Solution of a min-max vehicle routing problem
David Applegate; William Cook; Sanjeeb Dash; Andre Rohe

INFORMS Journal on Computing; Spring 2002; 14, 2; ABI/INFORM Globa

pg. 132

Solution of a Min-Max Vehicle
Routing Problem

David Applegate ¢ William Cook e Sanjeeb Dash e André Rohe
Algorithms and Optimization Department, ATET Labs—Research, 180 Park Avenue, P.O. Box 971,
Florhani Park, New Jersey 07932-971, USA
Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road,
Princeton, New Jersey 08544-1000, USA
Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road,
Princeton, New Jersey 08544-1000, USA
Forschungsinstitut fiir Diskrete Muthematik, Universitdt Bonn, Lennéstrasse 2, D-53113 Bonn, Germany
david@research.att.cont e bico@math.princeton.edu e sanjeebd@math.princeton.edu o rohe@or.uni-bonn.de

e use a branch-and-cut search to solve the Whizzkids'96 vehicle routing problem,

demonstrating that the winning solution in the 1996 competition is in fact optimal.
Our algorithmic framework combines the LP-based traveling salesman code of Applegate,
Bixby, Chvital, and Cook, with specialized cutting planes and a distributed search algo-
rithm, permitting the use of a computing network located across Rice, Princeton, AT&T,
and Bonn. The 1996 problem instance was developed by E. Aarts and J. K. Lenstra, and the
competition was sponsored by the information technology firm CMG and the newspaper

De Telegraaf.

(Combinatorial Optimization; Vehicle Routing; Integer Programming; Distributed Computing)

1. The Test Instance

A wide range of practical problems involve sets of
customers that need to be served by vehicles located
at a common depot; models that optimize the selec-
tion of routes to the customers are referred to as vehi-
cle routing problems. To capture different aspects of
routing applications, a variety of models have been
studied in the literature, starting with the work of
Dantzig and Ramser (1959). Surveys of vehicle rout-
ing research can be found in the bocks by Golden
and Assad (1988), Ball et al. (1995), and Toth and

Vigo (2001).

We consider a vehicle routing problem proposed by
E. Aarts and J. K. Lenstra as part of the Whizzkids'96
(1996) mathematics challenge, sponsored by the infor-
mation technology firm CMG and the newspaper De
Telegraaf (see Aarts et al. 2000). We refer to the prob-
lem as the newspaper routing problem; the Whizzkids'96
announcement discusses the delivery of newspapers

INFORMS JourNnaL oN CoMmpPuTING © 2002 INFORMS

Vol. 14, No. 2, Spring 2002 pp. 132-143

to customers. The goal of this problem is to ensure
that all customers are served as soon as possible.
Assuming that travel-time is proportional to distance
traveled, and that a negligible amount of time is spent
at a customer location, the above goal is achieved by
minimizing the length of the longest route, starting
from the common depot, taken by a vehicle. This con-
trasts with the more typical provider-centric objective
of minimizing the total distance traveled by the fleet.

The newspaper routing instance specified in the
Whizzkids'96 competition consists of a set of 120
customers to be served by 4 vehicles. The locations
of the customers and the depot are given as (x, y)-
coordinates, and the travel-time from a point (x;, y;)
to a point (x,,1,) is proportional to the Manhattan
distance |x; — x,|+ |y, — 1/»| between the points. A solu-
tion to the problem consists of 4 paths starting at
the depot such that each of the 120 customer loca-
tions is on one of the 4 paths; the objective is to

0899-1499 /02/1402/0132%5.00
1526-5528 electronic ISSN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Solution of a Min-Max Vehicle Routing Problem

minimize the maximum of the lengths of the 4 paths.
In graph-theory terms, the instance can be specified
by the complete graph on 121 nodes, with a distin-
guished depot node and with edge lengths given by
the Manhattan distance between the corresponding
points; a solution consists of 4 internally disjoint sim-
ple paths starting at the depot and covering all nodes
in the graph.

The min-max objective function in the newspa-
per routing problem can permit considerable freedom
in the selection of the shorter of the paths. Keep-
ing in the spirit of a customer-service model, a sec-
ondary objective in the Whizzkids'96 competition was
to minimize the average delivery time to the 120 cus-
tomers; this secondary objective was used as a tie-
breaking rule. The winning solution was obtained
by Hemel et al. (1996) from Technische Universiteit
Eindhoven using a simulated annealing algorithm.
Their solution is illustrated in Figure 1; it has max-
imum path-length 1,183 and average delivery time
558.81667.

After the Whizzkids'96 competition, a 5,000 Dutch
Guilder prize was offered by CMG for the first group
to produce either a solution with objective value less
than 1,183 or a proof that 1,183 is optimal. In this

Lt

Path 3: 1173

1
i 40
Path 1: 1178 L,.) k.* » i
- L gt
?
b o
¥ 4 5
. !
.
A
b
+
y : !
:
Path 2: 1183
az
g
3 &
— »
4 L
" ¢
. e : .
I e 3 Depot E.
— - i R 1 '7. 2
1 o ' o A8 g o—
* —
& = L]
. ep I
Path 4: 1183 8 L LERTTY

Average Delivery Time: 558.81667

Figure 1 A Routing Solution

INFORMS Journar oN ComPUTING/ Vol. {4, No. 2, Spring 2002

paper we describe a branch-and-cut search that we
use to verify that 1,183 is indeed the optimal value.
We also verify that the 558.81667 average delivery
time is optimal among all 1,183-valued solutions.
CMG was kind enough to deliver the 5,000 Guilder
prize in March 2001, based on a preliminary report of
our work.

The paper is organized as follows. In Sections 2
and 3 we describe the linear programming (LP) model
we use to obtain lower bounds for the newspaper
routing problem. In Section 4 we present the details of
the computation used to prove that 1,183 is the opti-
mal value for the challenge problem, and in Section 5
we describe how we extended the search algorithm to
prove that 558.81667 is the optimal average delivery
time. Finally, in Section 6 we give some remarks on
the general methods used in the study.

