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There are many useful operations, such as adding slack variables, taking scalar muitiples of inequalities, and applying
Fourier—Motzkin elimination, that can be performed on a linear system such that if the system defines an integer polyhedron
then so does the derived system. The topic dealt with here is whether or not these operations also preserve total dual integrality
of linear systems.

Total dual integrality, integer polyhedra, Fourier-Motzkin

1. Introduction

A system of rational linear inequalities and rational linear equalities, 4,x < b,, A,x = b,, is called rotally
dual integral if the (dual) linear program min{ y,b, + »,b,: ¥, 4, + y,4, = w, y, > 0} has an integral optimal
solution for each integral w for which the optimum exists. Hoffman [4] and Edmonds and Giles [2] have
shown that if 4,x < b, A,x = b, is totally dual integral and b, and b, are integral then the (primal) linear
program max{wx: A,;x < b, A,x = b,) also has an integral optimal solution for each integral w for which
the optimum exists (i.e. the polyhedron, P ={x: 4,x < by, A,x=b,)}, defined by A,x < b, 4,x =b, isan
integer polyhedron—the restriction to integral w here is, of course, not necessary).

Many combinatorial min-max theorems, such as the max flow—-min cut theorem, can be phrased as “a
certain linear program and its dual each have integral optimal solutions” (the min-max equality following
from the linear programming duality theorem). Often, a good way to prove such theorems is to work
directly with the linear programs in question. The above mentioned theorem of Hoffman and
Edmonds—Giles is useful in proving such results since to establish the result it only needs to be shown that
the dual linear program always has an integral optimal solution—see Schrijver [7] for an example of using
total dual integrality to prove a combinatorial min-max theorem. Combinatorial min-max theorems that
arise by applying the theory of total dual integrality to problems are an improvement over the min-max
theorems that arise by a straightforward application of the duality theorem, since the set of possible values
for the dual variables is greatly reduced. Another reason that such theorems are useful is that integral
solutions to the dual linear program often correspond to combinatorial objects that are of interest, such as
cuts in the max flow—min cut theorem.

There are many operations that can be performed on a linear system such that if the system defines an
integer polyhedron then so does the derived system. Some of these operations, such as adding slack
variables or taking scalar multiples of inequalities, are useful because they allow certain assumptions to be

~made on the form of a linear system without losing any generality. Others, such as setting inequalities to

equalities or applying Fourier—Motzkin elimination, are useful because often a system of interest arises by
applying the operation to a system which is known to define an integer polyhedron. The topic dealt with
here is whether or not these operations also preserve total dual integrality of linear systems. A survey of
such operations is given, including a result on Fourier—Motzkin elimination. '
The notion of a Hilbert basis is used in several of the proofs given in the next section. A set of vectors
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{ay,...,a,) is a Hilbert basis if every integer point in the convex cone they generate can be written as
Aa; + - + A a, for some nonnegative integer A, i = 1,..., k. Giles and Pulleyblank [3] used the result of
Hilbert that every rational convex cone (i.e. a set of type {x: Ax > 0}, where A is rational) is generated by a
finite integral Hilbert basis to show that every integer polyhedron can be defined by a totally dual integral
system with integer right-hand sides.

Schrijver [6] has shown that every pointed rational convex cone is generated by a unique minimal
integral Hilbert basis. He used this result to show that for every full dimensional rational polyhedron, P,
there exists a unique minimal totally dual integral system Ax < b such that 4 is integral and P = {x:
Ax < b) (call Ax < b the Schrijver system for P).

The following lemma was used in both [3] and [6], it follows from complementary slackness.

Lemma 1.1. A4 rational system A,x < b,, A,x = b, is totally dual integral iff for every minimal nonempty face
of {x: A\x < by, A,x = b,) the set of active rows of A,, A, is a Hilbert basis (an active row is one for which the
corresponding constraint holds as an equality for every point in the face).

2. Operations

In this section « will denote a vector and B will denote a scalar.

2.1. Replacing an equality by two inequalities

Proposition 2.1. The system {A,x < by, A,x=b,, ax = B} is totally dual integral. iff the system {A;x <
b, Ayx=b,, ax < B, —ax < — B} is totally dual integral. :

Proof. The result follows by noting that the change in the dual linear program is the variable z
corresponding to ax = 8 being replaced by z’ — z” where z’ > 0,z > 0. O

By this proposition, in the remainder of this section it can be assumed without loss of generality that the
systems are of the form 4x < b.

