
TSP Cuts Which Do Not Conform to the
Template Paradigm

David Applegate1, Robert Bixby2, Vašek Chvátal3, and William Cook�4

1 Algorithms and Optimization Department, AT&T Labs – Research,
Florham Park, NJ 07932, USA

2 Computational and Applied Mathematics, Rice University,
Houston, TX 77005, USA

3 Department of Computer Science, Rutgers University,
Piscataway, NJ 08854, USA

4 Program in Applied and Computational Mathematics, Princeton University,
Princeton, NJ 08544, USA

Abstract. The first computer implementation of the Dantzig-Fulkerson-
Johnson cutting-plane method for solving the traveling salesman prob-
lem, written by Martin, used subtour inequalities as well as cutting planes
of Gomory’s type. The practice of looking for and using cuts that match
prescribed templates in conjunction with Gomory cuts was continued in
computer codes of Miliotis, Land, and Fleischmann. Grötschel, Padberg,
and Hong advocated a different policy, where the template paradigm is
the only source of cuts; furthermore, they argued for drawing the tem-
plates exclusively from the set of linear inequalities that induce facets of
the TSP polytope. These policies were adopted in the work of Crowder
and Padberg, in the work of Grötschel and Holland, and in the work of
Padberg and Rinaldi; their computer codes produced the most impressive
computational TSP successes of the nineteen eighties. Eventually, the
template paradigm became the standard frame of reference for cutting
planes in the TSP. The purpose of this paper is to describe a technique
for finding cuts that disdains all understanding of the TSP polytope and
bashes on regardless of all prescribed templates. Combining this tech-
nique with the traditional template approach was a crucial step in our
solutions of a 13,509-city TSP instance and a 15,112-city TSP instance.

1 The Cutting-Plane Method and Its Descendants

The groundbreaking work of Dantzig, Fulkerson, and Johnson [19] on the trav-
eling salesman problem introduced the cutting-plane method , which can be used
to attack any problem

minimize cTx subject to x ∈ S, (1)

where S is a finite subset of some Euclidean space IRm, provided that an efficient
algorithm to recognize points of S is available. This method is iterative; each
� Supported by ONR Grant N00014-01-1-0058

M. Jünger and D. Naddef (Eds.): Computat. Comb. Optimization, LNCS 2241, pp. 261–303, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

262 D. Applegate et al.

of its iterations begins with a linear programming relaxation of (1), meaning a
problem

minimize cTx subject to Ax ≤ b, (2)

where the polyhedron P defined as {x : Ax ≤ b} contains S and is bounded.
Since P is bounded, we can find an optimal solution x∗ of (2) which is an
extreme point of P . If x∗ belongs to S, then it constitutes an optimal solution of
(1); otherwise, some linear inequality separates x∗ from S in the sense of being
satisfied by all the points in S and violated by x∗; such an inequality is called
a cutting plane or simply a cut . In the latter case, we find a family of cuts, add
them to the system Ax ≤ b, and use the resulting tighter relaxation of (1) in the
next iteration of the cutting-plane method.

Each iteration of the method requires first finding x∗ and then finding a
family of cuts. Finding x∗ presents no problem: this is what the simplex method
and other LP algorithms are for. Finding cuts is the challenge that has to be
answered with each new application of the cutting-plane method; we shall return
to this challenge later.

Progress of the cutting-plane method towards solving a particular instance
of problem (1) is often estimated by the increase in the optimal value of its LP
relaxation; as more and more cuts are added, these increases tend to get smaller
and smaller. When they become unbearably small, the sensible thing to do may
be to branch: having chosen a vector α and numbers β′, β′′ with β′ < β′′ such
that

αTx∗ ∈ (β′, β′′) and {αTx : x ∈ S} ⊂ (−∞, β′] ∪ [β′′,+∞),

we solve the two subproblems,

minimize cTx subject to x ∈ S, αTx ≤ β′

and
minimize cTx subject to x ∈ S, αTx ≥ β′′,

separately. (If all the elements of S are integer vectors and some component x∗
e

of x∗ is not an integer, then we may choose α so that αTx is identically equal
to xe and set β′ = �x∗

e�, β′′ =
x∗
e�.) At some later time, one or both of these

two subproblems may be split into sub-subproblems, and so on; in the resulting
binary tree of subproblems, each node has the form

minimize cTx subject to x ∈ S, Cx ≤ d (3)

for some system Cx ≤ d of linear inequalities and each leaf will have been either
solved without recourse to branching or else found irrelevant since the optimal
value of its LP relaxation turned out to be at least as large as cTx for some
previously known element x of S. This scheme is one of the many variants of the
branch-and-bound method. (The term “branch-and-bound”, coined by Little,
Murty, Sweeney, and Karel [44], refers to a general class of algorithms that
originated in the work of Bock [7], Croes [16], Eastman [20], Rossman and Twery

TSP Cuts Which Do Not Conform to the Template Paradigm 263

[65], and Land and Doig [42]; in this more general context, relaxations of (1) may
come from a universe far wider than that of linear programming relaxations (2)
and each subproblem may be split into more than two sub-subproblems.)

Computer codes written by Hong [39], Miliotis [48], and Grötschel, Jünger,
and Reinelt [33] introduced a particular variant of this variant, where each sub-
problem is attacked by the cutting-plane method; in these codes, the cuts intro-
duced in solving (3) are satisfied by all points of S (rather than merely by all
points x of S which satisfy Cx ≤ d), and so they can be passed to any other
subproblem later on. Padberg and Rinaldi [60] termed this approach branch-
and-cut .

2 Ways of Finding Cuts

The symmetric traveling salesman problem, or TSP for short, is this: given a
finite number of “cities” along with the cost of travel between each pair of them,
find the cheapest way of visiting all of the cities and returning to your starting
point. The travel costs are symmetric in the sense that traveling from city X
to city Y costs just as much as traveling from Y to X; the “way of visiting all
the cities” is simply the order in which the cities are visited. This problem is a
special case of (1) with m = n(n− 1)/2, where n is the number of the cities and
S consists of the set of incidence vectors of all the hamiltonian cycles through
the set V of the n cities; in this context, hamiltonian cycles are commonly called
tours. Dantzig, Fulkerson, and Johnson illustrated the power of their cutting-
plane method by solving a 49-city instance of the TSP, an impressive size at the
time. They let the initial polyhedron P consist of all vectors x, with components
subscripted by edges of the complete graph on V , that satisfy

0 ≤ xe ≤ 1 for all edges e (4)

and ∑
(xe : v ∈ e) = 2 for all cities v. (5)

(Throughout this paper, we treat the edges of a graph as two-element subsets
of its vertex-set: v ∈ e means that vertex v is an endpoint of edge e; e ∩Q �= ∅
means that edge e has an endpoint in set Q; e − Q �= ∅ means that edge e
has an endpoint outside set Q; and so on.) All but two of their cuts have the
form

∑
(xe : e ∩ Q �= ∅, e − Q �= ∅) ≥ 2, where Q is a nonempty proper subset

of V ; they are satisfied by all tours through V because every such tour has to
move from Q to V − Q at least once and it has to move back to Q after each
such crossing. Dantzig, Fulkerson, and Johnson called such inequalities “loop
constraints”; nowadays, they are commonly referred to as “subtour elimination
inequalities”; we are going to call them simply subtour inequalities. (As for the
two exceptional cuts, Dantzig, Fulkerson, and Johnson give ad hoc combinatorial
arguments to show that these inequalities are satisfied by incidence vectors of
all tours through the 49 cities and, in a footnote, they say “We are indebted to
I. Glicksberg of Rand for pointing out relations of this kind to us”.)

264 D. Applegate et al.

An important class of problems (1) are the integer linear programming prob-
lems, where S is specified as the set of all integer solutions of some explicitly
recorded system of linear constraints. For this class, Gomory [26,27,28] designed
fast procedures for generating cuts from the optimal simplex basis (and proved
that systematic use of these cuts makes the cutting-plane method terminate);
cuts generated by these procedures are called Gomory cuts.

If an LP relaxation of a TSP instance includes all constraints (4), (5), then
a nonempty set of cuts can be found routinely whenever x∗ �∈ S: on the one
hand, if x∗ is not an integer vector, then it violates a Gomory cut; on the other
hand, if x∗ is an integer vector, then it is the incidence vector of the edge-set
of a disconnected graph and each connected component of this graph yields a
subtour cut. The first computer code for solving the TSP by the cutting-plane
method, written by Martin [46], adopts this policy: some of its cuts are subtour
inequalities and others are generated by a variation on Gomory’s theme described
in Martin [45]. In subsequent TSP codes, subtour inequalities became a stock
item, but Gomory cuts fell into disuse when a different paradigm for finding cuts
took over.

By a template, we mean a set of linear inequalities; we say that a cut matches
the template if it belongs to the set. By the template paradigm, we mean the
following two-part procedure used in the design of branch-and-cut algorithms:

(i) describe one or more templates of linear inequalities that are satisfied by all
the points of S,

(ii) for each template described in part (i), design an efficient separation algo-
rithm that, given an x∗, attempts to find a cut that matches the template.

The separation algorithms in (ii) may be exact in the sense of finding a cut that
separates x∗ from S and matches the template whenever one exists and they
may be heuristic in the sense of sometimes failing to find such a cut even though
one exists.

The primordial template of TSP cuts is the set of subtour inequalities; an
exact separation algorithm for this template has been pointed out by Hong [39].
Next came the template of “blossom inequalities”, introduced by Edmonds [21]
in the context of 2-matchings and used in the branch-and-cut TSP computer code
written by Hong [39]; then came the more general template of “comb inequali-
ties”, first used by Grötschel [30,31] in his solution of a 120-city TSP instance by
the cutting-plane method. To describe these templates, let us define, for every
vector x with components subscripted by edges of the complete graph on V and
for every pair A,B of disjoint subsets of V ,

x(A,B) =
∑
(xe : e ∩A �= ∅, e ∩B �= ∅).

In this notation, subtour inequalities are recorded as x(Q,V − Q) ≥ 2; a comb
inequality is any inequality

x(H,V −H) +
k∑

i=1

x(Ti, V − Ti) ≥ 3k + 1, (6)

TSP Cuts Which Do Not Conform to the Template Paradigm 265

where
• H,T1, T2, . . . Tk are subsets of V ,
• T1, T2, . . . Tk are pairwise disjoint,
• Ti ∩H �= ∅ and Ti −H �= ∅ for all i = 1, 2, . . . k,
• k is odd. To see that every comb inequality is satisfied by all characteristic

vectors x of tours through V , let j denote the number of sets Ti that satisfy
x(Ti, V −Ti) = 2. In this notation, x(H,V −H) ≥ j; furthermore, if j = k, then
x(H,V −H) ≥ k+1 as x(H,V −H) is even and k is odd; since each x(Ti, V −Ti) is
a positive even integer, we have

∑k
i=1 x(Ti, V −Ti) ≥ 2j+4(k−j) and (6) follows.

A blossom inequality is a comb inequality with |Ti| = 2 for all i = 1, 2, . . . k.
Just like the subtour inequalities, the blossom inequalities, and the comb in-

equalities, more complicated templates of linear inequalities that are satisfied by
all characteristic vectors x of tours through V are often described as hypergraph
inequalities ∑

(λQx(Q,V −Q) : Q ∈ H) ≥ µ

where H is a collection of subsets of V (also known as a hypergraph on V) and
λQ (Q ∈ H) and µ are integers. Naddef [51] reviews a number of templates of
hypergraph inequalities satisfied by all characteristic vectors x of tours through
V .

TSP codes of Miliotis [49], Land [41], and Fleischmann [23] used the template
paradigm as their preferred source of cuts; whenever this source dried up, they
provisionally switched to Gomory cuts. Grötschel and Padberg [35,36] and Pad-
berg and Hong [58] advocated a different policy, where the template paradigm
is the only source of cuts; furthermore, they argued for drawing the templates
exclusively from the set of linear inequalities that induce facets of the traveling
salesman polytope, meaning the convex hull of S. These policies were adopted in
TSP codes of Crowder and Padberg [18], Grötschel and Holland [32], and Pad-
berg and Rinaldi [60,63], which produced the most impressive computational
TSP successes of the nineteen eighties. The template paradigm is also the frame
of reference for other papers related to TSP codes, such as Carr [10], Christof
and Reinelt [11], Clochard and Naddef [13], Cornuéjols, Fonlupt, and Naddef
[14], Fleischer and Tardos [22], Grötschel and Pulleyblank [37], Letchford [43],
Naddef and Thienel [54,55], Padberg and Rao [59], and Padberg and Rinaldi [61,
62].