We assume that the reader is familiar with discrete
optimization solution methods, including cutting-
plane algorithms and branch-and-bound. A treatment
of this area can be found in the books of Nemhauser
and Wolsey (1988) and Wolsey (1998).

2. TSP with Side Constraints

The most well-studied model in vehicle routing is the
traveling salesman problem (TSP), where we have a sin-
gle vehicle that must visit all customers and return to
the depot, with the objective being to minimize the
total cost of travel. A treatment of the TSP can be
found in Lawler et al. (1985).

A common strategy in the design of solution meth-
ods in vehicle routing is to take advantage of the large
body of work which has gone into the TSP. This is
often accomplished by transforming the problem into
a TSP-like problem by splitting the depot into several
copies and allowing the separate routes of the vehi-
cles to be combined into a single tour. We will employ
this technique in our study of the newspaper routing
problem.

As a first step, considering the problem in terms of
graphs, we add two dummy nodes that are joined to
each of the customers and to the depot, setting the
cost of all edges meeting the dummies to 0. Next, we
create a copy of the depot that is joined to each of the
customers and to the two dummy nodes with edges

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Sol:tion of a Min-Max Vehicle Routing Problem

having the same cost as the corresponding edges join-
ing the original depot node to the customers and
dummies. Let G denote this expanded graph. Now
any solution of the original newspaper routing prob-
lem can be extended to a TSP tour in G, as illustrated
in Figure 2. Here the cost of the tour equals the sum
of the lengths of the 4 paths in the newspaper rout-
ing solution. Notice, however, that there exist tours in
G that do not correspond to solutions to the newspa-
per routing problem, as we indicate in Figure 3. We
describe below a set of TSP side constraints that for-
bid these bad tours.

We will work with the following standard LP relax-
ation of the TSP. Let E denote the edge-set of G and
let V denote the set of nodes. For each edge ¢, let
¢, denote its cost and let x, be a variable (with the
interpretation that x, =1 if ¢ is in the tour and 0 oth-
erwise). For any subset S of nodes, let §(S) denote the
set of edges having one end in S and the other end
not in S. The Dantzig et al. (1954) relaxation of the
I5Els

Minimize » (c,x,:e €E)

subject to
Y (x.:e€8({oh) =2,
Y (x,:e€8(5))>2,

B=x =i

for all veV (1)
forall SCV,@#£S#V

for all ecE.

The 0/1 solutions of the constraint set of (1) are pre-
cisely the set of TSP tours through the nodes of the
graph. The inequalities Y (x, : e € §(S)) > 2 are called
subtour constraints.

In our expanded newspaper graph G, we denote
the depot nodes by d, and d, and we denote the
dummy nodes by 4, and a,. The bad tours are those
that include a subpath from d, to d,, without passing

Depot 1 Dummy 1

Depot 2 Dummy 2

Figure 2 Reduction to Constrained TSP

134

Depot | Dummy 1
Depot 2 Dummy 2
Figure 3 A Bad Tour in the Expanded Graph

through either of a; or a,. These tours can be forbid-
den by including the additional constraints

Y (x.:e€8(S)) >4, for all S with
{4y, LY E S 4m, a0 S =@, (2)

that is, for each set of nodes that contains the two
depots and neither dummy, we require that at least
4 edges (in a 0/1 solution) cross the boundary formed
by the set.

The difficulty with this approach to the newspaper
routing problem is that we cannot express the min-
max objective with a linear function of the x, vari-
ables. Hurkens (1997) showed, however, that we can
directly handle the feasibility question of whether or
not there exists a newspaper routing solution of value
less than or equal to B, where B is any constant. This
can be accomplished by adding the constraints

Y (x.:e€d(S) >4, forall Se#;, (3)

where 7; denotes the collection of all subsets S of
customer nodes such that the shortest path starting at
a depot and passing through each node in S has cost
greater than B (one vehicle takes too long to serve S).
These constraints forbid long paths from appearing in
0/1 solutions to the model.

Our discussion has treated only the special case
of newspaper routing with 4 vehicles (as in the
Whizzkids'96 competition). The general feasibility
question of whether k vehicles can deliver newspa-
pers along paths of length at most B can be handled
in a similar fashion. We create [k/2] depot nodes and
[k/2] dummy nodes which are then connected to the
remaining nodes as above. If k is odd, we fix to 1
the variable corresponding to the edge between (say)
depot 1 and dummy 1. Finally, the constraints in (3)
change to accommodate k paths (k+1 paths if k is
odd; the extra path is simply the edge fixed to 1).

INFORMS JournaL oN ComruTING/Vol. 14, No. 2, Spring 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
solution of a Min-Max Vehicle Routing Problem

2.1. The Min-Max Objective
To handle the min-max objective, we describe a lay-
ered graph that permits us to distinguish between the
4 paths in the newspaper routing solution. For each
customer v we create nodes v!", U}”" o1 ir—dl bt
and for each pair of customers v, w we create edges
(v", w') and (v, wi") for i=1,...,4, giving each
edge the same cost as the original edge (v, w). For
each customer v and for each i =1,...,4, we add
edges (v, v}",) (Where the subscripts are taken mod-
ulo 4) and (v!", v/"'), both with cost 0; we fix the vari-
ables corresponding to each of the edges (v, v!"))
to 1. We next create four copies of the depot node
dy,...,d,, along with four dummy nodes a,, ..., a,.
For i=1,...,4 and for each customer v, we create
the edge (v/", d;) with the same cost as the original
edge joining v to the depot, and we create the edge
(v9*, a;) with cost 0. For i =1,...,4, we create the
edges (d;, a;) and (a;, d;.;) (where the subscripts are
taken modulo 4), each with cost 0. Finally, we fix the
variables corresponding to the edges (a;, d,,;) to 1.
In the layered graph we have constructed, each cus-
tomer node v corresponds to a set of 8 nodes, which
we denote by S7; the edges internal to S” are indicated
in Figure 4, where the solid edges are fixed to 1. To
complete the model we add the constraints

> (x,:e€8(S%) =2, for all customer nodes v. (4)

Under (4), any tour in the layered graph corresponds
to a collection of paths from the depots to the dum-
mies, with one path p; on each layer 7, fori=1, ..., 4.
To see this, notice that if a tour contains an edge in
0(57) meeting the node v}", then it must also contain
an edge in 8(S”) meeting node v/ (see Figure 5).
So paths on a given layer go through pairs of nodes
o, v until they reach a depot or a dummy.

