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1. Introduction
Mixed-integer programming (MIP) is a fundamental
tool in operations research. An MIP problem has the
form

Minimize cT x

subject to Ax≥ d� l≤ x≤ u� xj integer 
j ∈ I��
(1)

where A is an m× n matrix, d is an m-vector, c, l, u
are n-vectors, x is an n-vector of variables, and I ⊆
�1� � � � �n�. We assume all input data are rational and
that some of the variable bounds can be infinite. Intro-
ductions to MIP theory and applications can be found
in Nemhauser and Wolsey (1988), Wolsey (1998), and
Bertsimas and Weismantel (2005).
The past decade has seen rapid improvements in

the quality of software for the solution of general MIP
problems. Bixby et al. (2000, 2004) report that a critical
factor in this progress has been the increased use of
cutting planes, or cuts, to improve the linear program-
ming (LP) relaxations of MIP models. An important
milestone in this context is the study of Balas et al.
(1996), renewing interest in the computational appli-
cation of Gomory mixed-integer cuts (Gomory 1960).
Indeed, among the varieties of cutting planes in cur-
rent use, Bixby et al. (2004) rank Gomory cuts as the
class having the greatest overall impact on the perfor-
mance of MIP solvers.
Gomory cuts are obtained via a process known as

mixed-integer rounding (MIR) applied to the rows

of an optimal simplex tableau (Wolsey 1998). It is
important to note that both the MIR process and
the linear algebra required to construct a simplex
tableau row are subject to rounding errors when
computed in floating-point arithmetic, the standard
platform adopted in MIP software. This numerical
difficulty can, in practice, lead to the generation of
cutting planes that are not valid for a given MIP
instance. Indeed, in a careful study, Margot (2009) doc-
uments the frequent occurrence of infeasible cuts in
applications of the MIR procedure. A consequence of
this numerical difficulty is that MIP algorithms can
become unstable if Gomory cuts are added in multiple
rounds, where cuts become a part of the LP relaxation
used to produce further cuts. For this reason, com-
mercial MIP solvers limit the repeated application of
Gomory cuts, even in cases where significant progress
in the objective bound of the LP relaxation is being
made.
We say that a cutting-plane generation process in a

specified model of arithmetic is safe if it is guaranteed
to produce inequalities that are valid for a given MIP
problem. In this paper, our notion of a valid inequal-
ity coincides with the standard notion of an inequality
satisfied by all feasible solutions of an MIP when com-
putations to evaluate the inequality are performed in
infinite precision.
Neumaier and Shcherbina (2004) introduce the

notion of safe cuts and use a combination of inter-
val arithmetic and directed rounding to derive a safe
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version of the MIR procedure for floating-point com-
putation. In that paper, they also show how to com-
pute safe dual bounds and to obtain safe infeasibility
certificates. However, their approach relies on the fact
that all variables are bounded and that these bounds
are all reasonable (for instance, not the theoretical
exponential bound that can be imposed in any MIP),
and uses interval arithmetic, which makes it not so
straightforward to implement.
In this paper we present an alternative implementa-

tion of safe MIR cuts in floating-point arithmetic, and
we demonstrate its application in generating Gomory
cuts in general MIP instances. We report on computa-
tional studies with the MIPLIB 3.0 and MIPLIB 2003
test collections (Bixby et al. 1998, Achterberg et al.
2006, respectively) and with MIP instances derived
from the TSPLIB traveling salesman library (Reinelt
1991). In the TSPLIB tests, our method uses the Con-
corde TSP solver (Applegate et al. 2006) and safe
Gomory cuts to establish lower bounds on the lengths
of tours.
Our computer code is based on standard IEEE

floating-point arithmetic (IEEE 1985), and the ideas
used in the implementation are relatively simple and
easy to replicate. The source code is available as
an Online Supplement (available at http://joc.pubs.
informs.org/ecompanion.html).
The rest of this paper is organized as follows. In §2

we define the MIR procedure for generating a cut
from a mixed-integer knapsack set. General proper-
ties of floating-point arithmetic are discussed in §3,
together with simple procedures for safe row aggre-
gation and safe substitution of slack variables. In §4
we present the safe MIR procedure and extend this to
a safe procedure for the more general complemented-
MIR cuts. In §5 we present the results of our compu-
tational study. Final remarks are presented in §6.