We have written a branch-and-cut computer code for solving the TSP. Its
initial version was written in 1994; we presented some of its aspects at the 15th
International Symposium on Mathematical Programming held at the Univer-
sity of Michigan in 1994, described them in Applegate et al. [1], and eventually
distributed the code as Concorde 97.08.27 at the 16th ISMP held at the Ecole
polytechnique fédérale de Lausanne in 1997. A later version was written in 1997;
we presented some of its aspects at the 16th ISMP, outlined them in Applegate
et al. [2], and eventually made the code available on the internet, as Concorde
99.12.15, at Applegate et al. [3]. In the initial 1994 version, cuts were found
partly by following the template paradigm (with a couple of our own separation
heuristics for comb inequalities thrown in) and partly by a couple of new tech-

266 D. Applegate et al.

niques with the common theme of innovating obsolete cuts. In the later 1997
version, we incorporated a technique that disdains all understanding of the trav-
eling salesman polytope and bashes on regardless of all prescribed templates.
This departure from the template paradigm is the subject of the present paper.

3 Cuts, Tours, and Shrinking

Let x∗ denote the optimal solution of the current LP relaxation that has been
returned by the LP solver. In computer codes that search for TSP cuts, it is
common practice – Land [41], Padberg and Hong [58], Crowder and Padberg [18],
Padberg and Rinaldi [61,62], Grötschel and Holland [32], Naddef and Thienel
[54,55] – to first reduce the size of the problem by shrinking pairwise disjoint
subsets of the set V of all cities into singletons and then to look for cuts in the
shrunk version of x∗.

Shrinking is an intuitive concept; to illustrate it on a toy-size example, let
us begin with V = {0, 1, 2, . . . , 9}. Shrinking each of the sets {0, 6, 7}, {1, 8},
and {2, 9} into a single vertex – {0, 6, 7} into 0, {1, 8} into 1, {2, 9} into 2 –
reduces each vector x with components x01, x02, . . . , x89 (edges are two-point
sets, but we prefer writing xij to writing x{i,j}) to the vector x with components
x01, x02, . . . , x45 defined by

x01 = x01 + x08 + x16 + x17 + x68 + x78,

x02 = x02 + x09 + x26 + x27 + x69 + x79,

x03 = x03 + x36 + x37,

x04 = x04 + x46 + x47,

x05 = x05 + x56 + x57,

x12 = x12 + x19 + x28 + x89,

x13 = x13 + x38,

x14 = x14 + x48,

x15 = x15 + x58,

x23 = x23 + x39,

x24 = x24 + x49,

x25 = x25 + x59,

x34 = x34,

x35 = x35,

x45 = x45.

In particular, if x∗ is defined by

x∗
01 = 0.3, x

∗
02 = 0.3, x

∗
06 = 0.7, x

∗
07 = 0.7, x

∗
14 = 0.5, x

∗
16 = 0.2, x

∗
18 = 1.0,

x∗
25 = 0.5, x

∗
27 = 0.2, x

∗
29 = 1.0, x

∗
34 = 0.5, x

∗
35 = 0.5, x

∗
36 = 0.5, x

∗
37 = 0.5,

x∗
45 = 0.5, x

∗
48 = 0.5, x

∗
59 = 0.5, x

∗
67 = 0.6, x

∗
89 = 0.5,

TSP Cuts Which Do Not Conform to the Template Paradigm 267

and x∗
ij = 0 for all the remaining i and j such that 0 ≤ i < j ≤ 9, then its

shrunk version x∗ is defined by

x∗
01 = 0.5, x

∗
02 = 0.5, x

∗
12 = 0.5,

x∗
03 = 1.0, x

∗
14 = 1.0, x

∗
25 = 1.0,

x∗
34 = 0.5, x

∗
35 = 0.5, x

∗
45 = 0.5,

and x∗
ij = 0 for all the remaining i and j such that 0 ≤ i < j ≤ 5.

Looking for cuts in the shrunk version x∗ of x∗ does not mean looking for
linear inequalities satisfied by all tours through the shrunk version V of V and
violated by x∗. In our toy example, the inequality

x01 + x02 + x12 + x03 + x14 + x25 ≤ 4

is satisfied by all tours through V – which is {0, 1, 2, . . . , 5} – and violated by
x∗; through substitution from the definitions of xij , it yields the inequality

x01 + x08 + x16 + x17 + x68 + x78

+x02 + x09 + x26 + x27 + x69 + x79

+x12 + x19 + x28 + x89

+x03 + x36 + x37

+x14 + x48

+x25 + x59 ≤ 4,

which is not satisfied by the tour 0-2-5-9-1-4-8-7-6-3-0.
In this example, shrinking {0, 6, 7} into 0, shrinking {1, 8} into 1, and shrink-

ing {2, 9} into 2 reduces the tour 0-2-5-9-1-4-8-7-6-3-0 to the spanning closed
walk 0-2-5-2-1-4-1-0-3-0; it reduces the incidence vector x of the tour to the
vector x such that

x01 = 1, x02 = 1, x03 = 2, x12 = 1, x14 = 2, x25 = 2,

and xij = 0 for all the remaining i and j such that 0 ≤ i < j ≤ 5. In general,
shrinking V into V reduces a tour through V to a spanning closed walk through
V ; it reduces the incidence vector x of the tour to a vector x such that

• each xe is a nonnegative integer,
• the graph with vertex-set V and edge-set {e : xe > 0} is connected,
• ∑

(xe : v ∈ e) is even whenever v ∈ V ;
we will refer to the set of all the vectors x with these properties as tangled
tours through V . This notion, but not the term, was introduced by Cornuéjols,
Fonlupt, and Naddef [14]; they refer to the convex hull of the set of all tangled
tours through a prescribed set as the graphical traveling salesman polytope. Every
inequality

∑
aijxij ≤ b yields, through substitution from the definitions of xij ,

an inequality
∑
aijxij ≤ b; if the original inequality is satisfied by all tangled

tours through V , then the new inequality is satisfied by all tours through V ; if

268 D. Applegate et al.

the original inequality is violated by the shrunk version x∗ of x∗, then the new
inequality is violated by x∗. In our toy example, the blossom inequality

x({0, 1, 2}, {3, 4, 5})
+x({0, 3}, {1, 2, 4, 5})
+x({1, 4}, {0, 2, 3, 5})
+x({2, 5}, {0, 1, 3, 4}) ≥ 10

is satisfied by all tangled tours through V and violated by x∗; it yields, through
substitution from the definitions of xij , the comb inequality

x({0, 1, 2, 6, 7, 8, 9}, {3, 4, 5})
+x({0, 3, 6, 7}, {1, 2, 4, 5, 8, 9})
+x({1, 4, 8}, {0, 2, 3, 5, 6, 7, 9})
+x({2, 5, 9}, {0, 1, 3, 4, 6, 7, 8}) ≥ 10 ,

which is satisfied by all tours through V and violated by x∗.
As this example suggests, the change of variable from x to x is particularly

easy to implement in hypergraph inequalities: substitution from the definitions of
xij converts each linear function x(Q,V −Q) to the linear function x(Q,V −Q)
where Q is the set of all cities that are mapped into Q by the function that
shrinks V onto V .

The subject of the present paper is a technique where, rather than first
shrinking x∗ once and for all onto a V that may be large and then attempting
to find many cuts in the single x∗, we shrink x∗ many times onto sets V that
are small (their typical size is at most thirty or so) and we find precisely one cut
in each x∗ that lies outside the graphical traveling salesman polytope on V : see
Algorithm 31.

The forthcoming Sect. 4 takes up about half of the paper and describes
the collection of commonplace techniques that we have chosen to implement
the body of the for loop in Algorithm 31 in Concorde, our computer code (a
more detailed description will be presented in Applegate et al. [4]); the very
short Sect. 5 describes Concorde’s implementation of the control of the for loop.
Section 6 attempts to give an idea of how useful the inclusion of Algorithm 31 in
Concorde turned out to be. Section 7 places Algorithm 31 in a broader context
and points out the potential for more general uses of the machinery assembled
in Sect. 4.

Algorithm 31. A scheme for collecting TSP cuts

initialize an empty list L of cuts;
for selected small integers k and

partitions of V into nonempty sets V0, V1, . . . , Vk

do x∗= the vector obtained from x∗ by shrinking each Vi into singleton i;
V = {0, 1, . . . , k};

TSP Cuts Which Do Not Conform to the Template Paradigm 269

if x∗ lies outside the graphical traveling salesman polytope on V
then find a hypergraph inequality that is

satisfied by all tangled tours through V and violated by x∗,
change its variable from x to x, and
add the resulting hypergraph inequality to L;

end
end
return L;

4 Processing x∗

We will illustrate Concorde’s implementation of the body of the for loop in
Algorithm 31 on the example where V = {0, 1, . . . , 7} and

x∗
01 = 0.7, x

∗
02 = 0.1, x

∗
04 = 0.9, x

∗
07 = 0.9, x

∗
12 = 0.7,

x∗
15 = 0.6, x

∗
23 = 0.8, x

∗
25 = 0.4, x

∗
34 = 1.0, x

∗
35 = 0.1,

x∗
36 = 0.1, x

∗
47 = 0.1, x

∗
56 = 0.9, x

∗
67 = 1.0,

and x∗
ij = 0 for all the remaining i and j such that 0 ≤ i < j ≤ 7.

4.1 Does x∗ Lie Outside the Graphical Traveling Salesman
Polytope?

Rephrasing the Question. In our example, every tangled tour x through V
satisfies the fourteen inequalities

x03 ≥ 0, x05 ≥ 0, x06 ≥ 0, x13 ≥ 0, x14 ≥ 0,
x16 ≥ 0, x17 ≥ 0, x24 ≥ 0, x26 ≥ 0, x27 ≥ 0,
x37 ≥ 0, x45 ≥ 0, x46 ≥ 0, x57 ≥ 0

and the seven inequalities

x01 + x12 + x13 + x14 + x15 + x16 + x17 ≥ 2,
x02 + x12 + x23 + x24 + x25 + x26 + x27 ≥ 2,
x03 + x13 + x23 + x34 + x35 + x36 + x37 ≥ 2,
x04 + x14 + x24 + x34 + x45 + x46 + x47 ≥ 2,
x05 + x15 + x25 + x35 + x45 + x56 + x57 ≥ 2,
x06 + x16 + x26 + x36 + x46 + x56 + x67 ≥ 2,
x07 + x17 + x27 + x37 + x47 + x57 + x67 ≥ 2

and the two inequalities

x03 + x13 + x23 + x35 + x36 + x37+
x04 + x14 + x24 + x45 + x46 + x47 ≥ 2,
x06 + x16 + x26 + x36 + x46 + x56+
x07 + x17 + x27 + x37 + x47 + x57 ≥ 2;

270 D. Applegate et al.

since x∗ satisfies each of these twenty-three inequalities as an equation, it is a
convex combination of tangled tours through V if only if it is a convex combi-
nation of those tangled tours through V that satisfy each of the twenty-three
inequalities as an equation.

In general, every tangled tour x through V satisfies the inequalities

xe ≥ 0 for all e,∑
(xe : u ∈ e) ≥ 2 for all u,
x(e, V − e} ≥ 2 for all e,

and so x∗ is a convex combination of tangled tours through V if only if it is a
convex combination of tangled tours through V that satisfy

xe = 0 for all e such that x∗
e = 0, (7)∑

(xe : u ∈ e) = 2 for all u such that
∑
(x∗

e : u ∈ e) = 2, (8)
x(e, V − e) = 2 for all e such that x∗(e, V − e} = 2. (9)

Concorde chooses V0, V1, . . . , Vk so that x(Vi, V − Vi) = 2 for all i = 1, 2, . . . , k
(but not necessarily for i = 0), and so

∑
(x∗

e : i ∈ e) = 2 for all i in {1, 2, . . . , k}.
(Our machinery for processing x∗ is predicated on this property of x∗, but could
be easily modified to handle all x∗: see Sect. 7.) In this case, every solution x of
(8), (9) satisfies

∑
(xe : u ∈ e) = 2 for all u in {1, 2, . . . , k}, (10)

xe = 1 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 1, (11)

and so

x∗ is a convex combination of tangled tours through V
if only if it is a convex combination of tangled tours through V
that satisfy (7), (10), (11).

We will refer to tangled tours that satisfy (7), (10), (11) as strongly constrained.

Delayed Generation of Strongly Constrained Tangled Tours. Unfortu-
nately, the strongly constrained tangled tours through V may be too numerous
to be listed one by one; fortunately, x∗ can be tested for membership in the
convex hull of the set of strongly constrained tangled tours through V with-
out listing these tangled tours one by one. The trick, introduced by Ford and
Fulkerson [25] and by Jewell [40], is known as delayed column generation; we
use it in Algorithm 41. This algorithm returns either the message “x∗ is in the
graphical traveling salesman polytope on V ” or a vector a and a scalar b such
that the inequality aTx ≤ b is satisfied by all strongly constrained tangled tours
x through V and violated by x∗.