T e

out

Figure 4 Edges for a Set S¥

in

out

Figure 5 Route Through S*

For each i=1,...,4, let E; denote the set of edges
having both ends in layer i of the graph. By adding
the constraints

Y (cx,:eecE)<)Y (c,x,:ecE,), fori=1,2,3, (5

we can force path p, to have the maximum cost
among py,...,p;. Using these constraints, we can
express the min-max objective as

Minimize) (c,x, :e € E,).

This completes the description of the layered model.

The general situation, where there are k vehicles
(k = 2) that traverse paths p;,...,p;, can be mod-
eled as above, by introducing k layers, with path p;
restricted to layer 7, and the path p;, being the longest
path.

2.2. Implementing the Models

In Hurkens’ (1997) model of the feasibility problem
and in the layered model of the optimization prob-
lem, the solution sets (that is 0/1 solutions to the LP
problems) consist of special TSP tours through the
node sets of the graphs. Therefore, in each case we can
improve the LP relaxations by including any inequal-
ities that are known to be valid for all TSP tours. Sur-
veys of classes of such TSP inequalities can be found
in Jiinger et al. (1995) and in Naddef (2001).

In our computations we use the Concorde TSP code
of Applegate et al. (1998), permitting Concorde to
generate TSP inequalities from its library of cutting-
plane routines. In the layered model, it is straight-
forward to incorporate the side constraints, since we
can explicitly add the equations (4) to the initial LP
relaxation created for the TSP. Fixing the appropri-
ate variables to 1 is also easy. The feasibility model
is more difficult, however, since the constraints (2)

INFORMS JournaL oN CoMPUTING/ Vol. 14, No. 2, Spring 2002 135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Solution of a Min-Max Vehicle Routing Problem

and (3) consist of an exponential number of distinct
inequalities; these two classes of constraints will be
treated implicitly, via a cutting-plane approach.

A cut in a graph is a set of edges of the form &(S) for
some proper non-empty subset of nodes S; the weight
of a cut is the sum of the weights of its edges. To
handle (2) and (3), we use minimum-cut algorithms
where the weight on each edge e is the value of x,
in the current LP solution. In the case of constraints
(2), we compute the minimum weight cut 6(S) with
dy,d, €S and a,, a, ¢ S by shrinking the two depots
into a single node d, shrinking the two dummies into
a single node 4, and then using a maximum-flow-
minimum-cut algorithm with source d and sink a. If
the cut 5(S) we find has weight less than 4, then we
can add the corresponding constraint (2) as a cutting
plane. Otherwise, all constraints (2) are satisfied by
the LP solution.

For constraints (3), we use the minimum-cut algo-
rithm of Karger (1993) to sample candidate sets S
for possible violations, following the approach used
by Cook and Rich (1999) in the context of vehicle
routing with time-window constraints. This method
is motivated by the result of Karger and Stein (1993)
showing that Karger’s random contraction algorithm
on a graph with n nodes finds with high probabil-
ity all cuts with weight within a multiplicative fac-
tor a of the minimum cut in O(n** log3 n) time. Since
Concorde includes routines to check for subtour con-
straints, we can assume that LP solutions to our
model have no cuts of weight less than 2. Therefore,
we can apply Karger’s algorithm with @ =2 in order
to list sets S having 3 (x, : e € (S5)) < 4. Our computer
code uses the implementation of Karger’s algorithm
given in Dash (2000).

If Karger’s algorithm produces a cut 5(S) of weight
less than 4 and the set S consists of only customer
nodes, then we compute the shortest path starting at
the depot and passing through all nodes in S, by con-
verting this problem to a TSP. We solve the TSP using
an implementation of the branch-and-bound algo-
rithm of Held and Karp (1971). (On small instances
this is more efficient than Concorde’s general LP-
based algorithm.) If the shortest path has cost greater
than B, then S is contained in #;; and the constraint (3)

136

can be added as a cutting plane. To speed up the com-
putation, we call Concorde’s version of the Chained
Lin-Kernighan TSP heuristic (Martin et al. 1992) as a
preliminary step in the TSP solution procedure; if the
heuristic returns a tour of value B or less, then we do
not need to run the branch-and-bound algorithm.

In the first two entries of Table 1, we compare
Hurkens” (1997) feasibility model and the layered
optimization model, where we use a bound of 1,182
in the feasibility model, that is, B = 1182 in (3) (all
distances are integer valued, and 1,182 is 1 better
than the value of the best solution found in the
Whizzkids'96 competition). The much larger graph
used in the layered model translates into a larger run-
ning time. Moreover, the constraints (3) based on the
1,182 bound are strong enough to improve the LP
lower bound well beyond that given by the layered
model (for the feasibility model, we divide the objec-
tive value by 4 to obtain a lower bound on the min-
max objective). The layered model can be improved
to match the feasibility bound by incorporating con-
straints of the form

Y (x,:eed(U(S,:veS)) >4

for sets S € #;; Karger’s algorithm can again be used
to sample candidate sets. The third entry in Table 1
gives the running time required for this combined
approach.