2. MIR Inequalities
The sets of rational numbers, real numbers, and inte-
gers are denoted by �, �, and �, respectively. For
t ∈�, �t� denotes the greatest integer less than or
equal to t, 	t
 denotes the smallest integer greater
than or equal to t, and t̂ denotes t−�t�.
Let n be a positive integer and let N denote the

set �1� � � � �n�. Consider a ∈�n, b ∈�, and a partition
(I�C) of N , where I and C are sets of indices of integer
and continuous variables, respectively. A single-row
relaxation of an MIP model can take the form

K =
{
x ∈�n�

∑
j∈N

ajxj ≥ b� x≥ 0� xj ∈� ∀ j ∈ I
}
� (2)

The defining inequality of K can, for example, be
one of the original MIP constraints or, more gener-
ally, a nonnegative linear combination of the original
constraints.

Let S = �j ∈ I � âj ≤ �b�. The MIR inequality

∑
j∈S

âj +�b�aj��xj +

∑
j∈I\S


�b+�b�aj��xj

+∑
j∈C

max�aj�0�xj ≥ �b	b
 (3)

is valid for K and can therefore be considered for use
as a cutting plane to improve the LP relaxation of the
original MIP model (Wolsey 1998).
Defining f 
q1� q2� �=min��q1� �q2�+ �q2�q1� and h
q� �=

max�q�0�, the MIR inequality (3) can be written as
∑
i∈I
f 
ai� b�xi +

∑
i∈C

h
ai�xi ≥ �b	b
� (4)

This compact notation will be convenient in our dis-
cussion of safe versions of the inequality.
Let l�u be vectors with n components such that for

each j ∈C, lj ∈� and uj ∈�∪�+��, and for each j ∈ I ,
lj ∈ � and uj ∈ �∪ �+��. Assume 0 ≤ lj ≤ uj for each
j ∈N and consider the set

KB =
{
x ∈�n�

∑
j∈N

ajxj ≥ b� lj ≤ xj ≤ uj ∀ j ∈N

and xj ∈� ∀ j ∈ I
}
� (5)

The lower and upper bounds on the variables lead
to a slightly more general form of the MIR inequal-
ity, called the complemented-MIR (c-MIR) inequalities
(Marchand and Wolsey 2001). The name derives from
the fact that the c-MIR inequalities are obtained by
complementing variables.
Let U , L be disjoint subsets of N such that uj <�

for every j ∈ U . For each j ∈ U , define xuj = uj − xj .
Also, define xlj = xj − lj for each j ∈ L. Observe that
xuj and xlj are both bounded below by zero for x ∈KB

and are integer-valued when j ∈ I . Substituting xj for
j ∈U by uj −xuj , and xj for j ∈ L by xlj + lj , one obtains
the inequality

∑
j∈U


−aj�xuj +
∑
j∈L

ajx
l
j +

∑
j �∈U∪L

ajxj

≥ b−∑
j∈U

ajuj −
∑
j∈L

aj lj � (6)

with all variables being nonnegative and variables
with index j ∈ I being integral. Let r = b−∑

j∈U ajuj −∑
j∈L aj lj . Applying the MIR procedure to this inequal-

ity and substituting back yields the following c-MIR
inequality for KB:

−∑
U∩I

f 
−aj� r�xj +
∑
I\U

f 
aj� r�xj −
∑
U∩C

h
−aj�xj

+ ∑
C\U

h
aj�xj ≥R� (7)
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where

R = r̂	r
−∑
U∩I

f 
−aj� r�uj +
∑
L∩I

f 
aj� r�lj

− ∑
U∩C

h
−aj�uj +
∑
L∩C

h
aj�lj �

Marchand and Wolsey (2001) have demonstrated the
effectiveness of c-MIR cuts in practical computations
with MIP test instances. Further computational results
on MIR and c-MIR cuts are reported in Balas and
Saxena (2008), Dash et al. (2008, 2009), and Goycoolea
(2006).
If the defining inequality of KB is taken as a row

of an optimal simplex tableau for the LP relaxation of
an MIP instance, then the c-MIR cut is a form of the
Gomory mixed-integer cut. Our computational study
will focus on Gomory cuts, but the numerically safe
methods will be presented in the general context of
the MIR and c-MIR procedures.