TSP Cuts Which Do Not Conform to the Template Paradigm 271

Algorithm 41. Testing the if condition in Algorithm 31:

if there is a strongly constrained tangled tour x through V
then make x the only specimen in a collection of

strongly constrained tangled tours through V ;
repeat if some linear inequality aTx ≤ b is

satisfied by all x in the collection and violated by x∗

then find a strongly constrained tangled tour x through V
that maximizes aTx;
if aTx ≤ b
then return a and b;
else add x to the collection;
end

else return the message
“x∗ is in the graphical traveling salesman polytope on V ”;

end
end

else return 0 and −1;
end

In our illustrative example, Algorithm 41 may initialize the collection by the
• strongly constrained tangled tour 0-4-3-2-1-5-6-7-0

and then proceed through the following five iterations:

Iteration 1: Inequality
−x15 ≤ −1

is satisfied by all x in the collection and violated by x∗. The
• strongly constrained tangled tour 0-1-2-0-4-3-5-6-7-0

maximixes −x15. We add this tangled tour to the collection.
Iteration 2: Inequality

x25 ≤ 0

is satisfied by all x in the collection and violated by x∗. The
• strongly constrained tangled tour 0-1-5-2-0-4-3-6-7-0

maximixes x25. We add this tangled tour to the collection.

Iteration 3: Inequality

−x15 + x23 + x25 ≤ 0

is satisfied by all x in the collection and violated by x∗. The
• strongly constrained tangled tour 0-1-0-4-3-2-5-6-7-0

maximixes −x15 + x23 + x25. We add this tangled tour to the collection.

Iteration 4: Inequality
x47 ≤ 0

272 D. Applegate et al.

is satisfied by all x in the collection and violated by x∗. The
• strongly constrained tangled tour 0-1-5-6-7-4-3-2-0

maximixes x47. We add this tangled tour to the collection.

Iteration 5: Inequality

x12 + x25 + x47 ≤ 1 (12)

is satisfied by all x in the collection and violated by x∗. The
• strongly constrained tangled tour 0-4-3-2-1-5-6-7-0

maximixes x12 + x25 + x47. We conclude that (12) is satisfied by all strongly
constrained tangled tours and violated by x∗.

Implementing Algorithm 41. Let

E1/2 denote the set of all the edges e such that
e ⊂ {1, 2, . . . , k}, x∗

e �= 0, x∗
e �= 1.

The significance of E1/2 comes from the fact that every strongly constrained
tangled tour x satisfies

x0u = 2− ∑
(xe : e ⊂ {1, 2, . . . , k}, u ∈ e) for all u in {1, 2, . . . , k},

xe = 0 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 0,

xe = 1 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 1,

and so the condition

some linear inequality aTx ≤ b is
satisfied by all x in the collection and violated by x∗

in Algorithm 41 is equivalent to the condition

some linear inequality aTx ≤ b with ae = 0 whenever e �∈ E1/2 is
satisfied by all x in the collection and violated by x∗.

To test this condition, Concorde solves a linear programming problem. With

ψ(x) standing for the restriction of x
on its components indexed by elements of E1/2,

with A the matrix whose columns ψ(x) come from specimens x in the collection,
and with e standing – as usual – for the vector [1, 1, . . . , 1]T whose number of
components is determined by the context, this problem in variables s, λ, w reads

maximize s
subject to sψ(x∗)−Aλ+ w = 0,

−s+ eTλ = 0,
λ ≥ 0, −e ≤ w ≤ e.

(13)

TSP Cuts Which Do Not Conform to the Template Paradigm 273

Since its constraints can be satisfied by setting s = 0, λ = 0, w = 0, problem
(13) either has an optimal solution or else it is unbounded. In the former case,
simplex method applied to (13) finds also an optimal solution of its dual,

minimize eT(u+ v)
subject to −aTA+ beT ≥ 0,

aTψ(x∗)− b = 1,
a+ u− v = 0,

u ≥ 0, v ≥ 0,

(14)

and this optimal solution provides the a and b of Algorithm 41; in fact, it

maximizes
aTx∗ − b

‖a‖1
subject to the constraints that aTx ≤ b for all x in the collection and that
ae = 0 whenever e �∈ E1/2. In the latter case, (14) is infeasible, and so no linear
inequality is satisfied by all x in the collection and violated by x∗.

To find specimens x for the collection, we use a function Oracle that, given
an integer vector c, returns either a strongly constrained tangled tour x through
V that maximizes cTx or the message “infeasible” indicating that no tangled
tour through V is strongly constrained. Concorde implements Oracle as two
algorithms in tandem: if a primitive branch-and-bound algorithm fails to solve
the instance within a prescribed number of recursive calls of itself, then we switch
to a more sophisticated branch-and-cut algorithm. To reconcile

• the integer arithmetic of Oracle, which uses a and b,
with

• the floating-point arithmetic of the simplex method, which finds a and b,
Concorde uses the continued fraction method (see, for instance, Schrijver [66]);
since Oracle uses integer arithmetic, the cut aTx ≤ b that separates x∗ from
all strongly constrained tangled tours through V has an integer a and an integer
right-hand side b.

4.2 Separating x∗ from the Graphical Traveling Salesman Polytope:
The Three Phases

If x∗ lies outside the graphical traveling salesman polytope, then Algorithm 41
returns a linear inequality that separates x∗ from all strongly constrained tangled
tours. To convert this inequality to a cut that separates x∗ from all tangled tours,
we proceed in in three phases:

in Phase 1, we find a linear inequality that
separates x∗ from all moderately constrained tangled tours and
induces a facet of the convex hull of these tangled tours,
in Phase 2, we find a linear inequality that
separates x∗ from all weakly constrained tangled tours and
induces a facet of the convex hull of these tangled tours,

274 D. Applegate et al.

in Phase 3, we find a linear inequality that
separates x∗ from all tangled tours and
induces a facet of the convex hull of weakly constrained tangled tours.

(In Phase 3, we could easily find a linear inequality that separates x∗ from all
tangled tours and induces a facet of the convex hull of all tangled tours; however,
such an inequality might not be acceptable to Concorde as a constraint of an
LP relaxation of the TSP instance. We will discuss this point in Sect. 4.5.)

The intermediate classes of moderately constrained tangled tours and weakly
constrained tangled tours are defined by reference to the sets of constraints

(a)
∑
(xe : u ∈ e) = 2 for all u in {1, 2, . . . , k};

(b) xe = 0 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 0,

xe = 1 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 1;

(c) x0u = 0 for all u in {1, 2, . . . , k} such that x∗
0u = 0.

Specifically,

strongly constrained tangled tours are those that satisfy (a), (b), (c);
moderately constrained tangled tours are those that satisfy (a), (b);
weakly constrained tangled tours are those that satisfy (a).

The principal tools used in Phase 1 are a constructive proof of a a classic result
of Minkowski (Theorem 1) and the Dinkelbach method of fractional program-
ming; Phase 2 is sequential lifting; Phase 3 is nearly effortless. In Phase 1
and Phase 2, we use a function Oracle that,

given integer vectors c, #, u and a threshold t (either an integer or −∞),
returns either

a weakly constrained tangled tour x that maximizes cTx
subject to # ≤ x ≤ u, cTx > t

or
the message “infeasible” indicating that
no weakly constrained tangled tour x satisfies
≤ x ≤ u, cTx > t.

This is the same function that is used, with a fixed # and a fixed u, to find items
x for the collection in Algorithm 41.

4.3 Phase 1: From Strongly Constrained to Moderately Constrained
Tangled Tours

Separating x∗ from Moderately Constrained Tangled Tours. It is easy
to convert any linear inequality that separates x∗ from all strongly constrained
tangled tours to a linear inequality that separates x∗ from all moderately con-
strained tangled tours. In our example, inequality

x12 + x25 + x47 ≤ 1

TSP Cuts Which Do Not Conform to the Template Paradigm 275

is satisfied by all strongly constrained tangled tours x and violated by x∗; if x
is a moderately constrained tangled tour, then ψ(x) is a zero-one vector, and so

x12 + x25 + x47 ≤ 3;

a moderately constrained tangled tour x is strongly constrained if and only if

x03 = 0, x05 = 0, x06 = 0.

It follows that the inequality

x12 + x25 + x47 − 2(x03 + x05 + x06) ≤ 1

is satisfied by all moderately constrained tangled tours x and violated by x∗. In
general, a moderately constrained tangled tour x is strongly constrained if and
only if

x0u = 0 for all u in {1, 2, . . . , k} such that x∗
0u = 0;

if
pTψ(x) ≤ r

is satisfied by all strongly constrained tangled tours x and violated by x∗, then

pTψ(x)− (||p||1 − r)
∑
(x0u : x∗

0u = 0) ≤ r (15)

is satisfied by all moderately constrained tangled tours x and violated by x∗ (to
see that ||p||1 − r is always positive, note that r < pTψ(x∗) ≤ ||p||1); the bulk of
Phase 1 is taken up by transforming this cut into a cut that induces a facet of
the convex hull of all moderately constrained tangled tours.

Dimension of the Set of Moderately Constrained Tangled Tours. In
Sect. 4.1, we defined

E1/2 = {e : e ⊂ {1, 2, . . . , k}, x∗
e �= 0, x∗

e �= 1}.
In fact, we may assume that

E1/2 = {e : e ⊂ {1, 2, . . . , k}, 0 < x∗
e < 1} :

otherwise x∗
e > 1 for some e such that e ⊂ {1, 2, . . . , k}, and so x∗ is separated

from all tangled tours by the subtour inequality x(e, V − e) ≥ 2. (As noted by
Cornuéjols, Fonlupt, and Naddef [14], subtour inequalities induce facets of the
graphical traveling salesman polytope.) In addition,

with ψ(x) standing for the restriction of x on E1/2 just as in Sect. 4.1,

we may assume that each of the vectors



0
0
0
...
0



,




1
0
0
...
0



,




0
1
0
...
0



,




0
0
1
...
0



, . . . ,




0
0
0
...
1




276 D. Applegate et al.

with components indexed by elements of E1/2 equals ψ(x) for some moderately
constrained tangled tour x (else x∗ is separated from T by another readily avail-
able subtour inequality), and so

{ψ(x) : x is a moderately constrained tangled tour} has full dimension.

Since every moderately constrained tangled tour x satisfies

x0u = 2− ∑
(xe : e ⊂ {1, 2, . . . , k}, u ∈ e) for all u in {1, 2, . . . , k},

xe = 0 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 0,

xe = 1 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 1,

we conclude that

the set of moderately constrained tangled tours has dimension |E1/2|.

From a Cut to a Facet-Inducing Cut: An Overview. The optimal basis
of problem (13) provides an affinely independent set I of strongly constrained
tangled tours x that satisfy (15) with the sign of equality. In our illustrative
example, I consists of

• the strongly constrained tangled tour 0-4-3-2-1-5-6-7-0,
• the strongly constrained tangled tour 0-1-2-0-4-3-5-6-7-0,
• the strongly constrained tangled tour 0-1-5-2-0-4-3-6-7-0,
• the strongly constrained tangled tour 0-1-0-4-3-2-5-6-7-0,
• the strongly constrained tangled tour 0-1-5-6-7-4-3-2-0.

In general, it may turn out that I = ∅; this happens if and only if no tangled
tour through V is strongly constrained, in which case (15) reads

− ∑
(x0u : x∗

0u = 0) ≤ −1.

Writing aTx ≤ b for (15), we have an integer vector a, an integer b, and a
(possibly empty) set I such that

(Inv1) all moderately constrained tangled tours x have aTx ≤ b,
(Inv2) I is an affinely independent set

of moderately constrained tangled tours,
(Inv3) aTx = b whenever x ∈ I,
(Inv4) aTx∗ > b.

Concorde maintains these four invariants while adding new elements to I and
adjusting a and b if necessary: when |I| reaches |E1/2|, the current cut aTx ≤ b
induces a facet of the convex hull of all moderately constrained tangled tours.
An outline of this process is provided in Algorithm 42.

TSP Cuts Which Do Not Conform to the Template Paradigm 277

Algorithm 42. From a cut to a facet-inducing cut in Phase 1 :

while |I| < |E1/2|
do find an integer vector v, an integer w, and

a moderately constrained tangled tour x0 such that
(A1) vTx = w whenever x ∈ I,
(A2) some moderately constrained tangled tour x has vTx �= w,

and either
(A3.1) vTx∗ ≥ w and vTx ≥ w for all moderately constrained

tangled tours
or else

(A3.2) aTx0 < b and vTx0 = w;
find an integer vector a′, an integer b′, and
a moderately constrained tangled tour x′ such that

(B1) all moderately constrained tangled tours x have a′Tx ≤ b′,
(B2) equation a′Tx = b′ is a linear combination of

aTx = b and vTx = w,
(B3) a′Tx′ = b′ and (aTx′, vTx′) �= (b, w),
(B4) a′Tx∗ > b′;

a = a′, b = b′, I = I ∪ {x′};
end
return a and b;

In our illustrative example, the initial aTx ≤ b reads

−2x03 − 2x05 − 2x06 + x12 + x25 + x47 ≤ 1

and Algorithm 42 may proceed as follows.

