.= 0, xz = 0, xé = (1/6), X; = 0. is a nonintegral vertex of the

derived polyhedron). So, when working with totally dual integral systems,

it camnot be assumed that all variables are nonnegative.

¢) Scalar multiplication of inequalities.

It is trivial that if a system A'x < b' is obtained by multiplying
some inequality in Ax < b by a positive scalar then the two systems
define the same polyhedron. However, it is not possible to multiply
.an inequality by an arbitrary positive scalar and maintain total dual

integrality of a system, e.g. X £ 0 1is totally dual integral but

2x1 £ 0 4is not. In fact, Giles and Pulleyblank [79] have shown that
for any system Ax £ b there exists a positive scalar d such that

dAx £ db is totally dual integral. However, an inequality in a totally
dual integral system can be multiplied by a scalar of the form 1/k,
where k 1is a positive integer, since solutions to the new dual linear

program can be found by setting a single component §ib to k§i in a

solution to the original dual linear program. For linear systems with
integer left hand sides that define full dimensional polyhedra, the
following proposition shows that this is the only type of nontrivial

scalar multiplication that is possible.
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Proposition 6.2: Let A and f be integral and let d be a positive
scalar. Suppose that Ax=< b, foS B 1is totally dual integral and that
P ={x: Ax b, fx: < B}  is of full dimension. The system Ax £ b,

dfx =48 is also totally dual integral if and only if either fx = 8
is not in the Schrijver system for P or d is of the form 1/k for

some positive integer k.

Proof: The sufficiency of either condition is easily seen. To show
necessity, suppose '{Ax:s b, dfx < dR} is totally dual integral and
fx= B is in the Schrijver system .for P. There exists a convex cone,
C, generated by the active rows of some minimal face, F, of P, that
contains f in its unique minimal Hilbert basis (C is pointed since

P is of full dimension).. Let A be the multiplier of df in amn .=
expression of £ as a nonnegative integer combination of the active
rows of F in {A,df}, The multiplier A must be mnonzero since £
cannot be expressed as a nonnegative integer combination of other integer
vectors in C. Siﬁce. ~f .4 ¢ (C dis pointed), Ad must be less;than
or equal to 1. Since Ad must be integral, Adf = f (f is the first

nonzero integral point on the ray {ylf: vy < 0}). So d = l/k: O

d) Unimodular transformations.

Let U Dbe a squarejintegral,matrix such that det(U) =.+1. A simple
and well known result is that Ax < b dis totally dual integral if and
only if AUx < b is totally dual integral. (This corresponds to the result
that P is an integer polyhedron if and only if P' = {U—lx: x € P} is
an integer polyhedron.) This-result is used in Section 8 of this chapter

in connection with Hermite normal forms.

The rémaining two operations that will be looked at are the type

that can be used to prove that a given system is totally dual integral
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by showing that it can be obtained via the operation from a system that
is known to be totally dual integral (of course, this remark can be made
about operations a) through d) as well, butbthose operations are usually

not used in this way).

e) Setting inequalities to equalities.

The following proposition is given in Schrijver [82b]. For complete-

ness a proof is given here.

Proposition 6.3: If {Ax < b, £x < 8} is totally dual integral, then

{Ax < b, fx= B8} is also totally dual integral.

Proof: Note that {Ax < b, fx= 8} 4is totally dual integral if and
only if {Ax < b, fx < g8, —fx< -g} is totally dual integral. Also, if

al,...,ak,f;—f' are the active rows of a minimal face of {x: Ax' s b,

l,...,ak,f are the active rows of a minimal

face of {x: Ax < b, fx < B}. So it suffices to show that if each integer

fx <8, ~fx< -} then a

vector in the cone generated by 815e005a can be expressed as a non-

k
negative integer combination of Bpseeerd s then each integer vector in

- the cone generated by apseeesdy,7a;  can be expressed as a nonnegative
integer combination of 81sere58 5780 Suppose that r 1is an:integral
vector and r = Z{Xiai: i=1,..4,k} - Ya,, where Xi 20, 1i=1,...,k
and vy = 0. . Choose +' such that r+Y'al is in the cone generated by
aysesesdy and such that Y'al is integral and vy' is integral. By as-
sumption, there exist nonnegative integers Xi,'i =1,...,k, such that

1 = ' PRI ' 1 . 4= — apt
r+y a; Z{Xiai. i=1,...k}. Now Z{Xiai. i=1,...,k} v'a, expresses T

1
as a nonnegative integer combination of Apsecesd),Ta . O

This result corresponds to the well known result that any face of
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an integer polyhedron is.alSO'an'integerwpdlyhedrOn..~It can be o

used to find a totally dual integral defining system for any face of a
polyhedron for which such a system is known, e.g. totally dual integral
defining systems for the convex hull of the perfect matchings of a graph
and the convex hull of the common bases of two matroids can be derived
from the totally dual integral defining systems fér the matching poly-
hedron and the matroid intersection polyhedron respectively

(cf. Pulleyblank [82] and Chapter 3).

. £f) Fourier—-Motzkin elimination.

Let K be a set in @ and let I ¢ {1,...,n}. If x e o, let

Xp denote the vector (xi: i e I). The projection of K onto the I

coordinates is the set {xI: x ¢ K}. A well known and useful result is

that any projection of an integer polyhedron is again an integer poly-
hedron (for an example of its application see Balas and Pulleyblank [82]).
To obtain a corresponding result for total dual integrality, linear

systems must be considered.

If a defining system for a polyhedron is given then a defining
system for any projection of the polyhedron can be found by repeated
application of Fourier-Motzkini elimination (cf. Stoer and Witzgall [70]).
The version of Fourier-Motzkin elimination used here is such that if
the original system has integral data then the resulting system does
as well (the result of Giles and Pulleyblank [79] mentioned in sub-
section c shows that the scaling of the resulting syétem must be

specified). Consider the linear system

a X = O, < bi 1els= {l,.;.,%o}

. < -] = eees]
(6.1) cjx + ijo dj jeJd {1, ’Jo}
ka o < & ke K= {l,...,ko}
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where ai,cj,fk

are vectors, ui, Yj are positive scalars, and bi’

s

dj’gk are scalars, for ie¢ I, je J, k ¢ K. The following system is

obtained by applying Fourier-Motzkin elimination to eliminate the variable

X
(o}

(Yjai+aicj)x < yjbi+aidj ielI,jed

(6.2) £ x

K k ¢ K.

A

&

It is not .true that (6.2) must be totally dual integral if (6.1) is,

even if all data is integral and the coefficients of any row of (6.2)

have greatest common divisor 1. For example, -{Xl—XB <90, X=X,y < 0,
—x2+2x3 < 0} is totally dual integral since the coefficient matrix is
unimodular but {lefxz < 0, X, < 0} is not totally dual integral. How-

ever, the result is true in a special case.

Theorem 6.4: Let Ax < b be a totally dual integral system. If each

coefficient of the variable X, is either 0,1, or -1 then the system
obtained by eliminating X, by Fourier-Motzkin elimination is also
Eofally dual integral.

Proof: What must be shown is that if;(6.l),is totally dual integral

and ui’Yj are equal tol for i €I, j e€J, then (6.2) is also totally

dual integral. Let Dl denote the linear program

. . t. . < ., . < .
min. ;. Z{biyi. ie I}+Z{djyj. j e J}+Z{gkzk. k e K}

tk ek =w

s.t. Z{a.yiz ie 1}+2{éjyg= j e JHE{f 2, :

o

(6.3)
Sy, 4 ' 1, 2 =
Z{yi. ie I}+Z{y3. j e J} LA

y; 20, 5y>0,2 20 iel,jeJ, kek

=
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and let D2 denote the linear program

min Z{(bi+dj)yij: iel, je J}+Z{gkzk: k € K}

(6.4) s.t. Z{(ai+cj)yij: ielI, je J}+Z{sz k e K} = w

K’
yij =0, zy 20 1eI, jed, keK.

Suppose that w dis integral and D2 has an optimal solution (7,2) .

An optimal solution to Dl with v 0 is z together with

<
1}

Z{yij: j e J} iel
(6.5)

R
I

Z{yij: ie 1} jed

since any solution (y',y",z) to D1 with W = 0 corresponds to a

solution to D2 with the same objective value, by finding  nonnegative

ylj n"S. - SUCh i:hélt -

. My..: 3 € 3} = y! iel
(6.6) - 1
Z{yij: ie 1}

il
«
.

m
o

(WO = 0 implies that Z{yi: ie I} Z{y;: j € J}). An integral

optimal solution to D2 can be found by finding an integral optimal

solution, (y',y",z), to Dl with W= 0 and then finding a nonnegative

integral y that satisfies (6.6). O
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7. Integer programming.

Suppose that Ax < b is totally dual integral and that b 1is
integral. The results of Hoffman and Edmonds—GilesAgiven in Section 2

show that both sides of the equation
(7.1) max{wx: Ax < b} = min{yb: yA = w, y =0}

can be achieved by integer vectors for each integer vector w for which
the optima exist.  The problem dealt with in this section is that of
finding integer x and y that obtain the optima for a given integer

vector w.

The left hand side. of (7.1) can be handled easily. All that is
needed is the fact that Ax < b defines an integer polyhedron (which
follows from the results of Section 2 since b is integral ) and the

following theorem.

Theorem 7.1: There exists a polynomial-time algorithm which, for any

linear system Ax < b and any vector w for which the maximum in (7.1)
exists, either finds an integer vector which achieves the maximum in

(7.1) or shows that Ax < b does not define an integer polyhedron.

Proof: Let Ax < b be a linear system, w a vector such that the
maximum in (7.1) exists, and P the polyhedron {x: Ax < b}. A minimal
face F ='{x; A'x =b'} of P will be found such that every point in

F achieves the maximum in (7.1). Once F is found, the problem is
reduced to solving a system of linear diophantine equations, which can
be done in polynomial-time by the algorithm of Kannan and Bachem [79]
for finding the Smith normal form of a matrix (other polynomial~time

algorithms for solving systems of linear diophantine equations are given
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in Frumkin [76]'and.Gathen and Sieﬁeking'[7éj). If the linear

system A'x = b' has no integer solution, theh-Fvis a face of P -
which does not. contain an integer point, which proves that P 1is not an
integer polyhedron. To find F in polynomial time, the ellipsoid
method of Khachiyan [79] will be used repeatedly. First, find an optimal
solution to max{wx: Ax < b} and let B = ma%{wi: A% < b}. Consider

the linear system

WX =

Ax

(7.2)

IA

Any solution to (7.2) achieves the maximum~in (7.1). Solve the linear

program max{alx: (7.2)}. where a;x < bl is the first inequality in

Ax £ b, 1If this maximum is b then add X = bl to (7.2). Repeat

a1

this procedure until each inequality in Ax = b has been considered.

l’

Now letting A'x = b' consist of the equalities a;x = bi that were

added to (7.2) , F has been found. 0

When A 1is integral, the right hand side of (7.1) can be handled
by the following result of Chandrasekaran [81] (the description of the

algorithm given below is from Cook, Lovasz and Schrijver [82]).

Theorem 7.2: There exists a polynomial-time algorithm which, for any

linear system Ax < b with A integral and any integer vector w for
which the minimum in (7.1).<eXists;;either-fiﬂdsVaniinteger vector which
achieves the minimum +dn (7.1) or shows that Ax < b in not totally dual

integral.

Proof: Let Ax <b a linear system with A integral and let w be an
integer vector such that the minimum in (7.1) exists. Again, the

ellipsoid method will be used repeatedly. Let Byseeesdy be those rows
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of A such that ai§ = bi for each vector x which achieves the maxi-

mum in (7.1), where aix < bi is the corresponding inequality in
Ax < b (these rows can be found by considering the linear program
miﬁ{aix: Ax < b, wx < z*}, where z* = max{wx: Ax < b}). By the

complementary slackness theorem, each vector which achieves the minimum
in (7.2) corresponds to an expression of w. as a nonnegative linear

combination of al,...,ak.

Let C be the cone generated by'.{al,...,ak}. Relabel ay

through a, if necessary so that al,...,aj are those vectors a; in
{al,...,ak} such that -a, ¢ C. Let Xl be the largest number such
that w - Aja; isdin C, d.e. Ay = max{zl: yA~=;WEZig~;ﬂ y > 0}

(since -a; {d C, Al exists). Let wl = wflkljal and let

o . _ 1 2 1
Xz = max{zz, yA = w zzaz}. Let w =w

3

—‘[ija2 and so forth until

w” is found. Now use the algorithm of Kannan and Bachem [79] to

solve a system of linear diophantine equations to find integer

3 - :
A A such that w Aj+laj+1+"'+kkak’ if such A, A

FHL0 M FECERERETN

exist. (Note that the Xi's may be negative.)

i S T N ist. LAt
Suppose that no such integer M ,kaex1st If Ylal+ +Ykak

is an expression of w) as a nonnegative integer combination of

al,...,a , then Yl =Yy T eee = Yj = 0, by the choice of
Al,...,kj. So w3 cannot be expressed in this way. Now Wl is in C,

J

so min{yb: yA = w', y = 0} exists and the minimum can be achieved by

an integer vector if and only if. wl can be expressed as a nonnegative.
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J

integer combination of a1seeesd Since w~ ' is integral, this shows

=
that Ax < b is not totally dual integral.

Now suppose that integer Aj .sA,  have been found. By

+1° "7k

expressing -a; as a nonnegative linear combination of aj+l""’ak

(excluding ai) for i = j+l,...,k, f£find positive Yj+l""’Yk

such that 0 =Yy Find an integer M, of size poly-

j+laj+l+...+ykak.
nomial in the size of Ax <b and w, such that Ai+Myi is a non-

o . . i,
negative integer for i = j+l,...,k. Since w (Aj+l+Myj+l)aj+l+"'

= k| . . .
+ = oo . +w v
+()\k MIYk)ak and w . Lkljal+ +lkJJaj , this gives an expression
of w as a nonnegative integer combination of Bpseeesdy (which gives

an integer vector which achieves the minimum in (7.1)). O

A consequence of this result is that given a Hilbert basis

a.,...,a, } and an integer vector w 1in the cone generated by the
1 k :

basis, an -expression of w as’4 nonnegative integer combination of -

x can be found in polynomial time.

ai,.,;,a
In their outstanding paper on consequences of the ellipsoid method,
Grotschel, Lovasz, and Schrijver [81] have shown that polynomial-time
algorithms for finding optimum integer dual solutions to linear programs
associated with several different combinatorial problems can be derived
from the ellipsoid algorithm. The linear systems involved are often
very large, but the algorithms derived are polynomial: - in the size of
the given combinatorial problemﬂﬁ(the linear systems are given by an
encoding whose size is polynomial in the size of the combintorial

problem). It would be interesting to generalize their methods to
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obtain a result on finding optimum integer dual solutions that is similar

to their general results on finding optimum integer primal solutioms.
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8. Bounds on the number of nonzero .dual variables.

Suppose that we have a linear system Ax <b encoded in some way
and we wish to consider the problem mentioned at the end of the previous
section. That is, is there a polynomial-time algorithm which, for any
integer vector w such that maﬁ{wx: Ai < b} exists, either finds an
integer optimal solution to. the dual of this linear program or proves
that Ax <b 4is not:totally dual integral? If such an algorithm
exists then it must be possible to describe the integer optimal solution
in polynomial time. TFor e%ample; let G be a graph and C the set of

maximal cliques of G and suppose that the linear system

IA

(8.1) Z{XV: vecCc=s1l Y CceC

x =20 v v € VG
v

riSﬂeanééﬁgbflﬁﬁéﬁgfaph G. A by-product of the polynomial-time algorithm
of Grotschel, Lovasz, and Schrijver. [81,8la] for finding an integer
optimal solution. to.the dual linear program of maxf{wx: (8.1) } for

any perfect graph G and any nonnegative integer vector w (recall

that G is perfect if and only if (8.1) is totally dual integral) 1is
that for any perfect graph G and any nonnegative integer vector w
there exists an integer optimal solution to the dual linear program of
max{wx: (8.1)} with at most n2+n nonzero variables, where n is the
number of nodes of G. The problem considered in this section is

whether or not‘there exists a similar polynomial bound on the number

of nonzero dual variables for general totally dual intégral systems.