The results reported in Table 1 were obtained on a
Compaq XP10000 workstation, with a 500 MHz Alpha
EV6 processor. The Concorde TSP code was run using
ILOG’s CPLEX 6.5 LP solver.

2.3. Model Selection

The layered model has the attractive feature that it
deals directly with the min-max objective function,
but in our study we did not discover a practical way
to take advantage of this to produce better LP lower

Table 1 Comparison of Models
Time
Model Lower Bound (Seconds, 500 MHz Alpha EV6)
Hurkens, bound 1,182 1143 55.6
Layered, no bound 1116 338.4
Layered, bound 1,182 1143 370.0

INFORMS JourNnaL oN CoMPUTING/ Vol. 14, No. 2, Spring 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Selution of a Min-Max Vehicle Routing Problem

bounds for the problem (for example, by generat-
ing cutting planes derived from the constraints (5)).
Making the assumption that the 1,183-valued winning
solution in the Whizzkids'96 competition is close to
being optimal, we decided to adopt Hurkens’ feasibil-
ity approach in our computations. If the search pro-
duced a solution of value less than 1,183, the algo-

rithm would have to be run again with the adjusted
bound.

3. k-Path Cutting Planes

The feasibility constraints (3) force 0/1 solutions to
the newspaper routing model to use at least 2 paths
through the specified set of customers S, with the
justification that any single path would have length
greater than that allowed by the objective bound
B. The effectiveness of these simple constraints in
increasing the LP lower bound (see Table 1) suggests
the use of more general inequalities

S (x.:e€8(5) =2k (6)

to force solutions to use at least k paths (for k < 4)
through sets S, in cases where we can verify that
k —1 or fewer paths would necessarily include one of
length greater than the bound B. Inequalities of this
form were studied in the context of vehicle routing by
Laporte et al. (1985) and dubbed k-path cutting planes
by Kohl et al. (1997).

In searching for k-path cutting planes, we can again
make use of Karger’s random contraction algorithm
to produce candidate sets S. A difficulty is that, in
general, we need to solve a newspaper routing fea-
sibility problem to verify that k paths are required
through S. For k =2 (that is, for the feasibility con-
straints (3)) we take advantage of the fact that the
single-vehicle newspaper routing problem is easily
reduced to an instance of the TSP. This does not work
for k =3 or 4, but the TSP does provide a relaxation
that allows us to verify that k paths are required in

greater than 2B, then it is not possible to visit all cus-
tomers in S with two paths, each of length less than
or equal to B. So in this case we can add the 3-path
cutting plane. On the other hand, if the solution of
the TSP is less than 2B, we have the option of solv-
ing the newspaper routing feasibility problem on S to
check if it still might be the case that it is not possible
to visit all customers with two paths of length less
than or equal to B. In our implementation, we make
this second check by recursively calling our newspa-
per routing solver, but we only do so if we do not find
a TSP solution that is significantly less than 2B (in our
code we use 2B —100 as the cut off); our reasoning is
that if there is a very short TSP tour, then it is likely
that there exists a pair of short paths through S.

A similar approach is used for 4-path cuts. In this
case we obtain a TSP relaxation by taking the cus-
tomers S and two copies of the depot, joining each
node to two dummies via edges of cost 0, and fixing
at 1 the variable corresponding to one of the edges
joining a depot and a dummy (this allows the tour to
simulate 3 paths rather than 4; we can fix a variable at
1 by subdividing the edge with a third dummy node).
Again, if the optimal solution to the TSP is greater
than 3B, then we can add the 4-path cutting plane.
Otherwise, if we do not find a TSP solution of value
less than 3B— 150, then we make a recursive call to the
newspaper routing solver to try to establish a 4-path
cutting plane.

In Table 2, we compare the lower bounds we obtain
for the Whizzkids'96 problem, using just 2-path cuts,
using just 2-path and 3-path cuts, and using 2-path,
3-path, and 4-path cuts; the runs were again carried
out on a Compaq XP10000 workstation. The stronger
inequalities cause a significant improvement in the
LP relaxation, and a promising direction of research
would be to study further classes of problem-specific
cutting planes for this class of routing problems.

Table 2 Lower Bounds from k-path Cuts
certain cases.
! ; k-path Cut L Bound Time (Seconds
For k =3, we form a TSP instance by taking the i sdviey’ s i)
nodes in S together with the depot, and joining each k=2 1,143 556
of them to a dummy node via an edge of cost 0. If the Rirted hidE 2448
: . % : : k=2,34 1,151 194.5
optimal solution to the TSP in this graph has length
INFORMS JourNaL oN CoMPUTING/Vol. 14, No. 2, Spring 2002 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Solution of a Min-Max Vehicle Routing Problem

Table 3 Lower Bounds with 50,000 Karger lterations
k-path Cuts Lower Bound Time (Seconds)
k=2 1,144 214.8
K=2:3 1,146 439.4
k=234

The results in Table 2 were obtained using 5,000
iterations of Karger’s algorithm to produce candidate
sets S during each run of the k-path cutting-plane
search routine. This number is far below the target
suggested by the result of Karger and Stein (1993),
but it still provides a good sampling of the possible
cuts in the graph which yield k-path cuts. To support
this statement, we ran each of the three tests again
using 50,000 iterations of the algorithm. The results
for this second set of tests are reported in Table 3, and
show little improvement despite the extra computa-
tion time. (The decrease in the lower bound in the k =
2,3 case is just an artifact of running a cutting-plane
algorithm with heuristic separation routines.)

3.1. The Root LP Relaxation

The relatively large gap between the LP lower bound
and the 1,183 value of the best known set of routes
indicates that solving the Whizzkids'96 challenge
problem may require a very large scarch tree. We
therefore need to take care to tighten as much as pos-
sible the initial LP relaxation that will serve as the
root of the tree. To this end, while working on the root
LP, we set the tolerances in our solver to continue the
search for cutting planes even after only very small
improvements in the objective function, and we make
multiple runs of the code, each starting with the LP
produced by the previous run. The results of these
computations are reported in Table 4; the final LP
has objective value 4,604.91, giving a lower bound of
1,152.