Iteration 1: vTx = x03, w = 0, and x0 is an arbitrary moderately con-
strained tangled tour. We leave aTx ≤ b unchanged and we add to I

• the moderately constrained tangled tour 0-1-2-5-6-7-4-3-0.

Iteration 2: vTx = x05, w = 0, and x0 is an arbitrary moderately con-
strained tangled tour. We replace aTx ≤ b by

− 2x03 − x05 − 2x06 + x12 + x25 + x47 ≤ 1 (16)

and we add to I
• the moderately constrained tangled tour 0-1-2-5-0-4-3-6-7-0.

Iteration 3: vTx = x06, w = 0, and x0 is an arbitrary moderately con-
strained tangled tour. We leave aTx ≤ b unchanged and we add to I

• the moderately constrained tangled tour 0-1-2-5-3-4-7-6-0.
Now |I| has reached |E1/2|, and so (16) induces a facet of the convex hull of

moderately constrained tangled tours.

278 D. Applegate et al.

Finding v, w, and x0 in Algorithm 42. In early iterations of the while
loop in Algorithm 42, Concorde draws v and w from a catalog of inequalities
vTx ≥ w that satisfy (A3.1) and (A2); any of these inequalities that happens to
satisfy (A1) can provide the v and the w for use, with an arbitrary moderately
constrained tangled tour x0, in the next iteration of the while loop. The catalog
consists of

all inequalities xe ≥ 0 such that e ∈ E1/2,

all inequalities −xe ≥ −1 such that e ∈ E1/2,

all inequalities x0u ≥ 0 such that u ∈ {1, 2, . . . , k};
for all u in {1, 2, . . . , k}, Concorde’s way of shrinking x∗ into x∗ – whose descrip-
tion is deferred to Sect. 5 – guarantees the existence of a moderately constrained
tangled tour x such that x0u > 0.

If no inequality vTx ≥ w in the catalog satisfies (A1) and yet |I| < |E1/2|,
then Concorde finds v as a nonzero solution of the system

vTx = 0 for all x in I, (17)
ve = 0 for all e outside E1/2, (18)

it sets w = 0, and it lets x0 be the moderately constrained tangled tour such
that x0e = 0 for all e in E1/2.

For each e in E1/2, let xe denote the moderately constrained tangled tour
such that xe

e = 1 and xe
f = 0 for all other f in E1/2. Property (18) guarantees

that vTxe = ve for all e in E1/2; since v is a nonzero vector with property (18),
at least one e in E1/2 has ve �= 0; it follows that (A2) holds.

To see that aTx0 < b, observe that
∑
(x∗

ex
e : e ∈ E1/2) +

(
1− ∑

(x∗
e : e ∈ E1/2)

)
x0 = x∗,

and so
(
1− ∑

(x∗
e : e ∈ E1/2)

)
aTx0 = aTx∗ − ∑

(x∗
ea

Txe : e ∈ E1/2)

> b
(
1− ∑

(x∗
e : e ∈ E1/2)

)
.

To see that vTx0 = 0, note that vex
0
e = 0 for all e.

Finding a′, b′, and x′ in Algorithm 42. To add new elements to I and to
adjust a and b if necessary, Concorde’s implementation of Algorithm 42 uses a
function Tilt, which, given integer vectors a, v, integers b, w, and a moderately
constrained tangled tour x0 with the property

if all moderately constrained tangled tours x have vTx ≤ w,
then aTx0 < b and vTx0 = w,

returns a nonzero integer vector a′, an integer b′, and a moderately constrained
tangled tour x′ with properties (B1),

TSP Cuts Which Do Not Conform to the Template Paradigm 279

(B2+) inequality a′Tx ≤ b′ is a nonnegative linear combination of
aTx ≤ b and vTx ≤ w,

and (B3).
In the iterations of the while loop in Algorithm 42 where v and w are drawn

from the catalog, Concorde calls Tilt (a, b, v, w, x0) for (a′, b′, x′). To see that
a′Tx∗ > b′, note that there are nonnegative λ and µ such that a′ = λa + µv,
b′ = λb + µw; that vTx∗ ≥ w; and that λ > 0 since a′Tx ≤ b′ is satisfied by all
moderately constrained tangled tours but vTx ≤ w is not.

In the iterations of the while loop in Algorithm 42 where w = 0 and v is
computed by solving the system (17), (18), Concorde computes

(a+, b+, x+) = Tilt (a, b, v, 0, x0),
(a−, b−, x−) = Tilt (a, b,−v, 0, x0)

and then it sets

a′ = a+, b′ = b+, x′ = x+ if a+Tx∗ − b+ ≥ a−Tx∗ − b−,
a′ = a−, b′ = b−, x′ = x− otherwise.

To show that a′Tx∗ > b′, we are going to prove that

inequality aTx ≤ b is a nonnegative linear combination of
a+Tx ≤ b+ and a−Tx ≤ b−.

There are nonnegative numbers λ+ and µ+ such that

a+ = λ+a+ µ+v, b+ = λ+b

and there are nonnegative numbers λ− and µ− such that

a− = λ−a− µ−v, b− = λ−b.

Since a+Tx ≤ b+ and a−Tx ≤ b− for all moderately constrained tangled tours x
and since some moderately constrained tangled tour x has vTx �= 0,

at least one of λ+, λ− is positive.

If µ+ = 0, then λ+ > 0, and so aTx ≤ b is a positive multiple of a+Tx ≤ b+; if
µ− = 0 , then λ− > 0 , and so aTx ≤ b is a positive multiple of a−Tx ≤ b−; if
µ+ > 0 and µ− > 0, then λ+µ− + λ−µ+ > 0 and

a =
µ+

λ+µ− + λ−µ+
a− +

µ−

λ+µ− + λ−µ+
a+,

b =
µ+

λ+µ− + λ−µ+
b− +

µ−

λ+µ− + λ−µ+
b+.

280 D. Applegate et al.

Implementation of Tilt. Tilt could be implemented by the Dinkelbach
method of fractional programming (see, for instance, Sect. 5.6 of Craven [15]
or Sect. 4.5 of Stancu-Minasian [67]) as in Algorithm 43.

Algorithm 43. Tilt (a, b, v, w, x0):

x = moderately constrained tangled tour that maximizes vTx;
λ = vTx− w, µ = b− aTx;
if λ = 0
then return (v, w, x0);
else if µ = 0

then return (a, b, x);
else return Tilt (a, b, λa+ µv, λb+ µw, x);
end

end

For illustration, consider Iteration 2 in our example. Here,

a03 = −2, a05 = −2, a06 = −2, a12 = 1, a25 = 1, a47 = 1,

and aij = 0 for all other i and j such that 0 ≤ i < j ≤ 7; we have b = 1;

v05 = 1

and vij = 0 for all other i and j such that 0 ≤ i < j ≤ 7; we have w = 0; vector
x0 may be any moderately constrained tangled tour.

In the nested recursive calls of Tilt (a, b, v, w, x), values of a and b do not
change, but values of v and w do; in our illustration, we may specify each new
v as

[v03, v05, v06, v12, v25, v47]T

since vij = 0 for all other i and j such that 0 ≤ i < j ≤ 7. In this notation, a
record of the computations may go as follows.

Tilt (a, b, [0, 1, 0, 0, 0, 0]T, 0, x0):
the x returned by Oracle is 0-1-0-2-0-3-4-0-5-0-6-7-0;
λ = 2, µ = 9;
Tilt (a, b, [−4, 5,−4, 2, 2, 2]T, 2, x):

the x returned by Oracle is 0-1-2-0-4-3-6-7-0-5-0;
λ = 10, µ = 4;
Tilt (a, b, [−36, 0,−36, 18, 18, 18]T, 18, x):

the x returned by Oracle is 0-1-2-5-0-4-3-6-7-0;
λ = 18, µ = 1;
Tilt (a, b, [−72,−36,−72, 36, 36, 36]T, 36, x):

the x returned by Oracle is 0-1-2-5-0-4-3-6-7-0;
λ = 0, µ = 1;
return ([−72,−36,−72, 36, 36, 36]T, 36, 0-1-2-5-0-4-3-6-7-0);

return ([−72,−36,−72, 36, 36, 36]T, 36, 0-1-2-5-0-4-3-6-7-0);

TSP Cuts Which Do Not Conform to the Template Paradigm 281

return ([−72,−36,−72, 36, 36, 36]T, 36, 0-1-2-5-0-4-3-6-7-0);
return ([−72,−36,−72, 36, 36, 36]T, 36, 0-1-2-5-0-4-3-6-7-0);

Concorde implements Tilt as a modified version of Algorithm 43: before
each recursive call of Tilt (a, b, v, w, x), it divides w and all the components of
v by their greatest common divisor. This policy makes

Tilt (a, b, [0, 1, 0, 0, 0, 0]T, 0, x0)
Tilt (a, b, [−4, 5,−4, 2, 2, 2]T, 2, x)

Tilt (a, b, [−2, 0,−2, 1, 1, 1]T, 1, x)
Tilt (a, b, [−2,−1,−2, 1, 1, 1]T, 1, x)

the four invocations of Tilt in our example and it makes

([−2,−1,−2, 1, 1, 1]T, 1, 0-1-2-5-0-4-3-6-7-0)
their common return value.

4.4 Phase 2: From Moderately Constrained to Weakly Constrained
Tangled Tours

We will write

E0 = {e : e ⊂ {1, 2, . . . , k}, x∗
e = 0},

E1 = {e : e ⊂ {1, 2, . . . , k}, x∗
e = 1};

in this notation, a weakly constrained tangled tour x is moderately constrained
if and only if

xe = 0 whenever e ∈ E0 and xe = 1 whenever e ∈ E1.

The linear inequality aTx ≤ b constructed in Phase 1 separates x∗ from all
moderately constrained tangled tours and induces a a facet of their convex hull;
in Phase 2, we find integers ∆e (e ∈ E0 ∪ E1) such that the inequality

aTx+
∑
(∆exe : e ∈ E0 ∪ E1) ≤ b+

∑
(∆e : e ∈ E1)

separates x∗ from all weakly constrained tangled tours and induces a a facet
of their convex hull. A way of computing the ∆e one by one originated in the
work of Gomory (1969) and was elaborated by Balas (1975), Hammer, John-
son, and Peled (1975), Padberg (1973,1975), Wolsey (1975a, 1975b), and others;
it is known as sequential lifting ; its application in our context is described in
Algorithm 44. Both while loops in this algorithm maintain the invariant

aTx ≤ b induces a facet of the convex hull of
all weakly constrained tangled tours x such that
xe = 0 whenever e ∈ F0 and xe = 1 whenever e ∈ F1.


 (19)

282 D. Applegate et al.

Algorithm 44. Sequential lifting

F0 = E0 , F1 = E1 ;
while F1 �= ∅
do f = an edge in F1;

find a weakly constrained tangled tour xmax that
maximizes aTx subject to
xe = 0 whenever e ∈ F0 ∪ {f},
xe = 1 whenever e ∈ F1 − {f};

replace aTx ≤ b by aTx+ (aTxmax − b)xf ≤ aTxmax;
delete f from F1;

end
while F0 �= ∅
do f = an edge in F0;

find a weakly constrained tangled tour xmax that
maximizes aTx subject to
xe = 0 whenever e ∈ F0 − {f},
xf = 1;

replace aTx ≤ b by aTx+ (b− aTxmax)xf ≤ b;
delete f from F0;

end

Concorde enters Phase 2 with an inequality aTx ≤ b such that

(i) aTx ≤ b induces a facet of the convex hull of
all moderately constrained tangled tours,

(ii) aTx∗ > b,
(iii) ae = 0 for all e outside E1/2.

An arbitrary inequality aTx ≤ b with properties (i), (ii) can be made to satisfy
(iii) as well by first substituting 2 − ∑

(xe : 0 �∈ e, u ∈ e) for all x0u and then
substituting 0 for all xe such that e ∈ E0 and substituting 1 for all xe such that
e ∈ E1. In our illustrative example, these substitutions convert inequality

−2x03 − x05 − 2x06 + x12 + x25 + x47 ≤ 1

with properties (i), (ii) to inequality

x12 + x15 + 2x23 + 2x25 + 3x35 + 4x36 + x47 + 3x56 ≤ 7

with properties (i), (ii), and (iii).
Concorde implements Phase 2 as a streamlined version of Algorithm 44; to

describe this version, we will write

V
int
= {1, 2, . . . , k} and E

int
= {e : e ⊂ V

int
, |e| = 2}.