3. Floating-Point Arithmetic
The validity of MIR and c-MIR inequalities, for the
sets K and KB, relies on the correctness of arith-
metic calculations, which cannot be guaranteed when
floating-point arithmetic is used. Moreover, if the
defining inequality for K or KB is obtained by aggre-
gating several of the original constraints from an MIP
instance, then care must be taken to ensure that the set
itself is a valid relaxation. To discuss an approach for
dealing with these issues, we give a brief description
of the floating-point arithmetic platform.

3.1. The Model of Floating-Point Arithmetic
A floating-point number consists of a sign, expo-
nent, and mantissa. Standard IEEE double-precision
floating-point arithmetic allots 11 bits for the exponent
and 52 bits for the mantissa (Goldberg 1991). In our
discussion we assume only that the number of bits
assigned to the exponent and mantissa are fixed to
some known values.
With the above assumption, let �⊆� be the set of

floating-point-representable rational numbers. Note
that � is finite. If q ∈ �, then both −q and �q are
members of �. Also, if a� b ∈ �, then min�a� b� and
max�a� b� are members of �. The set � does not have
much structure; it is not a monoid since associativity
for addition does not hold.
We will refer to rational inequalities whose coef-

ficients can be represented as members of � as
�-representable inequalities.

3.2. Approximating Real Functions
Given a function f � �n → �, we say that a function
f up� �n →� upper approximates f in � if

f up
x�≥ f 
x� if x ∈�n�

and we say that a function f dn� �n → � lower
approximates f in � if

f dn
x�≤ f 
x� if x ∈�n�

Note that the basic arithmetic operations + and ∗
are functions from �2 → �. We denote, respectively,
by a+ b and a+ b the value of the upper and lower
approximation of a + b for any a� b� a + b ∈ �, and
use a similar notation for subtraction and multipli-
cation. (In the C programming language (ISO/IEC
1999), IEEE floating-point rounding conventions can
be set to produce upper and lower approximations
using the fesetround function. Upper approximations
are obtained by first calling the function with the
argument FE_UPWARD and then carrying out the usual
arithmetic operation. Similarly, lower approximations
are obtained using the FE_DOWNWARD argument.)
Let k≥ 3 be an integer and let ai ∈�, %i ∈�, for i=

1� � � � � k. We define upper and lower approximations
for

∑k
i=1%iai by

k∑
i=1

%iai �=
(k−1∑
i=1

%iai

)
+%kak

and
k∑
i=1

%iai �=
(k−1∑
i=1

%iai

)
+%kak�

respectively. It is important to notice that any ordering
of a1� � � � � ak will yield an upper and lower approxi-
mation of

∑k
i=1%iai, but different orders may yield dif-

ferent results. Thus, the operation is not commutative.
In addition, note that these upper and lower approx-

imations may not be correct if an overflow or under-
flow occurs, and whenever these exceptions are raised,
we consider the result as not being defined.

3.3. Safe Row Aggregation
Consider a polyhedron

P = �x ∈�n� Ax≥ d� l≤ x≤ u��

with A ∈�m×n, d ∈�m, u ∈ �� ∪ �+���n, l ∈�n, and
0≤ l≤ u. Given a set of multipliers ' ∈�m, with '≥ 0,
the inequality 'TAx≥ 'T d is satisfied by all x ∈ P , but
this inequality may not be �-representable. Further-
more, when we compute 'TA and 'T d in floating-
point arithmetic, the resulting inequality may not
even be valid for all points in P . Nonetheless, as x≥ 0,
we have that

∑
j∈N

( m∑
i=1

'iaij

)
xj ≥

m∑
i=1

'idi

is an �-representable valid inequality. We can per-
form the safe aggregation of systems of inequalities
in this manner.