4. The Branch-and-Cut Search

The Concorde TSP code implements a branch-and-
cut search, that is, a branch-and-bound search where
the LP bound is enhanced by the addition of cut-
ting planes at each node of the search tree. In our

138

newspaper routing solver (a modified version of Con-
corde), we make use of Concorde’s default TSP cuts,
as well as the k-path cuts described in the previous
section and the cuts (2). Concorde follows a “best-
bound” strategy to grow the search tree, where the
next search node to be explored is the one having
smallest LP value. The branching mechanism uses an
idea of Clochard and Naddef (1993), which can be
viewed as branching on subtour constraints. At each
node in the search tree, the associated subproblem
is split into two new subproblems (the children) by
choosing a proper subset of nodes S and adding the
constraints Y (x.:e€6(S)) <2 and > (x,:e € d(S)) >4,
respectively. The sets S are chosen from a collection
of sets that are maintained as part of a pool of cutting
planes generated during the branch-and-cut run.

For the Whizzkids'96 challenge problem, we spec-
ify an upper bound of 4,729 in Concorde’s initializa-
tion; whenever a subproblem attains a lower bound
greater than 4,728 it is pruned from the search tree.
Since 4,728 is equal to 4 times 1,182, any larger LP
bound would imply that there is no collection of 4
routes with maximum length less than 1,183 (recall
that all distances are integer valued).

Starting with the root LP at value 4,604.91, we need
to push the bound of each leaf of the search tree above
the 4,728 cut off value. In Figure 6 we display the
branch-and-cut tree, up to depth 6. The vertical posi-
tion of a search node corresponds to the value of its
LP relaxation, indicated by the scale on the left-hand-
side of the figure. The search tree is promising in that
most branches force the bounds of the two children to
improve significantly, but it is clear that a very large
tree will be needed to establish the 4,729 target bound.

4.1. Number of Active Nodes
During a branch-and-cut run, an important statistic
is the number of active search nodes in the tree, that

Table 4 Computation of the Root LP

Total Time

Run LowerBound LPValue Time (Seconds) (Seconds)
1 1,151 4600.89 715.6 715.6
2 1,152 4604.31 144.3 859.9
3 1152 4604.91 382.5 1242 4

INFORMS JournaL on CompuTING/ Vol. 14, No. 2, Spring 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Selution of a Min-Max Vehicle Routing Problem

4605 i
4610 <

4615 X a
4620 R x .
4625 - ~ 4] Oy

4630 . , I i 1

4635 J é .
4640 1
4645 o .
4650 ! - B
4655 . 2 ee

4660
4665 1 . 1
4670 .

4675 . ! .
4680 .
4685

4690 —

Figure 6 Search Tree at Depth 6

is, the number of nodes that have not been pruned by
the cut off value. In the Whizzkids'96 run, this active
node count grew in a very predictable fashion when
compared to the increase in the overall lower bound
provided by the search tree, that is, the minimum LP
value over all leafs of the tree. We plot this growth in
Figure 7, using a log scale for the number of active
nodes.

The plot indicates that the number of active nodes
is roughly doubling for every increase of 5 in

100000

|

10000

1000 P4 =

4640 4650 4660 4670 4680 4690 4700

Figure 7 Number of Active Search Nodes versus Lower Bound

the lower bound. This rate of growth would over-
whelm the computing resources if it were allowed
to continue much further (in particular the memory
required to store the tree), so this initial phase of the
solution process was terminated with 183,150 active
nodes and a 4,690.6 bound.

Another important reason for terminating the
branch-and-cut search at this stage was the observa-
tion that most of the improvement in the LP values
came from branching as opposed to using cutting
planes. It seemed desirable to spend less time per
node in generating cutting planes; the evidence for
this is discussed later on in Table 5.

The total running time used in the aborted branch-
and-cut search was 7,000,027 seconds. The run was
carried out in parallel on a cluster of Compaq ES40
servers having a total of 32 Alpha EV6 (500 MHz) pro-
cessors; the 7 million seconds is the sum of the run-
ning times on the individual processors. Concorde’s
parallel implementation uses a master-worker frame-
work, with communication carried out via NFS sock-
ets. The wall-clock time for the run was roughly 7
days, so we achieved a utilization of factor of only
39%. The reason for this poor performance is twofold.
Firstly, the computing cluster is used for several other
research projects and our work often did not obtain
a full share of each available processor. Secondly, the
Concorde framework is not designed for branch-and-
cut trees with a very large number of nodes and
towards the end of the run the master was not able
to process the work requests quickly enough to keep
all machines busy (upon termination, we were only
able to utilize approximately 50% of the available
resources).

4.2. Distributed Depth-First-Search

To continue the Whizzkids’96 run, we modified
Concorde’s strategy for processing the branch-and-
cut tree. With a large pool of active nodes, we
decided to switch from a best-bound search to a dis-
tributed depth-first-search (DFS), where active nodes
are assigned to individual processors and each pro-
cessor runs a DFS search with its assigned node as the
root. In this approach, a processor will not report to
the master the intermediate status of the subtree that

INFORMS JournaL oN CoMpPUTING/ Vol. 14, No. 2, Spring 2002 139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Sclution of a Min-Max Velicle Routing Problem

is grown but only report either that the run termi-
nated with a proof that there is no solution to the sub-
problem, or that an improved solution (one of value
less than 1,183) has indeed been found. In the first
case, the subproblem is removed from the active node
list. In the second case, the entire Whizzkids'96 com-
putation is terminated, since we will need to run the
problem again using the new bound.