Since every weakly constrained tangled tour x satisfies

x0u = 2− ∑
(xe : e ∈ E

int
, u ∈ e) for all u in V

int
,

TSP Cuts Which Do Not Conform to the Template Paradigm 283

it is determined by its restriction on E
int
. Restrictions of weakly constrained

tangled tours on E
int
are precisely the incidence vectors of the edge-sets of path

systems – meaning graphs whose connected components are paths – with vertex-
set V

int
. The set of all path systems with vertex-set V

int
is monotone in the sense

that the removal of an edge from a path system yields another path system.
Monotonicity of the set of all path systems with vertex-set V

int
implies that,

for all choices of subsets R0, R1 of E
int
and for all choices of objective functions

aTx such that
ae = 0 for all e outside E

int

(this property of a is maintained by Algorithm 44), the problem of finding a
weakly constrained tangled tour that

maximizes aTx subject to
xe = 0 whenever e ∈ R0,
xe = 1 whenever e ∈ R1

either has no feasible solution at all or else has an optimal solution such that

xe = 0 whenever e ∈ E
int−(R0 ∪R1) and ae = 0.

Concorde exploits this observation in a couple of ways: it makes the job of
Oracle easier by adding constraint

xe = 0 whenever e ∈ E
int−(F0 ∪ F1) and ae = 0

to the problem of finding xmax and it skips certain calls of Oracle altogether.
The second of these two tricks begins with the set I of |E1/2| moderately con-

strained tangled tours produced in Phase 1: for each element x′ of I, Concorde
deletes from F0 all the edges uv such that u and v are endpoints of distinct paths
in the path system defined by x′. To see that each of these deletions preserves
invariant (19), consider the weakly constrained tangled tour x′′ that

maximizes aTx subject to
xe = 0 whenever e ∈ F0 − {uv},
xe = 1 whenever e ∈ F1 ∪ {uv}.

On the one hand, the path system defined by x′ with edge uv added shows that
aTx′′ ≥ b; on the other hand, the path system defined by x′′ with edge uv deleted
shows that aTx′′ ≤ b; we conclude that aTx′′ = b, and so the deletion of uv from
F0 preserves invariant (19).

This trick applies not only to the elements of I, but also to each weakly
tangled tour found by Oracle in Phase 2: as soon as it finds a new xmax,
Concorde deletes from F0 all the edges uv such that u and v are endpoints of
distinct paths in the path system defined by xmax.

In our illustrative example, we begin with

F0 = {13, 14, 16, 17, 24, 26, 27, 37, 45, 46, 57}, F1 = {34, 67}
and then we examine the eight path systems defined by I:

284 D. Applegate et al.

• the path system 4-3-2-1-5-6-7 is a single path,
• the path system with components 1-2 and 4-3-5-6-7
eliminates edges 14, 17, 24, 27 from F0,

• the path system with components 1-5-2 and 4-3-6-7
eliminates edges 14, 17, 24, 27 from F0,

• the path system with components 1 and 4-3-2-5-6-7
eliminates edges 14, 17 from F0,

• the path system 1-5-6-7-4-3-2 is a single path,
• the path system 1-2-5-6-7-4-3 is a single path,
• the path system with components 1-2-5 and 4-3-6-7
eliminates edges 14, 17, 45, 57 from F0,

• the path system 1-2-5-3-4-7-6 is a single path.

The initial aTx ≤ b reads

x12 + x15 + 2x23 + 2x25 + 3x35 + 4x36 + x47 + 3x56 ≤ 7. (20)

The first while loop of Algorithm 44 may go as follows.

Iteration 1: F0 = {13, 16, 26, 37, 46}, F1 = {34, 67}, f = 34.
Oracle, called to find a weakly constrained tangled tour that maximizes

the left-hand side aTx of (20) subject to

x13 = x14 = x16 = x17 = x24 = x26 = x27 = x37 = x45 = x46 = x57 = 0,
x34 = 0, and x67 = 1,

returns the xmax represented by

• the path system with the single component 1-2-5-3-6-7-4;

since aTxmax = 11, we replace (20) by

x12 + x15 + 2x23 + 2x25 + 4x34 + 3x35 + 4x36 + x47 + 3x56 ≤ 11. (21)

Iteration 2: F0 = {13, 16, 26, 37, 46}, F1 = {67}, f = 67.
Oracle, called to find a weakly constrained tangled tour that maximizes

the left-hand side aTx of (21) subject to

x13 = x14 = x16 = x17 = x24 = x26 = x27 = x37 = x45 = x46 = x57 = 0,
x67 = 0,

returns the xmax represented by

• the path system with the single component 1-2-5-6-3-4-7;

since aTxmax = 15, we replace (21) by

x12 + x15 + 2x23 + 2x25 + 4x34 + 3x35 + 4x36 + x47 + 3x56 + 4x67 ≤ 15. (22)

The second while loop of Algorithm 44 may go as follows.

Iteration 1: F0 = {13, 16, 26, 37, 46}, F1 = ∅, f = 13.
Oracle, called to find a weakly constrained tangled tour that maximizes

the left-hand side aTx of (22) subject to

TSP Cuts Which Do Not Conform to the Template Paradigm 285

x14 = x16 = x17 = x24 = x26 = x27 = x37 = x45 = x46 = x57 = 0,
x13 = 1,

returns the xmax represented by

• the path system with the single component 1-3-4-7-6-5-2;

since aTxmax = 14, we replace (22) by

x12 + x13 + x15 + 2x23 + 2x25 + 4x34
+3x35 + 4x36 + x47 + 3x56 + 4x67 ≤ 15. (23)

Iteration 2: F0 = {16, 26, 37, 46}, F1 = ∅, f = 16.
Oracle, called to find a weakly constrained tangled tour that maximizes

the left-hand side aTx of (23) subject to

x14 = x17 = x24 = x26 = x27 = x37 = x45 = x46 = x57 = 0,
x16 = 1,

returns the xmax represented by

• the path system with the single component 1-6-7-4-3-5-2;

since aTxmax = 14, we replace (23) by

x12 + x13 + x15 + x16 + 2x23 + 2x25 + 4x34
+3x35 + 4x36 + x47 + 3x56 + 4x67 ≤ 15. (24)

Iteration 3: F0 = {26, 37, 46}, F1 = ∅, f = 26.
Oracle, called to find a weakly constrained tangled tour that maximizes

the left-hand side aTx of (24) subject to

x14 = x17 = x24 = x27 = x37 = x45 = x46 = x57 = 0,
x26 = 1,

returns the xmax represented by

• the path system with the single component 1-5-3-4-7-6-2;

since aTxmax = 13, we replace (24) by

x12 + x13 + x15 + x16 + 2x23 + 2x25 + 2x26 + 4x34
+3x35 + 4x36 + x47 + 3x56 + 4x67 ≤ 15. (25)

Iteration 4: F0 = {37, 46}, F1 = ∅, f = 37.
Oracle, called to find a weakly constrained tangled tour that maximizes

the left-hand side aTx of (25) subject to

x14 = x17 = x24 = x27 = x45 = x46 = x57 = 0,
x37 = 1,

286 D. Applegate et al.

returns the xmax represented by

• the path system with the single component 1-2-5-6-7-3-4;

since aTxmax = 14, we replace (25) by

x12 + x13 + x15 + x16 + 2x23 + 2x25 + 2x26 + 4x34
+3x35 + 4x36 + x37 + x47 + 3x56 + 4x67 ≤ 15. (26)

Iteration 5: F0 = {46}, F1 = ∅, f = 46.
Oracle, called to find a weakly constrained tangled tour that maximizes

the left-hand side aTx of (26) subject to

x14 = x17 = x24 = x27 = x45 = x57 = 0,
x46 = 1,

returns the xmax represented by

• the path system with the single component 1-2-5-3-4-6-7;

since aTxmax = 14, we replace (26) by

x12 + x13 + x15 + x16 + 2x23 + 2x25 + 2x26 + 4x34
+3x35 + 4x36 + x37 + x46 ++x47 + 3x56 + 4x67 ≤ 15. (27)

After this iteration, F0 = F1 = ∅, and so (27) induces a facet of the convex
hull of all weakly constrained tangled tours.

4.5 Phase 3: From Weakly Constrained to All Tangled Tours

Phase 2 produces an inequality aTx ≤ b such that

(i) aTx ≤ b induces a facet of the convex hull of
all weakly constrained tangled tours,

(ii) aTx∗ > b,
(iii) ae = 0 for all e outside E

int
;

since the set of restrictions of weakly constrained tangled tours onto E
int

is
monotone, (i), (ii), and (iii) imply that

(iv) ae > 0 for all e in E
int
.

A tangled tour x is weakly constrained if and only if

∑
(xe : e ∈ E

int
, w ∈ e) = 2 for all w in V

int
;

if a hypergraph inequality
∑
(λQx(Q,V −Q) : Q ∈ H) ≥ β (28)

TSP Cuts Which Do Not Conform to the Template Paradigm 287

is related to aTx ≤ b in the sense that, for some numbers πw(w ∈ V
int
) , the

left-hand side of (28) is identically equal to

∑
(πw

∑
(xe : w ∈ e) : w ∈ V

int
)− 2aTx

and the right-hand side of (28) equals

∑
(2πw : w ∈ V

int
)− 2b,

then (28) induces a facet of the convex hull of all weakly constrained tangled
tours and is violated by x∗. In Phase 3, we find a hypergraph inequality that is
related to aTx ≤ b in this sense and is satisfied by all tangled tours. Algorithm 45
accomplishes this objective with a negligible amount of computations.

Algorithm 45. Phase 3:

construct a hypergraph H on V
int
and positive integers λQ(Q ∈ H)

such that the linear form∑
λQ(

∑
(xe : e ⊆ Q) : Q ∈ H)

is identically equal to aTx;
return the inequality∑

(λQx(Q,V −Q) : Q ∈ H) ≥ ∑
(2λQ|Q| : Q ∈ H)− 2b;

Arguments used by Naddef and Rinaldi [53] show that the hypergraph inequality
returned by Algorithm 45 is satisfied by all tangled tours; it is a routine matter
to verify that the numbers defined by πw =

∑
(λQ : w ∈ Q,Q ∈ H) have the

desired properties.

A straightforward way of constructing the H and the λQ(Q ∈ H) in Algo-
rithm 45 is to let H consist of all two-point subsets e such that ae > 0 and to set
λe = ae for all e in H. Instead, Concorde constructs H and λQ(Q ∈ H) by an
iterative greedy procedure: in each iteration, it chooses a maximal (with respect
to set-inclusion) subset Q of V

int
such that ae > 0 for all edges e with both

endpoints in Q, it lets λQ be the smallest of these positive ae, it brings Q into
H, and it subtracts λQ from all ae such that e has both endpoints in Q.

In our illustrative example, the inequality aTx ≤ b produced in Phase 2
reads

x12 + x13 + x15 + x16 + 2x23 + 2x25 + 2x26 + 4x34
+3x35 + 4x36 + x37 + x46 ++x47 + 3x56 + 4x67 ≤ 15;

we construct the H and the λQ(Q ∈ H) in Algorithm 45 as follows.

1. We choose Q = {1, 2, 3, 5, 6}, which yields λQ = 1 and leaves us with

aTx = x23 + x25 + x26 + 4x34 + 2x35 + 3x36 + x37 + x46 + x47 + 2x56 + 4x67.

288 D. Applegate et al.

2. We choose Q = {2, 3, 5, 6}, which yields λQ = 1 and leaves us with

aTx = 4x34 + x35 + 2x36 + x37 + x46 + x47 + x56 + 4x67.

3. We choose Q = {3, 4, 6, 7}, which yields λQ = 1 and leaves us with

aTx = 3x34 + x35 + x36 + x56 + 3x67.

4. We choose Q = {3, 4}, which yields λQ = 3 and leaves us with

aTx = x35 + x36 + x56 + 3x67.

5. We choose Q = {3, 5, 6}, which yields λQ = 1 and leaves us with

aTx = 3x67.

6. We choose Q = {6, 7}, which yields λQ = 3 and leaves us with

aTx = 0.

The resulting hypergraph inequality,

x({1, 2, 3, 5, 6}, {0, 4, 7})
+x({2, 3, 5, 6}, {0, 1, 4, 7})
+x({3, 4, 6, 7}, {0, 1, 2, 5})
+ 3x({3, 4}, {0, 1, 2, 5, 6, 7})
+x({3, 5, 6}, {0, 1, 2, 4, 7})
+ 3x({6, 7}, {0, 1, 2, 3, 4, 5}) ≥ 26 ,

induces a facet of the convex hull of all weakly constrained tangled tours and is
violated by x∗. (By the way, this inequality belongs to the class of path inequal-
ities of Cornuéjols, Fonlupt, and Naddef (1985).)

