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Abstract

In the vehicle routing problem with time windows a number of identical vehicles
must be routed to and from a depot to cover a given set of customers, each of whom has
a specified time interval indicating when they are available for service. Each customer
also has a known demand, and a vehicle may only serve the customers on a route if the
total demand does not exceed the capacity of the vehicle. The most effective solution
method proposed to date for this problem is due to Kohl, Desrosiers, Madsen, Solomon,
and Soumis. Their algorithm uses a cutting-plane approach followed by a branch-
and-bound search with column generation, where the columns of the LP relaxation
represent routes of individual vehicles. We describe a new implementation of their
method, using Karger’s randomized minimum-cut algorithm to generate cutting planes.
The standard benchmark in this area is a set of 87 problem instances generated in
1984 by M. Solomon; making using of parallel processing in both the cutting-plane
generation and the branch-and-bound search, we solve 80 of these examples, including
10 that were previously unsolved in the literature. Our parallel implementation utilizes
the TreadMarks distributed shared memory system.

A common element in many applications of vehicle routing is the notion of a time-window
to specify that a customer’s service must begin within a fixed period. These windows may
arise, for example, from commitments made to customers or from the limited availability of
certain resources. Applied case studies involving time-constrained routing can be found in
Caseau and Koppstein [9], Cheng and Rich [8], Knight and Hoffer [24], Pullen and Webb [30],
and elsewhere. Research efforts in this area have focused on a variety of simplified models
that can be used as building blocks for the creation of tools to solve real-world instances.
A survey of this work can be found in Desrosiers, Dumas, Solomon, and Soumis [15].

In our study we treat the vehicle routing problem with time windows (VRPTW) model
that was proposed by Solomon [32]. In this model a number of identical vehicles must be
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routed to and from a depot to serve a given set of customers. There are known travel
times and travel costs between each pair of customers and between the customers and the
depot. Each of the customers has a known demand for service along with a time interval
specifying when its service can begin. The sum of the demands along each route must not
exceed the capacity of a vehicle and the vehicles must arrive at the customers within the
specified time windows. The objective is to find a solution that covers each of the customers
and has minimum total travel cost. This model is studied in Bramel and Simchi-Levi [7],
Desrochers, Desrosiers and Solomon [13], Halse [20], Kohl [25], Kohl, Desrosiers, Madsen,
Solomon, and Soumis [26], Kohl and Madsen [27], Kolen, Rinnooy Kan, and Trienekens [28],
Savelsbergh [31], and elsewhere.

The VRPTW provides a good starting point for modeling many applied problems, but
the model itself can be a very difficult one to solve. Indeed, in 1984 Solomon [33] created a
set of 87 test instances (the largest having 100 customers), but despite much attention, 17
of these instances have remained unsolved in the research literature. The main contribution
of our paper is a new implementation of a linear programming (LP) based algorithm that
succeeded in finding the optimal solution for 10 out of the 17 unsolved Solomon instances.
Our approach is a refinement of the algorithm of Kohl, Desrosiers, Madsen, Solomon, and
Soumis [26]. The new components consist of an improved search engine for locating k-path
inequalities (including those with k£ > 2) and a parallel implementation of both the cutting-
plane generator and the branch-and-bound search. Our cutting-plane procedure is based
on Karger’s [22] randomized algorithm for finding minimum cuts in graphs.

The paper is organized as follows. In Section 1 we give a formal definition of the VRPTW
and describe the set-partioning formulation that is the basis of the most successful attacks
to date on the problem. In Section 2 we describe the k-path inequalities used by Kohl,
Desrosiers, Madsen, Solomon, and Soumis [26] and we present our procedure for finding
violated cutting planes from this class. Some details of our implementation are given in
Section 3 and our parallel code, based on the TreadMarks [1] distributed shared memory
system, is described in Section 4. Finally, in Section 5 we report computational results for
our algorithm on the Solomon test instances and in Section 6 we make some concluding
remarks.

