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a b s t r a c t

We describe a computer code and data that together certify the optimality of a solution to the 85,900-city
traveling salesman problempla85900, the largest instance in the TSPLIB collection of challenge problems.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

An important aspect of computational research is the verifia-
bility of reported benchmark results. General remarks on this topic
are given in [20], as part of a broad discussion on the state of the lit-
erature in the field of operations research. In this note we consider
verification within the context of the traveling salesman problem
(TSP).
Computational work on the TSP began in earnest with the

classic paper of Dantzig et al. [7], where the cutting-plane
algorithm is used to compute an optimal TSP tour through 49 cities
in the United States. In this 1954 study, the authors are directly
concerned with a certification of their result, writing:
‘‘The optimal tour x̄ is shown in Fig. 16. The proof that it is optimal is
given in Fig. 17’’.
Dantzig et al.’s proof of optimality consists of a linear

programming (LP) relaxation of the TSP, together with a dual LP
solution providing a lower bound that matches the travel cost of
their proposed tour.
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The short, hand-verifiable, proof of [7] cannot be duplicated
on the large TSPLIB [19] instances studied by Applegate et al. [2],
the largest example, pla85900, having 85,900 cities. As an
alternative, the publicly available Concorde TSP code [3] employs
an architecture that ensures the validity of the lower-bound
computations, independent of the accuracy of the LP software used
to drive the cutting-plane implementation. Nevertheless, in the
particular case of pla85900, the very long computation, consuming
over 136 CPU years, makes the solution difficult to replicate and
verify.
In this paper, we describe a computer-checkable TSP proof,

along with a description of the certification data for pla85900. The
certification data consists of a TSP tour together with a rooted
search tree and an associated LP relaxation for each leaf of the tree.
The full set of leaves comprises a collection of relaxations such that
every TSP tour is a feasible solution to exactly one relaxation in the
collection. For each leaf, a dual LP solution is stored that establishes
a lower bound for a restricted version of the corresponding TSP
subproblem. The lower bounds together prove that the specified
tour is optimal.
The full proof-checking code and the certification data for

pla85900 are available on the web page www.tsp.gatech.edu/
pla85900/proof. The computer code and data permit the verifica-
tion of the optimal pla85900 tour with amodest amount of human
checking of the source code and a reasonable length computation
with the certification data.
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2. Problem description

A TSP instance can be described by a complete graphwith node-
set V , edge-set E, and edge costs (ce : e ∈ E). The problem is to find
a tour throughV ofminimum total edge cost,where a tour is a cycle
that visits each node exactly once.
The instances in the TSPLIB have ce integer for all e ∈ E.

In the case of pla85900, these costs are determined by pairs of
coordinates (xv, yv) for each node v ∈ V ; the value of ce for an
edge e = (u, v) joining nodes u and v is the Euclidean distance√
(xu − xv)2 + (yu − yv)2

rounded up to the nearest integer. All coordinates for pla85900 are
integers in the range [548000, 1452000].

3. Tour

A tour can be recorded in our certification data as a permutation
of the cities, leaving a simple computation to verify its cost from the
TSPLIB information. In the case of the pla85900 TSP, the optimal
tour value 142,382,641 matches the cost of a tour first obtained
with the LKH 2.0 heuristic code [12,13].

4. LP relaxation

The LP relaxations we consider have variables (xe : e ∈ E), with
a tour T represented by assigning xe = 1 for all edges e in T and
xe = 0 for all edges not in T . For any subset S of V let δ(S) denote
the set of edges with exactly one end in S; a set of the form δ(S) for
a proper subset S of V is called a cut. For disjoint sets S,W ⊆ V let
E(S,W ) denote the set of edges having one end in S and one end
inW . For any set F ⊆ E define x(F) =

∑
(xe : e ∈ F).