Every cut produced by Algorithm 45 can be easily transformed into a cut
that induces a facet of the graphical traveling salesman polytope. It can be shown
that, in case the aTx ≤ b produced in Phase 2 is such that

every ae with e ∈ E
int
is a positive integer, (29)

this aTx ≤ b reads
λ

∑
(xe : e ∈ E

int
) ≤ λ(k − 1)

for some positive λ, and so Algorithm 45 returns a positive multiple of the
subtour inequality

x({0}, V int
) ≥ 2;

as noted in Sect. 4.3, Cornuéjols, Fonlupt, and Naddef [14] pointed out that
subtour inequalities induce facets of the convex hull of T . It can also be shown
that, in case (29) fails, the following procedure transforms the cut

∑
(λQx(Q,V −Q) : Q ∈ H) ≥ β

produced by Algorithm 45 into a cut that induces a facet of the graphical trav-
eling salesman polytope:

TSP Cuts Which Do Not Conform to the Template Paradigm 289

Step 1. For all choices of distinct points u, v, w of V , define

τ(u, v, w) =
∑
(λQ : Q ∈ H, u ∈ Q, v ∈ Q,w �∈ Q)+∑
(λQ : Q ∈ H, u �∈ Q, v �∈ Q,w ∈ Q).

Step 2. For all points w of V
int
, evaluate

∆w = min{τ(u, v, w) : uv ∈ E, u �= w, v �= w}.

Step 3. Return the inequality

∑
(λQx(Q,V −Q) : Q ∈ H)− ∑

(∆wx({w}, V − {w}) : w ∈ V
int
) ≥

β − 2
∑
(∆w : w ∈ V

int
) .

Again, the arguments come from Naddef and Rinaldi [53]; in their terminology,
the inequality returned in Step 3 is tight triangular .

The current version of Concorde can handle only hypergraph constraints
with nonnegative coefficients; it settles for the cut produced by Algorithm 45
even when this cut does not induce a facet of the graphical traveling salesman
polytope. Concorde’s way of choosing H and λQ(Q ∈ H) aims to mitigate the
effects of this carelessness by reducing the number of points w such that ∆w > 0.

In our illustrative example, H consists of

{1, 2, 3, 5, 6}, {2, 3, 5, 6}, {3, 4, 6, 7}, {3, 4}, {3, 5, 6}, {6, 7};

since no member of H contains both 1 and 4, assumption (29) is satisfied; since

∆1 = τ(0, 3, 1) = 0,
∆2 = τ(0, 3, 2) = 0,
∆3 = τ(4, 5, 3) = 0,
∆4 = τ(0, 3, 4) = 0,
∆5 = τ(0, 3, 5) = 0,
∆6 = τ(3, 7, 6) = 0,
∆7 = τ(0, 6, 7) = 0,

we have ∆w = 0 for all w = 1, 2, . . . , 7. It follows that this path inequality is
tight triangular and induces a facet of the graphical traveling salesman polytope.

5 Making Choices of V0, V1, . . . , Vk

Concorde’s choices of V0, V1, . . . , Vk in Algorithm 31 are guided by x∗ in a way
similar to that used by Christof and Reinelt [12] in their algorithm for finding
cuts that match templates from a prescribed large catalog. First, it constructs

290 D. Applegate et al.

once and for all an equivalence relation on V in such a way that each equivalence
class V � of this relation satisfies

x∗(V �, V − V �) = 2;

then it makes many different choices of V0, V1, . . . , Vk in such a way that each of
V1, . . . , Vk is one of these equivalence classes and V0 = V − (V1 ∪ . . . ∪ Vk).

With W standing for the set of the equivalence classes on V , the first stage
amounts to preshrinking V onto W ; making each of the many different choices
of V0, V1, . . . , Vk in the second stage means choosing a small subset of W and
shrinking the entire remainder ofW onto a single point. In terms of the preshrunk
setW , each choice of V0, V1, . . . , Vk in the second stage zooms in onto a relatively
small part of the problem – typically k is at most thirty or so and |W | may run
to hundreds or thousands – and effectively discards the rest. For this reason,
we developed the habit of referring to the cuts produced by Algorithm 31 as
local cuts and referred to them by this name in Applegate et al. [2]. In terms
of the original V , each of the sets V1, . . . , Vk could be quite large, which makes
the qualifier “local” a misnomer. Still, a crisp label for the cuts produced by
Algorithm 31 is convenient to have and “local cuts” seems to be as good a name
as any other that we managed to think up.

The equivalence relation is constructed by iteratively shrinking two-point
sets into a single point. At each stage of this process, we have a set W and a
mapping π :W → 2V that defines a partition of V into pairwise disjoint subsets
π(w) with w ∈ W . Initially, W = V and each π(w) is the singleton {w}; as long
as there are distinct elements u, v, w of W such that

x∗(π(u), π(v)) = 1 and x∗(π(u), π(w)) + x∗(π(v), π(w)) = 1, (30)

we keep replacing π(u) by π(u)∪π(v) and removing v fromW ; when there are no
u, v, w with property (30), we stop. (During this process, we may discover pairs
u, v with x∗(π(u), π(v)) > 1, in which case x∗ violates the subtour inequality
x(Q,V −Q) ≥ 2 with Q = π(u) ∪ π(v).)

To make the many different choices of V1, . . . , Vk, we first set the value of a
parameter t that nearly determines the value of k in the sense that t−3 ≤ k ≤ t.
Then, for each w in W , we choose a subset C of W so that w ∈ C and t− 3 ≤
|C| ≤ t; the corresponding V1, . . . , Vk are the π(v) with v ∈ C. The choice of C is
guided by the graph with vertex-setW , where u and v are adjacent if and only if
x∗(π(u), π(v)) > ε for some prescribed zero tolerance ε: starting at w, we carry
out a breadth-first search through this graph, until we collect a set C of t − 3
vertices. If there are any vertices u outside this C such that x∗(π(u), π(v)) = 1
for some v in C, then we keep adding these vertices u to C as long as |C| ≤ t.

It seems plausible that such a crude way of choosing C can be improved.
However, we found its performance satisfactory; none of the alternatives that we
tried appeared to work better.

TSP Cuts Which Do Not Conform to the Template Paradigm 291

6 Experimental Findings

Reinelt [64] created a library named TSPLIB that contains sample instances of
the TSP (and related problems) from various sources and of various types. There
are 110 TSP instances in this library. Some of them arise from the task of drilling
holes in printed circuit boards and others have been constructed artificially, often
in the Dantzig-Fulkerson-Johnson tradition of choosing a set of actual cities and
defining the cost of travel from X to Y as the distance between X and Y. None
of them (with a single exception, the problem named ts225) is contrived to be
hard and none of them is contrived to be easy; 106 of them have been solved
and four have not.

The results reported in this section involve various TSP instances drawn from
TSPLIB. The default code is Concorde 99.12.15 of Applegate et al. [3] with 99
as the random number seed (concorde -s 99 xxx.tsp). The running times are
given in seconds on a Compaq XP1000 workstation with a 500 MHz EV6 Alpha
processor.

6.1 The Easier TSPLIB Instances

Our default code solved 87 of the 110 TSPLIB instances in under 1000 seconds.
These instances are listed in Table 1.

In Sect. 5, we described a way of producing a number of partititions of V
into nonempty sets V0, V1, . . . , Vk with t − 3 ≤ k ≤ t for a prescribed positive
integer t. Concorde uses it with t ranging between 8 and a prescribed integer
tmax. More precisely, the search always begins with t = 8. Whenever a value
of t is set, Concorde adds all the resulting cuts produced by Algorithm 31 to
the LP relaxation of our problem and it solves the tightened LP relaxation; if
the increase in the value of the relaxation is not satisfactory and t < tmax, then
the next iteration takes place with t incremented by one. The default setting,
tmax = 16, was prompted by results reported in Table 2. The trends exhibited
in this table are hardly surprising: increases of tmax yield tighter LP relaxations,
but they also require additional time to construct these tighter relaxations.

Table 2 shows also that the total time to solve the 87 TSPLIB instances in
Table 1 by our default code would increase to 126.8% of its original value if local
cuts were turned off. This endorsement of local cuts pales in comparison with
other cutting-plane routines: if we turned off a class of comb-finding procedures
proposed by Padberg and Rinaldi [62] (based on the block decomposition of the
graph obtained by considering only edges e with 0 < x∗

e < 1), then the running
time over our default code would increase to 427.2% of its original value.

6.2 Three of the Harder TSPLIB Instances

Two of the harder TSPLIB instances solved by Concorde are the printed-circuit
board instance pcb3038 and the geographical instance fnl4461. On each of
them, we have run tests similar to those of Table 2; their results are reported

292 D. Applegate et al.

Table 1. 87 instances from the TSPLIB
NT denotes the number of nodes in the branch-and-cut tree

name NT time
burma14 1 0.06
ulysses16 1 0.22
gr17 1 0.08
gr21 1 0.03
ulysses22 1 0.53
gr24 1 0.07
fri26 1 0.07
bayg29 1 0.09
bays29 1 0.13
dantzig42 1 0.23
swiss42 1 0.13
att48 1 0.56
gr48 1 0.67
hk48 1 0.17
eil51 1 0.73
berlin52 1 0.29
brazil58 1 0.68
st70 1 0.50
eil76 1 0.30
pr76 1 1.86
gr96 1 6.71
rat99 1 0.95
kroA100 1 1.00
kroB100 1 2.36
kroC100 1 0.96
kroD100 1 1.00
kroE100 1 2.44
rd100 1 0.67
eil101 1 0.74

name NT time
lin105 1 0.59
pr107 1 1.03
gr120 1 2.23
pr124 1 3.64
bier127 1 1.65
ch130 1 2.13
pr136 1 3.97
gr137 1 3.42
pr144 1 2.58
ch150 1 3.03
kroA150 1 5.00
kroB150 1 4.23
pr152 1 7.93
u159 1 1.00
si175 3 13.09
brg180 1 1.46
rat195 5 22.23
d198 3 11.82
kroA200 1 6.59
kroB200 1 3.91
gr202 1 5.01
ts225 1 20.52
tsp225 1 15.01
pr226 1 4.35
gr229 3 38.61
gil262 1 13.06
pr264 1 2.67
a280 3 5.37
pr299 3 17.49

name NT time
lin318 1 9.74
rd400 15 148.42
fl417 5 57.75
gr431 13 133.29
pr439 15 216.75
pcb442 9 49.92
d493 5 113.32
att532 7 109.52
ali535 3 53.14
si535 3 43.13
pa561 17 246.82
u574 1 23.04
rat575 25 363.07
p654 3 26.52
d657 13 260.37
gr666 3 49.86
u724 11 225.44
rat783 1 37.88
dsj1000 7 410.32
pr1002 1 34.30
si1032 1 25.47
u1060 21 571.43
vm1084 11 604.78
pcb1173 19 468.27
rl1304 1 189.20
nrw1379 19 578.42
u1432 3 223.70
d1655 5 263.03
pr2392 1 116.86

in Table 3. (For the sake of uniformity, we have started each of the nine runs
on each of the two instances with the value of the optimal tour as the upper
bound.)

As with Table 2, the trends exhibited in Table 3 are hardly surprising, al-
though the dependence of running time on tmax is not quite as neat for fnl4461
(note its increase as tmax moves from 0 to 8) and it is even more erratic for
pcb3038. One striking difference between the easier instances on the one hand
and pcb3038, fnl4461 on the other hand is an increase in the optimal setting
of tmax, which is 28 for pcb3038 and 32 for fnl4461. These experimental results
agree with the intuition that the harder instances are better off with the larger
values of tmax. Another striking difference is the increased effect of local cuts on
the overall running time. With pcb3038, local cuts with the default tmax = 16
reduce the running time to 50.3% of its original value and setting tmax = 28
reduces it further to 43.8%. For fnl4461, the figures are more impressive: local

TSP Cuts Which Do Not Conform to the Template Paradigm 293

Table 2. The effect of tmax on the easier TSPLIB instances

tmax total time to solve number of instances
the 87 instances in Table 1 solved without branching

0 7424.58 42
8 6679.15 48
10 6624.02 52
12 6248.12 54
14 6133.06 59
16 5900.72 59
18 6394.10 64
20 8818.98 65
22 9591.02 65
24 16519.62 68
26 23285.19 67
28 35798.49 64
30 40732.42 66

Table 3. The effect of tmax on two harder TSPLIB instances

root LP = optimal value of the LP relaxation before the first branching
NT denotes the number of nodes in the branch-and-cut tree

pcb3038
optimal value = 137694

tmax root LP NT time
0 137592.61 665 145241.25
8 137595.10 659 162228.02
12 137613.44 383 105026.74
16 137625.28 271 73085.72
20 137637.25 271 119042.35
24 137640.66 155 65757.78
28 137644.28 107 63678.80
32 137643.42 127 129460.96
36 137651.53 101 233092.39

fnl4461
optimal value = 182566

tmax root LP NT time
0 182471.39 14977 1990568.46
8 182487.75 11903 2286217.24
12 182506.27 2011 297019.61
16 182519.87 1071 194441.98
20 182530.12 417 78398.31
24 182541.98 213 53420.13
28 182543.60 137 49719.02
32 182546.60 81 44957.02
36 182549.72 59 56714.06

cuts with the default tmax = 16 reduce the running time to 9.8% of its original
value and setting tmax = 32 reduces it further to 2.3%.

