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A MINIMAL TOTALLY DUAL INTEGRAL DEFINING SYSTEM FOR THE
b-MATCHING POLYHEDRON*

WILLIAM COOKt

Abstract. Totally dual integral linear systems are intimately related to polyhedra that have the property
that every nonempty face contains an integer point. A minimal totally dual integral defining system for a
certain polyhedron related to b-matchings is given.

1. Introduction. The study of dual integrality is the study of integral optimal
solutions to dual linear programs.

Dual integrality is studied in complexity combinatorics for several reasons. One is
that often a combinatorial problem is better described as the dual of another problem.
Another is to obtain combinatorial min-max theorems via the duality theorem of
linear programming. _ .

Alan Hoffman [5] introduced the concept of toial dual integrality vhich was
latter studied and used by Edmonds—Giles [3].

A finite linear system Ax <4, with A and b rational, is called totally dual inteeral

g

(TDI) when the dual linear program of the linear program

max {cx: Ax =b} T
has an integral optimal solution for integral ¢ such that it has an optinial solution. .
TDI linear systems are intimately related to integer polyhedra (those polyhedia
that have the property that every nonempty face contains an integer point). -
This paper investigates the relation of TDI linear systems to a combinatorial
problem known as the b-matching problem. A minimal TDI defining system for a
certain integer polyhedron related to b-matchings is given. Pulleyblank [9] indepen-
dently obtained this result in a different way, using the results contained in (8]

2. TDI linear systems and integer polyhedra. The relation of TDI linear systems
to integer polyhedra is made clear by the following two theorems.

THEOREM 1 (Edmonds—Giles [3). If Ax =bisa TDI linear system with b integral,
then

P={xeR": Ax =b}

is an i'nteger polyhedron.
THEOREM 2 (Giles and Pulleyblank [4]). Ler

P={xeR": Ax =b},

where A and b are rational. If P is an integer polyhedron, then there exists a TDI linear
system A'x =b' with b' integral such that

P={xeR": A'x Sb’}.

Theorem 1 is a nice generalization of a theorem of Hoffman [5].
The above theorems can be combined to produce an interesting and useful
technique for proving that a particular linear system is a defining system for an integer
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polyhedron. Suppose the goal is to prove that
P={xeR": Ax =b}

is an integer polyhedron (often the goal is to prove that P is the convex hull of a
certain set of integral points). By multiplying the inequalities by a positive constant
if necessary, it can be assumed that b is integral. By Theorem 2, a set of inequalities
that are implied by Ax =b can be added to Ax =5 to form a TDI linear system with
integral right-hand side. Theorem 1 implies that the polyhedron defined by the new
system is an integer polyhedron. But the polyhedron defined by the new system is P.

The importance of the condition that b be integral in the above development is
shown by the following theorem.

THEOREM 3 (Giles and Pulleyblank [4]). For any finite, rational, linear system
Ax =b, there is a positive rational number d such that dAx = db is a TDI linear system.

3. b-matchings. Before h-matchings are described, some notation will be given.
For a real vector x = (x;: i € I) and $ = I, where [ is a finite set, let
- x(8)=3 {x;:ieS}.

Let G be a graph with node set VG and edge set EG. For i in VG, let N(i)
denote the set of nodes adjacent to / (i is not adjacent to itself). For § < VG, let §(S)
denote the subset of edges of G that are incident to exactly one node of § {for i in

VG, 8(i) will denote 8({i})) and let y(S) denote the subsét of edges having both ends

in S. Let G[S] denote the graph with node set § and edge sety(S). For j in EG, let
¢ (j) denote the subset of VG that makes up the two ends of j (each.-edge is assumed
to have two distinct ends). If & is a collection of subsets of VG and j is an edge of

G, let
A F()={ReF:jey(R)}

Let b = (b;: i € VG), where b; is a positive integer for each / in VG. A b-matching
in G is an integral solution to the linear system

3.1 x;=0 foreveryjin EG,
(3.2) x(6(@)=b; foreveryiin VG.

Let P(G, b) denote the convex hull of the h-matchings of G.
Edmonds has proved the following theorem by means of a good algorithm known

as the blossom algorithm. _
TuEOREM 4 (Edmonds [2]). A defining system for P(G,b) is (3.1) and (3.2)
together with

x(y(S))=|5(S)/2] for all S < VG such that |S| =3 and

(3.3)
b(S)=3 is an odd integer.

A perfect b-matching of a graph G is a b-matching of G such that x(6(/))=b;
for all i in VG. A near perfect b-matching of G deficient at node / is a b-matching
of G such that

x(@@)=5b-1
and
x(6(@))=b, forall v in VG —{i}.
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A graph G is called b-critical if for every i in VG there exists a near perfect
b-matching of G deficient at node i and |VG|=3.