1 Set-Partitioning Formulation

The VRPTW can be naturally formulated in terms of a directed graph G = (V, A), having
node set V and arc set A. The customers, C, are represented by nodes labeled 1 through
n, and the depot is represented twice, by node 0 and node n + 1. The arcs A indicate the
potential route segments between the customers and the depot. Each arc ij € A has an
associated travel cost c;; and a travel time #;;. Node 0 is incident to outgoing arcs only and
node n + 1 is only incident to incoming arcs. The route taken by a vehicle corresponds to
a directed path in G that originates at node 0 and terminates at node n + 1, with service
provided to a specified subset of the customers visited along the route. Fach vehicle has



capacity ¢, and there is a demand d; for each customer ¢ € C. The sum of the demands of
the customers served by a given route cannot exceed gq.

The service at customer ¢ must begin within a time window [a;, b;], where a; is the
earliest time at which service may begin and b; is the latest time at which service may
begin. A vehicle is permitted to arrive to serve customer ¢ prior to the start of ¢’s time
window, but it must then wait until time a; before service may begin. For the depot,
all vehicles must leave node 0 within the time window [ag, bp] and return within the time
window [@p41,bp+1]. Given a fleet of vehicles T, the objective is to minimize the total travel
cost for a set of at most |7 | routes that meet the service demands of each customer in C.
Since the model does not penalize routes based on total time, we may assume without loss
of generality that ag = by = ap1 = 0.

The data is assumed to have certain characteristics. The constants ¢, d;, ¢;;,a;, and b;
are nonnegative integers, and the travel times #;; are positive integers. We also require
that the triangle inequality holds for both the travel costs and travel times, that is for any
1,7,k € V we have c;; + cji, > ¢ and t;; + 1, > t;;. These restrictions are not too harsh—
they are usually satisfied in applied settings. They do, however, allow us to focus our
attention on special types of routes. Firstly, we can now require that the routes correspond
to simple directed paths from node 0 to node n + 1, that is, we have no repeated nodes.
Secondly, we can require that if a route visits a customer, then it serves that customer.
These requirements are useful, for example, in modeling customer service times, since the
travel time from ¢ to j can include the service time at customer ¢, as well as a measure of
the time it takes to travel the distance between the locations.

In this setting we can describe the set-partioning formulation of the VRPTW proposed
by Desrochers, Desrosiers, and Solomon [13]. Let R denote the set of feasible routes (with
no repeated nodes) for the VRPTW, and for each route r € R, let B, be equal to 1 if r
visits customer ¢, and 0 otherwise. The cost of a route, ¢, is defined to be the sum of the
costs of the arcs in the route. Let u = |T|. The VRPTW can be formulated as

Minimize e CrYr (1)
subject to Yrer Biryr =1, forall i€C

Z'I‘E"é Yr <
y, > 0 and integer, for all r € R.

In this integer programming (IP) model, the variables y, that are set to 1 correspond to
the routes of the vehicles in the solution.

We modify the basic formulation (1) in two ways. First, we add a simple lower bound
on the number of vehicles required to provide service to the set of customers. The bound is
I =[Y;cc di/q], where [«] is the smallest integer greater than or equal to . This bound is
trivially satisfied by any integer solution, but it may improve the value of the LP relaxation.
Second, we expand R to include non-simple directed paths in G from node 0 to node n+1,
but we do not include any path that contains a 2-cycle (that is, a sequence ¢ — j — 4). This



expanded set of routes, denoted by R, weakens somewhat the LP relaxation (non-simple
routes cannot appear in the integer programming solution, but they may appear in an LP
solution), but it makes the LP easier to handle. To describe the modified formulation, we
generalize the definition of §; to allow it to be a constant equal to the number of times
route r visits customer ¢. The IP problem can then be written as

Minimize > reRr Cryr (2)
subject to Yorer Biryr =1, forall i €C

! < E’I"ER Yr <u
yr > 0 and integer, for all r € R.

In the LP relaxation of (2), if m; is the dual variable associated with the constraint
requiring that customer ¢ € C is visited and 7y is the dual variable associated with the
bounds on the number of vehicles, then the reduced cost of a variable y, is

&= > B
iecU{0}

This value corresponds to the cost of the route r using the modified arc costs ¢;; = ¢;j —
m;. Therefore, given a dual solution 7 we can determine if there exists a variable in (2)
having negative reduced cost by computing the minimum cost member of R using the ¢;;
arc costs. This problem is a variation of the shortest path problem with time windows
and capacity constraints that is treated in Desrochers and Soumis [14], where a pseudo-
polynomial-time dynamic-programming algorithm is presented. This algorithm is discussed
further in Desrochers, Desrosiers, and Solomon [13] and Kohl [25], including the use of the
Houck, Picard, Queyranne, and Vemuganti [21] method for eliminating the 2-cycles in the
solutions.