The hardest TSPLIB instances that we have solved are usa13509 and d15112.
Batoukov and Sørevik [6] refer to our solution of usa13509 as one of “only a few
heroic examples on successful computation on a network of workstations” and
we do not propose to contradict them. This instance was solved by running an
earlier version of Concorde in parallel on a network of 48 workstations, including
Digital Alphas, Intel Pentium IIs and Pentium Pros, and Sun UltraSparcs; a very
rough estimate of the total running time is about 4 years on our single Compaq
XP1000.

Four years of CPU time is an exorbitant figure. We believe that without
the use of local cuts, this exorbitant figure would grow further to a level which

294 D. Applegate et al.

would put solving usa13509 out of our reach even if we had gathered many more
workstations for the heroic purpose.

The experimental results presented in Table 4 support this sentiment. Its
29 rows correspond to 29 runs that tighten up the root LP relaxation. Each
of these runs starts where the preceding run has stopped and it takes note of
the gap g between the length of the optimal tour and the optimal value of the
current LP relaxation. Then it attempts to tighten the relaxation by additional
cuts and it solves this tightened relaxation; this step gets iterated as long as the
optimal value of the relaxation keeps increasing by at least a prescribed fixed
percentage of g.

We begin with five runs of Def C00, meaning our default code with local cuts
turned off. The last three of these runs yields only imperceptible improvements
and they narrow the relative gap to 0.0561%. Then we follow with four runs of
All C00, meaning Def C00 with additional cutting-plane routines (other than
local cuts) that we found to be a hindrance in solving the easy instances from
Table 1 but that might help in solving the harder instances. (These techniques
include our implementation of what we understood from Naddef and Thienel [54,
55], the dominos-and-necklaces heuristic for finding violated comb inequalities
that has been described in Sect. 3 of Applegate et al. [1], and other cutting-plane
routines.) The last three of these runs yields only imperceptible improvements
and they narrow the relative gap to 0.0435%. This is the best we can do without
the use of local cuts.

Then we bring in local cuts in nineteen runs of the default code with tmax
progressing through the sequence 8, 10, 12, . . . , 44. As a result, the relative gap
is narrowed to 0.0164%, less than two fifths of the previous value. Finally, an
additional run of All C00 yields only an imperceptible improvement.

7 Generalizations

The cutting-plane method and its descendants are applicable to any problem

minimize cTx subject to x ∈ S,
where S is a finite subset of some Euclidean space IRm, provided that an effi-
cient algorithm to recognize points of S is available. The corresponding general
problem of finding cuts is this:

given (by means of an efficient membership-testing oracle)
a finite subset S of some IRm and

given a point x∗ in IRm that lies outside the convex hull of S,
find a vector a and a scalar b such that

S ⊂ {x : aTx ≤ b} and aTx∗ > b.

Algorithm 31, dealing with the special case case where m = n(n − 1)/2 and
S is the set of the incidence vectors of all the tours through a set of n cities,
generalizes to Algorithm 71. (In the special case, d = (k+1)k/2, φ(x) = x, and
T is the set of all tangled tours through V .)

TSP Cuts Which Do Not Conform to the Template Paradigm 295

Table 4. Local cuts and usa13509

usa13509
optimal value = 19982859

Code root LP gap time
Def C00 19967864.84 0.0751% 2157.08

+Def C00 19970751.68 0.0606% 2795.47
+Def C00 19971645.49 0.0561% 1140.06
+Def C00 19971656.19 0.0561% 165.04
+Def C00 19971657.09 0.0561% 155.35
+All C00 19973413.70 0.0473% 4293.28
+All C00 19974175.97 0.0435% 9455.69
+All C00 19974177.19 0.0435% 733.44
+All C00 19974180.02 0.0435% 766.91
+Def C08 19974585.45 0.0414% 2559.30
+Def C10 19975711.27 0.0358% 5131.98
+Def C12 19976111.11 0.0338% 3931.73
+Def C14 19976520.40 0.0317% 4355.10
+Def C16 19976898.82 0.0298% 4288.43
+Def C18 19977508.51 0.0268% 8964.28
+Def C20 19978299.28 0.0228% 10901.51
+Def C22 19978577.43 0.0214% 6126.33
+Def C24 19978738.27 0.0206% 5478.57
+Def C26 19978861.69 0.0200% 5556.20
+Def C28 19979011.25 0.0193% 10791.34
+Def C30 19979133.77 0.0186% 6802.63
+Def C32 19979135.92 0.0186% 1676.74
+Def C34 19979382.66 0.0174% 32465.95
+Def C36 19979384.65 0.0174% 7018.06
+Def C38 19979507.22 0.0168% 36408.27
+Def C40 19979571.48 0.0165% 25237.98
+Def C42 19979574.20 0.0164% 9143.59
+Def C44 19979576.01 0.0164% 12623.30
+All C00 19979583.83 0.0164% 1316.49

Algorithm 71. A very general scheme for collecting cuts

initialize an empty list L of cuts;
for selected small integers d, linear mappings φ : IRm → IRd, and

finite subsets T of IRd such that φ(S) ⊆ T
do if φ(x∗) lies outside the convex hull of T

then find a vector a and a scalar b such that
T ⊂ {x : aTx ≤ b} and aTφ(x∗) > b;

add the cut aTφ(x) ≤ b to L;
end

end
return L;

296 D. Applegate et al.

The trick of trying to separate x∗ from S by separating φ(x∗) from T was
used previously by Crowder, Johnson, and Padberg [17] in the context of integer
linear programming, where S consists of all integer solutions of some explicitly
recorded system

Ax = b, # ≤ x ≤ u (31)

and x∗ satisfies (31) in place of x. Crowder, Johnson, and Padberg consider
systems (31) such that A is sparse and # = 0, u = e; for each equation αTx = β
in the system Ax = b, they consider the set T of all integer solutions of

αTx = β, 0 ≤ x ≤ e

restricted on components xj such that αj �= 0; with φ(x) standing for the re-
striction of x on these components, they try to separate x∗ from S by separating
φ(x∗) from T . In the attempt to separate φ(x∗) from T , they use exclusively in-
equalities that match certain prescribed templates and they use special-purpose
separation algorithms to find such cuts.

Boyd [8,9] starts out with the choices of φ and T made by Crowder, John-
son, and Padberg, but then he separates φ(x∗) from T by a general-purpose
procedure. He solves the problem

maximize z
subject to z − aTφ(x∗) + aTφ(x) ≤ 0 for all x in T ,

||a||1 ≤ γ, ||a||∞ ≤ 1

with a prescribed constant γ by a method that is essentially the simplex method
(in particular, the value of z increases with each nondegenerate iteration); to
access T , he uses an oracle implemented by a dynamic programming algorithm.
If the optimal value z∗ turns out to be positive, then he returns the cut

aTφ(x) ≤ aTφ(x∗)− z∗,

which he calls a Fenchel cutting plane.

The technique described in Sect. 4.1 provides another implementation of the
body of the for loop in Algorithm 71 for a fairly general class of sets T : it
requires only an efficient oracle that, given a vector a in IRd, returns either an
x in T that maximizes aTx or the message “infeasible” indicating that T is
empty. This technique – presented as Algorithm 41 in the special case where the
set of all strongly constrained tangled tours is substituted for T – is reviewed as
Algorithm 72: function Separate, given (by means of an efficient maximization
oracle) a finite subset T of some IRd and given a point x∗ in IRd, returns either
the message “x∗ is in the convex hull of T ” or a vector a and a scalar b such
that

T ⊂ {x : aTx ≤ b} and aTx∗ > b.

TSP Cuts Which Do Not Conform to the Template Paradigm 297

Algorithm 72. Separate(x∗, T)

if T �= ∅
then A = any d× 1 matrix whose single column is an element of T ;

repeat if the linear programming problem
minimize uT e+ vT e
subject to −aTA+ beT ≥ 0,

aTx∗ − b = 1,
aT + uT − vT = 0,

uT , vT ≥ 0
has an optimal solution

then find an element x of T that maximizes aTx;
if aTx ≤ b
then return a and b;
else add x to A as a new column;
end

else return the message
“x∗ is in the convex hull of T ”;

end
end

else return 0 and −1;
end

One way of solving the linear programming problem in each iteration of the
repeat loop in Algorithm 72 is to apply the simplex method to its dual with
relatively few rows,

maximize s
subject to sx∗ −Aλ+ w = 0,

−s+ eTλ = 0,
λ ≥ 0, −e ≤ w ≤ e,

(32)

just as Concorde does in its implementation of Algorithm 41.

Modifications of Separate(x∗, T) used by Concorde in its implementation of
Algorithm 31 may also apply to implementations of Algorithm 71. In particular,
if we have at our disposal a nonempty family F of row vectors [vT , w] such that

T ⊂ {x : vTx ≥ w} and vTx∗ = w,

then we may test the condition

x∗ lies outside the convex hull of T

in Algorithm 71 by calling Separate(x∗, T ∗) with

T ∗ = {x ∈ T : vTx = w for all [vT , w] in F}.

298 D. Applegate et al.

(In Concorde, T ∗ is the set of all strongly constrained tangled tours through
V .) The point of this substitution is that Separate(x∗, T ∗) tends to run faster
as the dimension of {x ∈ IRd : vTx = w for all [vT , w] in F} decreases; if most
of our choices of d, φ, and T in Algorithm 71 place x∗ in the convex hull of
T , then we may save time even if each successful call of Separate(x∗, T ∗) is
followed by a call of Separate(x∗, T). In fact, if Separate(x∗, T ∗) returns an
inequality a∗Tx ≤ b∗ that separates x∗ from T ∗, then there is no need to call
Separate(x∗, T): for every nonnegative M such that

M ≥ a∗Tx− b∗∑
(vTx− w : [vT , w] ∈ F) for all x in T − T ∗,

the inequality

a∗Tx−M ·
∑

(vTx− w : [vT , w] ∈ F) ≤ b∗

separates x∗ from T .

Furthermore, as long as x∗ is in the affine hull of T , every cut separating x∗

from T may be converted to a cut that induces a facet of the convex hull of T
by the techniques described in Sect. 4.3, where the set of all moderately tangled
tours through V plays the role of T . Specifically, Algorithm 73, given any cut
aTx ≤ b, returns a cut inducing a facet of the convex hull of T . Here, a default
I is supplied by the optimal basis of problem (32), a default C is supplied by all
[vT , w] in F such that T �⊂ {x : vTx = w}, and Tilt (a, b, v, w, x0) is Algorithm
43 with T substituted for the set of all moderately tangled tours.

Algorithm 73. From a cut aTx ≤ b to a facet-inducing cut in general

I = an affinely independent subset of {x ∈ T : aTx = b};
C = a catalog of vectors [vT , w] such that T ⊂ {x : vTx ≥ w}, vTx∗ ≥ w,

and vTx > w for some x in T ;
x0 = an arbitrary element of T ;
for all [vT , w] in C
do remove [vT , w] from C

if I ⊂ {x : vTx = w}
then (a+, b+, x+) = Tilt (a, b, v, w, x0);

a = a+, b = b+, I = I ∪ {x+};
end

end
while |I| < dim T
do x0 = an element of T − I such that I ∪ {x0} is affinely independent;

if aTx0 = b
then replace (a, b; I) by (a, b; I ∪ {x0});
else find a nonzero vector v and a number w such that

vTx− w = 0 for all x in I ∪ {x0},
vTx− w �= 0 for some x in T ;

TSP Cuts Which Do Not Conform to the Template Paradigm 299

(a+, b+, x+) = Tilt (a, b, v, w, x0);
(a−, b−, x−) = Tilt (a, b,−v,−w, x0);
if a+Tx∗ − b+ ≥ a−Tx∗ − b−

then replace (a, b; I) by (a+, b+; I ∪ {x+});
else replace (a, b; I) by (a−, b−; I ∪ {x−});
end

end
end
return a and b;

By the way, Algorithm 73 provides a constructive proof of the following
corollary of a classic theorem of Minkowski ([50] Section 19):

Theorem 1. Let T be a finite subset of some IRd, let x∗ be a point in the affine
hull of T , and let an inequality aTx ≤ b separate T from x∗ in the sense that

T ⊂ {x : aTx ≤ b} and aTx∗ > b.

Then there is an inequality αTx ≤ β that separates T from x∗, induces a facet
of the convex hull of T , and satisfies

{x ∈ T : aTx = b} ⊆ {x ∈ T : αTx = β}.