“The résultspresented in this section are due to Cook, Fonlupt, .

and Schrijver [83].

A more precise statement of the problem is ndw*giVeﬁ{f’Let_ h ' be
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the least integer such that for any integer vector w for which
(8.2) min{yb: yA = w, y = 0}

exists, the minimum can be achieved by an integral solution with at
most h nonzero variables. The problem is to ask if, for any totally dual
integral system Ax < b, where A is an integral matrix of rank n, is

there an upper bound for h in terms of =n?

Suppose that '{ai,;..,ak} is . a Hilbert basis for a cone C of.

dimension n. By Lemma 5.2, the above problem is equivalent to: Is
there an upper bound for h in terms of n, where h is the least
integer such that each integer vector in C can be expressed as a non-

negative integer combination of h +vectors in {al,...,ak}?

Carathéodory's Theorem implies that each vector w in C can be
expressed as a nonnegative linear combination of n vectors in

{al,...,ak}, so the problem dealt with here is an integer analogue of

the one solved by Carathéodory -(see Rockafeller [70]). It will be shown
that in general there is no upper bound for ‘h in terms of n. However,

if C 1is pointed, the following result gives a bound for h.

Theorem 8.1: Let '{al,...,ak} be a Hilbert basis for a pointed cone
C of dimension n. If w dis an integer vector in C then w can be

expressed as a nonnegative integer combination of 2n-1 vectors in
'{al,...,ak}.
Proof: It can be assumed that 0 is not a vector in '{al,...,ak}.

Suppose that w is an integer vector in C. Let A be the matrix with

rows Bysecesdy . Since C is pointed, the linear program

max{ly: yA = w, y = 0} has a basic optimal solution y (it has a
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solution since w. e C and it is easy to see that it is bounded by
considering a vector d such that dz > 0 for each nonzero z ¢ C).

Let [;j denote the vector (1§1J,...,i§k]). The vector W—l§jA is
an integer vector in C and so can be expressed as Xlal+...+kkak

where Ai is a nonnegative integer for i = 1,...,k. Now § has at

most n  nonzero components, since it is a. basic solution. So

1+ (y-1y!) < n. Now, since y 1is an optimal solution and

(Ai+[§ijz i=1,...,k) 1is a feasible solution to the linear program
max{ly: yA = w, y = 0}, it follows that Z{Ai+[§ijz i=1,...,k}<1ly

and I{d;: i =1,...,k} < 1=y < n. So Oty Dagte. FOyHly Day
expresses Ww. as a nonnegative integer combination of Bpseeesdy with

at most 2n-~1 mnonzero multipliers. U

The above upper bound can be improved slightly if all vectors in

the Hilbert basis are 0-1 wvalued.

Theorem 8.2: Let {al,...,ak} be a Hilbert basis for a cone C of

dimension n > 1, where a; is 0-1 wvalued for i =1,...,k. If

w 1is an integer vector in C then w can be expressed as a nomnegative

integer combination of 2n-2 wvectors in {al,...,ak}.

Proof: Since a; is 0-1 wvalued for i =1,...,k, C 1is pointed.

Suppose that w 1is an integer vector in C. Find § as in the proof

of Theorem 8.1. Suppose that 1 -(y-1yl) = n-1. Let A be the matrix

with rows a; seeesdy where §§u<,...;§i 7‘éré*thé’nénzétbfﬁériablés in
1 n ' 1 n

the-éélution‘fﬁ_'(it»may'be'assumedpthat.there'are:~n-vsuchwvétiables).
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The only possible 0-1 wvectors whose inner product with
(;, —L;, J,...,;, —1;; 1) is an integer are 0 and the vector of all
i, i i, 71, ~

1 - o v =l = we( v v ] i i
1's. But (yi —Lyi J,...,yi 1yi‘J)A. w (lyi‘J""’lyi‘J)A’ which is
1 1 n n 1 n

integral. So each column of A is either all zeros or all 1's which
implies that n is 1, a contradiction. So 1(y=ly1) < n-1, which

improves the upperbound to 2n-2. 0

It is an open question whether or not the upper bound given in
Theorem 8.1 can be lowered to n. (It is easy to see that it~cannot.be
less than n.) To see that in general there is no upper bound in terms

of n, consider the following example. Let PysesesPy be distinct primes,
k22. For i=1,...,k let q; be the product of Py through Py >
excluding P,- The greatest common divisor of Qyseeesly is 1, so

there exists integer Ki, i=1,...,k such that qu +...+Aqu = 1.

1

For i=1,...,k let r, =gq, if A, 20 and r, = -q. if A, < O.
i i i i i

i

Now {r .,rk} is a Hilbert basis for a cone of dimension 1, but,

10"

since the greatest common divisor of any proper subset of '{rl,...,rk}

is greater than 1, any expression of 1 as a nonnegative integer

combination of r requires all k vectors.

TERRETE N

The above " example. shows,that.in general there is no upper bound in
terms of rank (A) on the number of nonzero variables needed in an integral
solution that achieves (8.2), where Ax < b is a totally dual integral
system with A  an integer matrix and w 1is an integer vector such that
the minimum exists. However, as was shown in Section 5, if the polyhedron

P = {x: Ax £ b} is of full dimension then the active rows in A of any
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minimal nonempty face of P generate a pointed cone. Thus, Theorem 8.1

implies the following result.

Theorem 8.3: Let Ax < b be a totally dual integral system, with A

an integer matrix of rank n, such that P = {x: Ax < b} 1is of full
dimension. If w is an integer vector such that (8.2) exists then
(8.2) can be achieved by an integer optimal solution with at most

2n-1 nonzero variables. 0

In a similar manner, Theorem 8.2 implies that if A dis a 0-1
matrix of rank n > 1 then the upperbound given above can be lowered to
2n-2. A slight modification of this result is needed to improve a result
given in Cunningham [81] (recall the definition of integer rounding given

in Section 1).

Theorem 8.4: Let A be a 0-1 matrix with no row of zeros and b a

0-1 wvector, such that Ax < b has the integer rounding property and
the matrix J[A[b] has rank n > 1. If w is a nonnegative integer

vector, then there exists an optimal solution to the integer program
(8.3) min{yb: yA = w, y > 0, y integral}
with at most 2n-2 nonzero variables.

Proof: Suppose that w 1is a nonnegative integer vector. Let z¥* be
equal to min{yb: yA =w, y >0} and let yl be a basic optimal
solution to max{ly: yb = [z*], yA = w, y > 0}. Consider the linear

program
. 1.
(8.4) min{yb: yA = w~|y jA, y = 0}.

By the choice of z*, a lower bound for (8.4) is z*—lyljb. Also,
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yl—[ylj is a solution to (8.4) with objective value [z*?—[yl]b. So,
by the integer rounding property, there exists an'integerbsolution y
to (8.4) with objective value Fz*ﬁ-iyljb. Now y3 = iy;J+y2 is an
optimal solution to (8.3). Since yl is a basic solution, 1yl] has
at most -n nonzero components. Ag in the proof of Theorem 8.2, it can
be assumed that l'(yl—lylj) <n-l. So y2 has at most n-2 nonzero

3
components and y~ at most 2n-2 nonzero components. O

The problem of Cunningham [81] mentioned above is the following.
Let M. be a matroid and w a nonnegative integer vector. What is the
least integer k such that of all minimum cardinality families of
independent sets of M having w as the sum of the incidence vectors
of the sets in.the family, there ekists a family with at most k
distinct members? This problem can be stated in terms of linear systems
as follows. Let A be a matrik whose rows are the incidence vectors
of independent sets of M. The problem is: What is the least k such
that, for each nonnegative integer vector w, min{ly: yA=w, y >0, ¥
integral}l = can be achieved by a vector with at most k nonzero com-
ponents? Cunningham [81] showed that his algorithm for testing member-
ship in matroid polyhedra gives an upper bound of n4+1 for k, .where
n isvthe number of elements in M. This bound was improﬁed to 2n by
Schrijvér(see Cunningham[81]), The matroid partition theorem of Edmonds [65b]
showsthat Ax < 1 has the integér rounding property, so Theorem 8.4

lowers the upper bound to 2n-2.

It has already been mentioned that a by-product of an algorithm
of Grotschel, Lovasz, and Schrijver [81,8la] is that if G is a
perfect graph and A is the clique-node incidence matrix of G then
for each nonnegative integer - w, min{l-'y: yA > w, y = 0} can be

2 .
achieved by an integer wvector with at most n +n nonzero components,
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where n is the number of nodes of G. Another way of stating this is,

if G 1is perfect and w is a nonnegative integer vector then there
R - . . 2 e :

exists a minimum w-covering of G with at most n +n. distinct cliques

(a minimum w—covering is a minimum cardinality family of cliques such

that each node v of G d4is in at least w& cliques in the family).

Since the polyhedran'{x: Ax £ 1, x = o} is of full dimension, Theorem 8.3
improves this bound to 2n-1. 1In fact, Cook, Fonlupt, and Schrijver [83]
showed that n dis an upperbound (it is clear that the upper bound canmnot

be less than n).

There are other combinatorially described totally dual integral
systems Ax < b, x 2 0 such that mih{yb; yA > w, y = 0} can be
achieved by an integer vector with at most n nonzero components for
each integer‘vector w for which the minimum exists, where n is the
number of variables in Ax £ b, x 2 0. The systems arising from cross-—
free families (Schrijver [82a]) have this property - see Section 10.
W. Cunningham observed that the algorithm for optimum matchings given
in Cunningham and Marsh [78] shows that the totally dual integral
matching system (see Chapter 3) has this property (which also follows
from the proof of total dual integrality of matching systems given in

Schrijver and Seymour [77]).
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9. Recognition of totally dual integral systems.

In the previous1sections.proﬁérties of_totélly dual -integral systems,
integer polyhedra, and min-max relations‘were presented. Also,
sufficient conditions for a linear system to be totally dual integral
were presented in Section 3 (concerning totally unimodular and balanced
matrices). However, the general problem of recognizing totally dual
integral systems and systems that define integer polyhedra has not
- yvet been dealt with. Lemma 2.3 of Chapter 1 and Lemma 5.2 of this
chapter show.that there exist finite algorithms to determine whether or
not a given linear system is totally dual integral and whether or not
it defines an integer polyhedron. The Comple%ity.of these recognition
problems is studied in this section. Several easy results on integer
polyhedra will be presented first, then the corresponding results for

totally dual integral systems will be given.

Lemma 2.3 of Chapter 1 is very useful in obtaining results on the

problem of recognizing when a linear system defines an integer polyhedron.

Proposition 9.1: The -class of linear systems, Ax < b, that define

integer polyhedra is in co-NP,.

Proof: By Lemma 2.3 of Chapter 1, if Ax < b does not define an integer
polyhedron then there exists a subset, A'X < b', of the inequalities
such that A'x = b'  has a solution but does not have an integral
solution and F = {x: A'x = b'} is a minimal face of {x: Ax < b}.

Using the algorithm of Kannan and Bachem [79], and the ellipsoid
algorithm, it is possible to check in polynomial time that A'x < b'

has. the above properties. ' 0

It is an open question whether or not the class of linear systems
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that define integer polyhedra is in NP (it is also an open question
whether or not the problem of recognizing linear systems that define

integer polyhedra is co-NP complete), but the following result is true.

Proposition 9.2: For any fixed positive integer r, there exists a

polynomial-time algorithm which, for any linear system Ax < b with
A a matrix of rank r, determines whether or not Ax < b defines an

integer polyhedron.

Proof: Suppose that r is a fiked positiye‘integer and Ax < b is a
linear system with A a matrii of rank r. Each minimal nonempty face
F of the polyhedron P = {x: Aﬁ < b} is determined by r linearly
independent rows of A in the sense that F =.{%:AA'X =b'} where
A'x < b' idis a subsystem of r inequalities from the system Ax < b
and A' is a matrix of rank r (the rank of A' can be found in polynomial
time, for instance, by Edmonds' [67] version of Gaussian elimination).
For each such subset of r linearly independent inequalities, check
whether A'x = b' has a solution and, if so, whether this solution is
in the polyhedron P - this can be done in polynomial time using the
ellipsoid algorithm. If A'x =b' has a solution and it is in P,
then F = {x: A'x = b'} is a minimal nonempty face of P and using
the algorithm of Kannan and Bachem [79] it can be checked in polynomial
time whether or not F contains integer points. In this way, it can
be determined in polynomial time whether or not each minimal nonempty
face of P contains integer points and hence whether or not P is

an integer polyhedron. a

To obtain the corresponding results for totally dual integral
systems Lemma-5.2 will be used together with the integer programming

results of Section 7. The following result is given in Cook, Lovasz,
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and Schrijver [82].

Theorem 9.3: The class of linear systems Ax <b with A integral

that are totally dual integral is in co-NP.

Proof: If Ax b .is not totally dual.integfal then, by Lemma 5.2,
there exists a minimal nonempty fade F of P = {x: Ax < b} such that
the active rows in A of F do not form a ﬁilbert'basis. Suppose
that a

.5a are the active rows of F (USing the ellipsoid algorithm

100 K
it can be checked in polynomial time that apseeesdy are the active

rows of a minimal face of P). Since '{al,;..,ak} is not a Hilbert

basis, there exists an integer vector w in .{Ala1+"‘+xkak: 0 < Ki <1,
i=1,...,k} such that w cannot be expressed as a nonnegative

integer combination of a;,...,a (see the proof of Theorem 5.1). By

the results of Section 7, in time polynomial in the size of w and

{al,...,ak}, either an expression of w -as a nonnegative integer
combination of a1seeesd  can be found or it can be shown that
{al,...,ak} is not a Hilbert basis. Since the size of w 1is

polynomial in the size of {al,...,ak} it can be proven in time poly-

nomial in the size of {al,...ak} that {al,...,ak} is not a Hilbert basis. []

It is not necessary to use Hilbert bases in the above proof, since
the theorem also fOllOWS'ffom.Themrem 7.2 by noting that if - Ax < b "is
not totally dual integral then there exists an integer vector in

{w: yA =w, 0 <y < 1} such that min{yb: yA =w, y 2 0} exists but
cannot be achieved by an integer vector. The use of Hilbert bases
however corresponds more naturally to the proof of Proposition 9.l.

The following theorem and its proof are given in Cook, Lovdsz, and
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Schrijver [82].

Theorem 9.4: For any fixed positive integer r, there exists a

polynomial-time algorithm which, for any linear system Ax < b with A
an integer matrix of rank r, determines whether or not Ax < b is

totally dual integral.

Proof: . The proof.is split into three stages. TFirst, the problem is
reduced to determining whether or not a given set of integer vectors
{al,...,am} which generate a cone of dimension r dis a Hilbert basis.
Next, .the problem is reduced to the case that the cone generated by

{al,...,am} is pointed and of full dimension. Finally, it is shown

that Lenstra's integer programming algorithm [81] can be used to test

in polynomial time whether or notA{al,...,am} is a Hilbert basis.

Suppose that r 1is a fixed positive integer and that Ax < b is
a linear system with A an integer matri% of rank r. By Lemma 5.2,
it must be determined whether or not the active rows of each minimal
nonempty face of P = {x: Ax < b} form a Hilbert basis. As in the
proof of Proposition 9.2, the minimal nonempty faces of P can be
found by considering each subset of r linearly independent rows of
A. Once a minimal nonempty face F of P is found, . the active rows
in A of F can be found by finding a vector in F and checking which
inequalities in Ax < b hold as an equality for that vector (since F
is a minimal nonempty face, if an inequality in Ax < b holds as an
equality for ome vector in F then it holds as an equality for every
vector in F). Since r is fixed, there are only polynomially many
subsets of r rows of A to consider, so it suffices to prove that
there exists a polynomial-time algorithm to test whether or not a

a given set of integer vectors ‘{al,...,am} ~1s a Hilbert basis,



-6 7=

where {al,...,am}_generates'a cone of dimension r (since there are

r linearly independent vectors in '{al,...;qm}).