Distributed DFS has several advantages over a best-
bound search, even if we had available a platform
that could handle best-bound on very large search
trees.

o With distributed DFS, the amount of computa-
tion expended at each node of the individual DFS
trees can be varied according to the estimated diffi-
culty of the assigned subproblem. This can be accom-
plished by initially pursuing an aggressive approach,
using very limited cutting-plane searches before the
branching steps. If we fail to solve the subproblem in
this way, we can restart the DFS from scratch, using
a less aggressive approach.

e Very little communication is necessary between
the master and the workers, since assigned tasks are
lengthy and they can be carried out with no interme-
diate information sent in either direction. This permits
the search to be run on a low-bandwidth network, in
our case utilizing a collection of machines at Rice Uni-
versity, Princeton University, AT&T Labs, and at the
University of Bonn.

* The control structure of the distributed DFS per-
mits a simple recovery mechanism when workers fail
(for example, when the host machine is turned off
by a user), since the active nodes do not need to be
explored in any particular order. This feature facili-
tates the part-time use of desktop workstations during
the computation.

The main disadvantage of distributed DFS is that
we may explore a larger tree than necessary, if there
exists a significantly better solution to the problem
instance. In the Whizzkids'96 case, we viewed this as
an unlikely event given the great effort that went into
the heuristic computations during the challenge.

A second disadvantage of distributed DFS is that
the cutting planes found during the individual DFS
runs are not communicated to the master for re-use
in runs on other processors. We attempted to limit the

140

impact of this lack of communication by seeding each
processor with a large pool of cutting planes that were
accumulated during the initial best-bound run.

4.3. Implementing Distributed DFS

We use a very simple framework to implement the
distributed DFS. The data for the 183,150 active nodes
is located at the site of the master, and the data for
an individual search node is sent to a worker upon
request. The master keeps a circular list of the active
nodes, and when it receives a request for work it
returns the next node on the list. If a worker reports
that the processing on a node is complete, then the
master removes the node from the list. If a worker
aborts the run or if the worker fails, then the search
node remains active and it will be sent to another
worker on the next pass through the circular list. Dur-
ing each pass, we increase the amount of effort the
workers are permitted to expend during their branch-
and-cut search; this is controlled by a limit on the total
time the worker can use on the subproblem, by the
level of cutting planes the worker should employ, and
by several parameters that control the time spent in
the selection of the branching subtours. In the initial
pass through the active nodes, we permitted 10,000
seconds for the solution of the subproblems; this was
gradually increased to allow 100,000 seconds in the
final pass.

4.4. Solving Subproblems

To determine a suitable combination of cutting planes
to use at nodes of the depth-first-search runs, we
selected 10 search nodes from the list of 183,150 to
use as a test bed. One of the important components
of the solution procedure is the level of k-path cuts
that are employed, determined both by k and by the
number of Karger iterations permitted in selecting

Table 5 Ten Subproblems
Karger Iterations k-path Cuts Search Nodes Time (seconds)
10 k=23 698.9 719.2
500 k=23 439.6 1178.6
3477 1

5,000 k=234 368.2

INFORMS JourNAL oN CoMPUTING/ Vol. 14, No. 2, Spring 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Solution of a Min-Max Vehicle Routing Problem

the candidate sets S. In Table 5 we report the aver-
age results over the 10 test problems, using 3 differ-
ent choices for k-paths. The number of search nodes
in the trees grows as we decrease the level of cuts
from our default of 5,000 Karger iterations and k =
2,3, 4, but the total solution time drops significantly.
Therefore, in the initial pass we used only 10 itera-
tions of Karger’s algorithm and we did not use 4-
path cuts (in later passes we returned to our default
settings).

4.5. The Whizzkids’96 Run

The final DFS run on the Whizzkids’96 instance took
a total of 10 days, running on a geographically-
distributed network of 188 processors. The number,
type, and location of the components of the net-
work are given in Table 6. The sum of processing
times, scaled to a 500 MHz Alpha EV6 processor, was
approximately 72 million seconds, giving a combined
time of 79 million seconds for the best-bound and DFS
phases of the computation. The scaling factors for the
various machine types are based on the average num-
ber of internal DFS search nodes that were processed
per second; these figures are given in Table 7. The
combined search tree used a total of 98,331,581 nodes.
The run did not produce a new solution, and there-
fore the run established that 1,183 is the optimal value
for the Whizzkids'96 problem,

Table 6 The Computer Network
Number Machine Location Subproblems
40 Compaq Alpha EV6, 500 MHz Rice 61,723
59 Intel Pentium I, 450-600 MHz Princeton 30,427
30 AMD Athlon, 800 MHz Rice 30,032
12 Compaq Alpha EV67, 667 MHz Rice 29,822
12 Compaq Alpha EV5, 400 MHz Rice 9,036
4 Compaq Alpha EV6, 500 MHz AT&T 6, 367
14 SGI MIPS R10k, 196 MHz AT&T 6,308
6 Intel Pentium 11, 933 MHz Bonn 9,212
5 Intel Pentium Pro, 200 MHz Rice 1,670
2 Intel Pentium 11, 300 MHz Rice 923
1 Intel Pentium 11, 600 MHz Rice 651
1 Sun 300 MHz UltraSparc il Rice 513
2 Sun 147 MHz UltraSparc | Rice 466

INFORMS JourNaL oN CoMmPUTING/ Vol. 14, No. 2, Spring 2002

Table 7 Relative Speed of Machines
Machine Nodes per Second
Compaq Alpha EV67, 667 MHz 1.85
Compaq Alpha EV6, 500 MHz 1.36
Intel Pentium 111, 933 MHz 0.95
AMD Athlon, 800 MHz 0.94
Intel Pentium 111, 600 MHz 0.61
Compagq Alpha EV5, 400 MHz 0.58
SGI MIPS R10k, 196 MHz 0.43
Sun 300 MHz UltraSparc || 0.42
Intel Pentium 11, 300 MHz 0.38
Intel Pentium Pro, 200 MHz 0.26
Sun 147 MHz UltraSparc | 0.21

5. Average Delivery Time

In the introduction we described the secondary objec-
tive function adopted in the Whizzkids'96 competi-
tion, namely, to minimize the average delivery time to
each of the customers. This tie-breaking rule appears
to be a difficult objective to handle using a TSP relax-
ation, since we cannot easily capture the distance
from the depot to a given customer. We therefore
decided to simply enumerate all 1,183-valued solu-
tions, and select the one with the optimal value of the
secondary objective. This approach can be adapted to
any problem class where the set of optimal solutions
is tightly enough constrained to make a complete enu-
meration feasible.