Cook et al.: Numerically Safe Gomory Mixed-Integer Cuts
644 INFORMS Journal on Computing 21(4), pp. 641–649, © 2009 INFORMS

The same concept can be applied to equality sys-
tems Ax = d, but in this case the multipliers '
need not be restricted to nonnegative values. How-
ever, in this case, we are not guaranteed to obtain a
valid �-representable equality. Instead, we need to
relax the equalities to inequalities and then aggre-
gate them using the multipliers ' to obtain a valid
�-representable inequality. Obviously, we need to
relax the equalities to have a sense that matches the
desired sense of the �-representable inequality. For
example, if we want to obtain a ≥�-representable
inequality and the multiplier of a given constraint
is negative, we need to relax the equation to ≤.
This means that, given an equality system and multi-
pliers ', one can obtain two �-representable valid
inequalities: one in ≤ form and one in ≥ form.

3.4. Safe Substitution of Slack Variables
Suppose P ⊆ �n+1

+ is a polyhedron such that any
point 
x� s� ∈ P satisfies the following �-representable
constraints:

∑
j∈N

cjxj − s = d� (8)

∑
j∈N

%jxj +)s ≥%o� (9)

We wish to eliminate s from (9) while maintaining its
validity (here, s can be thought of as a nonnegative
slack variable).
This can be done via safe aggregation. Adding )

times (8) to (9) gives the valid inequality
∑
j∈N


% +)cj�xj ≥%o +)d�

Therefore, the �-representable inequality
∑
j∈N


% +)cj�xj ≥%o +)d

is valid for P , and we have safely removed s from (9).

4. Safe MIR Inequalities
For the single-row relaxation (2) in §2, we described
the MIR inequality

∑
i∈I
f 
ai� b�xi +

∑
i∈C

h
ai�xi ≥ �b	b
�

where f 
q1� q2� �= min��q1� �q2� + �q2�q1� and h
q� �=
max�q�0�. To obtain a safe version of this cutting
plane in floating-point arithmetic, define the upper
approximation f up� �×�→� of f as

f up
q1� q2� �= 
min��q1� �q2�+ �q2�q1��
and define hup
q� �= h
q� (no rounding is needed).

As x≥ 0, we have
∑
i∈I
f up
ai� b�xi +

∑
i∈C

hup
ai�xi ≥
∑
i∈I
f 
ai� b�xi +

∑
i∈C

h
ai�xi

≥ �b	b
 ≥ �b	b
�
Therefore,

∑
i∈I
f up
ai� b�xi +

∑
i∈C

hup
ai�xi ≥ �b	b
 (10)

is an �-representable valid inequality for K, which
we call a safe MIR inequality.
Recall that before writing the c-MIR inequality (7),

we first complemented and shifted variables to obtain
the inequality (6). In this context, it is easy to see that
given an�-representable inequality

∑
j∈N ajxj ≥ b, and

�-representable bounds uj for j ∈ U , and lj for j ∈ L,
the inequality

∑
j∈U


−aj�xuj +
∑
j∈L

ajx
l
j +

∑
j �∈U∪L

ajxj

≥ b−∑
j∈U

ajuj −
∑
j∈L

aj lj � (11)

is a valid �-representable inequality. This is because

∑
j∈U

ajuj ≥
∑
j∈U

ajuj and
∑
j∈L

aj lj ≥
∑
j∈L

aj lj �

To obtain safe c-MIR inequalities for KB, we simply
start with a valid �-representable inequality, perform
safe variable complementation and shifting as in (11),
apply the safe MIR inequality (10), and then per-
form safe complementation and shifting to get a valid
�-representable inequality in the original variables.