Suppose that '{al,...,am} is a set of integer vectors which generates
a cone. C g:mp of dimension ¥. Relabel the vectors in 4{al,...,am}
if necessary so that al,...,ak are those vectors ai in A{al,...,gm}
such that —a; ¢ C. The vectors al,...,ak generate a linear space
F which is the unique minimal nonempty face of C. Let d be the
dimension of F. Select d linearly independent vectors vl,...,vd

from {al,...,ak} and setect r-d vectors from

Vagprs et oy
{ak+l""’am} such that VyseeesVy - are linearly independent. Let V

be the matrix with rows VyseeesV oo Using the algorithm of Kannan and

Bachem [79], find a unimodular matrix U such that VU 1is in Hermite

normal form. The last n-d components of each vector in A{le ,...,VdU}
are zero, so for each i = 1,...,k the last n-d components of aiU
are zero. Similarly, the last n-r components of each vector in
{ak+lU,...,amU} are zero. Since {al,...,am} is a Hilbert basis if
and only if ‘{alU,...,amU} is .a Hilbert basis, it. can be assumed that

a, =a,U for i=1,...,m.
i i

If w is a vector in F and Ylal+...+ymgm is an expression of
W as a nonnegative linear'coﬁbination of a,,...,a , then
o 1 m
Yk+l==Yk+2 % ces = Ym = 0. Thus, if {al,...,am} is a Hilbert basis
~for-C, thénM"{él,;i{,ak} is a Hilbert basis for F. For i = ktl,...,n

lettai be the vector consisting of the components- d+1 through r

of a, . Since the last n-d components
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of each vector in {al,...,ak} are zero, if'{al,...,gm} is a Hilbert
basis then '{a£+l,...,aé} is a Hilbert basis. Conversely, it is easy
to see.that if '{al,...,ak} is a Hilbert basis for F and
'{aé+l,...,qé} is a Hilbert basis, then '{al,...,am} is a Hilbert
basis. It follows that '{al,..,am} is a Hilbert basis if and only if

‘{al,...,ak}. is a Hilbert basis and '{aé+l,...,a$} is a Hilbert basis. .

Since F is a linear épace and F is the cone generated by

{al,...,ak}, this set " is a Hilbert basis for F if and only if each

integer vector in F can be expressed_as an integer combination of
SEEEEELN (which can be checked in polynomial time using the algorithm

of Kannan and Bachem [72]). As in the proof of Theorem 7.2, this can’

be seen as follows. The condition is clearly necessary. For the
converse, suppose that the condition holds and that w 1is an integer
vector in F. It must be shown that w can be expressed as a nonnegative

integer combination of aysecesd Let A,a +...+>\kak be an expression

k* 11
of w as an integer combination of Ayseeendy . By expressing -a; as

a nonnegative linear combination of 8yseeerd (excluding ai) for

k
i=1,...,k find positive yl,...,yk such.that Q = ylal+...+ykak.
There exists an integer M such that (A1+Myl)al+...+(Ak+Myk)ak is

an expression of w as a nonnegative integer combination of Bysecesd .

Since {aﬁ+l,...,§$} generates a‘pointed cone of full dimension

(which is less than or equal to . r), it can be assumed that A{ai,,..,;m}

generates a pointed cone of full dimension.

Now for the final stage of the:proof. The set ‘{al,...,am} is a
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Hilbert basis for C. if and only if the only integer vector in

(9.1) =v{W'€\G?W*ai ¢ C,i=1,...,m

%o
is the zero vector. This can be seen as follows. Suppose that

'{al,...,am} is a Hilbert basis for C and that w is an integer vector

in C,. Since w dis in C, w = Aja.+...+x_a_ for some nonnegative
0 171 m m :

integers A .,Aﬁ. But w-a;j¢C for i=1,...,my so A, =0 for

10 i
i=1,...,m and w = 0. Conversely, suppose that the only integer

vector in C0 is 0 and that w is an integer vector in C. Let Al
be the greatest rational such that W—Alal is in C (kl exists, since
it has been assumed that C is pointed) and let wl =‘W'1xllal- Let . Xz

be the greatest rational such that wl—)\za2 is in € and let

w2 = wl—[kzjaz. Continue in this manmer until w' is found. Now W

. . L m _ ; .
is an integer vector in CO’ SO W 0. So [Aljal+...+lkmjam is

an expression of w as a nonnegative integer combination of Apseeesd .

The cone C is a polyhedron of full dimension. The facet-inducing
inequalities for C can be found as follows. For each subset of r-1

linearly independent vectors from al,...,am find the hyperplane H

which contains these vectors and the origin. If each vector in

apseeesdy lies in one of the closed half spaces determined by H, then

HNC is a facet of €. In this way (since r is fixed), vectors

bl""’bt such that €= {x: bix >0, i=1,...,t} can be found in

polynomial time.

It follows from the definition of CO that
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Sy = {we C: for each i =1,...,m there exists j,

.2
(9.2) 1< 3 <t, such that bjw < bjai}.

Thus, if & denotes the collection of all functions ¢ from '{l,...,HJ
to. {1,...,£}, then

Ch= U{x:b,x20 for j=1,...,t and b, .\x <b) .. a,
(9.3) 0 4eo J $ (1) i)

for i =1,...,m}.

Using (9.3) a concise description of CO will now be found.

Let w e CO. By (9.3), there exists a function ¢ din @ such

that w dis contained in

(9.4) P = {x: bix 20 for i=1,...,t and b¢(i)ai<b¢(ﬁai i%lﬁ};}fg}g
Since Cgs is bounded, P is bounded. So the polyhedron P obtained by
replacing each "<" by "<" idin (9.4) is bounded (P is nonempty since

we P, sO P is the closure of P). There exists an e > 0 such

that (l4c)w is contained in P (and, so, also in P). Now since 0 € P,

there exists linearly independent vertices zl,...,zr of P such that
(14e)w can be expressed as a convex combination of 0 and zl,...,ﬂzr.

So. w can be expressed as a convex combination of 0 and ZyseeesZy

with the multiplier of 0 Dbeing positive. Since O,Zl,...,zr are

affinely independent, this expression of w as a convex combination of

O’Zl""’zr is unique. Thus, w € convex hull‘{O,ZI,...,zr}\convex hull

'{zl,...,zr}. This observation can be used as follows.

Let Z be the sets of all vectors =z determined by r linearly
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-independent equations from

b,z =0 j=1,...,t
(9.5) J

b.z .a,
J J i

il
o
o)

[

1l

1,...,t; i=1,..,.,m

such that 2z also satisfies bjz 20, j=1,...,t. Let S . be the

set of all subsets '{zl,...,zr} of Z such that zy,...,z_ are

linearly independent and there exists a function ¢ ¢ ® such that for
< . . = l' .

¢C@Fk7b¢ﬁjai(81nce T 1s'f1xed, both

Z and S can be found in polynomial time). For each {Zl""’zr} in

every k= 1,...,r we have'b

S, let G(zl,...,zr) = convex hull'{O,zl,...,zl}\convex hull{zl,...,zr}.

Claim: 'CO = U O(zl,...,zr).
{zl,...,zr}e S .

Once this claim has been established the proof will be complete, since
the integer programming algorithm of Lenstra [81] can be used to test
for each {z.,...,z } € 8 whether or not 0 is the only integer

1 r :
vector in C(Zl;...,zr) in polynomial time. Indeed, since ZyseeesZy
are linearly independent, zl,...,zr,O are affinely independent. Thus,

if H dis a hyperplane which contains"{zl,...,zr}, then 0 is not

contained in H (recall that the dimension of the space we are working

il

in is r). Let H = {x: gx.= p} be such a hyperplane. It follows

i

that o(zl,...,zr) convex hull{O,zl,...,zr}XH. It may be assumed

that g 1is integral and that p 1is a postive .integer. Each vector

in O(Zl,...,zr) satisfies gx < p, so each integer point in
o(zl,...,zr) satisfies gx < p-l. Letting Bx < £ be a defining

system for the convex hull of {O,Zl,...,zl}, it only needs to be
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checked .that the only integer vector in T = {x: Bx < f, gx = p~-1}
is 0. One way to do this in polynomial time, using Lenstra's integer
:pxpgréﬁming_algorithm,'is to solve the integer programs mak{xi: x e T,

x integer} and .mih{xi: x ¢ T, x integer} for i = 1,...,r. If O

is the optimal solution for each of these linear programs, then the only

integer vector in T is O,

The """ inclusion in the claim has already been shown. To see

1A}

the "2" inclusion, let w € O(Zl""’zr) for some ‘{zl,...,zr} e S..

By definition of Z, w. is in C. Since the multiplier of 0 in

the expression of w as a convex combination of 0,z cesZ is positive,

1
there exists an € >0 such that (1+e)w is in 0(21,...,zr). By

the definition of S, there exists a function ¢ € ® such that

b¢(i)zk < b¢(i)ai for i=1,...,m and k= 1l,...,r. Suppose that

< i <4 £ i 2 i
b¢(i)ai 0 for some i, 1 i m. Since bjzk 0 for all
j=1l,...,m and all k.= 1,...,1, b¢(i)ai = 0. So b¢(i)zk = 0 for
k=1,...,r, which implies that b¢(i) = (0, since ZysesesZ, are

linearly independent. Since this is impossible, it must be the case

that b¢(i)ai >0 forall i=1,...,m. Thus, (l+€)b¢(i)w < b@(i)ai

for i=1,...,m. (which follows from the fact that (I4e)w ¢ G(Zl,...,zr))
implies that b¢(i)w < b¢(i)ai for i=1,...,m. So w is in CO’

which completes the proof of the claim. O

An immediate consequence of this theorem is that for any fixed =,
there exists a polynomial-time algorithm to test whether or not a set

of integer vectors ‘{hl,...,hk} is a Hilbert basis if the dimension



-73-

of the cone generated by‘{hl,...,hk} is less than or equal to r.

Also, it follows from the second stage of the above proof that if the

cone generated by a set of integer vectors {ﬁl,...,hk} is a linear

space, then it is possible to test in polynomial time whether or not

'{hl,...,hk} is a Hilbert basis (no assumption on the dimension of

the linear space is needed).

It should be noted that Chandrasekaran and Shirali [82] obtained

a polynomial—-time algorithm to test whether or not‘{Ax =0, x 2 0}

is totally dual integral, where A is an integral matrix of fixed

rank.

As in the case of integer polyhedra, it is an open question
whether or not the class of totally dual integral linear systems is in
NP. One possible application of an affirmative answer to either this
question or the corresponding question for integer polyhedra would be
that for any fixed polynomial f the ¢lass of perfect graphs with less
than or equal to f(n) maximal cliques, where n is the number of
nodes in the graph, is in NP (for appropriate choices of f, classes
of perfect graphs that contain many well known classes can be obtained
in this way). See Burlet [81], Burlet and Fonlupt [82], Burlet and
Uhry [82], Cameron [82], and Chvatal [81] for work on recognizing perfect
graphs. |
A problem related to the recognition of totally dual integral

systems will now be considered.

If P is a polyhedron of full dimension then a theorem of Schrijver [81]
presented in Section 5 implies that there is a. "best possible" min-max

theorem for the maximum weight of a vector.in P where the minimum is
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taken over all subsets a certain set of integer vectors, such that

the subset satisfies some condition (such as a covering con&ition).

Is it possible to test whether or not a given integer vector is in the
set? 1In other words, given a polyhedron P of full dimension, is a
given inequality in the Schrijver system for P (recall that the
Schrijver system is the unique minimal totally dual integral system with
integer left hand sides that defines P)? Once again, if P is defined

by a linear system Ax < b with A a matrix of bounded rank, then this

recognition question can be settled in-polynomial time.

Theorem 9.5: Let r be a fixed positive integer. -There ‘exists a

polynomial-time algorithm which, for any linear system Ax < b with A
a matrix of rank r which defines a polyhedron P of full dimension
and any inequality ox < B, determines whether or not ox < B dis in

the Schrijver system for P.

Proof: Suppose that r is a fixed positive integer, that Ax < b
defines a polyhedron P of full dimension in an and that dox < B

is an inequality. By multiplying the system by a positive constant if
necessary, it can be assumed that A is integral. Also, it can be
assumed that o is integral since otherwise ox.< 8 is not ”ig;thé

Schrijver system for P.

If max{ox: Ax < b} is not equal to B, then clearly ax < 8
is not in the Schrijver system for P (this can be checked in
polynomial time with the ellipsoid algorithm). Suppose that this maxi-
mum is equal to B. Usng the ellipsoid algorithm, find the active rows
in A for some minimal face F of P such that max{gx: Ax < b} is

achieved by each vector in F. let a L be the active rows

1’

for F and let C be the pointed cone generated by 'al,...,am. - Now
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ox < B is in the Schrijver system for P if and only if o dis in

the unique minimal Hilbert basis for C.

Let Viseees Vo be r linearly independent vectors chosen from
al,...,am and let .V be the matrix with rows vl,...,vr. Using

the algorithm of Kannan and Bachem [79], find a unimodular matrix U
such that VU is in Hermite normal form. As in the proof of Theorem 9.4

the last n-r components of each vector in {alU,...,amU} are zero.

Since o 1is in the unique minimal Hilbert basis for C  if and only if
oU 1is.in the unique minimal Hilbert basis for the cone generated by

{a,U,...,a U}, it can be assumed that a. = a.U for i = i,e..,m
1 m i i

and -0 = 0U. Now since the last n-r components of each vector in

'{alU,....,amU} are zero, it can be assumed that C . is of full dimension.

Let w be a vector such that wz > 0 for each nonzero z in C
(such a wvector w can be found in polynomial )
time). Let El ={z e C: wz < wa} and let Bz = {a-z: z € Pl}.

Now o d1s in the unique minimal Hilbert basis for C. if and only if

. . 1.2 ]
" the only integer vectors in B nP are 0 and o. This can be seen

as follows. 1If zl is an integer vector in Blan other than 0 and

o, then zl is in C- and there exists an integer vector z2 in C

such that zl = u—zz. So zl+z2 is an expression of o as a nonnegative
integer combination of other integer vectofs in €.  Conversely, if «

is not in the unique minimal Hilbert basis for .C then there exist integer

. : 2
vectors zl and z2 in Pl\{O,a} such that o = zl+z . So

1 2
zl and z2 are integer vectors in P nP other than 0 and <.

Since r is fixed, with Lenstra's integer programming algorithm

it can be checked in polynomial time whether or not the only integer
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. 2
Vectors. in PlnP are 0 and a.. O

It should be noted that, even for linear systems Ax < b with A
a matrix of fixed rank, the number of inequalities in the Schrijver system
for the polyhedron defined by Ax < b dis not bounded by a polynomial in
the size of Ax < b.

Edmonds, Lovasz, and Pulleyblank [82] have shown that given a '"proper"
encoding of a polyhedron P and an optimization oracle for P, it |
can be determined in polynomial time whether ormt .a given inequality
ax < B is facet inducing for P (see also Grotschel, Lovasz, and
Schrijver [81,82]). Again, it would be interesting if a similar result
for minimal totally dual integral defining systems with integer left

hand sides could be obtained.



-77-

10. Proving total dual integrality - with cross—free families.

To this point, very little has been-mentioned on the application
of total dual integrality to proving combinatorial min—ﬁaﬁ theorems.
Of course, some classic min-max results, such as the Konig-Egervary
Theorem, follow from the result of Hoffman and Kruskal [56] on total
unimodularity given in Section 3, but the use of total unimodulaiity
is somemwhat limited. In this final section of this chapter a well
known technique for proving that ‘combinatorially described linear systems

are totally dual integral is presented. This technique has been quite

successful in proving many combinatorial results which do. not follow
directly from the Hoffman-Kruskai Theorem. It involves restricting the
set of nonzero dual variables by "uncrossing" them and showing that if
no dual variables '"'cross'" then the existence .of an integer optimal
solution to the dual linear program is implied by the Hoffman-Kruskal
Theorem. The technique has evolved over a number of years. The idea

of using "uncrossing' .té prove min-max. :theorems appears in Younger [69].

$1-

Combining "uncwessing' withc the Hoffman-Kruskal Théorem was done by .