To begin the enumeration run, we set the feasibility
bound B to 1,183 and we initialize Concorde with the
bound 4,733 (that is, 1 greater than 4 times 1,183).
We also need to supply Concorde with a branching
rule to handle the case where the LP solution is a 0/1
vector that corresponds to a solution of total length
less than 4,733, since the standard code would accept
this as a new integer solution and prune the tree after
adjusting the 4,733 bound.

In handling 0/1 branching, we restrict ourselves to
selecting a branching edge ¢, and creating two new
subproblems by adding the constraints x, =0 and
x, =1 (this is a special case of the subtour branch-
ing used in Concorde). If we choose a branching edge
corresponding to a t-valued variable (where t =0 or
t=1), then it is likely that the subproblem obtained
by adding x, =1 —t will be pruned due to an increase
in the LP bound, while the subproblem obtained by

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Solution of @ Min-Max Vehicle Routing Problem

adding v, =t will need to be explored further. To limit
the depth of the tree, it is therefore much better to
choose a branching edge corresponding to a 1-valued
variable rather than a 0-valued variable, since there
is a much lower limit on the number of variables
that can be forced to 1 before we violate the bound.
We carry this argument further, and branch on an
edge ¢ that corresponds to a l-valued variable that
lies on the longest path in the solution. The idea is
that if we end up fixing all variables to 1 along a path
of length greater than 1,183, then we can prune the
search since no 1,183-valued solution can occur in the
subtree. (Notice that it may not be possible to elimi-
nate such paths with the feasibility cutting planes (3),
since after branching the path may net be a shortest
route through its set of customers.)

With these changes, a second run of the Whizz-
kids’96 problem established that 558.81667 is the min-
imum delivery time over all 1,183-valued solutions.
Remarkably, this solution was also obtained by the
winning team of Hemel et al. (1996); it is illustrated
in Figure 1.

The second run of the Whizzkids'9% problem took
154,020,343 search nodes (so roughly 50% more than
the original run); we switched from best-bound to dis-
tributed DFS when we reached 50,000 active search
nodes. The cumulative time was roughly 62 million
seconds, scaled to a 500 MHz Alpha EV6 (the time per
search node is smaller due to the fast branching rule
that was used when enumerating integer solutions to
the LP).

It would be interesting to know the number of
distinct 1,183-valued solutions of the Whizzkids96
instance, but we elected not to spend the additional
computation time that would be needed to obtain this
statistic.

6. Conclusions

Distributed branch-and-bound (or cut) has long been
discussed as a computational tool in discrete opti-
mization. The solution of the Whizzkids'96 problem
follows recent successes in this area, including the
solution of the nug30 quadratic assignment prob-
lem by Anstreicher et al. (2002) and the solution
of the d15112 TSP by Applegate et al. (2001). An

142

immediate benefit of distributed computing is that it
offers researchers the capability to explore algorithmic
ideas that are beyond the scope of currently avail-
able sequential hardware (but perhaps not out of the
reach of future computing devices). Ongoing work
by Eckstein et al. (2001), Ralphs (2001), and others is
aimed at increasing the scope of applications of dis-
tributed computing by providing general frameworks
that can be adapted to a wide variety of discrete opti-
mization problems. The Whizzkids'96 work indicates
that distributed DFS may be a useful tool in these
general computing platforms.

Although the Whizzkids’96 instance was solved,
the size of the search tree (nearly 100 million nodes)
makes it frightening to consider the solution of much
larger examples in newspaper routing. This is a
common feature of vehicle routing problems outside
of the domain of the TSP, for example, in capac-
itated vehicle routing there are currently unsolved
test instances having as few as 50 nodes (see Ralphs
et al. 2001). It is not clear how much of the TSP
success can carry over to the more general classes
of problems, but it is certainly the case that further
work on cutting-plane separation routines in vehicle
routing can have an immediate impact on solution
methods. Promising recent work in this direction has
been carried out by Augerat et al. (1998), Blasum and
Hochstdttler (2000), Ralphs et al. (2001), and others.

Acknowledgments

We would like to thank Cor Hurkens and Jan Karel Lenstra for very
helpful discussions on solution techniques for the Whizzkids'96
problem. We would also like to thank Compaq and AMD for their
generous support of high-performance computing at Rice Univer-
sity, where this work was begun. William Cook was supported
by ONR Grant N00014-01-1-0058 and by Texas ATP Grant 003604~
0034-1999.

References

Anstreicher, K., N. Brixius, . P. Goux, J. Linderoth. 2002. Solving
large quadratic assignment problems on computational grids.
Mathematical Progranming 91 563-588.

Applegate, D., R. Bixby, V. Chvatal, W. Cook. 1998. On the solution
of traveling salesman problems. Documenta Mathematica Journal
der Deutschen Mathematiker-Vereinigung. International Congress of
Mathematicians, 645-636.

Applegate, D., R. Bixby, V. Chvatal, W. Cook. 2001. TSP cuts which
do not conform to the template paradigm. M. Jinger, D. Nad-
def, eds. Computational Combinatorial Optimization. Springer,
Heidelberg, Germany. Forthcoming.