5. Computational Study
In our study we consider two scenarios where safe
MIR procedures can potentially be useful. The first
set of tests is concerned with the use of safe cuts in
cases that demand accurate bounds. We use the trav-
eling salesman problem (TSP) as a case study, apply-
ing multiple rounds of safe Gomory cuts to improve
LP relaxations generated by TSP-specific methods.
The second tests consider the repeated application

of Gomory cuts for general MIP instances. Our tests
aim to give an indication of the possible improvements
in LP bounds that can be obtained by adopting the safe
methods, where multiple rounds of cuts can be added
without generating invalid cuts. Moreover, we test if
our measures to generate safe cuts have a significant
impact on the empirical strength of the cuts.
Note that as an alternative to our safe MIR ap-

proach, the computations could be carried out entirely
in exact rational arithmetic using the LP solver of
Applegate et al. (2007) and rational versions of the
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MIR procedure. On large instances such an ap-
proach is considerably more time-consuming, how-
ever, because of the complexity of rational computa-
tions on the difficult LP instances that are created (see,
for instance, Espinoza 2006). Moreover, the approach
adopted here demonstrates the feasibility of including
safe MIR methods in standard floating-point–based
software.

5.1. Generating Gomory Cuts
Given an MIP instance (1), our cut-generation process
uses the simplex algorithm to solve the current LP
relaxation, which is then strengthened by adding a
round of Gomory cuts.
Let x∗ be the current basic optimal solution. Each

round consists of the following steps.
Step 1. Slack variables. Add a slack variable to each

row of the model to obtain equality constraints, and
consider all slacks as nonnegative continuous vari-
ables with no upper bounds.
Step 2. Variable complementation. Define the index

sets U = �j ∈N� uj − x∗j ≤ x∗j − lj � and L= �j ∈N� uj −
x∗j > x∗j − lj �.
Step 3. Rank the fractional variables. The integer vari-

ables xj that take on a fractional value x∗j in the current
basis are ranked in nondecreasing value of � �x∗j − 0�5�.

Step 4. Compute the cuts.
(a) Process the selected variables in the ranked

order.
(b) Safely compute the tableau row correspond-

ing to the current selected variable using aggregation
based on the multipliers obtained from the row of the
basis inverse given by the LP solver.

(c) For each tableau row safely compute the
c-MIR inequality using the sets U and L as defined
above, after scaling by 1, 2, 3, as proposed in
Cornuéjols et al. (2003).

(d) Only generate c-MIR cuts that are violated by
at least 0.001.

(e) Stop this procedure if 500 violated cuts are
generated.
Step 5. Substitute slacks. Safely substitute slacks in

the cuts.
Step 6. Scale the cuts. Scale each cut %x ≥ %o safely

so that max��%��� �%o��= 1.
Step 7. Add the cuts. Add the computed cuts to the

LP and resolve.
8. Remove cuts. Remove from the LP all previously

added cuts that have dual variables equal to zero.
This is a straightforward implementation of

Gomory cuts, where all the parameters were chosen
according to previous experience by the authors in
generating Gomory cuts. We do not claim that this
is the best choice for implementing Gomory cuts.
Instead, the purpose of the paper is to show the
advantages of using safe cuts in a reasonable Gomory

cut implementation. For a discussion of general cut
selection, see Achterberg (2007) and Goycoolea (2006).
An additional implementation detail that one

should keep in mind is that the cut violation is
checked before scaling, and therefore, it is possible
that the added cuts may not be violated enough to
change the optimal LP solution returned by the solver.
Our code detects such a phenomenon and halts the
cut-generation process in case it occurs. In addition,
we impose a limit of 128 rounds of cuts. Also, for sim-
plicity, we substitute ranged constraints in the original
model by two independent constraints.
Another detail to be mentioned is how to perform

the step of computing the tableau row using the mul-
tipliers obtained from the row of the basis inverse. As
mentioned in §3.3, one cannot safely aggregate equal-
ity constraints to get a safe �-representable equality.
Thus, before doing the aggregation, we relax each
equality constraint to ≥ if the associated multiplier of
that constraint is positive and to ≤ if it is negative,
and therefore obtain a safe �-representable inequality
that approximates the tableau row.
Finally, recall that the validity of the Gomory cuts