- Robertson (see Lovdsz [76]) and Johmson [75] (cf. Edmonds [70]). Bringing
total dual integrality into this. scheme for provingimin—maxiresultsiis due
to qufman [741, Edmonds and Giles [77], and Hoffman and ScﬁWaftz 1781

and developing a.general;framéwofk forfproVing theorems in this way is due to
Schrijver [82a].

Some of the many interesting general min-max theorems that have
been proven by the above mentioned technique are given in Edmonds and
Giles”[79], Frank [79,8la], Frank and Tardos [81], Groflin and Hoffman [82],.
Hassin {78,821, Hoffman [76a,78], Hoffman and Schwartz [78], Lawler [82],
Lawler and Martel [82], and Schrijver [82,83] (see Schrijver [82b] for
the interrelations of these models). Algorithmic aspects of these
models are dealt With in Frank [81,82], Cunningham and Frank 82],
Fujishige [78], Lucchesi [76], Schosleben [80], and 7immerman [82].
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Let V be a finite set and let F be a family of subsets of V.

For each f ¢ F let a,/x Sbf be.a linear inequality, where x is a

f

vector. The linear system

agx < bf Vf ¢ F

x =20

(10.1)

is totally dual integral if for each integer vector w such that
min Z{yfbf: f e F}

(10.2) s.t. Z{yfaf: feFl=2w

exists, the minimum can be achieved by an integer vector. It is a simple

observation that if for some F' ¢ F  there exists an optimal solution

y to (10.2) with §f =0 for each f ¢ F\F', then any vector y' which

‘achieves the minimim in
min Z{yfbf: fe F'}

(10.3) s.t. Z{yfaf: fefF'lz2w

ye 2 0 VEe F'

can be extended to an optimal solution to (10.2) by setting y% = 0 for

each f ¢ F\F'. This observation suggests a method for proving that
(10.1) is totally dual integral: For each integral w such that (10.2)
exists, find a family F' ¢ F as above such that (10.3) can be

achieved by an integer vector. Such a program will now be described.
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The program involves "uncrossing" and will be illustrated with
several examples once a lemma which sets up the technique is proven.

(The lemma is implicit in the papers cited above.)

Let B be some binary relation on F and say that A,B € F form

a B-intersection if A £ B, B £ A, and (A,B) satisfies B (B could be

that AnB # @, for instance). Consider the following conditions on (10.1):

€9 If A,B ¢ F form a B-intersection then
(i) AnB € F and AUuB ¢ F

s <
(ii) bAnB +_bAuB < bA + bB .

. & >_ . u.-o . ) -
(iidi) 2\ B +.aAUB aA,+ age ((iii) is equivalent to

if y 2 0 then Z{y%af: feF}z Z{§faf: f e F},

—

'=——€ 1 =_ ! =—
YpTEs Y T Yp®s Y aap T YansT®r Yaup T Yaus™e:

yp = ¥p for all D in F\{A,B,AnB,AuB}, and € = min{y,,y;}.)

(I1) If F' < F and no two sets in F' form a B-intersection,
then (10.3) has an integer optimal solution for each integer

vector w for which it has an optimal solution. (For example,

the coefficient matrix(bf (10.3) may be totally unimodular.)

Lemma 10.1: 1I1f F,B, and (10.1) satisfy (I) and (II), then (10.1) is
totally dual integral.

Proof: Let w be an integer vector such that (10.2) exists. For any
solution y to (10.2) let g(y) = L{[f V\flyf: fe F}.. Let y be an

optimal solution to (10.2) and let t be the least common denominator

of {yf: feF}. Let F'={fceF: Ve > 0}, Suppose that there exists

A,B ¢ F' that form a B-intersection. By I-(i), AUB € F and AnB € F,

Define y' as in I-(iii). By I-(ii) and I-(iii), y' is an optimal
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solution to (10.2). It can be checked that g(y") < g(y)-1/t, and
that t is still a common denominator of {y%: f e F}. Repeating this
procedure, a solution can be found such that no B-intersections occur

in F'. Now, by II, there exists an integer optlmal solution to (10.3)

So, by the observatlon made above,

(10.2) can be -achievedby an integer vector. 1l

Of course, a similar result holds for systems of the form

\

b, V £ e F.

* = D¢

(10.1)"
x 20

Indeed, letting (I)' be (I) with the "<" sign in I-(ii) replaced by

-1

and with the ">" sign in "Z{y%af: feF}oz Z{§faf: fe F}"

replaced by "<", it follows that if F,B, and (10.1)' satisfy (I)'
and (II) then (10.1)' dis totally dual integral.

Condition I-(ii) indicates that submodular functions fall naturally
into theorems proven using Lemma 10.l. To illustrate this, the first
example that will be considered is the Matroid Intersection Theorem of

Edmonds [70].

Theorem 10.2: Let Mi = (E’Ii) be a matroid for i = 1,2 and let

r(8) = min{rl(S),rz(S)} for each S ¢ E, where r is the rank function

of Mi' If w= (we: e € E) 1is a nonnegative integer vector then the

maximum value of Z{we: e € S} where § ¢ I,nI, is equal to the minimum

value of r(Af+...+r(Ak) where Al""’Ak are subsets of E(repetition

is permitted) such that . each e ¢ E is in at least LA of these subsets.



-81-

Proof: Letting F be the family of all subsets of E, by = r(S) for

all S cE, and a

S the 0-1 incidence vector of S for all S c E,

the theorem :is equivalent (by Corollary 2.6) to the total dual integrality
of (10.1). For A,B c E, let B be the property that AnB # @ and
for some i ¢ {1,2}, r(A) = ri(A) and *(B) = ri(B). It is easy to

check that (10.1) satisfies (I). Now suppose that no two sets in
F' ¢ F B-intersect and let Fi = {8 c F': x(8) = ri(S)} for i =1,2.

By Theorem 3.5, the incidence matrix of the family FlUF2 is totally

unimodular, which implies that the incidence matrix of (10.3) is totally
unimodular. .So (10.1) satisfies (II) and the result follows from

Lemma 10.1. o

Trivially, the above also. shows the following well known extemsion.

If for i = 1,2, Fi is a family of subsets of E . such that if A,B e Fy
and ANB # § then ANB € Fi and AUB € Fi and r; is a rational
valied function on Fi which is submodular on intersecting pairs then

the system
Z{xe:ve € 8} < ri(s) ¥V S ¢ Fl

(10.4) t{x tee st <r (s) VselF
e 2 2

x 20 VecetBE
e

is totally dual integral.

Several examples involving directed graphs will now be considered.

A directed graph is a graph where each edge has one end specified as
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the head and the other specified as the tail. An edge enters a set S

if its head is in S and its tail is not in S.

Let G be a directed graph and let r ¢ VG. A 'set B ¢ EG is
called a branching rooted at' ¥ if B forms a spanning tree and every
node in V\{r} is the head of eactly one edge in B. Alternatively, a
branching can be described as a minimal set of edges such that each non-
empty. S < VG\{r} is entered by at least one edge in the set. If

w o= (we: e € EG) 1is a vector, say that the "weight" of a branching B

is Z{we: e ¢ B}. Fulkerson [74] proved the following min-max relation.

Theorem 10.3: Let G be a directed graph and let r ¢ VG. Given a

nonnegative integral weight vector w = (we: e ¢ EG) the minimum weight
of a branching rooted at r = 1is equal to the maximum number of nonempty
subsets of V6\{r}, with repetitdon allowed, such that every edge e

enters no more than LN of these subsets.

Proof: Letting F be the set of all  nonempty subsets of -VG\{r}, bsél;for

g -t e € EG), where ag =1 if e enters S$

all S e F, and ag =(af‘
oTE e

and ag = 0 otherwise, for all S ¢ F; all that needs to be shown is
e

that (10.1)' is totally dual integral. For A,B € F, let B be the
property that AnB # (. Again, it is easy to check that (10.1)' satisfies
(I)'. Suppose that no two sets in F' ¢ F B-intersect and let M be

the matrix with rows (as; S e F'). Since bg =1 for all S e F,

to show.(II) it suffices, by Theorem 3.6, to show that M is balanced.

Suppose that M is not balanced. There must exist € EG

SRR W
and A ""’Ak—l e F! such that for i = 0,...,k-1 Ch enters Ai

and Ai+ but does not enter A.j for j # i, i+l (all subscripts

1’
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should be taken modulo k), where k = 3 is odd. Since no B-intersections

occur in. F', either A, c Al or Al c A

0 0 .Since the ordering is not

important, it can be assumed that Ai c AO' But this implies that
A_j c Aj—l for j=2,...,k, a contradiction. So M is balanced and
(II) is satisfied. O

Actually, the matrix M given above is totally unimodular
( cf. Schrijver [83]), but the proof that M is balanced is quite simple
and illustrates the use of Theorem 3.6. Again, the above proof also
shows the extension due to Frank [79] that, for any directed graph G,
if F 1is a family of subsets VG such that if A,B e-F and AnB # @,
then ANB € F and AUB € F, then the linear system

: Z{xe: e enters Stz 1 VY:S¢fF
(10.5)
x 20 Ve € EG

e
is totally dual integral. (Thisis a.special case of Frank's result, since
he allows the right hand side of (10.5) to be any supermodular function .)
This extension includes a theorem of Fulkerson [68] on the minimum length
of a directed path between two specified nodes in a directed graph. A
related result on the length of a longest directed path in an acylic

directed graph is given in Vidyasankar and Younger [75].

As a final example of the use of the "uncrossing' technique, a proof
of the Lucchesi~Younger Theorem, on directed cuts, will be given. A

directed cut of a directed graph G is a nonempty set of edges that is

the set of edges entering some set S £ VG such that no edge enters

VG\S.



-84

The following result is due to Lucchesi and Younger [78].

Theorem 10.4: Let G be a directed graph. The maximum number of disjoint

directed cuts of G 1is equal to the minimum cardinality of a set of

edges that meets every directed cut of G.

Proof: It may be assumed that there is a path, not necessarily directed,
between each pair of nodes of G. Let- F be the set of all those
subsets S of VG such that no edges enters VG\S and at least one

edge enters S, let bS =1 for all S e F, and let ag = (as_: e € EG)
“e

where ag = 1 if e enters S and ag = 0. otherwise, for all 8§ € F.
e- e

Again, all that needs to be shown is that (10.1)' is. totally dual integral.
Let B be the property that AnB # § and AUB # V for A,B e F. As
before, it is easily checked that (10.1)' satisfies (IY.  Now suppose

that no two sets in F' c F B-intersect and let M be the matrix with

rows (aS: S € F'). It again suffices to show that M is balanced.
Suppose that there exist.. Bgseeesdy 1 € EG and A ""’Ak—l e f' as in

the preceding proof. For each i = 0,...,k-1, either Ai c Ai+l or

Ai o Ai+l' Since k is odd, there exists an i such that Ai ] Ai+l c Ai+2

or Ai 2 Ai+1 > Ai+2' The ordering of the sets is not important, so it
may be assumed that AO = Al 2 Aé. Since it cannot be the case that
A2 > A3 D L. D Ak—l o) AO’ it maj be assumed that A2 c Ag' Since the

tail of a, must be in A, VVAng»Al\A2° But then for all j = 3,...,k-1,

1
Aj c Al\A2 or V\A.j < Al\AZ’ a contradiction since ap_q must enter

’ O
only A.0 and Ak-l'
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As in the proof of Theorem 10.3, it can be shown that the matrix M

_given above is totally unimodular (see Edmonds and Giles [77]).

For a general framework for proving min-max results using the

"uncrossing" technique see Schrijver [82a].

It should be noted that there is class of min-max theorems for
directed graphs related to the above min-max results which involve
"packing", such as the theorem of Edmonds [72] on the maximum number of
disjoint branchings in a directed graph, and which do not seem to fit
into the '"uncrossing' scheme given above. For other results of this
typé see Feofiloff and Yoqﬁger [82], Frank [79], Hoffman and Schwartz [77],
and Schrijver [82,82b,83].



CHAPTER III

MINIMAL SYSTEMS FOR MATICHING PROBLEMS

1. Introduction.

A matching in a graph G 1is a subset of the edges such that each
node of G 1is met by at most one edge in the subset. Fundamental results
in matching theory were proven by Tutte [47,52,54]. Tutte's results
provide a min-max relation for the cardinality of a largest matching in
a graph (see Berge [58]). Edmonds [65] described a linear system
which defines the convex hull of the matchings of a graph. In this v
chapter, "best possible" min—maX'relations for various matching problems
are obtained by finding minimal totally dual integral systems for the

relevant convex hulls as outlined in Section 5 of Chapter 2.

In Section 2, a connection between minimal totally dual integral
systems and a type of separability is presented, together with a
description.of the unique minimal totally dual integfal defining system
for the convex hull of the matchings of a graph due to Cunningham and
Marsh [78].. A result of Cook [81] and Pulleyblank. [81] which describes
the minimal'totally dual integral system for b-matchings is presented
in Section 3. Sections 4 and 5 contain a description of the minimal
totally dual -integral systems for simple b-matchings andvcapacitéted
b -matchings. The minimal tdtally dual integral system for triangle-free

-2 -matchings is descibed in Section 6.

For completeness, a short proof, due to Schrijver [8la], of a
result that characterizes a totally dual integral defining system for
the convex hull of the matchings of a graph is presented in Section 2.
Also, detailed proofs of results that characterize totally dual integral
defining systems for b-matchings, simple b-matchings, and capacitated

b-matchings are given, based on the characterization for matchings

—-86—
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and constructions of Tutte [52,54] (see Schrijver [82c]).

Two variations of matchings not dealt‘with here are matchings on
bidirected graphs and T—-joins. For min-max results on matchings on
bidirected graphs see Edmonds and Johnson [70], Green-Krdtki [80], and
Schrijver [82c¢]. For min-max results on T-joins and T-cuts see

Edmonds and Johnson [73], Korach [82]1, Lovdsz [75], and Seymour [77,79,81].
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2. Matchings and separability.

Let G be a graph/ A matching M of G will be identified with

its incidence vector x = (xe: e € EG), where X, = 1 if e e M and

x, = 0 if e e EG\M. The fundamental result in the study of polyhedral

aspects of matching theory was proven by Edmonds [65]:

Theorem 2.1: Let G be a graph. A defining system for the convex

hull of the matchings of G is

X, =0 Ve ¢ EG
(2.1) x(6(w)) <1 Vv ¢ VG
x(8(8) < I3Isl] Vsg VG, |s|odd. 0

Edmonds [65] proved this result by means of a polynomial-time
algorithm for the weighted matching problem, known as the blossom
algorithm (the weighted matching problem is: for a given graph G and
weight vector w = (We: e € EG), maxihize wx over all matchings of G).
Other proofs of this result are given in Balinski [72], Hoffman and

Oppenheim [78], Lovasz [79], Schrijver [8la], and Seymour [79].

Cunningham and Marsh [78] proved theifollowing result which,
together with Corollary 2.5 of Chapter 2, implies the result of Edmonds

given above.

Theorem 2.2: For each graph G, the linear system (2.1) is totally

dual integral.

To prove this theorem it suffices to show that for each graph G

and each nonnegative integer vector w the linear program
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min Z{yvz V¢ VG}+Z{%(]S]—1)YS: S ¢ S}

s.t. y(p(e))+Y(S(e)) 2w V e € EG
(2.2) e

v

v 0 VveVG

v

Y

S 0 Vse8

v

where S = {s cvG: |s] 23 and |S| is odd}, has an integer

optimal solution. The following lemma is a well-known result that
follows from Edmonds'blossam;algorithm.(Tmz»construction given here is
due to Pulleyblank [73] and Schrijver and Seymour [77] and will be used

in Section 3.)

Lemma 2.3: Fopr each graph G and each vector w, there exists an
optimal sdlution (y,Y) to (2.2) such that if A,B € S with AnB # @

and A ¢ B ¢ A, then either ¥, =0 or Y, =0.