INFORMS JourxaL oN Comruting/Vol. 14, No. 2, Spring 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLEGATE, COOK, DASH, AND ROHE
Sclution of a Min-Max Vehicle Routing Problemt

Aarts, E. H. L., C .A.]. Hurkens, J. K. Lenstra. 2000. Whizzkids:
twa exercises in computational discrete optimization. M. Ball,
J. C. R. Hunt, eds. ICIAM 99: Proceedings of the Fourth Interna-
tional Congress on Industrial & Applied Mathematics, Edinburgl.
Oxford University Press, Oxford, U.K. 141-152.

Augerat, P, J. M. Belenguer, E. Benavent, A. Corberan, D. Naddef.
1998. Separating capacity constraints in the CVRP using
tabu search. European Journal of Qperaticnal Research 106
546-557.

Ball, M. O.,, T. L. Magnanti, C. L. Monma, (. L. Nembhauser,
eds. 1995. Network Routing. Elsevier Science. Amsterdam, The
Netherlands.

Blasum, U., W. Hochstittler. 2000. Application of the branch and
cut method to the vehicle routing problem. Technical Report
zpr2000-386, Zentrum fiir Angewandte Informatik Kéln, Kéln,
Germany.

Clochard, J-M., D. Naddef. 1993. Using path inequalities in a branch
and cut code for the symmetric traveling salesman problem.
G. Rinaldi, L. Wolsey, eds. Third IPCO Conference. CIACO,
Louvain-la-Neuve, Belgium. 291-311.

Cook, W., J. L. Rich. 1999. A parallel cutting-plane algorithm for the
vehicle routing problem with time windows Technical Report
TR99-04, Computational and Applied Mathematics, Rice Uni-
versity, Houston, TX.

Dantzig, G., R. Fulkerson, S. Johnson. 1954. Solution of a large-scale
traveling salesman problem. Operations Rescorch 2 393—410.
Dantzig, G. B., J. H. Ramser. 1959. The truck dispatching problem.

Management Science 6 80-91.

Dash, S. 2000. http://www.caam.rice.edu/~sanjeebd/software/
karger.tar.gz.

Golden, B. L., A. A. Assad, eds. 1988. Vehicle Routing: Methods and
Studies. Elsevier Science, Amsterdam, The Netherlands.

Eckstein, J., C. A. Phillips, W. E. Hart. 2001. PICO: an object-oriented
framework for parallel branch and bound. D. Butnariu,
Y. Censor, S. Reich, eds. Inherently Paralel Algorithms in
Feasibility and Optinuzation and Their Applications. Studies in
Computational Mathematics 8. Elsevier Science, Amsterdam,
The Netherlands. 219-265.

Held, M., R. M. Karp. 1971. The traveling salesman problem and
minimum spanning trees. Part IL. Mathematical Programming 1
6-25.

Hemel, T., S. van Erk, P. Jenniskens. 1996. The Manhattan Project.
http://www.win.tue.nl/whizzkids/1996/ tsp.html.

Hurkens, C. 1997. Presented at the 1997 INFORM> National Mecting

in Dallas, Texas, in a tutorial lecture by J. K. Lenstra, Session
SE28.

Jinger, M., G. Reinelt, G. Rinaldi. 1995. The traveling salesman
problem. M. O. Ball, T. Magnanti, C. L. Monma, G. Nemhauser,
eds. Handbooks in Operations Research and Management Sci-
ence, Volume 7. Elsevier Science, Amsterdam, The Netherlands.
225-330.

Karger, D. R. 1993. Global min-cuts in .2.\¢ and other ramifi-
cations of a simple mincut algorithm. Proceedings of the 4th
Annual ACM-SIAM Symposium on Discrete Algorithms. ACM-
SIAM, Philadelphia, Pennsylvania. 84-93.

Karger, D. R, C. Stein. 1993. An (3(113) algorithm for minimum
cuts. Proceedings of the 25th ACM Symposiunt on the Theory of
Computing. ACM Press, New York, 757-765.

Kohl, N. J., J. Desrosiers, O. B. G. Madsen, M. M. Solomon, F.
Soumis. 1997. k-Path cuts for the vehicle routing problem with
time windows. Technical Report IMM-REP-1997-12, Institute
of Mathematical Modelling, Technical University of Denmark,
Lyngby, Denmark.

Laporte, G., Y. Nobert, M. Desrochers. 1985. Optimal routing
under capacity and distance restrictions. Operations Research 33
1050-1073.

Lawler, E. L, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys,
eds. 1985. The Traveling Salesman Problent. Wiley, Chichester,
UK.

Martin, O., S. W. Otto, E. W. Felten. 1992. Large-step Markov chains
for the TSP incorporating local search heuristics. Operations
Research Letters 11 219-224.

Naddef, D. 2001. Polyhedral theory and branch-and-cut algorithms
for the symmetric TSP. P. Toth, D. Vigo, eds. The Vehicle Routing
Problem. SIAM, Philadelphia, PA. Forthcoming.

Nemhauser, G. L., L. A. Wolsey. 1988. Integer and Combinatorial Opti-
mization. Wiley, New York.

Ralphs T. K. 2001. Branch cut and price software: SYMPHONY.
http:/ /www.branchandcut.org/SYMPHONY/.

Ralphs, T. K., L. Kopman, W. R. Pulleyblank, L. E. Trotter Jr. 2001.
On the capacitated vehicle routing problem. Mathematical Pro-
grammiing. Forthcoming.

Toth, P, D. Vigo, eds. 2001. The Vehicle Routing Problem. SIAM,
Philadelphia, PA.

Whizzkids 96. 1996. http://www.win.tue.nl/whizzkids/1996/
index.htmi.

Wolsey, L. A. 1998. Integer Programming. Wiley, New York.

Accepted by Jan Karel Lenstra; received August 2001: October 2001, accepted November 2001.

INFORMS JournaL oN Comruting/ Vol. 14, No. 2, Spring 2002

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