Desrochers, Desrosiers, and Solomon [13] utilize the Desrochers-Soumis algorithm in an
efficient column-generation procedure for solving the LP relaxation of (2). The approach
is to start with a selected subset of routes, and repeatedly use the simplex algorithm to
solve the LP and use the Desrochers-Soumis algorithm to obtain new routes to add to
the formulation. For a general discussion of column generation we refer the reader to
Wolsey [34].

We adopt the Desrochers, Desrosiers, and Solomon procedure in our study. The effi-
ciency of the Desrochers-Soumis algorithm in the column-generation process is the reason
we use the expanded set of routes R in (2); no such pseudo-polynomial algorithm is likely to
be found for optimizing over the simple routes R since Kohl [25] has shown that optimizing
over R is N"P-hard in the strong sense.

2 Cutting Planes

The LP relaxation of (2) provides a effective means for bounding the optimal value of the
VRPTW. Indeed, in 34 of the 87 Solomon test instances, the value of the LP coincides with
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the value of the VRPTW.! Moreover, for the remaining 46 instances with known optimal
solutions (including those solved for the first time in our tests), the value of the LP is
on average only 2.8% below the value of the VRPTW. The strength of this bound allows
Desrochers, Desrosiers, and Solomon [13] to solve 50 of the 87 instances by incorporating
the LP bound in a branch-and-bound algorithm for the VRPTW, where at each node of
the search tree the column-generation algorithm is used to reoptimize after the branching
step.

Taking advantage of recent improvements in LP solvers and improvements in computing
hardware, it is possible to push the Desrochers, Desrosiers, and Solomon branch-and-bound
algorithm a bit further as we indicate in Table 1. It is clear, however, that further improve-

Time Limit (300Mhz Pentium II) | Number Solved
10 Seconds 41 out of 87
100 Seconds 54 out of 87
1,000 Seconds 62 out of 87
10,000 Seconds 64 out of 87

Table 1: Instances Solved with Branch-and-Bound

ments in computing power alone will not significantly extend the range of instances that
can be solved. It is therefore natural to consider the use of cutting planes to tighten the
LP relaxation, with the of aim of reducing the size of the bound-and-bound search needed
to reach an optimal solution. This approach was proposed and tested by Kohl, Desrosiers,
Madsen, Solomon, and Soumis [26]; we extend their work in our study.

In a cutting-plane approach we add inequalities to (2) that are valid for all integer
solutions, but are not satisfied by the optimal LP solution. The inequalities we use as
cutting planes have a very simple form: they state that a given set of customers S must be
visited by at least k vehicles, where k is an integer that is no larger than k(S), the least
number of vehicles needed to serve each customer in S. These inequalities are a natural
generalization of the subtour cuts introduced for the traveling salesman problem (TSP) by
Dantzig, Fulkerson, and Johnson [12]; they were studied in the context of vehicle routing by
Laporte, Nobert, and Desrochers [29] and dubbed k-path cuts by Kohl, Desrosiers, Madsen,
Solomon, and Soumis [26] in their work on the VRPTW.

Given a nonempty set S C C, let §(S) denote the set of outgoing arcs from S, that is
6(S)={ije A:i€ S,j ¢ S}. Forarouter € R, let u° denote the number of arcs r has
in §(S), counting multiplicities when an arc appears more than once. With this notation, a
k-path inequality in the set-partitioning formulation can be written as

> owye >k
recR

for an appropriate choice of k.

'This does not agree with the count of 27 instances reported in Desrochers, Desrosiers, and Solomon [13].
The difference is mostly likely due to the manner in which the Euclidean arc costs are computed.