Proof: Let G be a graph and w a vector.. Let (y,Y) be an optimal
solution to (2.2). Suppose that there exist sets A and B in S with

Y, 2 Y, >0, AnB # @, and A¢B ¢ A, If lAnB] is odd, let

Ao = YanB™B Yaup T Yauptter Ya T Yp Vg Y5 = 0 Y5 =Yg for all S

in S\{A,B,AUB,AnB}, and y =y. If [AnB] is even, let YA\B = YA\B+YB’

AT YAfYB7_YB = 0, and YS = YS for all § in

Y Y

YB\A = YB\AfYB’ Y

for all v € AnB and §V =y

B

S\{A,B,A\B,B\A} and let §V.= y Y v

for all v ¢ Y@XiAhB)J, In either case, (§,§) is an optimal solution

to (2.2). Also, following Schrijver and Seymour [77], in either case
(2.3) z{?sls|(|vc\s|+1): 5 e S} < £{Yg[s|(|Ve\S|+1): 5 ¢ S} —-%

where t 1is the least common denominator of ‘{YS: S € S}. Repeating
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this procedure, an optimal solution can be. found such that no such sets

A and B exist. v O

A family of sets F is called laminar if A,B e F and AnB # ¢
implies that either A ¢ B or B ¢ A. Thus, the above lemma states
that there always exists an optimal solution (y,Y) to (2.2) such that

{8 ¢ S: Yo > 0} is laminar.

The following short proof of Theorem 2.2 is due tu Schrijver [8la].
It should be noted that the proof makes uses of Theorem 3.1.

Proof of Theorem 2.2 (Schrijver [8lal): Suppese that it is not true

that for each graph G and each nonnegative integer vector w the
linear program (2.2) has an integer optimal solution. Let G and w

be a counterexample with ]VG|+]EG]+Z{we: e ¢ EG} as small as possible.

By the choice of G and w, G isvconnected, LA 2 1 for all
e ¢ EG and for each v ¢ VG there exists a maximum weight matching of
G which does not meet v. Thus, if (y,Y) is any optimal solution to

(2.2) then v, = 0 for each v ¢ VG (by the complementary slackness

Eheoreno. By Lemma 2.3 it can be assumed that {S ¢ S: Y. > 0} is

S

laminar. Let A be a maximal set in {S ¢ S: Y is not integer} (by

S
assumption, Y is nonintegral) with respect to inclusion and let

Al""’Ak be the maximal sets of {S ¢ S: Yo > 0 and S ¢ A} with

respect to inclusion. Let ¢ = YAf[YAJ and let YA = YAfe, YAi = YAi+€

for i=1,...,k, and ?S =Y, for all § in S\{A,Al,...,Ak}. Now

S
(v,Y) is a feasible solution to (2.2) with objective value less than

that of (y,Y), a contradiction to the optimality of (y,Y). 0
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Other proofs of Theorem 2.2 are given in Hoffman and Oppenheim [78],
Schrijver [82c], and Schrijver and Seymour [77]. The result also follows
from the observation that Edmonds' blossom algorithm finds, for any graph G
and any nonnegative integer vector w, an optimal solution to (2.2)

such that Y is integral and y is half-integral.

A matching M of G is called perfect if each node in VG is met

by an edge in M. If G is connected, then G 1is called hypomatchable

if for each v e VG the graph obtained by deleting v from G has a
perfect matching. Let V' be the set of nodes’ v ¢ VG such that

either |[N(v)| = 3 92. IN(v)| = 2 and y(N(v)) =0 or [N(v)l = 1 and
v is a node of a two node connected component of G. The following

result was proven by Pulleyblank and Edmonds [74].

Theorem 2.4: The unique minimal defining system (unique up to positive

scalar multiplication of the inequalities). for the convex hull of the

matchings of G is

x =0 YV e € EG

e
(2.4) x(8(v)) €1 Vv eV
z(y(8)) < t%ISIJV_S < VG, |S| = 3, G[S] hypomatchable

with no cutnode. O

A short proof of this result due to L. Lovasz can be found in'»GQngéjgls

and Pulleyblank [80a].

Cunningham and Marsh [78] showed that the linear system (2.4) is

totally dual integral, which immediately implies the following result.

Theorem 2.5: The unique minimal totally dual integral system with integer

left hand sides that defines the convex hull of the matchings of G is

(2.4). | » O
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The content of this result of Cunningham and Marsh [78] may be
stated in terms of separability of graphs. Let k be the cardinality

of a largest matching of G. Let 'El and E2 be subsets of EG with

ElUEZ = EG and E; #0, i=1,2. Let ki be the cardinality of a
largest matching of G contained in Ei’ i=1,2. If k1+ 9 = k,

then (El’EZ) is a matching separation . of G. Call G matching separable

if there exists a matching separation of G and matching nonseparable

otherwise. R. Giles proved the following result.

Theorem 2.6: A graph G is matching nonseparable if and only if either

G 1is isomorphic to Kl n for some n or G is hypomatchable with no
s .

cutnode.

In order to show the connection of this theorem to the result of
Cunningham and Marsh and to obtain a new proof of this theorem, a general

result on separability will be proven.

Let E be a finite set and let I be a finite set of nonnegative

integer vectors a = (ae: e € E). Call (E,I) a general independence

system if ,OE‘I —and for-each a € I and nonnegative integer b < a it is the
case that b e I (so (E,I) is an .independence system if each a ¢ I

is 0-1 wvalued). Suppose that (E,I) has the above property. The

rank, tr(A), of a set A c E is the maximum value of x(A) over all

vectors x € I. A set Ac E is closed if for each e ¢ E\A r(Aule}) > r(a).

A separation of.a set A £ E 1is a pair of nonempty subsets Al’AZ of

A such that Alt?JA2 = A and .r(A1)+r(A2) = r(A). If there exists a

separation of ‘A ¢ E then A is separable (otherwise A 1is non-

separable). Let C(I) denote the convex hull of I.
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Lemma 2.7: Let (E,I) be a general independence system and suppose

.that the linear system

x 20 Y ecE,
e

IA

(2.5)

is a totally dual integral defining system for C(I). An inequality
x(A) < r(A) dis in the Schrijver system for C(I) if and only if

A # @ is a nonseparable closed set.

Proof: If x(A) £ r(A) is in the Schrijver system for C(I) then
clearly the two conditions hold. Conversely, suppose that A # @ is
a nonseparable closed set. By assumption, for each integral w the

linear program

min Z{r(A)YA: AcE, A# ¢}

(2.6) subject to Z{YA: AcCcE, ec A} > Wy Ye ¢ E

Y, 20 VACE, A#¢(
has an integral optimal solution. To show that =x(4) < r(A) is in
the Schrijver system for C(I) it suffices to show that for some integer
vector w the linear program (2.6) has no integer optimal solution with

A

e € EG\A. An optimal solutiomn to (2.8) is ?A =1 and §B =0 for

0. Let W, = 1l for each e ¢ A and let v, = 0 for each

all other B € E, B # @, with objective value r(A). Any integer
optimal solution to (2.6) with Y, = 0 corresponds to a collection of

nonempty sets Al,...,Aj € E with Ai #A, i=1,...,j, AS AlU "'UAj’

and r(Al)+...+r(Aj) = r(A)., Since A is closed, j must be at least

2. Since A is nonseparable, j must be equal to 1. So there does
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not exist such a solution. O

This lemma combined with the Cunningham and Marsh result gives a
new proof of the characterization of matching nonseparable graphs given
in Theorem 2.5. Conversely, using Lemma 2.7 and Theorem 2.2, Theorem 2.6
implies the result of Cunningham and Marsh. It will be shown later
that the Cunningham and Marsh result follows from a result proven in

Section 5 of this chapter.

Edmonds[71] proved that if M' = (E',I') dis a matroid on the
ground set E; with independent sets I' and rank function ', then
a totally dual integral defining system for P(M'), the convex hull of

the independent sets of M' is

x(A)

IA

r'(A) Y AcE', A+ ¢

(2.7) 0 YVece¢E'..

\%

Te
Thus, Lemma 2.6 implies that the Schrijver system for P(M') is (2.7)
with an inequality =x(A) < r'(A) only for those Ac E', A# 0 .that
are closed and nonseparable in.the matroidal sense (note that Cunningham [73]
has given an algorithm which may be used to test in polynomial time
whether or not A has this property). This result of Edmonds
can be found in ~Pulleyblank[82]. A similar result of Giles [75] for
matroid intersection polyhedra follows in the same manner from Lemma 2.7
using a theorem of Edmonds [70] (Theorem::10.2 of Chapter 2). Lemma 2.7
also. gives a characterization of the Schrijver system for the convex hull
of the independent sets of the "perfect independence systems'" of
Euler [81]. ‘
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3. b-Matchings.

Let G -be a graph and b = {bvz v € VG} a positive integer vector.

A b-matching of G is a nonnegative integer vector x = (xe: e € EG)
such that =x(8(v)) < bV for each v ¢ VG (so a b-matching with bv =1
for each v € VG is a matching). If w = (We: e € EG) dis a vector of

edge weights then the b-matching problem for G is to find a b-matching .

of G which maximizes wx. A construction of Tutte [54] reduces b-

matching problems to matching problems. Replace each node Vv ¢ VG by

the new. nodes V1sVoseeesVy and .replace each edge (u,v) € EG by the
v

i’vj) = W(‘u’v)’ i= l,...,bu’ j = l’...,bv.

new edges (ui,Vj) with Yy
A matching in the new graph corresponds to a b-matching in the original
graph and vice versa. As stated in Schrijver [82c], applying Theorem 2.2
to the new graph implies the following result, which is an easy consequence
of Edmonds' b-matching algorithm [65] (cf. Pulleyblank [73,80]) and has

also been proven by Hoffman and Oppenheim [78] and Schrijver and Seymour [77].

Theorem 3.1: A totally dual integral defining system for the convex hull

of the b-matchings of G is

er 0 Y e ¢ EG
(3.1) = x(&w)) = bv YV ve ve.
x(Y(8)) =

5b(s)1 ¥s € ve, ISl = 3.

Proof: It must be shown that for each integral w, the linear program

e =L 1 .
min Z{bvyv, v e VG}+Z{[§b(S)JYS. S e T}

1\

s.t F(¥(e)HE(T(e)) 2w 'V e e EG

(3.2)
yv.>_0 Vv e VG

<

> i'l T
:S—'O :YS € I,
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where T = {S ¢ VG: [S] = 3}, has an integef optimal solution. Let w
be a nonnegative integer vector and let G' be the graph obtained from

G by splitting the nodes as described above.

Let (y,Y) be an integer optimal solution to (2.2) relative to
G' and S ={s ¢ V6': S| = 3} (such a solution exists by Theorem 2.2).

Using the construction given in the proof of Lemma 2.3 it may be assumed

that S8' = {s ¢ S: YS > 0} is laminar. Furthermore, it may be assumed
that for each € VG' 2{y.: S and S e S} = max{9,w -y -
‘ at for each q R gt q € n € max{9, (0, Y Tp
for each (q,p) € 8(q)}.

Suppose that for some v € VG, it is not the case that yv =,yV

1 J

for all j = 1,...5b . Let ice {l,...,bv} be such that
yvi = mln{ij: 1<3j< bv} and let j € {l,...,bv} be such that

v, <7V, . Let S={sec8": ViV, € S}. Suppose that there exists a
set T e §' such that Vj e T and v, ¢ T. There must exist a node

i . : > Y(S((v.,q))+y. +y..
q adjacent to Vj such that q ¢ T and W(yj’q) Y(S((vJ,q))_yyj yq

Now since v, < Y, and since W(v ,q) = W(v L) there must also
3

i 3 i
exist a set S € S8' such that v, € S, vj ¢S, and q € S, a contra-
diction, since $' is laminar. So no such set T exists. Setting
Yy equal to A YSUfy.} equal to Y4 for each S € S with
J 1 EERON |
v, €8, and Y, = 0 for each § ¢ S with v, €5 and v ¢S, a
new optimal solution (y,Y) is obtained with S' remaining laminar

By repeating this procedure, it may be assumed that for all v € VG,
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y o= Vy, for all . j € {l,...,bv}.
1 J

Using the above argument, it may also be assumed that for each

SeS8' and each v € VG, if v, € S for some i e'{l,...,bv}, then

v, € S for all j € {l""’bv}'

For each. S e T let Y =Y where §' = U{{Vl"'°’vbm}: v e S}

S S'
and let §v =7, for each v ¢ VG, Since (y,Y) is an optimal solution
1 .
to (2.2), (y,Y) is an optimal solution ta (3.2). a
The b-matching analogue of a hypomatchable graph is a b-critical

graph. If G 1is connected, then G is b-critical if for each v € VG
there exists a b-matching x of G such that x(8(v)) = bVQl and
x(§(w) = b, for each u ¢ VG\{v}. Let V" be those nodes v in VG
such that b(N(v)) = bv+2 or b(N(v)) = bv+l and Y(N(v)) =@ or v
beiongs to a two node connected component  of G and bv = bu,' where
v is the other node of the component. Pulleyblank [73] proved the
following characterization of the unique minimal defining system for

the convex hull of the b-matchings of G.

Theorem 3.2: The unique minimal defining system (unique up to positive

scalar multiplés of the inequalities) for the convex hull of the
b-matchings of G is

Xezo Y e ¢ EG

3.3 =EW) b, Y oy

A

x(y(8)) < Bb(s)y ys

A

VG, |S] = 3,

in

G[S] b-critical with no cutnode. . v vhavingw-bv = 1, U



-98-

Unlike the matching case, (3.3) is not totally dual integral.

This can be seen by considering a triangle with bv = 2 for each node v

and weight v, = 1 for each edge e. Such a triangle is an example of

a “b—bicriticalﬁgraph. If(Eis'connected, then G 1is b-bicritical if
for each v € VG there exists a b-matching x of G such that

x(8(v)) = bv—Z and x(S(w)) = bu for each u e VG\{v}. Cook [81] and

Pulleyblank [81] independently characterized the Schrijver system for

the convex hull of .the b-matchings of G.

Theorem 3.3: The unique minimal totally dual integral system with integer

left hand sides that defines the convex hull of the b-matchings of G

is (3.3) with the additional inequalities

x(Y(S)) < %b(s) ¥ SCVG, |S| > 3, G[S] b-bicritical and
(3.4) each node v € VG\S which is adjacent to a node in S .
has .. b_z 2. ' O
v
Since bv 2 2 for each v e V6 if G is b-bicritical, Theorem 3.3

implies the theorem of Cunningham and Marsh [78] (Theorem 2.5 of this
chapter). It will be indicated later how Theorem 3.3 follows from a

result of Section 5.

With b-matching separability defined analogously to matching

separability, Lemma 2.7 and Theorem 3.3 imply the following result.

Theorem 3.4: A graph G dis b-matching nonseparable if and only if .

either G is K1 0 for some n and either n <1 or b(N(v)) = bv+l
>

where v 1is the node of degree n or G is b-critical with no cut

node v having b =1 or G is b-bicritical. 0
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To close this section, a fundamental theorem on b—matchingsydﬁe
to Tutte [47,52] will be presented. This theorem will be used later
in this chapter. A b-matching x of G is called perfect if
x(8(v)) = bv for each v ¢ VG. If S c VG, let

(3.5) C°(s) = {v e VG\S: G[{v}] is a connected compoment of GIVG\sST}

and let

]

(3.6) cl(s) {R ¢ VG\S: [R] = 2, b(R) is odd and G[R] is a

connected component of G[VG\S]}.

Tutte's b-matching theorem is as follows:

Theorem 3.5: A graph G has a perfect b-matching if and only if for
each § ¢ V6, b(S) 2 b(C°(s)) + 1¢ci(s)]. o O

This result follows in a straightforward way from Theorem 3.1 by setting

we =1 for each e ¢ EG.
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4. Simple b-matchings.