depend on the fact that no exceptions occurred, as
mentioned in §3.2, so we check if all our cut compu-
tations incur an overflow, an underflow, a division by
zero, or an invalid operation (such as 0/0 or �−�).
This is easily done by calling the standard C func-
tion fetestexcept with the argument FE_OVERFLOW |
FE_UNDERFLOW � FE_INVALID � FE_DIVBYZERO, which
returns a bitmap where each bit corresponds to a flag
indicating if the corresponding exception occurred.
Once any of these exception flags is set, it will remain
set until manually cleared. To clear such flags, one can
call feclearexceptwith the same arguments. In all our
experiments, these exceptions never occurred.

5.2. TSPLIB Results
Early cutting-plane research on the TSP by Martin
(1966), Miliotis (1978), and others adopted general-
purpose MIP codes for improving LP relaxations. In
later work, these methods were replaced by algo-
rithms for generating TSP-specific cutting planes.
With the safe MIR procedures it is possible to com-
bine these ideas, using general cuts to further improve
relaxations obtained by problem-specific methods.
We consider MIP relaxations obtained by long runs

of the Concorde TSP solver (Applegate et al. 2006).
The relaxations were found with concorde -mC48 -Z3,
the strongest recommended setting of the Concorde
separation routines. This setting uses repeated local
cuts, up to size 48, as well as the domino-parity
inequalities (see Applegate et al. 2006).
In Table 1 we give statistics for the relaxations for

all TSPLIB instances having at least 3,000 cities. The
only instance left out was fl3795 since, in that case,
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Table 1 MIP Relaxations of the TSP

Name Variables Optimal LP value +Cuts NCuts Rds. Gap closed (%)

pcb3038 6�976 137�694 137�684�25 137�684�52 11�010 22 2�51
fnl4461 10�129 182�566 182�558�55 182�559�97 18�000 36 19�08
rl5915 24�939 565�530 565�484�03 565�487�91 28�000 56 8�44
rl5934 25�285 556�045 555�994�47 556�001�02 21�000 42 12�97
pla7397 27�209 23�260�728 23�258�946�65 23�259�208�71 64�556 128 14�71
rl11849 70�259 923�288 923�208�71 923�210�01 38�008 76 1�53
usa13509 129�837 19�982�859 19�981�199�08 19�981�229�43 27�000 54 1�83
brd14051 83�221 469�385 469�353�80 469�353�91 5�500 11 0�35
d15112 110�072 1�573�084 1�572�966�32 1�572�967�08 16�500 33 0�64
d18512 141�025 645�238 645�194�86 645�195�17 20�528 41 0�71
pla33810 67,683 (+) 660�048�945 66�001�233�03 66�001�901�19 64�392 128 1�40
pla85900 167,870 (+) 142�382�641 142�296�659�63 142�299�299�63 64�058 128 3�07

the Concorde LP bound establishes the optimality
of the tour. The original number of variables in all
these instances would be very large even to load the
problem in memory, and thus we run our code on
the MIPs obtained after fixing variables to zero by
reduced cost. This reduced-cost fixing is based on the
Concorde relaxation, and since it is guaranteed not to
cut off the optimal solution, any LP bound obtained
with general MIP cuts is a valid bound for the original
TSP. In the cases of the two largest instances, pla33810
and pla85900, however, a large number of variables
still remains after reduced-cost fixing; therefore we
use an MIP with only a subset of the remaining vari-
ables, and hence the final bounds are not necessarily
valid for the original TSP.
The optimal value of the Concorde LP for each