2.2. Adding slack variables

Proposition 2.2. Let a be integral. The system {Ax < b, ax < B} is totally dual integral iff the system
{Ax < b, ax + 5=, s > 0} is totally dual integral.

Proof. The following short proof is due to W. Pulleyblank. Let D1 denote the linear program min{ yb +
zB: yA + za=w, y >0, z > 0} and let D2 denote the linear program min{ yb + z8: yA + za=w,z > w, y >
0). Suppose that the system {Ax < b, @x + s =B, s > 0} is totally dual integral and let w be an integral
vector such that D1 has an optimal solution. An integral optimal solution to D1 éan be found by setting
w, =0 in D2. Now suppose that {Ax < b, ax < B} is totally dual integral and let (w, w,) be an integral
vector such that D2 has an optimal solution. Let (y*, z*) be an integral optimal solution to D1 with
right-hand side w’ = w — w,a. An integral optimal solution to D2 is (y*, z* +w,). O

The result does not hold for arbitrary a, e.g. {x, <0, 3x, <0} is totally dual integral but {x, < 0, $x, +
x, =0, x, > 0} is not.

2.3. Setting inequalities to equalities
The following proposition is given in Schrijver [8], for completeness a proof is included here.
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Proposition 2.3. If (Ax < b, ax < B) is totally dual integral, then {Ax < b, ax= B} is also totally dual
integral. ‘

Proof. By Proposition 2.1, {Ax < b, ax = B) is totally dual integral iff {Ax<b, ax < B, —ax < — B} is
totally dual integral. Also, if ay,...,a,, a, —a are the active rows of a minimal face of {x: Ax < b, ax<
B, —ax < — B} then a,,...,a,, a are the active rows of a minimal face of {x: Ax < b, ax < B8). So, by
Lemma 1.1, it suffices to prove that if a,,...,a, is a Hilbert basis then a,,...,a,, —a, is also a Hilbert
basis. Suppose that r is integral and r=}:{}\iai: i=1,...,ky—va,, where }\,-2 0,i=1,...,k and y>0.

Choose vy’ such that r + y’a, is in the cone generated by a,,..., a,, Y'a, is integral and y’ is integral. Since
a,,...,a,is a Hilbert basis, » + y'a; = ¥{Na,;: i =1,..., k), where A/ is a nonnegative integer fori = 1, ..., k.
Now X{(Ma;: i=1,..., k}—y'a, expresses r as a nonnegative integer combination of a,,...,a,, —a;. O

This result corresponds to the well-known result that the face of an integer polyhedron is also an integer
polyhedron. It can be used to find a totally dual integral defining system for any face of a polyhedron for
which such a system is known, e.g. totally dual integral defining systems for the perfect matching
polyhedron and the convex hull of the common bases of two matroids can be derived from the totally dual
integral systems for the matching polyhedron and the matriod intersection polyhedron respectively—see
Pulleyblank [5].

2.4. Splitting unrestricted variables

Variables which are not restricted to nonnegative values are usually disposed of in linear programming
theory by replacing them by the difference of two nonnegative variables. This operation, however, cannot
be used on totally dual integral systems, e.g. the system {x; + 5x, < 1, x; + 6x, < 1} is totally dual integral
but the system obtained by replacing x; by x] —x{" and x, by xj — x4, where x; >0, x{ >0, x5 >0,
x4 >0, is not totally dual integral. This example also shows that the property of defining an integer
polyhedron is not preserved under such a splitting operation (x; =0, x;' =0, x, =%, x7 =0 is a nonin-
tegral vertex of the derived polyhedron).

2.5. Scalar multiplication of inequalities

It is not possible to multiply an inequality by an arbitrary positive scalar and maintain total dual
integrality, e.g. x, < 0 is totally dual integral but 2x, < 0 is not. In fact, Giles and Pulleyblank [3] have
shown that for any rational system 4x < b there exists a positive scalar d such that d4x < db is totally dual
integral. However, an inequality in a totally dual integral system can be multiplied by a scalar of the form
1 /k, where k is a positive integer, since solutions to the new dual linear program can be found by setting a
single component j, to ky; in a solution to the original dual linear program. For linear systems with integer
left-hand sides that define full dimensional polyhedra the following proposition shows that this is the only
type of nontrivial scalar multiplication that is possible.

Proposition 2.4. Let A and a be integral and let d be a positive rational scalar. Suppose that Ax < b, ax < fis
totally dual integral and that P = {x: Ax < b, ax < B) is of full dimension. The system Ax <b, dax < df is
also totally dual integral iff either ax < 8 is not the Schrijver system for P or d is of the form 1 /k for some
positive integer k.