A balanced edge of G is a pair of nodes i, j that are joined by one or more edges
and satisfy b; = b;.

For a graph G and positive, integral b, let

F ={S < VG: G[S]is b-critical and G[S] contains no
cutnode i for which b; =1}

and

V' ={i e VG: i belongs to a component of G that is a balanced
~edge; or b(N(i))>b; and if b(N(i)) = b; + 1, then y(N () = T}.

A theorem of Pulleyblank can now be stated.
THEOREM 5 (Pulleyblank [7]). A minimal set of inequalities that define P(G, b)
is (3.1) together with

34 : x(8(E)=b; foreveryiin?V

and
(3.5) x(v(SN=|b(S)/2] forevery Sin %.

That (3.1), (3.4), and (3.5) is a defining system_for P(G, b) follows from a result
of the next section, but the minimality seems more difficult to demonstrate.

4. TDI linear systems and b-matchings. The defining system for P(G, b) given
in Theorem 4 is not in general a TDI linear system. This can be seen by considering
a triangle with b; = 2 for each node i and ¢; = 1 for each edge j in the objective function

max Y {c;x;:j € EG}.

By Theorem 2, there does exist a TDI defining system for P(G, b) which has
integral right-hand side. Such a TDI defining system is given in the following theorem,
which can be proven easily using Edmonds’ blossom algorithm (see Pulleyblank [8]).

THEOREM 6. A TDI defining system for P(G, b) is (3.1), (3.2), and

(4.1) x(v(S)=|b6(5)/2] forevery S < VG.

Theorem 6 has been proven without making use of the blossom algorithm by Hoffman
and Oppenheim [6] and Schrijver and Seymour [11] (it should be noted that although
[11] deals with the special case of 1-matchings, its proof generalizes easily to b-
matchings).

The system given by Theorem 6 is much larger than necessary. The result will
now be improved to get a smaller TDI defining system for P(G, b).

Pulleyblank has introduced the idea of b-bicritical graphs in his study of dual
integrality in 5-matching problems. A graph G is b-bicritical if G is connected, IVG|z3,
b;z2 for all { in VG, and for every / in VG there exists a b-matching of G such that

x(8()=5b;-2
and ,
x(6(w))=b, forallvin VG —{i}.

Some results on the structure of b-critical and b-bicritical graphs are needed to
proceed further.
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For a graph G, positive integral b, and S < VG, let
€°(S)={i e V —S: G[{i}]is a component of G[V —S1},

€Y S)={R<V—S:|R|=2,b(R)isodd, and G[R]isa
component of G[V —S7},

€*(S)={R<c V—-S:|R|=2,b(R)is even, and G[R]is a
component of G[V - ST}

The following theorem of Tutte characterizes those graphs which have a perfect

b-matching.
TueoreM 7 (Tutte [12]). A graph, G, has a perfect b-matching if and only if for

every Sc VG
b(S) = b(UCYS)) +|2(S)|.

Using Theorem 7, the following two lemmas of Pulleyblank can be proven.
LEmMMA 1 (Pulleyblank [7]). A connected graph, G, is b-critical if and only if
b(VG) is odd, |VG| # 1, and for every nonempty S = VG

b(S)=b(U%(S)) +|i€f(§)'+1'

LemMMA 2 (Pulleyblank [8]). A connected graph, G, t:;b-bicritical if and only if
b(VG) is even, |VG|# 1, and for every nonempty S < VG

b(S)=b(UC(S)) +|€"(S)|+2.

It is useful to combine the above lemmas to get the following lemma, which can
be proved by noting that if G is a b-bicritical graph and § is a subset of VG, then

b(S)+b(UB(S))+|€(S)|
is an even number.

LEMMA 3. A connected graph, G, is one of b-critical or b-bicritical if and only if
|VG| # 1, and for every nonempty S < VG

b(S)=b(UE%S)) +|€(S)|+1.

Using Lemma 3 and the TDI-ness of the system given by Theorem 6, a theorem
which gives a smaller TDI defining system for P(G, b) can be obtained. The result
can also be obtained by using the results of Pulleyblank [8], but it is simpler to prove
it directly. The proof uses an idea of Paul Seymour for proving the same result in the
special case of 1-matchings. '

For a graph G and positive integral b, let

P ={S < VG: G[S8]is b-critical or G[S] s b-bicritical}.
TuEOREM 8. A TDI defining sytem for P(G, b) is (3.1), (3.2), and
4.2) x(y(S)=1b(8)/2] foreverySinD.

Proof. Tt will be shown that (3.1), (3.2), and (4.2) is a TDI linear system. That it
is a defining system for P(G, b) will then follow from the Edmonds—Giles theorem
(Theorem 1) by noting that every b-matching of G satisfies (3.1), (3.2), and (4.2).