Success of Algorithm 71 hinges on the ability to make choices of φ and T
(which may be guided by x∗ and S) in such a way that

(i) chances of φ(x∗) falling outside the convex hull of T are reasonable
and

(ii) cuts aTφ(x) ≤ b collected in L are not too weak.
Our way (described in Sect. 5) of making these choices in the special case where
S is the set of all tours through a set V meets both of these criteria. With respect
to (i), it is adequate: typically, one out of fifty to a hundred of our choices of
φ and T makes φ(x∗) fall outside the convex hull of T . With respect to (ii),
it could hardly be better: there is no known counterexample to the conjecture
(implicit in Naddef and Rinaldi [53]) that

aTφ(x) ≤ b induces a facet of the convex hull of S
whenever aTx ≤ b induces a facet of the convex hull of T and aTφ(x∗) > b.

This may be a major reason behind the success of our application of Algorithm 71
to the traveling salesman problem.

If one were to use Algorithm 71 in the context of integer linear programming,
where S consists of all integer solutions of some explicitly recorded system

Ax = b, # ≤ x ≤ u,

300 D. Applegate et al.

then one would have to design a way of making choices of φ and T . One option is
to choose each φ and T by choosing a d×m integer matrix P , setting φ(x) = Px,
and letting T consist of all integer vectors x such that some x satisfies

Ax = b, # ≤ x ≤ u, Px = x.

Maximizing a linear function over T amounts to solving a mixed integer linear
programming problem in d integer and m non-integer variables; as long as d is
small, this problem can be solved quickly. As long as at least one row rT of P
satisfies

�max{rTx : Ax = b, # ≤ x ≤ u}� < rTx∗, (33)

φ(x∗) falls outside the convex hull of T ; Gomory’s methods mentioned in Sect. 2
provide vectors rT with property (33) at insignificant computational cost. We
have not carried out any experiments with this scheme.

Acknowledgments. We wish to thank Adrian Bondy, Martin Farach-Colton,
Denis Naddef, Yves Pochet, and Günter Rote for their helpful comments on
earlier versions of this manuscript.

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (A
preliminary report). DIMACS Technical Report 95-05, 1995. Available at
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/1995/

2. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling
salesman problems. Documenta Mathematica Extra Volume (Proceedings of
the International Congress of Mathematicians), 645–656, 1998. Also available at
http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/17/17.html

3. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde, 1999. Available at
http://www.math.princeton.edu/tsp/concorde.html

4. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Solving Traveling Salesman Prob-
lems. To appear.

5. Balas, E.: Facets of the knapsack polytope. Mathematical Programming 8, 146–
164, 1975.

6. Batoukov, R., Sørevik, T.: A generic parallel branch and bound environment on
a network of workstations. In: Proceedings of HiPer’99, pp. 474–483, 1999. Also
available at http://www.ii.uib.no/˜tors/publications/

7. Bock, F.: An algorithm for solving ‘traveling-salesman’ and related network op-
timization problems. Research Report, Armour Research Foundation. Presented
at the Operations Research Society of America Fourteenth National Meeting, St.
Louis, October 24, 1958.

8. Boyd, E.A.: Generating Fenchel cutting planes for knapsack polyhedra. SIAM Jour-
nal of Optimization 3, 734–750, 1993.

9. Boyd, E.A.: Fenchel cutting planes for integer programs. Operations Research 42,
53–64, 1994.

ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/1995/
http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/17/17.html

TSP Cuts Which Do Not Conform to the Template Paradigm 301

10. Carr, R.: Separating clique trees and bipartition inequalities having a fixed number
of handles and teeth in polynomial time. Mathematics of Operations Research 22,
257–265, 1997.

11. Christof, T., Reinelt, G.: Parallel cutting plane generation for the TSP. In: Parallel
Programming and Applications (P. Fritzson and L. Finmo, eds.), IOS Press, pp.
163–169, 1995.

12. Christof, T., Reinelt, G.: Combinatorial optimization and small polytopes. Top 4,
1–64, 1996.

13. Clochard, J.-M., Naddef, D.: Using path inequalities in a branch and cut code for
the symmetric traveling salesman problem. In: Third IPCO Conference, (G. Rinaldi
and L. Wolsey, eds.), pp. 291–311, 1993.

14. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph
and some related integer polyhedra. Mathematical Programming 33, 1–27, 1985.

15. Craven, B.D.: Fractional Programming. Heldermann, Berlin, 1988.
16. Croes, G.A.: A method for solving traveling-salesman problems. Operations Re-

search 6, 791–812, 1958.
17. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear pro-

gramming problems. Operations Research 31, 803–834, 1983.
18. Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman

problems to optimality. Management Science 26, 495–509, 1980.
19. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling salesman

problem. Operations Research 2, 393–410, 1954.
20. Eastman, W.L.: Linear programming with pattern constraints. Ph.D. Thesis, Har-

vard University, 1958.
21. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. Journal of

Research of the National Bureau of Standards 69B, 125–130, 1965.
22. Fleischer, L.K., Tardos, É.: Separating Maximally Violated Combs in Planar

Graphs. Mathematics of Operations Research 24, 130–148, 1999.
23. Fleischmann, B.: A cutting plane procedure for the travelling salesman problem

on road networks. European Journal of Operational Research 21, 307–317, 1985.
24. Fleischmann, B.: A new class of cutting planes for the symmetric travelling sales-

man problem. Mathematical Programming 40, 225–246, 1988.
25. Ford, L.R.Jr., Fulkerson, D.R.: A suggested computation for maximal multicom-

modity networks flows. Management Science 5, 97–101, 1958.
26. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Society 64, 275–278, 1958.
27. Gomory, R.E.: Solving linear programs in integers. In: Combinatorial Analysis

(R. E. Bellman and M. Hall, Jr., eds.), Proceedings of the Symposia on Applied
Mathematics X, pp. 211–216, 1960.

28. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Recent Ad-
vances in Mathematical Programming (R. L. Graves and P. Wolfe, eds.), McGraw-
Hill, New York, pp. 269–302, 1963.

29. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra
and Its Applications 2, 451–558, 1969.

30. Grötschel, M.: Polyedrische Charakterisierungen kombinatorischer Optimierungs-
probleme, Anton Hain Verlag, Meisenheim/Glan, 1977.

31. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-
city problem. Mathematical Programming Study 12, 61–77, 1980.

32. Grötschel, M., O. Holland.: Solution of large-scale symmetric travelling salesman
problems. Mathematical Programming 51, 141–202, 1991.

302 D. Applegate et al.

33. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear
ordering problem. Operations Research 32, 1195–1220, 1984.

34. Grötschel, M., Padberg, M.W.: On the Symmetric Travelling Salesman Problem,
Report No.7536-OR, Institut für Ökonometrie und Operations Research, Univer-
sität Bonn, 1975.

35. Grötschel, M., Padberg, M.W.: On the symmetric travelling salesman problem I:
Inequalities. Mathematical Programming 16, 265–280, 1979.

36. Grötschel, M., Padberg, M.W.: On the symmetric travelling salesman problem II:
Lifting theorems and facets. Mathematical Programming 16, 281–302, 1979.

37. Grötschel, M., Pulleyblank, W.: Clique tree inequalities and the symmetric trav-
elling salesman problem. Mathematics of Operations Research 11, 537–569, 1986.

38. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of regular 0-1 polytopes. Math-
ematical Programming 8, 179–206, 1975.

39. Hong, S.: A linear programming approach for the traveling salesman problem,
Ph.D. Thesis, The Johns Hopkins University, 1972.

40. Jewell, W.S.: Optimal flow through networks. Interim Technical Report No. 8,
Massachusetts Institute of Technology, 1958.

41. Land, A.: The solution of some 100-city travelling salesman problems. Unpublished
manuscript, 1979.

42. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28, 497–520, 1960.

43. Letchford, A.N.: Separating a superclass of comb inequalities in planar graphs.
Mathematics of Operations Research 25, 443–454, 2000.

44. Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the trav-
eling salesman problem. Operations Research 11, 972–989, 1963.

45. Martin, G.T.: An accelerated euclidean algorithm for integer linear programming.
In: Recent advances in mathematical programming (R. L. Graves and P. Wolfe,
eds.), McGraw-Hill, pp. 311–318, 1963.

46. Martin, G.T.: Solving the traveling salesman problem by integer linear program-
ming. Operations Research 14 (Supplement 1), Abstract WA7.10, 1966.

47. Maurras, J.F.: Some results on the convex hull of Hamiltonian cycles of symmet-
ric complete graphs. In: Combinatorial Programming: Methods and Applications
(B. Roy, ed.), Reidel, Dordrecht, pp. 179–190, 1975.

48. Miliotis, P.: Integer programming approaches to the travelling salesman problem.
Mathematical Programming 10, 367–378, 1976.

49. Miliotis, P.: Using cutting planes to solve the symmetric travelling salesman prob-
lem. Mathematical Programming 15, 177–188, 1978.

50. Minkowski, H.: Geometrie der Zahlen (Erste Lieferung). Teubner, Leipzig, 1896.
Reprinted: Chelsea, New York, 1953.

51. Naddef, D.: Handles and teeth in the symmetric traveling salesman polytope. In:
Polyhedral combinatorics (W. Cook and P. D. Seymour, eds.), DIMACS Series in
Mathematics and Theoretical Computer Science 1, American Mathematical Soci-
ety, pp. 61–74, 1990.

52. Naddef, D., Rinaldi, G.: The symmetric traveling salesman polytope and its graph-
ical relaxation: Composition of valid inequalities. Mathematical Programming 51,
359–400, 1991.

53. Naddef, D., Rinaldi, G.: The graphical relaxation: A new framework for the sym-
metric traveling salesman polytope. Mathematical Programming 58, 53–88, 1992.

TSP Cuts Which Do Not Conform to the Template Paradigm 303

54. Naddef, D., Thienel, S.: Efficient separation routines for the symmetric traveling
salesman problem I: General tools and comb separation. Working paper, 1999.
Available at
http://www-id.imag.fr/Laboratoire/Membres/Naddef_Denis/perso.html

55. Naddef, D., Thienel, S.: Efficient separation routines for the symmetric traveling
salesman problem II: Separating multi handle inequalities. Working paper, 1999.
Available at
http://www-id.imag.fr/Laboratoire/Membres/Naddef_Denis/perso.html

56. Padberg, M.W.: On the facial structure of set packing polyhedra. Mathematical
Programming 5, 199–215, 1973.

57. Padberg, M.W.: A note on zero-one programming. Operations Research 23, 833–
837, 1975.

58. Padberg, M.W., Hong, S.: On the symmetric travelling salesman problem: a com-
putational study. Mathematical Programming Study 12, 78–107, 1980.

59. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Mathematics
of Operations Research 7, 67–80, 1982.

60. Padberg, M.W., Rinaldi, G.: Optimization of a 532-city symmetric traveling sales-
man problem by branch and cut. Operations Research Letters 6, 1–7, 1987.

61. Padberg, M.W., Rinaldi, G.: An efficient algorithm for the minimum capacity cut
problem. Mathematical Programming 47, 1990.

62. Padberg, M.W., Rinaldi, G.: Facet identification for the symmetric traveling sales-
man polytope. Mathematical Programming 47, 219–257, 1990.

63. Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Review 33, 60–100, 1991.

64. Reinelt, G.: TSPLIB – A traveling salesman problem library. ORSA Journal on
Computing 3, 376–384, 1991. An updated version is available at
http://www.iwr.uni-heidelberg.de/iwr/comopt/software/ TSPLIB95/.

65. Rossman, M.J., Twery, R.J.: A solution to the travelling salesman problem. Oper-
ations Research 6, p.687, Abstract E3.1.3, 1958.

66. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester, 1986.
67. Stancu-Minasian, I.M.: Fractional Programming. Kluwer, Dordrecht, 1997.
68. Wolsey, L.A.: Faces for a linear inequality in 0-1 variables. Mathematical Program-

ming 8, 165–178, 1975.
69. Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Operations

Research 24, 367–372, 1975.

	The Cutting-Plane Method and Its Descendants
	Ways of Finding Cuts
	Cuts, Tours, and Shrinking
	Processing $overline {x}^ast $
	Does $overline {x}^ast $ Lie Outside the Graphical Traveling Salesman Polytope?
	Separating $overline {x}^ast $ from the Graphical Traveling Salesman Polytope: the Three Phases
	{sc Phase 1:} From Strongly Constrained to Moderately Constrained Tangled Tours
	{sc Phase 2:} From Moderately Constrained to Weakly Constrained Tangled Tours
	{sc Phase 3:} From Weakly Constrained to All Tangled Tours

	Making Choices of $V_0,V_1,dots ,V_k$
	Experimental Findings
	The Easier TSPLIB Instances
	Three of the Harder TSPLIB Instances

	Generalizations