Subtour Cuts

For any nonempty set S, we can clearly set £ = 1 since S must be visited by at least one
vehicle. We refer to these 1-path cuts as subtour cuts, since they are a directed version
of the inequalities used by Dantzig, Fulkerson, and Johnson. Subtour cuts can be used to
correct the obvious flaws that appear in the LP solutions due to the fact that we permit
non-simple directed paths in our model. An important point is that violated inequalities
from this class can be detected efficiently using techniques borrowed from the TSP. To this
end, for each arc ij € A and each route r € R, let 7;; denote the number of times ij appears
in r. For a given LP solution (y, : r € R), let

Tij = Y Viivr (3)

reR

for each arc ij € A. A subtour inequality is violated if an only if

Z Tij < 1.
ijES(S)
Therefore, we can determine if a violated subtour cut exists by using maximum flow tech-
niques in the directed graph G, where we use the z;; values as arc capacities. In our
implementation, we use the maximum-flow code of Anderson and Setubal [2] for this pur-
pose.

2-Path Cuts

Now consider the class of inequalities having £k = 2. These inequalities, together with
subtour cuts, were used in the computational study of Kohl, Desrosiers, Madsen, Solomon,
and Soumis [26]. Given a solution y to the LP and the corresponding z-vector described in
(3), the set S C C determines a 2-path cut if we have k(S) > 2 while 2ijess) Tij < 2.

To determine if k£(S) > 2 (or equivalently, k£(S) > 1), we apply the same 2-step approach
used in [26]. The first step is to check if there is sufficient vehicle capacity on a single vehicle
to visit all of the customers in S. If not, then clearly more than one vehicle is needed and it
becomes unnecessary to consider step 2. The second step is more complicated, as it requires
determining if there exists a feasible route that leaves the depot, visits every customer in .S
once, and returns to the depot. This is precisely the traveling salesman problem with time
windows (TSPTW) feasibility problem. The TSPTW is studied in Ascheuer, Fischetti, and
Grotschel [3], Baker [4], Balas and Simonetti [5], Christofides, Mingozzi, and Toth [10], and
Dumas, Desrosiers, Gélinas, and Solomon [17]. Despite the fact that the feasibility problem
is N'P-hard, so long as the size of S is relatively small, the problem can be solve efficiently
by dynamic programming using the method proposed by Dumas, Desrosiers, Gélinas, and
Solomon [17]. If it is concluded that the TSPTW is infeasible for a set S, then clearly more
than one vehicle is required, implying that the corresponding 2-path inequality is valid.

To identify sets S C C as candidates for 2-path cuts, Kohl, Desrosiers, Madsen, Solomon,
and Soumis [26] use a greedy heuristic to build maximal sets having 3 ;;c59) i < 2.



These authors also describe (but do not test) an exact separation algorithm that involves
building the family of all minimal sets that require more than one vehicle, and then checking
whether or not the corresponding 2-path inequalities are violated. In the computational
tests reported in [26], the heuristic method was chosen due to the anticipated large running
time for the exact procedure. We propose below a natural alternative to the algorithms of
[26].

Consider the undirected graph G' = (V', E) obtained from G by identifying the two
copies of the depot node and by identifying each pair of directed arcs ij and ji in A. For
each edge e = (i,j) € E, let we = x;; + xj;, where z is the vector defined in (3). For a set
of nodes R C V', let

de'(R) ={e € E | e has an end in R, and an end in V' \ R}.

The total weight of a set of edges F' C E is denoted by w(F'). Since the z-vector satisfies
the condition that the flow into a set of customers equals the flow out of the set, then clearly
w(dgr (R)) is exactly double the value of 3 ;;c5g) %ij. Thus, identifying a set of customers
S such that 3=;;c5(5) Tij < 2 amounts to finding a set in G' satisfying w(dg(5)) < 4.

If the graph G’ is built from an z-vector corresponding to an LP solution that does not
contain any violated subtour inequalities, then the minimum value of any cut in the graph
is 2. Thus, our goal is to find every set S of customers in the graph G’ such that the value of
the cut is less than double the value of the minimum cut. The random contraction algorithm
of Karger [22] can be used to accomplish this task. In an implementation-oriented paper by
Karger and Stein [23], the authors prove that Karger’s algorithm on an undirected graph
with n nodes finds with high probability all cuts with weight within a multiplicative factor
a of the minimum cut in O(n?**log®n) time. We use this algorithm with o = 2 to generate
the relevant sets S such that S C C,|S| > 1, and w(d¢(S)) < 4. For each generated set S
we check to determine if k(S) > 2, unless the set S contains another set that has already
been determined as valid.