Let ¢ be an integral vector and consider the linear program

(4.3) max {¥, (c;x;:j € EG): (3.1), (3.2), (4.2)}.

s D eV P
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The dual linear program of (4.3)is
min Y {b;y;: i € VG}+Y {l6(8)/2] Ys: § € 9}
subject to o
YU +Y @ () z¢; foreveryjin EG,
4.4) 'y,- =0 foreveryiin VG,
Ys=0 foreveryS in Q.

By Theorem 6, there exists an integral optimal solution, (y, Y), to the dual linear
program of

4.5) max{Y(cix;: j € EG): (3.1), (3.2), 4.1)}.

Suppose there exists § = VG such that Y5 >0 and G[S] is not connected. Let
$1,**+, 8, be the subsets of S such that G[§,],-- -, GI[S.] are the components of
G[S]. Let .

Ys=0,

Y5, =Ys+Ys fori=1,--- k.

2 £

Yk =Yxr forall other R c VG.

__Now (y, Y") is an integral optimal solution to the dual linear program of (4.5).

This procedure allows the assumption to be made that (y, Y) is such that if Ys>0
" then G[S]is connected.

Suppose there exists § = VG such that Ys>0 and S is not in 9. Since Ys>0,
G[S] is connected. It can be assumed that S| is not equal to 1. By Lemma 3, there
exists a nonempty X < § such that in G[S] (notation is relative to G[S)

(4.6) b(X)<b(UB° (X)) +|€'(X)|+1.
Let

3

Yo=yo+Ys for every v in X,

Yu=y, for all other v in VG,

Ys=0,

Yr=Yr+Ys forevery R in €'(X)U%*X),
Yr =Yg forallother R < VG.

It is easy to check that (y’, Y") is a feasible solution to the dual linear program of
(4.5). To show that (y', Y") is an optimal solution, it must be shown that

4.7) [6(8)/2] 2b(X) +b6(US*(X))/2+6(UB*(X)) /2~ 8" (X)|/2.
Since the right-hand side of (4.7) is integral, it suffices to show that

' 1 2 1
(4.8) b—(és—)gb(wa(u(gz (X))+b(U(i X)) _|% ;X)I_

Since

b(X) =b(8)-b(U€°(X)) - b(US (X)) - b(U€*(X)),

(4.8) is equ
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(4.8) is equivalent to
4.9) ' b(UB(X)) +|@ (X)) z b(X).

Now (4.9) follows from (4.6). So (y', Y”) is an integral optimal solution to the dual
linear program of (4.5).

The above procedure makes it possible to assume that (y, Y)issuch thatif Ys>0,
then S is in 9.

Let

Y=(Ysi SE@)

Now (y, Y) is an integral optimal solution to (4.4). a
Using the techniques of Pulleyblank [8, see § 7], Theorem 8 can be sharpened.
For a graph G and positive integral b, let

=FU{S < VG: G[S] s b-bicritical and there does not exist
a node u € S that is adjacent to v € VG —S with b, =1}.

where & is as defined in § 3. Let 7" be defined as in § 3.
TueoreM 9. A TDI defining system for P(G, b) is (3.1),

410 x(8@))=b; foreveryiinV,
and '
4.11) x(y(S)=16(S)/2] foreverySin%'.

Proof. Again, it suffices to show that (3.1), (4.10), azd (4.1 1)is a TDI1 linear system.
Let ¢ be an integral vector. It will be shown that there exists an integral optimal

_ solution, (y, Y), to (4.4) such that if Ys>0 for some S in &, then § 1s in @ " and if

y; >0 for some i in VG, then i is in ¥. This will prove the theorem.
By Theorem 8, there exists an integral solution, (y, Y), to (4. 4). Suppose there
is an S in @ such that Ys>0 and S is not in @'. If G[S] is not b-critical, then letting

Y5=0,
Ysuwr = Ysum+ s,
YR =Yg forallother R in &,

where v e VG —S is adjacent to a node in S and b, =1, gives an optimal solution
(y, Y") to (4.4) (G[S U{v}] is b-critical). So it can be assumed that G[S] is b-critical.
Since S is not in @', G[S] is a b-critical subgraph with a cutnode v such that b, = 1.
LetSy, -+, Scbe the subsets of $ —{v}such that G[S1], - - - , G[Si]are the components
of G[S —-{v}]. Let '

Si=8;U{v} fori=1,2,--+,k.

Using the definition of a b-critical graph, it is easy to check that G[S i]is a b-critical
graphfori=1,2,---,k. Let

Y:=0,
. Y’s; = Ys;+Ys fOfi=1,2,. . .,k’
Yk =Yz forall other R in 9.