instance is reported in the “LP value” column of
Table 1. In the “+Cuts” column we report the im-
proved lower bounds obtained by multiple rounds of
safe Gomory cuts, after applying the safe-LP bounding
technique from Neumaier and Shcherbina (2004). The
total number of rounds of Gomory cuts is reported in
column “Rds.” and the total number of Gomory cuts
added is reported in column “NCuts.” The improve-
ments range from 0.35% of the Concorde LP opti-
mality gap for brd14051, up to 19.09% of the gap
for fnl4461. It is interesting, however, that the very
strong LP relaxations obtained by Concorde could be
improved with general-purpose MIP cuts, suggesting
that this may be a technique worth considering for
problem classes that have not received the intense
study given to the TSP.
To further illustrate the use of the safe MIR proce-

dure, we constructed a valid MIP relaxation for the
85,900-city TSP instance pla85900, using the full set of
variables that were not eliminated by reduced-cost fix-
ing. This much stronger relaxation was obtained from
the very long computation described in Applegate
et al. (2006). The result after adding Gomory cuts to
this instance is reported in Table 2, showing a 0.62%

increase in the lower bound. Although this is a mod-
est increase, it is possible that the LP solution is suffi-
ciently altered to permit the further use of Concorde’s
TSP-specific cutting planes in an iterative fashion. (We
have not tested this idea.)

5.3. MIPLIB Results
To test the effectiveness of repeated rounds of
Gomory cuts in general, we constructed a test set con-
sisting of the union of the following instances:
• The full set of 65 instances in the MIPLIB 3.0 col-

lection (Bixby et al. 1998).
• The 27 instances in the MIPLIB 2003 collection

(Achterberg et al. 2006) that are not included in
MIPLIB 3.0.
• The 13 TSPLIB-MIP instances described in §5.2.

We excluded four of these instances because of
the presence of variables that may assume negative
values (that are not handled in our current imple-
mentation), leaving a total of 101 instances. The
excluded instances are dsbmip, mzzv11, mzzv42z,
and rd-rplusc-21.
To illustrate the impact of multiple rounds of

safe cutting planes, we recorded the lower bounds
obtained after 1, 2, 4, 8, 16, and 128 rounds of our
cutting-plane procedure; if the optimal LP basis does
not change after a round of cutting planes, then
the particular run is terminated. The lower bounds
reported are the ones obtained from the LP solver,
which are not guaranteed to be accurate. Ideally, one
would use a method like the one of Neumaier and
Shcherbina (2004) to compute valid lower bounds,
but their method can only be applied to bounded
instances. Therefore, we use the LP solver’s lower
bounds as an estimate of the true bounds.
In these tests, three of the instances were excluded

because they each have zero integrality gap (disctom,

Table 2 Valid MIP Relaxation for pla85900

Name Variables TSP optimal LP value +Cuts Gap closed

pla85900f 300,969 142,382,641 142,381,453.65 142,381,460.98 0.62%
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Figure 1 Multiple Rounds of Safe Gomory Cuts

enigma, noswot), leaving a total of 98 instances. The
results are displayed as curves in Figure 1. The points
(x�y) in each curve represent how many instances y
closed at least x fraction of the initial integrality gap
after adding the indicated number of rounds of cuts.
For example, after one round of cuts, 50% of the gap
was closed in 12 instances, whereas four rounds of
cuts closed 50% of the gap in 26 instances.
Note that even though we are running these exper-

iments doing up to 128 rounds of cuts, this does not
mean that we are generating rank 128 cuts. It might
well be the case that, since at each round we are only
generating at most 500 cuts, we actually only generate
rank one cuts throughout the experiment. Because it
is hard to determine the exact rank of a cut, we define
a computationally tractable variant of the notion of
rank, which we call tableau rank (or T-rank for short).
Given an MIP formulation, a Gomory cut has T-rank 1
if the associated tableau row from which it is derived
is a linear combination of inequalities in the formula-
tion. A cut has T-rank k for some k≥ 2 if the associated
tableau row is a linear combination of inequalities in
the formulation and Gomory cuts with T-rank k − 1
or less and at least one Gomory cut with T-rank k− 1.
The T-rank of a Gomory cut is an upper bound on its
rank. Figure 2 shows that we are indeed generating
high T-rank cuts. Each bar in the figure shows what
percentage of the total number of cuts generated on all
instances had that corresponding T-rank. As expected,
low T-rank cuts have a higher percentage, but there
is a significant number of cuts being generated with
T-rank, all the way up to 128.
We ran some additional tests to determine if the