The degree LP relaxation

minimize
∑

(cexe : e ∈ E)
subject to

x(δ({v})) = 2 for all v ∈ V
0 ≤ xe ≤ 1 for all e ∈ E,

is the starting point for the TSP cutting-plane algorithm.
Many of the standard inequalities for the TSP, such as

subtour inequalities [7], comb inequalities [5,9] and clique-tree
inequalities [10], are specified by giving a family S of (not
necessarily distinct) subsets of V and an integer β such that∑

(x(δ(S)) : S ∈ S) ≥ β (1)

is satisfied by all tour vectors. We say that (1) is in hypergraph
format.
In addition to inequalities in hypergraph format,we also include

in our LP relaxation a particular class of constraints known as
domino-parity (DP) inequalities [16]. Although these inequalities
can also be written in hypergraph format, the natural form
presented below results in a large saving in space.
A domino D is a pair {DA,DB} of non-empty subsets of V

satisfyingDA∩DB = ∅ andDA∪DB 6= V . Consider a set of dominoes
D with |D| odd, together with an additional set FD of edges such
that for some set HD of nodes the cut δ(HD) is precisely the set of
edges that appear an odd number of times among the sets FD and
(E(DA,DB) : D ∈ D). Note that FD is determined by D and HD .
The domino-parity inequality corresponding to (D,HD) is

x(FD)+
∑
D∈D

(x(E(DA,DB))+ x(δ(DA ∪ DB))) ≥ 3|D| + 1.

Our LP relaxation consists of the degree LP together with
a collection of inequalities in hypergraph format specified by
set families S1, . . . , Sr and right-hand-side values β1, . . . , βr ,
and a collection of domino-parity inequalities specified by
(D1,HD1), . . . , (Ds,HDs).
Fig. 1. Venn diagram representing a comb inequality on a graph with 27 nodes.

5. Validating TSP inequalities

To use an LP relaxation in an optimality proof,wemust establish
that each of the inequalities in the system of constraints is indeed
valid for all tour vectors. In the case of a domino-parity inequality,
this is a simple matter of checking that the pair (D,HD) satisfies
the definition given above. The process is more complicated,
however, for general inequalities in hypergraph format.
For a hypergraph inequality (S, β), we first check if S matches

one of the entries in a list of known templates, such as subtours,
combs, or clique trees. In this process, we consider the possibility
of replacing some members S of S by their complements V\S to
obtain a set family matching a given template, and yielding an
equivalent inequality. This procedure may fail however, since the
local cuts routine adopted in Concorde can deliver cutting planes
that do not match any of the known classes of inequalities for the
TSP. For these unclassified inequalities, wemust rely on a different
verification method.
Given an inequality

∑
(πexe : e ∈ E) ≥ π0, it is possible

to determine if it is valid for all tours by solving the TSP with
edge costs (πe : e ∈ E) and comparing the optimal value to π0.
This approach is not practical, however, since for each inequality
it requires the solution of a TSP of size equal to that of our original
problem. Fortunately, in the case of hypergraph inequalities it is
possible to reduce the problem to that of verifying the validity of a
similar inequality in a smaller sized instance of the TSP.
Define the atoms of the hypergraph (V , S) as the minimal non-

empty regions in a Venn diagram representation of S. That is, an
atom is a non-empty set of the form⋂
S∈Sin

S\
⋃
S∈Sout

S

for a partition of S into subfamilies Sin, Sout. Here, the intersection
of an empty collection is defined as V and the union of an empty
collection is defined as the empty set.
Let V ′ ⊆ V be obtained by selecting a single representative for

each non-empty atom of (V , S); the set V ′ is called a backbone of
the hypergraph (V , S). See Figs. 1 and 2 for an example. Now let S′
denote the collection of sets (V ′ ∩ S : S ∈ S). In Chapter 5 of [2], it
is observed that the hypergraph inequality (1) is valid for all tours
through V if and only if∑

(x(δ(S)) : S ∈ S′) ≥ β (2)

is valid for all tours through V ′.
These smaller TSP instances on V ′ can be solved, for example,

with an implementation of the branch-and-bound algorithm of
Held and Karp [11].
In cases where the backbone TSP requires a long solution

time with our Held–Karp code, we alternatively validate (2), in a
recursive fashion, by storing certification data of the general form
described in this paper. These stored backbone TSP proofs are then
checked as part of the proof-checking process for the full TSP.
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Fig. 2. Venn diagram representing a backbone (on 8 nodes) of the hypergraph
inequality depicted in Fig. 1.

6. Lower bounds and dual feasible solutions

The variables in the dual LP for the TSP relaxation are y = (yv :
v ∈ V ), Y = (Yi : i = 1, . . . r), U = (Ui : i = 1, . . . s), and z =
(ze : e ∈ E), corresponding to, respectively, the degree equations,
the hypergraph inequalities, the domino-parity inequalities, and
the bounds xe ≤ 1 for all e ∈ E. The reduced cost of e = (u, v) ∈ E,
denoted by αe, is given by the formula

αe = ce − yu − yv

−

r∑
i=1

|{S ∈ Si : e ∈ δ(S)}|Yi

−

s∑
i=1

|{D ∈ Di : e ∈ E(DA,DB)}|Ui

−

s∑
i=1

|{D ∈ Di : e ∈ δ(DA ∪ DB)}|Ui

−

s∑
i=1

|e ∩ FDi |Ui.