The solution (y, Y") is an optimal solution to (4.4). This procedure allows the assump-
tion to made that (y, Y) has the property that if Y5>0, then S is in &'. '
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Suppose there exists an ; in VG such that y; >0 and i is not in ¥ If bIN(@)=b,
let

yi =0,
Yo=ys+y; forovin N(),
Y» =Y, for all other v in VG.
The solution (y’, Y) is an optimal solution to (4.4).Eb(NG)=b,+ 1, let
S=N@)U{i}.
Since y(N (i) # &, G[S lis a b-critical subgraph with no cutnode » such that b,=1.Let
yi =0,
Yo=Yy, for all other v in VG,
Ys=Ys+y,
Yk =Yg for all other R in &.

. Again, (y', Y") is an optimal solution to (4.4). These two operations allow the assump-
tion to be made that (y, Y) is such that if yi>0,theniisin 9. 0O
As was mentioned earlier, a result of this theorem is that (3.1), (3.4), and (3.5)
is a defining system for P(G, b). The stronger result of Pulleyblank (Theorem 5) will
be needed to prove the minimality of the TDI defining system given in Theorem 9,
THEOREM 10. A minimal TDI defining system for P(G,b) is (3.1), (4.10), and
(4.11).

Proof. By Theorem 9, (3. 1),(4.10), and (4.11)isa TDI deﬁning system for P(G, b).
Write the system as (3.1), (4.10),

4.12) x(y(SH=1b(5)/2] for every S in %,
and
(4.13) x(vS)N=16(5)/2] for every S in @' - &,

By Pulleyblank’s theorem (Theorem 5), (3.1), (4.10), and (4.12) is a minimal defining
system for P(G, b). Since P(G, b) is a full dimensional polytope, any defining system
for P(G, b) must include some multiple of each inequality in (3.1), (4.10), and (4.12).
So each inequality in (3.1), (4.10), and 4.12) is necessary for (3.1), (4.10), and 4.11)
to be a defining system for P(G, b).

To prove the theorem, all that remains to be shown is that if any inequality
in (4.13) is removed, the resulting linear system is not TDI.

Let G be a graph and let S < VG be such that S is in @’ but not in %. Now let
(4.13') be the set of inequalities (4.13) with

x(y($)=156(8)/2]
removed.
It must be shown that for some integral c, the dual linear program of
4.14) max {Y, (cx;: j € EG): (3.1), (4.10), (4.12), (4.13"}

has no integral optimal solution. This is equivalent to showing that the dual linear
program of

(4.15) max {}, (cix;: j € EG): (3.1), (4.10), (4.11)}
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has no integral optimal solution, (y, Y), such that Ys=0.
Let

_{1 for every j in y(S),
" 10 for every other j in EG.

An optimal solution to (4.15) has objective value 5(S)/2, since any b-bicritical
graph contains a perfect b-matching. It will be shown that the dual linear program of
(4.15) has no optimal solution, (y, Y'), such that Ys =0,

Since ¢ is 0, 1-valued, only 0, 1-valued solutions to the dual linear program of
(4.15) need be considered. A 0, 1-valued solution to the dual linear program of (4.15)
corresponds to a subset Q of 7" and a subset T of &' such that for every edge j in
¥(S), either j has an end in Q or j is contained in y(R) for some R in 7. Such a pair
(Q, T) is called a cover of y(S). The weight of a cover (Q, T) of y(S) is

w(@Q, T)=Y (bi:ieQ)+X (|6(R)/2]:ReT).

It must be shown that there does not exist a cover (Q, T') of y(S) such that S-is
notin T and w(Q, T)=5(S)/2. '
~ It is.straightforward to check that

(4.16) if $'<S is such that G[S'] is connected, then ther;: does not exist a
covering (Q, T') of y(S') such that Q= and w(Q, T) < {(5")/2]

and

@.17 there does not exist a covering (Q, T') of y(S) such that w(Q, T) =
b(S)/2 with Q= and $ notin T.

Now (4.16) and (4.17) will be used to finish the proof. Let (Q, T') be a cover of y(S)
such that S is not in T. If Q = &, then w(Q, T)>5(S)/2. Suppose that Q # . It
can be assumed that Q = S. Since G[S] is b-bicritical, by Lemma 3

(4.18) b(Q)z=b(UL°(Q))+|€' Q)| +1,

where all notation is with respect to G[S].
Now (4.16) implies that

b(U%(Q)) , b(U%*Q)) |€'(Q)
2 2 2

4.19) w(Q, T)zb(Q)+

By (4.18) and (4.19),

(4.20) : w(Q, T)>b(S)/2. |
In the special case of 1-matchings, Theorem 9 implies that

(4.21) the minimal defining system for P(G, 1) given by Theorem 5 is TDI.

This result on 1-matchings has been proven by Cunningham and Marsh [1].

Schrijver [10] has shown that every full dimensional, rational polyhedron is
defined by a unique minimal TDI system with integral left-hand sides. This implies
that the system given in Theorem 10 is the unique minimal integral TDI defining
system for P(G, b).
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