Algorithm 1 2-path Separation Routine
(1) Build the undirected graph G' from the z-vector.

(2) Use Karger’s algorithm with o = 2 to find
F={S:S5CC,|S|>1,w(e(S)) < 4}.

(8) Sort the sets in T’ from smallest to largest.

(4) For each S € T, if S does not contain a known valid set S; € T' corresponding to a
2-path inequality and k(S) > 2 then add S to list of valid inequalities.

The implementation of Karger’s algorithm that is used in this work was written by



Sanjeeb Dash (Rice University). In our applications, running the random contraction algo-
rithm the necessary number of iterations to achieve the goal of probabilistically generating
all of the desired sets is too costly; we found that computationally, setting the number of
iterations at 3n? consistently worked well with our data.

Since Karger’s algorithm generates relevant sets in polynomial time, it is reasonable
to expect the overall separation routine to be relatively fast, so long as the TSP with
time windows feasibility problem (TSPTW) can be solved efficiently. The exact dynamic
programming approach to solving the TSPTW is capable of very quickly solving instances,
so long as the size of S is small (less than 10-15 nodes). It is not always necessary, though,
to solve the TSPTW with the exact algorithm, since we may first run a heuristic to see if
we can quickly find a feasible solution. In this work a very simple insertion heuristic is used
for this purpose. The use of the heuristic prior to the dynamic programming algorithm is
optional, but our tests indicate significant savings in terms of time are achieved by doing
S0.

k-Path Cuts

While the validity of the k-path inequality for & > 3 is clear, prior to this work, the
implementation of a separation routine for these inequalities appeared to be unreasonable.
However, by modifying the new 2-path cutting-plane approach outlined above, we have a
natural separation routine for k-path inequalities where k& > 3.

Clearly, Karger’s algorithm can be applied to generate the relevant sets S for any size
k. By setting o = k, sets S for which }’;;c55) %ij < k are found. Thus, the only other
modification of the cutting-plane algorithm must be to the routine for checking if k(S) > k.
We first check if £ — 1 vehicles have a total capacity large enough to handle the sum of
the demands. If so, then it must be determined if there exists a set of no more than
k — 1 routes which cover the set S. This is no longer a TSPTW-feasibility problem, but
rather a VRPTW-feasibility problem. In this smaller VRPTW instance, the objective is to
minimize the number of vehicles required, rather than the total distance traveled. Thus,
an optimization method for the VRPTW must be called from within the cutting-plane
procedure on a smaller instance of the VRPTW with a modified objective function. If
the problem is determined to be infeasible, or the minimum number of vehicles required is
greater than or equal to k, then the set corresponds to a valid k-path inequality.

One obvious choice for an optimization method for the smaller VRPTW is the set-
partitioning and column-generation method used to solve the initial problem. Since such
an approach may not always provide a fast solution to the smaller VRPTW, the separation
routine can be transformed into a heuristic by enforcing a limit on the amount of time spent
on solving any single smaller VRPTW. If a solution to the smaller instance is not determined
within such a time limit, then the set is discarded, and the next set is considered.

As in the 2-path case, the optimization method for solving the smaller VRPTW is only
necessary if a heuristic is unable to generate a feasible solution for the instance. Thus, the



Algorithm 2 k-Path Separation Routine
(1) Build the undirected graph G' from the x-vector.

(2) Use Karger’s algorithm with o = k to find
F={S:5CC,|S| > k,w(de(S)) < 2k}.

(8) Sort the sets in T' from smallest to largest.