Throughout this section, let G be a graph, possibly with multiple

edges and b = (bV: v € VG) a nonnegative integer vector.. A simple

b-matching of G is a subset M of EG such that each node v ¢ VG

meets at most bv edges in M. A perfect simple b-matching of G

(i.e. a simple b-matching which meets each node v ¢ VG in exactly
bV edges) 1is often called a "b-factor". A simple b-matching will be

identified with its 0-1 incidence vector x = (xj: j € EG). Given
a vector w = (we: e € EG) of edge weights, the simple b-matching problem

is to maximize wx over all simple b-matchings of G. Tutte [54]
described the following construction which reduces a simple b-matching
problém to a b-matching problem (cf. Schrijver [82c]). For each edge

e = (u,v) of G add vertices u, and ve“ to VG and replace e by
the edges (u,ué), (ue,ve), (ve,v) (although G may have multiple edges,

for simplicity edges will still be referred to as unordered pairs of

vertices). Also, for each e ¢ EG let bu = bV =1 and let
e e

w =w =w = W_. » . The maximum weight of a
(U,Ue) (ue,ve) (ve,v) e . &

b-matching in the new graph is exactly Z{We: e ¢ EG} greater than the

. maximum weight of a simple b-matching of G, As in Schrijver [82c¢],
this construction, together with Theorem 3.1, implies the following

theorem, which follows from a result of Edmonds and Johnson [70].

Theorem 4.1: A totally dual integral defining system for the convex

hull of the simple b-matchings of G is
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0 < x, < 1 Ve € EG

(4.1) x(8(v)) < b Yv e VG

n

x(Y(8))4x(3) = EM(S)+IN)] Vs < Ve, J < 8(5)

Proof: It suffices to show that for each graph G and each nonnegative

integer vector w the linear program

min Z{ze: e € EG}+Z{vaV= v € VG}+Z{1%(b(S)+IJI)JY(S,J):

S c VG, Jc §(8)}

s.t. ze+y(w(e))+Z{Y(S;J): S c VG, Jgc6(8), e € Y(S)uJ} = w‘e
_ Ye € EG
(4.2) z, > 0 Ye ¢ EG
Yy 2 0 Vv e VG
Y(S,J) 20 VS ¢ VG, J ¢ 8(8)

has an integer optimal solution. Suppose that this is not true and let

G and w be a counterexample with Z{we: e € EG} as small as possible.

Let G' be the graph obtained by the above construction of Tutte and
let (y,Y) be an integer optimal solution to (3.2) relative to G'

and the vector obtained from w. by the construction.  Let k be the

optimal objective value of (4.2).

If ue V6 and e = (u,v) ¢ EG then it may be assumed that Ue §

for each S c VG' with §S~> 0 and u_ € S. Furthermore, if
e=(u,v)e EG and there exists a set § < VG' with §Sr> 0,'ue €S

and A ¢ S, then it may be assumed that §v > 0.
e
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Suppose that there exists a set S ¢ vG! ﬁith §S >0. Let

w, = We—l for all e = (u,v) € EG such that either u, € § or v, € S

(or both). Let §S' = stl and ?% = §T for all T e T\{S} and let

y;e = §Ve—l for each edge e = (u,v) ¢ EG with u e S and A é s

and let y' = §q for all other q € VG'. Also, let S =1{veve: ves}

1

q

and let  J = {e=(u,v)e EG: u, € S. and v, ¢ S}. There exists, by

assumption, an integer optimal solutionu(z,y,Y) to (4.2) relative to G
-t

and w'. Now (y',Y) is an optimal solution to (3.2) relative to G'

and vw' with objective value

tlw i e € EG}+k—[%(b(§)+|3|)J—[{e = (u,v) € EG: either
(4.3) ‘ .
u €8 or Vv_¢ S}’.
e e

Since Z{Wé: e ¢ EG} = Z{we: e € EG}-|{e = (u,v) € EG: either u, €8
or v, € S}l, (z,y,Y) gives objective value k - L%b(§)+|3|1. So

(z,y,Y') is an integer optimal solution to (4.2) relative to G and
et A -—

. | = [ J: 6 ' i i b th e

w, where Y (S,Js Y(SgJ')+l ( Jné(8), since it may be e cas

i ’ in 6(S d y' =Y
that J contains exactly one edge not in (8)) an (A,B) (A,B)

for all other A c VG, B c §(4), a contradiction. So it may be

assumed . that no such set S exists.

Suppose that there exists a node v € VG with §v > 0. It may be

assumed that for each e = (u,v) ¢ GG(V) with v, > 0, we have ;u > 0.
e

' Let w' = maxiO,w -1} for each e € §.(v) and w. = w_ for all other
e e G e e

edges e € EG. and let (z,v,Y) be an integer optimal solution to (4.2)
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relative to G and w'. Let §$ = §v—l, ;& = §u -1 for each e = (u,v)
: e e

. ’ . ‘|= 1]
in 6G(V) with We,> 0, and _yq Yq for all other q e VG'.

Since (y¥',Y) is an optimal solution to (3.2) relative to G' and w',
(z,y,Y) gives objective value k—bV for (4.2). So (z,y',Y) 1is an
integer optimal solution to (4.2), where y; = yv+l and yé = yq for

all q € VG\{v}, a contradiction. So it may be assumed that no such node
exists,
Clearly, Z{we: e € EG} > 0. So there exists an edge e = (u,v) € EG

with §u > (0 and §v > 0. Let wé = we—l and w% =W -for all
e e

f ¢ EG\{e}. An integer optimal solution to (4.2) relative to G and w
can he found by taking an integer optimal solution (z,y,Y) to (4.2)
relative to G and w' and increasing the value of z, by 1,

a contradiction. ]

If B is a.subgraph of G, then for each v ¢ VH let
bs = min{bv,dH(v)}. The largest simple b-matching of G is of cardinality
at most [%bG(VG)J. Let H be the set of all connected subgraphs of

G with |VH{ = 3. Theorem 4.1 implies that

O-sxesl VY e ¢ EG

(4.4) x(8g(v)) < b VveVG
x(EH) < 130 (VE)| ¥ H e H.
is a totally dual integral defining system for S(G,b), the convex hull

of the simple b-matchings of G. By a series of results in this section

and in Section 5, the unique minimal subset of these inequalities which
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is a totally dual integral defining system for S(G,b) will be characterized,

i.e. the Schrijver system for S(G,b). will be obtained.

As in the previous sections, critical graphs play an important

role here. If G is connected, then G is simple b-critical if

VG| 2 3 and for each v ¢ VG there exists a simple b-matching of G
of cardinality b%bG(VG)J which contains exactly bs—l edges which

meet v. Define -simple~bmseparability in .a way -analogous_to

matching separability.

Lemma 4.2: Let H be a connected subgraph of G with |VH| = 3. If

the inequality

A

4.5) x(E) < 1]

is not =x(§(v))

IA

bv for some v ¢ VG, then it is essential for S(G,b)
only if H is simple b-critical and simple b-nonseparable and there

does not exist an edge (u,v) ¢ EG\EH with u,v ¢ VH and dH(u) > bv

and dH(v) > bV.
Proof: Suppose that the inequality (4.5) is essential for S(G,b) and
that it is not =x(S8(v)) < bV for some v e VG, Clearly, H 1is simple

b-nonseparable and there does not exist an edge (u,v) ¢ EG\EH with

diﬁu) > bu and dH(v) > bv' Let M be the set of simple b-matchings

of G for which (4.5) holds as an equality. Since (4.5) is not
x(8(v)) < bV for some v ¢ VG, for each v ¢ VG there exist a simple

b-matching in M which contains at most bv—l edges which meet w.
Similarly, since (4.5) is not X, <1 for some e € EG, for each e € EG

there exists a simple b-matching in M which does not contain e. So
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for each v € VH there exists a simple b-matching of H of cardinality

[%bH(VH)j which contains exactly bs—l edges which meet v. So H

is simple b-critical. 0

To prove that an inequality in (4.4) is essential for S(G,b), it
suffices to find a vector x which does not satisfy that inequality

but does satisfy each of the other inequalities in

(i) 0 < X, <1 Y e € EG

&4.6) (i) =(&(v)) <b Vv eVC

(iidi) =x(ERH) < L%bH(VH)J for each simple b-critical subgraph H of G.

This teéhnique will be used to characterize which inequalities in (4.6)-
(i) and (4.6)-(ii) are essential for S(G,b).
Lemma 4.3: For each e € EG, X, 2 0 1is an essential inequality for

S(G,b).

Proof: Let e € EG and let Xe = -1 and xf =0 for each f e EG\{el}.

The vector =x does not satisfy X, 2 0 but it does satisfy each of

the other inequalities in (4.6). ' 0

Lemma 4.4: Let e ¢ EG. The inequality x, < 1 dis essential for

S(G,b). if and only if e does not meet a node v with bV =1 and

dG(v) > 1.

Proof: If e meets a node v with bv_= 1 and QG(V) > 1, then

x(8(v)) £ 1 implies that X < 1, which implies that X, <1 4is not
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an essential inequality for S(G,b). Suppose that e does not meet

such a node wv. Let xe = 2 and xf = 0 for each .f ¢ EG\{e}. The

vector x does not satisfy X, £ 1 but it does satisfy each of the

other inequalities in (4.6). g

Lemma 4.5: Let v € VG and let b; = min{bu,lﬁ(u) n 6(V)|} for each
node u in N(v). The inequality x(§(v)) < bV is essential for S(G,b)

if and only if one of the following conditions hold:

4) v bélongs to a .connected component of G containing exéctly

4.7) one other node u and b) u has the property that b, =b,

and c) if dG(V)~S b then b . =1.
€ v v

(4.8) a) b'(N(v)).= bv+l and b) theré is no édge'?(vi,vz) € v(N(v))

such that bV = b; | and ‘b =Db' .
i1 V2. V2

(4.9) b'(N(v)) 2 bv+2

Proof: Suppose that b'(N(v)) < bv and that (4.7) does not hold. The
inequality x(§(v)) < b? is implied by the inequalities X, <1 for

each e ¢ §(v) and x(6(u)) < b for each u ¢ N(v). So x(8(v)) < bV

u
is not an essential inequality for S(G,b). Now suppose that (4.7) holds.
Let x, = 1 for each e € §(v) (if_dG(v) =1 let X, = 2 for e € 8(v))
and let X, =-0 -for'each e ¢ EG\S(v),~ATheﬁvector x ‘does not satisfy

x(8(W). < bvf“but_it;does;sétisfy each of-the-other inequalities in (4.6).

So  x(6(w)) < bv is essential for S(G,b).
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Suppose that b'(N({v)) = bv+l and that (4.8) does not hold.
Let (v,,v,) € Y(N(v)) be an edge such that b = b' and b =75b',
1°°2 : vy vy v, v,

Now x(8(v))+x ) < bV is a valid inequality for S(G,b) which

(vl,v2
implies =x(8(v)) < bv. So x(8(v)) < bv is not an essential inequality
for S(G,b). Now suppose that (4.8) holds. For each u € N(v) select’
bé edges from |6(u)“n S(V)l and let J be the collection of these
edges. Let x, = 1 foreach e € J and let x, = 0 for each e € EG\J.
The vector x does not satisfy x(8(v)) < bV but it does satisfy each

of the other inequalities in (4.6). So =x(&(v)) < bV is essential for

S(G,b).

Suppose that b'"(N(v)) = bv+2. Let J be a collection of bv+2
edges in O(v) such that IJnG(u)l < b& for each u e N(v). TLet:
X, = bv/(bv+l) for each e € J and let X, = 0 for each e ¢ EG\J.

The vector x does not satisfy x(§(v)) = bV but it does satisfy all

other inequalities in (4.6)-(i) and (4.6)-(ii). Let ax < a be an
inequality in (4.6)-(iii). Let S be a proper .subset of J. If
|8} < bv’ then =x(8) < |s| and S is a simple b-matching of G. If

[S] = b +1, then =x(8) = bv and S contains a simple b-matching of
v

cardinality bv' So a, must be equal to 1 for each e ¢ J, and

consequently o must be at least 1%(bv+(bv+2))] = bv+l. Since

x(J) < bv+l, x satisfies ax £ 0. So x satisfies all other inequalities

in (4.6). It follows that =x(8(v)) < bV is essential for S(G,b). []
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The above lemmas imply that a defining system for S(G,b) is

I\

(1) x 0 Ve ¢ EG

e

IA

1 Ve € EG sich that e does not meet a node Vv

with bv = 1 and dG(v) > 1.

(ii) X,

(1ii) x(8(v)) <b_ Vv VG for which either (4.7), (4.8)
(4.10) or (4.9) holds for w.

(iv) =x(EH) < L%bH(VH)J- for all simple b-critical simple
b-nonseparable subgraphs H of G such that there
does not exist an edge (u,v) ¢ EG\EH with u,v € VH
and dH(u) > bu and dH(v) > bv‘

This linear system is not in general totally dual .integral - (consider

the complete graph on four nodes with bi = 2 for each node i and

each edge e receiving weight 1). Thus the Schrijver system for

S(G,b) 1is not identical to the minimal defining system for S(G,b)

scaled so that the left hand sides are O0-1 wvalued.

Remark 4.6: Using a generalization of Lovasz' [72a] ear-decomposition
of factor-critical graphs (see also _Cornuéjolsand Pulleyblank [81]), it
can be proven that (4.10) is the unique minimal defining system for
S(G,b), up to positive scalar multiples - of the inequalities. This
result will appear in Cook and Pulleyblank [83], but it will not be

used here.

To obtain .the Schrijver.system'for S(G3b)kthé notion of a{ﬁiéritical

graph is needed. The graph G is simple b;bicritfeal_if:it‘is connected,
G ¥
IVG| 2 3, b (VG) is even, and for each v ¢ VG there exists a b-matching

of G of cardinality %bG(VG)—l which contains exactly bs—z edges
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which meet w.- The'coﬁﬁiete graph ‘
on four nodes with bi = 2 for each node. i 1is an example of a simple

b-bicritical graph.

A variation of Tutte's b-matching Theorem (Theorem 3.5) will be
used to show the relation of simple b-bicritical graphs to totally dual
integral systems. The transformation of Tutte [54] .mentioned earlier
reduces any simple b-matching problem to a b-matching problem. So, ‘
as presented in Schrijver [82c], to determine if G has a perfect simple
b-matching, this transformation can be applied to G to obtain a new
graph G' and then Tutte's b-matching Theorem can be applied to G'.
Suppose that S ¢ VG and T < VG\S. Let

(4.11) Q(s,T) = Z{bv—d v e T}

G[VG\S](V):
and let GT(VG\S) be the graph obtained from G[VG\S] by taking each
node v. € T and splitting it into dG[VG\S](V) nodes, each»w1th

bi =1 (i.e. replace v by nodes MEREREAE where k = dG{VG\S](V)’

and replace the edges (ul,v), (u2,v ),...,(uk,v) by the edges

Qui,vi), i=1,...,k, and let bvi =1, i=1,...,k). Let Dl(S,T)
denote the set of odd connected components of GT(VG\S) which contain

at least two nodes. (A connected component - Gi of GT(VG\S) is odd if
b(VGi) is odd.) ©Notice that each connected component of GT(VG\S)
corresponds to a subgraph of G[VG\S]. Using Tutte's b-matching Theorem,

the following result can be proven.

Theorem 4.7: There exists a perfect simple b-matching of G if and

only if VS c VG .and Y T ¢ VG\S: b(S) é,Q(S,T)+]Dl(S,T)}. "
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Proof: Suppose that G has a perfect simple b-matching M and let
Sc VG and T < VG\S. Let M' = Mny(VG\S). Since M' corresponds to
a simple b-matching of GT(VG\S) of cardinality |M'], we have

b (VG (VG\S))-2]M'] = 1D, (s,m)1. Since b(VGL(VG\S)) = b(VG\S) - Q(S,T),

‘this implies that b(VG\S) - 2]M'| must be at least Q(S,T) + ]Dl(s,T)].

Now since M 1is a perfect simple b-matching of G,

b(S) = b(VG\S) - 2IM'] = Q(S,T) + ]Dl(S,T)].

Conversely, suppose that G does not have a perfect simple b-matching.
Let G' be the graph obtained from G by replacing each edge e = (u,v) € EG
by the edges (u,u)), (v,,v)), (v,,v) and ‘adding u  and v, to VC
with bu = bv = 1. Since G does not have a perfect simple b-matching,
e e
G' does not have a perfect b—matching. So, by‘Tutte‘s b-matching Theorem,

there exists a set X ¢ VG' such that b(X) < b(U{R: Re CDGX)})+|C1(X)1.