Proof. The sufficiency of either condition is easily seen. To show necessity, suppose {Ax < b, dax < dB) is
totally dual integral and ax < B is in the Schrijver system for P. There exists a convex cone, C, generated
by the active rows of some minimal face, F, of P, that contains « in its unique minimal Hilbert basis (C is
pointed since P is of full dimension). Let A be the multiplier of da in an expression of « as a nonnegative
integer combination of the active rows of F in {4, da}. The multiplier A must be positive since a cannot be
expressed as a nonnegative integer combination of other integral vectors in C. Since —a € C (C is pointed),
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Ad must be less than or equal to 1. Since Ada must be integral, Ada = & (« is the f1rst nonzero integral
point on the ray {y,a: y, 2 0)). Sod=1/\. O

2.6. Unimodular transformations

Let U be an integral matrix such that det(U)= +1. A simple and well-known result is that 4x < & is
totally dual integral iff 4U~'x < b is totally dual integral. This corresponds to the result that P is an integer
polyhedron iff P’ ={Ux: x € P} is an integer polyhedron.

2.7. Fourier—Motzkin elimination

Let Kbe a setin R” and I < {1,...,n). If x € R", let x, denote the vector (x;: i € I). The projection of K
onto the I coordinates is the set {x,;: x € K}. A well-known and useful result is that any projection of an
integer polyhedron is again an integer polyhedron—for an example of its application see Balas and
Pulleyblank [1]. To obtain a corresponding result for total dual integrality, linear systems must be
considered.

If a defining system for a polyhedron is given then a defining system for any projection of the
polyhedron can be found by repeated application of Fourier-Motzkin elimination—see [9]. Consider the
linear system

ax—ax,>b, i€l={1,...,i,},
x+yxo<d;, jeJ={1,...,j) . (1)
Fex < gu» ke Ky={1,...,ky} '

where a;, ¢;, f, are vectors, a;, y; are positive scalars, and b, d;, g, are scalars, fori €I, j€J, k € K,. The

following system is obtained by applying Fourier-Motzkin elimination to eliminate the variable x:
(va,+ac))x<yb+ad, i€l jel,
fieX < & ke K,

(2)

(the scaling used here is chosen so that the resulting system has integral data if the original system does).

It is not true that (2) must be totally dual integral if (1) is, even if all data is integral and the coefficients
of any row of (2) have greatest common divisor 1. For example, {x; — x5 <0, x, — x3 < 0, —x, + 2x, <0}
is totally dual integral since the coefficient matrix is unimodular, but {2x, — x, < 0, x, < 0} is not totally
dual integral. However, the result is true in a special case.

Theorem 2.5. Let Ax < b be a totally dual integral system If each coefficient of the variable x is either 0, 1, or
~ 1 then the system obtained by eliminating x, by Fourier—Motzkin elimination is also totally dual integral.

Proof. What must be shown is that if (1) is totally dual integral and «,, v, are equal to 1 for i €1, j € J, then
(2) is also totally dual integral. Let D1 denote the linear program

min  X{by/:i€I}+X{dy/: jET}+X{g,z,: kEK,),
st. bs{ayiely+X{cy/: jel)+E{fiz;: kEKyy=w,
- mXyiey+ Xy jeT ) =w,
¥i20,y720,2, >0, iel,jel k€K,

(3)

and let D2 denote the linear program
min-- E{(b,.+dj)y,j:iEI,jeJ}+Z{gkzk:keK0},
st. {(a,+c)y i€l jeETY+ X fizy: kEKy)=w, (4)
¥; 20,2, 20, iel,jelJ, k€K,.
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Suppose that w is integral and D2 has an optimal solution ( 7, ). An optimal solution to D1 with w=0
is Z together with

V=X, jeJ), iel,
)7]."=Z{}7,.j: iel}, jeJ

)
since any solution ( y’, y”, z) to DI with w, =0 corresponds to a solution to D2 with the same objective
value, by finding a nonnegative y such that

Z(.yij:je']}:yi,: iel,

: . (6)
Z{yy iel)=yr, jeJ

(wo =0 implies that X{ y/: i & =Xy’ jer).

An integral optimal solution to D2 can be found by finding an integral optimal solution, (y’, y”, z) to
D1 with wy =0 and then finding a nonnegative integral y that satisfies (6). O
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