high T-rank cuts are in fact making a difference in the
final bound. We ran the code again, doing up to 128
rounds of cuts, but we did not allow the addition of
cuts that have T-rank higher than some prespecified
parameter (controlled by parameter -limrank in the
code). Table 3 shows the average gap closed in each
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of those sets of runs and indicates that indeed the
higher T-rank cuts contribute significantly to closing
the duality gap.
We also ran experiments to compare the safe version

of our Gomory cut implementation with the unsafe
one (the unsafe version of Gomory cuts is exactly the
same as the safe version, except that all the measures
to guarantee safety are turned off). The purpose of
this experiment is to test the impact of the safe cut
generation procedure on the quality of the final bound
obtained.
We noticed that even though the safe and unsafe

cuts generated in a particular round can be very sim-
ilar, the final bounds obtained after several rounds of
cuts can vary greatly on individual instances.
Figure 3 compares the final gap closed by adding

at most 128 rounds of safe cuts versus at most 128
rounds of the unsafe version of Gomory cuts. The two
curves indicate that in spite of individual variations
on the final bounds, on average, no significant loss in
the bounds is incurred with the use of the safe (but
potentially weaker) cutting planes.
We also plot in Figure 4 the average density of the

cuts added for each instance. The value in the y axis
represents the average density:

AvgDens �=
∑

c∈� NZ
c�
NCOLS ∗ ����

Table 3 Comparison of Lower Bounds Using
Different T-rank Safe Gomory Cuts

Max. T-rank Average gap closed (%)

1 24�33
2 31�07
4 34�79
8 37�24
16 38�86

≤128 39�69
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where � is the set of all cuts added, NZ
c� is the
number of nonzeroes in a cut c ∈�, and NCOLS is the
number of variables in the given instance. We sorted
the instances in increasing order of AvgDens for the
safe cuts.
Figure 4 seems to indicate that unsafe cuts are

slightly sparser on average than the safe ones, which
is somewhat surprising, considering that we are not
taking any measures to achieve this goal.

6. Final Remarks
Gomory cuts are widely used in commercial MIP
solvers, but because of arithmetic errors, it is common
to use ad hoc techniques to reduce the risk of generat-
ing invalid cuts, such as relaxing the right-hand side
of Gomory cuts and limiting their T-rank. However,
these ad hoc techniques do not guarantee validity of
the generated cuts.
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We have presented a method to generate safe
Gomory cuts in floating-point arithmetic using stan-
dard C routines. The advantage of using safe Gomory
cuts is that one can add multiple rounds of cuts and
obtain a significant improvement in the LP bound
with the guarantee that all cuts generated are valid.
Furthermore, in our experiments, we observed no sig-
nificant loss in the quality of bounds obtained by
using safe Gomory cuts as opposed to their unsafe
counterparts computed using standard floating-point
arithmetic.
This does not mean, however, that if we add

these cuts instead of unsafe Gomory cuts in current
floating-point–based MIP solvers that we are guar-
anteed (or even have a better chance) to obtain the
correct optimal solution. For example, a solver could
incorrectly assert that a solution to the MIP problem
violates a safe Gomory cut if it evaluated the cut in
finite precision arithmetic. Moreover, there are other
parts of the solver that also need to be safe, such as
computation of dual bounds, preprocessing, and ver-
ification of LP infeasibility.
Another point that should be emphasized is that by

using safe cuts, one cannot use some of the ad hoc
measures that are usually applied to unsafe cuts to
make them more numerically stable and/or more
safe—for example, rounding the coefficients to zero
when they are very small. Unsafe cuts that use these
safeguards can have advantages over safe cuts, such
as being sparser, so these issues have to be weighed
more carefully in those cases.
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