I

Let X be such a subset of VG' and let S8 {veVe: ve X}. It may
be assumed that for each edge e € (u,v) € EG, if wue S and v¢£ S

then vy eX. -and u, ¢ X It may also be assumed that for each edge

e = (u,v) € EG, 1if u € S and v € S. then neither u, mor Vv, is in

-X. Furthermore, it may be assumed that for each edge e = (u,v) € EG
if u¢é¢ S and v ¢S .. then u, € X only if ug € X for each

edge f = (u,t) such that t e VG\S Let T ={v e VG\S: v € C°(X)},
i.e. T is the set of nodes v € VG\S that.are isolated in

G'[VG'\X]. Since b(X) < .b(CO(X)) + lCl(X)l, we have .
b(S) <Q(s,m) + 1D (5, D). - 0
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Corollary 4.8: If G is simple b-bicritical then G has a perfect

simple bG-matching.

Proof: Suppose G is simple b-bicritical. Let S ¢ VG and T ¢ VG\S.
By Theorem 4.7, it suffices to show that‘bG(S) > QG(S,T)+ID§(S,T)J

Suppose that S # 0 and let v € S. Let b; = bS—Z and bl1= b

for all wue VG\{v}. Since G has a perfect simple b'-matching,
b'(S) = Q1(S,T)+]D{{S,T)J.- Now bG(S) = b'(S)+2, Q'(s,T) = QG(S,T),

and Ui(S,T) = Df(s,T), S0 bG(S) > QG(S,T)+}D$(S,T)]. Suppose

that S =@¢. If T

I

VG then QG(S,T) <0 and Ivg(S,T)l = 0, which
implies that bC(s) = QG(S,T)+JD§(S,T)J. Suppose that VG\T # ¢ and

let v € VG\T. Define b' as above. Again, Theorem 4.7 implies that
B'(S) > Q'(S,M+ID(5,M]. Since b'(s) = b°(s), Q'(s,m) = %(s,m),

and Di(S,T) = Df(s,T), bG(S) 2 QG(S,T)+JDS(S,T)|1 O

Theorem 4.7 will be used in Section 5 to prove the following

lemma.

Lemma 4.9: Let H be a connected subgraph of G with |VH| = 3. The
inequality =x(EH) < L%bH(VH)] is in the Schrijver system for S(G,b)

only if either it is in (4.6)-(ii) or H is a simple b-critical simple
b-nonseparable graph or a simple b-bicritical simple b-nonseparable

graph. O

Using Corollary 4.8 and Lemma 4.9, the Schrijver system for S(G,b)

may now be characterized.

Theorem 4.10: The wunique minimal totally dual integral system with
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integer left hand sides which defines the convex hull of the simple b-
matchings of G is (4.10) together with

(4.12) x(EH) < r%bH(VH)J for each connected component of G which

is a simple b-nonseparable simple b-bicritical graph.

Proof: Since (4.4) is a totally dual integral defining system for
S(G,b), an inequality is in the Schrijver system for S(G,b) only if it
is in (4.4). It follows from the proofs of Lemma 4.4 and Lemma 4.5

that an inequality in (4.6)-(i) or (4‘6)?(ii) is in the Schrijver system
for S(G,b) only if it is in (4.10)-(i), (4.10)-(ii), or (4.10)-(diii).
Furthermore, by Lemma 4.3, Lemma 4.4, and Leﬁmav4.5, each inequality in
(4.10)~(i), (4.10)-(ii), and (4.10)-(iii) dis essential for S(G,b) and

hence is in the Schrijver system for S(G,b).

Let H be a connected subgraph of G with |VH| = 3. Suppose
that bH(VH) is odd. By Lemma 4.9,

(4.13)  x(EH) < %bH(VH),J

is in the Schrijver system for S(G,b) only if H is simple b-critical
simple b-nonseparable. If there exists an edge (u,v) ¢ EG\EH with

1. H .
dH(u) b bu and dH(v) > bv‘“ then X(EH)+X(u,v) < kzb (VH)] is a

valid inequality for S(G,b). So (4.13) is in the Schrijver system

for S(G,b) only if it is in (4.10)-(iv). Conversely, Lemma 2.7 implies
that if (4.13) is in (4.10)-(div) then (4.13) is in the Schrijver system
for S(G,b).

Now suppose that bH(VH) is even. By Lemma 4.9, (4.13) is in the
Schrijver system for S(G,b) only if H is simple b-bicritical simple

b-nonseparable so suppose that H is simple b-bicritical simple
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b-nonseparable. Corollary 4.8 implies that H has a perfect simple
b-matching. Tt follows that if there exists a node v € VH for which

dH(V) < bv’ then (e,EH\{e}) is a simple b-separation of H, where
e 1is an edge in EH that meets - v. So dH(v)"> bV for each v e VH.

If H is not a connected component of G then there exists an edge
e € EG\EH which meets a node in VH. If e is such an edge then

1
X(EH)+xe < LEbH(VH)J is a wvalid inequality for $S(G,b). So (4.13)

is in the Schrijver system for S(G,b) only if it is in (4.12).
Conversely, Lemma 2.7 implies that each inequality in (4.12) is in the

Schrijver system for S(G,b). O
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5. Capacitated b-matchings.

Capacitated b-matchings are a generalization of simple b-matchings
and b-matchings. Let G be a graph, possibly with multiple edges,

b= (bv: v € VG) a nonnegative integer vector, and c = (ce: e € EG)

a positive integer vector of edge capacities. A c-capacitated b-matching

(.(b,c)-matching) of. G is a b-matching x such that X, < cg for
each e ¢ EG. If c, = 1 for all e ¢ EG. then a (b,c)-matching of
G 1is a simple b-matching of G. If B =vmaz{bvz v € VG} and

c, = B for all e ¢ EG then x is.a (b,c)-matching of G if and

only if x dis a b-matching of G.

It is easy to reduce a capacitated b-matching to a simple b-matching

by replacing - each edge e ¢ EG with c, edges each of which has

the same end nodes as e. 1In fact, Tutte's construction for reducing
simple b-matching problems to b-matching problems can be used to reduce
a capacitated b-matching problem immediately to a b-matching problem:

For each edge e = (u,v) of G add vertices u, and v, to VG
and replace e by the edges (u,ue), (ue,ve), (ve,v)Q For each e ¢ EG

let b _=:b =c¢  and w =y = W = w ., The maximum
Y. e -
u, Vg (u,ue (ue,ve) (ve,v) e

weight of b-matching in the new graph is exactly Z{Wece : e ¢ EG}
greater than the maximum weight of a (b,c)-matching of G. Using this

construction, the following result can be obtained from Theorem 3.1

in the same way that Theorem 4.1 was obtained from it.

Theorem 5.1:. A totally dual integral defining system for the convex

hull of the (b,c)-matchings of G is
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0 £<x =<=c . Ye ¢ EG
e 7 e

(5.1 x(6(v)) < bv Vv ¢ VG

n

X(8(8))+5(D) S [F(b()+e()] VS € Ve, T € 8G).

Proof: Follow the proof of Theorem 4.1, using the above construction

of Tutte. D

(H,c)

If ¥4 4is a subgraph of G, let bv

= min{bv,z{ce: e € EH n §(v)}

for each v € VH. The largest (b,c)-matching of G is of cardinality
at most t%b(G’C)(VG)]. Let P(G,b,c) denote the convex hull of the

(b,c)-matchings of G.

Corollary 5.2: A totally dual integral defining system for P(G,b,c)

is
(1) OSXeSCe Ve ¢ EG
(i1) =x(8(v)) < b Vv e VG

(iii) =x(EH) < L%b (VH) | for all connected subgraphs

H of G with |VH| = 3. 0

If G 1is connected themn G is (b,c)-critical if |VG| > 3 and

for each v € VG. there exists a (b,c)-matching x of G such that

x(8(v)) = béG’c)—l and i(@(u)) = bif’c) for each u € VG\{v}. Let

(b,c)-separability be defined in a way analogous to matching separability.
Using the technique used in proving Lemma 4.2 the following result can

be proven.

Lemma 5.3: Let H be a connected subgraph of G with [VH]| 2 3.



-116-

If the inequality

.3 =@ =< 135 my

is not in (5.2)-(di) then it is essential for 7P(G,b,c) only if H is

(b,c)-critical and (b,c)-nonseparable and there does not exist any edge

(u,v) € EG\EH with v,u € VH and with bﬁH’c) = bu and béH’c) = bv.'D
Let G' be the graph obtained from G by replacing each edge -

e ¢ EG with edges e L each of which has the same end nodes

e

1’
as e (i.e. W(ei) = ¥Y(e) for i = l,...,ce). Each subgraph H of G

corresponds to a subgraph H' of G' (VH' = VH and EH' = U{{el,...,ec }:
e
e € EH}). The following lemma will be used to characterize which in-

equalities in (5.2)-(ii) are essential for P(G,b,c).

Lemma 5.4: Let H be a subgraph of G. If x(EH') €< a is an
essential inequality for S(G,b) then x(EH) < a is an essential in-

equality for P(G,b,c).

Proof: Suppose that =x(EH') < o is essential for S(G,b). Let M' be
a collection of |EG7| affinely independent simple b-matchings of G'
for which . x(EH') < o holds as an equality. For each simple b-matching

x' in M', let x be the (b,c)-matching of G obtained by letting

§e = Z{Xé : 1= L,...,ee} for:each ‘eire EG. Consider the

5 ;
set of (b,c)-matchings M = {x: x' ¢ M'}. Each (b,c)-matching in M
satisfies x(EH) < o with equality. Furthermore, since M' is an

affinely independent set of vectors, M contains |EG]| affinely

independent vectors. So x(EH) < o 1is essential for P(G,b,c). 0
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The inequalities in (5.2)-(i) and (5.2)-(ii) that are essential for

P(G,b,c) are characterized in the following three lemmas.

Lemma 5.5: For each e ¢ EG, X, > 0 is an essential inequality for

P(G,b,c).

-1 and x,. =0 for each f ¢ EG\{e}.

Proof: Let e € EG and let xe £

The vector =x does not satisfy X, 2 0 but it does satisfy each of

the other inequalities in (5.2). g

Lemma 5.6: Let e ¢ EG. The:inequality X, < <, is essential for
P(G,b,c) 4if and only if e does not meet a node v € VG with bv < e

or one with b = ¢ and d.(v) = 2.
v e G

Proof: Clearly, if e meets a node v ¢ VG with bv < c, or one
with b = c¢ and d (v) 22, them x < ¢ is not essential.for
v e G e e

P(G,b,c). Suppose that e does not meet such a node v. Let

Xe = ce+l and Xe = 0 for each f ¢ EG\{e}. The vector x does not

satisfy X, < s but it does satisfy all other inequalities in (5.2). [0

Lemma 5.7: Let v € VG and let bJ = min{bu,Z{ce: e e S(u. n §(v)}
for each node u. in N(v). The inequality =x(8(v)) < bV is essential
for P(G,b,c) if and only if one of the following conditions holds.

b'(W(w)) = bv and v is in atwo node connected component

5. 5) of G with bu = bv’ where U 1is the other node of the
‘ component, and'if Z{ce: e e §(v)} = bv‘ then dG(v)-= 1.
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b'(N(v)) = bv+1 and there does not exist an edge

(5.5) . ' -
(vl,vz) e Y(N(v)) with bv bv and bV = bV .

1 1 2 2

(5.6) b'(N(v)) = bv+2'

Proof: As in the proof of Lemma 4.5, it is easy to check that if

x(§(v)) < bv is essential for P(G,b,c) then one of the three conditions

holds. If (5.5) or (5.6) holds then Lemma 4.5 and Lemma 5.4 together
imply that =x(§(v)) < bV is essential for P(G,b,c). Suppose that

(5.4) holds.  If Z{ce: e e S(v)} > b, let x =c_  for each

e € §(v) and let x, = 0 for each .e ¢ EG\6(v). 1If Z{ce: e e §(v)} = bv’

let x, = ce+l for the edge e which meets v and Xp = 0 for‘each

f € EG\{e}. 1In either case, =x satisfies each inequality in (5.2) other

than =x{$(v)) = bv. (O
These lemmas imply that the following linear system defines P(G,b,c).

(i) X, >0 Ye ¢ EG

(ii) X, < ce Ve ¢ EG such that e does not meet a

node v € VG with b < ¢ or one with b_ = ¢ and
A v e v e
(5.8) d v = 2.
(iii) =) < bV Vv ¢ VG for which either (5.4), (5.5),
or (5.6) holds.

(iv) =x(EH) < L%b(H’C>(VH)J for all (b,c)-critical, (b,c)-
nonseparable .subgraphs H of G such that there does not

exist an edge (u,v) ¢ EG\EH with v,u ¢ VH and with

b(H’C);»b and b(H’C) =b .
u 2 v v
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The example given in the previous. section shows that this linear system

is not in general totally dual integral.

Remark 5.8: Lemma 5.4 and the result mentioned in Remark 4.6 together
imply that (5.8) is the unique minimal defining system (unique up to
positive scalar multiples of the inequalities) for P(G,b,c). Again,
this result will appear in Cook and Pulleyblank [837, but will not be

used here. O

If G 1is connected and  |VG| 2 3, then G is (b,c)-bicritical

if for each v € VG there exists a (b,c)-matching x of G such
that =(6() = b{"V=2 and x(E(w) = b for each uc ve\(v].

To obtain a totally dual integral defining system for P(G,b,c) it
suffices to add an inequality x(EH) < [%b(H’c)(VH)] for each (b,c)-
bicritical, (b,c)-nonseparable subgraph H of G. To see this,
another variation of Tutte's b-matching Theorem is néeded. If H is

Z{ce: e e 6H(v)} for each v ¢ VH.

a subgraph of G let d;(v)
Suppose that S ¢ VG. and T c VG\S. Let

C

G[VG\S](V>: v € T}

(5.9) Q. ¢6,T) = Z{bv—d

and let GZ(VG\S) be the graph obtained from G[VG\S] by taking each
node v ¢ T and performing the following three operations:

(i) replace v by the nodes ‘{ve: e e §(v)}

(ii) replace each edge e = (u,v) ¢ 8(v) by the edge e' = (u,ve)

(iii) 1let bv =c, for each e ¢ §(v).
e

Let Dl(S,T,c) denote the set of odd connected components of Gz(VG\SF

which contain at least two nodes.
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Theorem 5.9: There exists a perfect (b,c)—matching of G if and only
if VS ¢ VG and T < VG\S: b(S) = QC(S,T)+JDl(S,T,c)].

Proof: Let G' be the graph obtained from G by replacing each edge

e ¢ EG with edges S ERRRTLA each of which has the same end nodes as

e. The graph G' has a perfect simple b-matching if and only if G
has a perfect (b,c)-matching. Applying Theorem 4.7 to G' gives the

result ‘stated above. : [

Note that if . is sufficiently large for each e ¢ EG then x is a

(b,c)-matching of G if and only if it is a b-matching of G and if for
some S € VG. and some v € T ¢ VG\S it is the case that dG[VG\S](V) > 0,

then b(S) = QC(S,T)+|Dl(S,T,c)]. Thus, Theorem 5.9 reduces to Tutte's
b-matching Theoremin this case.

An immediate consequence of Corollary 4.8 is the following result,

which may also be proven directly from Theorem 5.9.

Lemma 5.10: If G is (b,c)-bieritical, then G has a perfect

(b,c)-matching. 0

This result and the following lemmas will be used to characterize the

Schrijver system for P(G,b,c).

Lemma 5.11: Let H be a connected subgraph of G with b(H’C)(VH)
odd and |VH| = 3. The inequality =x(EH) < L%b(H’C)(VH)J is in the
Schrijver system for P(G,b,c) only if either it is in (5.2)-(ii) or .

H is a (b,c)-critical, (b,c)-nonseparable. graph.