With these values, the dual LP constraints can be written as

αe + ze ≥ 0 for all e ∈ E (3)

together with the nonnegativity requirements Y ≥ 0, U ≥ 0, and
z ≥ 0.
A problem with standard linear programming (LP) solvers is

that they often return invalid (or non-optimal) solutions due
to the use of floating point arithmetic. Since branch-and-bound
algorithms use the values of LP relaxations as bounds to optimal
solutions, invalid LP solutions can potentially lead to incorrect
bounds. In order to deal with this, observe that the z variables
permit us to convert any values of y, Y , and U to a valid dual LP
solution, by increasing Y and U to be nonnegative and setting z so
that (3) is satisfied. Note that the z variables appearwith coefficient
−1 in the dual LP objective function, so slight increases in z result
in slight decreases in the dual LP lower bound for the TSP. Since
typically the solution values y, Y , z,U obtained from LP solvers,
when not feasible, are near-feasible, this procedure results in tight
bounds in practice.
Following the technique used in Concorde, we record the values

of y, Y , and U in fixed-point arithmetic, representing each number
by 32 bits before the decimal point and 32 bits after the decimal
point. Addition and subtraction of such fixed-point numbers can
be carried out without rounding errors, provided the operations
are checked for possible overflow. This process allows us to obtain
a valid lower bound on the cost of a TSP tour through V .

7. Pricing and edge elimination

The application of the above lower-bounding technique re-
quires, in order to determine which of the dual constraints (3) is
invalid, that we compute the reduced cost αe for any edge e ∈ E
such that αe < 0; this is known as edge pricing. Although it is a
straightforward computation, the quadratic number of edges in E
makes pricing a time-consuming process. As a practical speed-up,
Applegate et al. [1] use an easily computed lower bound on αe to
avoid its exact calculation when possible.
The technique used in [1] was developed for hypergraph

inequalities; we generalize it to handle domino-parity inequalities.
For each v ∈ V define

γv = yv +
r∑
i=1

|{S ∈ Si : v ∈ S}|Yi

+

s∑
i=1

|{D ∈ Di : v ∈ DA ∪ DB}|Ui

+

s∑
i=1

|v ∩ HDi |Ui.

Note that, for any i = 1, . . . , s, an edge e ∈ FDi is either a member
of δ(HDi) or included in at least one of the sets (E(DA,DB) : D ∈
Di). Therefore, for e = (u, v) ∈ E we have

αe ≥ ce − γu − γv.

We need only compute αe for those edges having ce−γu−γv < 0.
Let t∗ denote the cost of the TSP tour stored in the certification

data and let l∗ be a valid lower bound provided by the technique
described in the previous section. Using a standard technique
from integer programming, the full set of edges can be reduced
by eliminating from further consideration any e ∈ E satisfying
αe > t∗ − l∗ − 1 and setting xe = 1 for any e ∈ E satisfying
αe < −(t∗ − l∗ − 1).
By storing the value of l∗ as part of the certification data, the

pricing and elimination phases can be carried out in a single pass
through the full edge set, computingαe only for those edges having

ce − γu − γe ≤ max(0, t∗ − l∗ − 1).

The procedure concludes by verifying that the lower bound
determined by the dual LP solution is at least as great as the stored
value l∗.

8. Branch-and-bound tree

The Concorde TSP code follows a branch-and-cut scheme
[14,18], embedding the cutting-plane algorithm within a branch-
and-bound search. Following the technique of Clochard and
Naddef [6], subproblems are created in the branching step by
choosing a proper subset S ⊆ V and adding the condition
x(δ(S)) = 2 to form one child subproblem and x(δ(S)) ≥ 4 to
form the second child subproblem. Note that this branching step
includes as a special case the traditional method of choosing an
edge e ∈ E and adding the conditions xe = 0 and xe = 1 to form
the two subproblems.
The branching steps create a search tree, with the original

problem as the root node. To simplify the certificate of optimality,
all cutting planes that are used in the leaves of the search tree
are added to the root LP relaxation. To traverse the search tree,
therefore, we need only to add the corresponding branching
condition to move to a child node. By traversing the tree we
establish that the leafs correspond to a set of subproblems that
include every tour for our TSP.
In the proof-checking code, the tree is traversed using depth-

first search. A lower bound is established at each leaf using the
stored LP dual solution and the bound is verified to be greater than
the optimal tour value minus one.
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Table 1
Distribution of inequalities in pla85900 LP.