Proof: Suppose that x(EH) < L%b(H’c)(VH)] is not in (5.2)-(ii) and
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that H is not a (b,c)-critical, (b,c)-nonseparable graph. If H is
(b,c)-separable then Lemma 2.7 impliesithat the inequality is not in

the Schrijver system for P(G,b,c). Suppose that H is not (b,c)-critical.
Let ue VG ‘be a node for which there does not exist a perfect

(b'sc)-matching of H where b' = b(H’c)—l and b' = b(H’C)
u u v v

for
each 'V€VH\£U}5By Theorem 5.9 there exists S c VH and T c VH\S:.

such that

(5.10) © B'(S) < Q!(S,D)+ID}(S,T,0)]

where Qé(S,T) and Di(S,T,c) are QC(S,T) and Dl(S,T,c) with

respect to b' and H. Let S and T be such subsets of VH (it may
be assumed that if v € VH\S and dH[VH\S](V) =0 then v e T)

Let H be the set of all connected subgraphs f~-rﬁ of G
with |Vil] 2 2. Corollary 5.2 implies that for each integer vector w,

the linear program

min Z{cv‘ze: e € EG}+Z{beV: v € VG}+Z{[%b(H’C) (Vﬁ)’jYﬁ: He H}

s.t. ze+y(W(e))+Y(H(e)) P A Ve € EG
z, = 0 Ve € EG
V, 2 0 Vv e VG
¥z 2 0 VYHeH

has an integer optimal solution. To prove that x(EH) < L%b(H’c)(VH)j

is not in the Schrijver swystem for P(G,b,c) it suffices to show that

for each integer vector w the linear program (5.11) has an integer
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optimal solution with Y 0.

H:

Let w be an integer vector and let (z,y,Y) be an integer optimal

solution to (5.11). Suppose that .YH'> 0. The inequality (5.10)

implies that
(5.12) b(H’c)(s) < QEH’C)(S,T)+JDiH’C)(S,T,C)J,

where QéH’c)(S,T) and DiH’c)(S,T,c) are QC(S,T) and Dl(S,T,c)

b(H,C)

with respect to and H. Let U.,be the set of connected.

components. of Hi(VH\S) that contain at least two.nodes (so
'D(Hsc) “~ T .
1 (S$,T,¢) ¢ D). Each connected component in of HC(VH\S) cor-

responds to a subgraph Hi of H. Note that if ﬁ; is in 7 then
(Hi’c) (H,e) o7
b (VHi) <b ? (Vﬁi).

From the definition of Q_(S,T) and D the following equality holds:
5.13)  b®D ) = 2 ()45 (5,0 BV ) |
where b %) (py = Z{b(H’c)(Vﬁa): H e D} Now (5.12) implies that
.14) & (yg) » b(H’c)(VH)+b(H’C)(S)—Q(EH’C)(S,T)-ID:EH’C)(S,T,C).I.
Combining (5.13) and (5.14) gives
.15 2™ am = 20 (50 ® O 0)- 1 (5,10

It follows that

.16 2Pz 55y @ )2 19 (5,10
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which is equivalent to

Gan @ am = b(H’c)(S)+Z{I%b(H’C)(Vﬁ£)Jt i, < D).

This inequality implies that

(H, ,c) ~
(5.18) t%b(H’c)(VH)J > b(H’C)(S)+£{[%b Y e e 3.

Using this it is easy to construct an integer optimal solution to (5.11)

with Y, = 0. Define (z,y,Y) as follows

H
YH =0
YH, = YH.+YH for each Hi e D
i i
§K = Y, for each other” K e H
I - _— (H,c) _
yv = yV+YH for eachA v € S "with by bV
§ =y for each other v € VG
v v .
z =z 4Y for each e € EH which meets a node u ¢ § with
e e H (H,c)
3
bu < bu.
z =

ze for each other e € EG.

It is straightforward to check that (E,§,§)_ is a feasible solution to
(5.11) (note that since b(H’c)(VH) 'is odd, H is not “Hi for some
A, e D). The inequality (5.18) in

to (5.11). ‘ : 0

;ﬁesthat it is also an optimal solution

Lemma 5.12: ILet H be a connected SgbgraPh-of G with b(H’c)(VH) even
and '|VHl = 3. The inequality =x(EH) < L%b(H’C)(VH)j is in the

Schrijver system for P(G,b,c) only if either it is in (5.2)=(ii) or
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H is a (b,c)-bicritical, (b,c)-nonseparable graph.

Proof: Suppose that <k(EH) < i%b(H’C)(VH)J is not in (5.2)-(ii) and
that H is not a (b,c)-bicritical, (b,c)-nonseparable. graph. Again, if
H is (b,c)-separable then Lemma 2.7 implies that the inequality is not
in the Schrijver system for P(G,b,c). Suppose that H is not
(b,c)-bicritical. Let W € VG be a node which which there does not

exist a perfect (b;c)-matching of H where bh = bﬁ?’c)-z and

b; = béH’C) for each v- VE\{u} (it may be assumed that by = 0). Let

S cVH and T c VH\S be sets such that

(5.19) b'(S) < Qé(S,T)+]Di(S,T,c)I.

This inequality implies that

(5.20) “?,,(_H’-C)(s> < ) (5, my41 D) (5,7, 09 41.

Now. since b(H’C)(VH) is even, (5.13) implies that b(H’C)(S)+Q§H’C)(S,T)

+|D§H’C)(S,T,c)| is even. So (5.20) implies .. - (5.12). So the lemma

can be proven in the same manner as Lemma 5.11. ° 0

The above two lemmas together imply Lemma 4.9, which completes

the proof of Theorem 4.10.
The following result characterizes the Schrijver system for P(G,b,c).

Theorem 5.13: The unique minimal totally dual integral system with

integer left hand sides which defines the convex hull of the c-capacitated

b-matchings of G is (5.8) together with
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(5.21)  x(EH) < %’b(H’C) (VH) for all (b,c)-bicritical,

(b,c)-nonseparable subgraphs =~ H of G such that there does not

exist an edge. (u,v) € EG\EH with u,v € VB and with Tiéﬂ’c) = bu

and béH’c) = bv and such that there does not exist an edge (u,v) € EG

with u e VH, v ¢ VH and either 1 or bv = 1.

€lu,v) T

Proof: If an inequality is not in (5.2), then it is not in the Schrijver
system for P(G,b,c). It is easy to check that an inequality in (5.2)-(i)
or (5.2)—(ii)>is in the Schrijver system for P(G,b,c) only if it is

in (5.8)-(i), (5.8)-(ii), or (5.8)-(iii). Conversely, by Lemma 5.5,
Lemma 5.6 and Lemma 5.7, each inequality in (5.8)-(i), (5.8)-(ii), and
(5.8)-(iii) is essential for P(G,b,c) and hence is in the Schrijver

system for P(G,b,c).

Let H be a connected subgraph of G with |VH| = 3. Suppose
that b(H’c)(VH) is odd. Using Lemma 5.11, it is easy to check that

(5.22)  x(EH) < [%b(H"C) (VH) |

is in the Schrijver system for P(G,b,c) only if it is in (5.8)-(iv).
Conversely, Lemma 2.7 implies that each inequality in (5.8)-(iv) is

in the Schrijver system for P(G,b,c). Suppose that b(H’c)(VH) is
even. Lemma 5.12 implies that (5.22) is in the Schrijver system for
P(G,b,c) only if H dis (b,c)-bicritical, (b,c)-nonseparable. Suppose
that H dis (b,c)-bicritical, (b,c)-nonseparable. Lemma 2.7 implies
that (5.22) is in the Schrijver system for P(G,b,c) only if it is

in (5.21). Conversely, Lemma 2.7, together with Lemma 5.10, implies
that each inequality in (5.21) is in the Schrijver syétem for

P(G,b,c). 0
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Theorem 4.10 may be obtained from the above result by letting
c, = 1. for each e € EG. To obtain the charactefization of the
Schrijver system for the convex hull of the b-matchings of G, given

in Theorem 3.3, from the above result let c, = a for each e EG.
where o = 2°mak{bvz v e VG}. Now a vector x is a b-matching of G

if and only if x 1is a (b,c)-matching of G. So (5.8) together with
(5.21) is the Schrijver system for the convex hull of the b-matchings of
G. It is straightforward to check that this linear system is identical

to (3.3) together with (3.4).

It is possible to test in polynomial time whether or not a given
subgraph of C%)is.(b,g)fcritical7dr;(b,é)fbiCritica;, 'Iﬁdeed,wusing,'
Edmonds' blossom algorithm (Edmondé [65,653]) and a "scaliﬁg" argument
similar to the ohe used by Edmonds and Karp [72] to solve min cost
flows, Cunningham and Marsh (see Marsh [79]) found a polynomial-time
algorithm for the b-matching problem. Using the construction of Tutte,
this algorithm can be used to solve the (b,c)-matching problem in
polynomial time, which implies that it is possible to test in polynomial
time whether or not a graph is (b,c)-critical or (b,c)-bicritical. The
polynomial-time algorithm of Cunningham and Marsh, together with
Theorem 3.3, also gives a polynomial-time algorithm to test whether or
not a graph is b-separable and, hence, whether or not an inequality is
in the Schrijver system for the convex hull of the b-matchings of G.

A characterizathon of (b,c)-nonseparability which yields a polyﬁomial—time

test for (b,c)-nonseparability is given in Cook and Pulleyblank'[SS].

Remark 5.14: Amn alternative polynomial-time algorithm for the b-matching
problem has been found by Anstee[83]. Anstee's algorithm uses a polynomial-
time min cost flow algorithm as a subroutine and thus avoids a separate

"scaling" argument. O
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6.  Triangle-free 2-matchings

Let G be a graph. A 2-matchingof G is a b-matching
with bv = 2 for each v e VG. Motivated by the fact that the 2-matching
problem is a relaxation of the travelling salesman problem, Cornuéjgls
and Pulleyblank [80] considered a constrained variation of 2-matchings
called triangle-free 2-matchings. A 2-matching, =x, is a triangle~free

,e3} c EG

2-matching if x +x +4x, < 2 for each triple of edges e e
B €1 &y &3 1

which form the edges of a triangle of G (a triangle is a circuit of

2

length 3).Cornugjols and .Pulleyblank found a polynomial-time algorithm
for solving the triangle—free 2—matching problem and characterized the
unique minimal defining system for T(G), the convex hull of the
triangle~free 2-matchings of G. The Schrijver system for T(G) will

be characterized in this section.

Let T be the set of all triangles of G. The following result is

a consequence of the Cornwéjols-Pulleyblank algorithm.

Theorem 6.1: A totally dual integral defining system for T(G) is

X, >0 Ye € EG
x(8(v)) < 2 Vv € VG
(6.1)
x(ET) < 2 VT ¢ T
x(y(S)< [s] Vs < ve. u|

The following result of Cornu&jols ang Pulleyblank [80] follows very

easily from the above theorem.

Theorem 6.2: The unique minimal defining system (unique up to positive

scalar multiples of the inequalities) for the convex hull of the
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triangle free 2-matchings of G 1is

XEZO Ve ¢ EG
(6.2) .
x(&v)) £ 2 for all v € VG. such that either dG(v) =2 3 or

dG(v)=2 and v is not the node of a triangle or dG(v)=l and

v is in a:2-node ‘connected component of G.

%x(ET) <2 VYT e T. g

If G is a circuit of length 5, then (6.2) is not totally dual
integral. This is an example of a triangle-free bicritical graph. If
x dis a triangle—frée 2-matching such that x(8§(v)) = 2 for each
v € VG, then x is a perfect triangle-~free 2-matching. If G 1is

connected and IVGI > 4, then G 1is triangle-free-bicritical if for

each v € VG the graph obtained by deleting v from G has a perfect
triangle-free 2-matching. A triangle T aof‘a'conpected~graphj G: is a

 Eendént triang&é<pf’G“if,thcontains a cutnode of G and T contains two

nodes v;,v, with dG(vl) = dG(vz) = 2.

Theorem 6.3: The unique minimal totally dual integral system with integer

left hand sides that defines the convex hull of the triangle-free 2-

matchings of G is (6.2) together with

(6.3) X(Y(S)) < ]S] for all S = VG such that G[S] 1is
triangle-free-bicritical and contains no triangle T which is a

-pendent triangle of G[S].

Proof: Let S < VG. Suppose that G[S8] 'is not triangle-free-bicritical.
Let v e S be a node such that G[S\{v}] does not have a perfect
triangle-free 2-matching. The inequality x(y(8) < ]SI can be obtained

by summing the valid inequalities x(GGIS](v)) <2 and =x(Y(S\{v]})) = lSi—Z.
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So x(Y(5)) < |5| is not in the Schrijver system for T(G). Using
this, it follows from Theorem 6.1 that (6.2) together with (6.3) is
a totally dual integral defining system for T(G). So an inequality

is in the Schrijver system for T(G) only if it is in (6.2) or (6.3).

» Each inequality in (6.2) is essential for T(G) and hence is
in the Schrijver system for T(G). Let S ¢ VG and suppose that GJ[S]

is a triangle-free-bicritical graph which contains no triangle T which

is a pendent triangle of G[S]. Let V'c VG, T'<c T, and
S' < {R: RcVGt. Call. (V',T',8') a cover of G[S] if for each
edge - e € Y(8) either e € §(v) for some v e V' or e € ET for

some TeT' or ec Y(8') for: some S'eS'. If (V',7',8') is a
cover of G[8] then the weight of (V',T',S") is w(V',7',8") = 2]V‘l+
+2|T'|[42{]s"|: ' € S'}. To show that #(6(3)) < |s| is in the
Schrijver system for T(G) it suffices to show that the weight of any
cover of G[S] such that S ¢ S' is greater than IS'. Let (V',T',8")
be a cover of G[S] of minimum weight (since (¢,¢;{Si) is a cover of

G[S], w(Vv',T',S") < |s|). Suppose that s ¢ S and assume that of all

minimum weight coverings of G[S] with S ¢ S', lT'I is as small

as possible.

Since G[S] is triangle-free-bicritical, V' must be the empty
set. Suppose that S' is also the empty set. Since IT'[ is as small

as possible, |VTanT2| £ 1 for all Tl,T2 € T'. Now since there is

no triangle T din G[S] which is a pendent triangle of G[S] and since
|S| 24, there exists a circuit C in G[S] which is not a triangle in T'., Let

{VO,...,vk_l} be the node set of C, where v is adjacent to v, for i=0,...,k~1

+1°
(subscripts should be taken modulo k). There exist distinct triangles

. , _ :
TO’ETZ?Tk—l in T’ such that VT, —{Vi’vi+1ﬁgi}3,wh?re'Lﬁ_é vVC arylyd‘u.ijéuj for

i#j. Let G' be the graph with node set U{VTi: i=0,...,k-1} and edge set
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U{ETi: i=0,...,k=1}. The graph obtained by deleting VO“from G' does not have

a perfect triangle-free 2-matching. So G[S] is not identical to G'. Thus

s' = U{VTi: i=0,...,k-1} is not S. Letting 8" = {S'} and

™ T'\{TO""’Tk~l}’ a covering of G[S] is obtained with S é S",
w(v',7",8") = w(V',7',8"), and ]T"] < IT'I, contrary to assumption.
So S8' is nonempty. If Si and Sj are distinct elements in S',

then SinSj =@, since (V',T7',8') is a minimum weight cover. Let
Sl € §8'. By the assumption on the cardinality of T', there does not

exist any triangle T ¢ T' .with VTnSl # (. Since G[S] is connected,

there exists an edge e = (u,v) ¢ y(S) with u e Sl and v ¢ Sl' So

for all S' ¢ S', e ¢ y(S'") and for all T e T', e ¢ ET. So
(v',T',8") is not a cover of G[S], a contradiction. So there does not
exist a covering of G[S8] of weight less than or equal to ]S[ with

S e S'. B

Corollary 6.4: If G is triéngle—free‘bicritical with no pendenti 

triangle,  then G ‘has a perfect triangle-free Z2-matching.

Proof: Suppose that G isfttiangle%freefbicriticalpwith nQ- fﬂ"m4f5
ﬁendéﬁt-triangie;'Fﬁjgl;7jr  Theorem 6.3 implies that x(EG) < ]VG[
is in the Schrijver system for T(G).. Hence, G must have a triangle-

. O

free 2~matching of size ]VG

Corollary 6.5: A graph G is triangle-free nonseparable if and only if

either G is isomorphic to 'Kl n for some n or G is triangle -
3
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free-bicritical with no pendent triangle..

Proof: This follows from Theorem 6.3 and Lemma 2.7.
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