Class Number in LP

Subtour [7] 2,027
Comb [5,9] 5,216
Star [8,17] 8,982
Clique-tree and bipartition [10,4] 49
Domino-parity [16] 861
Unclassified 1,177

9. The pla85900 proof

Our computer code for the proof-checking procedure is written
in the C programming language [15], with a total of 6646 lines;
an LP solver is not used in the verification process. The proof-
checker is constructed to handle general TSP instances specified in
TSPLIB format, but it requires problem-specific certification data
to be given as an input file. To demonstrate the code we provide
a certification file for the 532-city instance att532, together with
a certification file for pla85900. The size of the pla85900 file is
8.1 MB when compressed with the gzip utility, and 32.2 MB when
uncompressed.
The pla85900 certification file includes a permutation of the

cities in the claimed optimal tour order. The cost of the tour
is 142,382,641 as computed using the problem information in
the TSPLIB file; this tour cost is used at the target value for the
verification. The tour is also used to store the sets of the hypergraph
and domino-parity inequalities in a compressed format, where
each set is specified as a list of intervals in the permutation. This
compression scheme is adopted in the Concorde code and it is
described in detail in Chapter 12 of [2].
The pla85900 LP has 18,312 inequalities. The checking code first

verifies that 17,135 of these inequalities match known templates
for the TSP, as indicated in Table 1.
An additional five inequalities are verified by stored proofs

for their backbone TSPs. Of the remaining 1,172 unclassified
inequalities, 346 of the corresponding hypergraphs are isomorphic
to others in the collection. The certification data provides the
indices of the isomorphic hypergraphs; after renumbering the
nodes, each isomorphism is verified by a comparison of the sets
of the hypergraphs. The finally remaining 826 inequalities are
verified with an implementation of the Held–Karp branch-and-
bound algorithm.
These inequalities, together with the stored dual LP solution,

give a lower bound of

142381678.191306799650

on the length of any tour for pla85900. This value is stored in the
data file, to permit the checker to eliminate edges in a single pricing
pass through the complete set of 3.7 billion edges that define
the pla85900 TSP. The elimination phase reduces the problem to
265,259 edges, with 1,662 of the corresponding variables fixed to
the value one.
The search tree for pla85900 is depicted in Fig. 3, where the

height of a node in the tree corresponds to the lower bound
given by the corresponding LP relaxation; the cut-off value of
142,382,640 is indicated by the thick line at the bottom of the
figure. Note that the leaves of the tree not drawn as nodes all have
LP bounds greater than 142,382,700. Using the reduced 265,259-
edge problem, the code verifies that each of the leaves of the tree
has a lower bound larger than 142,382,640, using the stored dual
LP solutions. Since all edge costs are integer, this establishes the
optimality of the 142,382,641 tour.
The pla85900 verification was run on several different comput-

ing platforms. The total running time on a Sun Microsystems V20z
compute node, equipped with a 2.4-GHz AMD Opteron 250 pro-
cessor, was approximately 568.9 h. The distribution of the running
Fig. 3. Branching tree for pla85900.

Table 2
Running time for pla85900 verification.

Phase of Algorithm CPU Time

Classifying inequalities 1.8 s
Held–Karp TSPs for 826 inequalities 568.5 h
Edge pricing and elimination 1465.6 s
Lower bounds at leaves of tree 69.9 s

time over each phase is given in Table 2. The bulk of the time is
used in the Held–Karp runs to verify the unclassified inequalities,
the longest of these requiring 39.6 h. The proof-checking code in-
cludes master-worker parallel software to permit Held–Karp com-
putations to be carried out on a network of computers.
The five inequalities that are verified with stored branch-and-

cut proofs required even longer Held–Karp runs in preliminary
computations, with each backbone TSP solution time exceeding
100 h. Note that the overall running time of the checking code
could be reduced considerably by including additional branch-and-
cut proofs for backbone TSPs, but this would greatly increase the
size of the certification file due to the rather large branch-and-cut
trees that are created for some of the small, but difficult, backbone
instances.
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