(4) For each S €T, if S does not contain a known valid set S; € T' corresponding to a
valid k-path inequality and k(S) > k can be determined, then add S to the list of
valid inequalities.

heuristic TSPTW solution method is applied first, since a feasible solution to the TSPTW
clearly indicates that the corresponding k-path inequality where £ > 2 is not valid. This
will typically work well on the very small sets contained in I'. For a set S which cannot be
visited by a single vehicle, a heuristic for the VRPTW is needed. In our implementation,
we use two fast heuristics that are described in Solomon [33], namely the nearest-neighbor
algorithm and the “insertion-criterion (i)” heuristic. If either of these algorithms generates
a feasible solution to the smaller VRPTW with k£ — 1 or fewer vehicles, then k(S) < k and
the current set is not a valid k-path inequality. While testing the optimization method
for the smaller VRPTW, we found that computationally, solving the VRPTW instance
with the objective of minimizing the number of vehicles was far more time consuming than
using the objective of minimizing total distance traveled. Therefore, we optimized with the
latter objective first, as an additional heuristic before finally having to call the optimization
algorithm with the modified objective function to determine if the set actually yields a
k-path cut. Although not addressed in our work, these results indicate that it is likely that
the overall routine would improve with better heuristics and optimization methods for the
smaller VRPTW. To our knowledge, there has not been a focus on trying to solve small
VRPTW'’s. The k-path separation routine, though, provides motivation for future research
in this area.

3 Implementation Details

We have incorporated the k-path cut generator in a branch-and-bound algorithm for the
VRPTW. A few details are given below concerning the implementation of the algorithm.
The CPLEX callable library [11], version 5.0 is used to solve all of the linear programming
problems that arise. The primal simplex algorithm is used to solve the LPs within the
set partitioning and column-generation scheme, and the dual simplex algorithm is used to
re-optimize after adding cutting planes and before generating additional columns. As is the



standard in the vehicle routing literature, solutions that the LP solver claims to be optimal
are assumed to be optimal and are not verified with exact arithmetic.

At the start of our main procedure, we apply the time window reductions described
in Desrochers, Desrosiers, and Solomon [13]. These reductions serve to tighten the time
window at a node as much as possible based on the earliest and latest possible arrival and
departure times from all other nodes.

After this preprocessing, we begin the column-generation phase of the algorithm. We
require generated columns to have a reduced cost of less than —10™%; this value is sufficiently
large to work with the default settings of the LP solver. Even with this tolerance, however,
a large number of columns of can be generated in a given subproblem. To handle this, we
follow the implementation of Kohl, Desrosiers, Madsen, Solomon, and Soumis [26] and set
a limit of at most 20 columns on the number to be added from each subproblem solved.

The next phase of the algorithm is the cutting-plane generation. Qur code requires the
user to specify the maximum k (k > 0) for which k-path cutting planes are to be sought. If
k > 1, then the cutting strategy checks for subtour cuts first by calling the maximum-flow
algorithm. (We require that cutting planes be violated by at least 10~7 to be added to the
LP.) If no subtour cuts are found and k > 2, then the 2-path separation routine is called.
If no 2-path cuts are found and k£ > 3, then the 3-path separation routine is called, and
so on in this way until whatever value of k is specified by the user. The largest value of k
for which we present results is six. Some experiments applying a global cutting strategy at
nodes within the branching tree were performed, but the results indicate that the additional
time required to do so is not accompanied by a significantly smaller search tree. Thus, in
the computational results, cutting is only applied at the top of the branching tree.

In the case of k > 3, the k-path separation routine requires a limit on the amount of
time to invest in attempting to solve the smaller VRPTW’s. Unless otherwise mentioned
in the results section, this time limit is set at 600 seconds. In most cases, this limit is
sufficiently large to allow the optimal solution for the smaller VRPTW to be obtained.

If an integer solution is not obtained after solving the LP relaxation and generating
cuts, then branching is applied. We apply the same branching rules as in Kohl, Desrosiers,
Madsen, Solomon, and Soumis [26]. At each node in the search tree, branching is performed
on the number of vehicles, if fractional; otherwise, branching is performed on a single arc
value z;;. The branching arc j is selected as the one maximizing the quantity c;;-min(z;;, 1—
xi;). In terms of the set partitioning model, if z;; = 0, then the cost of each route in the
LP which uses arc (i,7) is increased (by adding a penalty), and the arc is eliminated from
the subproblem network. If z;; = 1, then the cost of each route in the LP visiting ¢ or
j without using arc (Z,7) is increased, and the arc (7,7) is made to be the only feasible
way of leaving node ¢ or visiting node j in the subproblem. For more details on branching
within the set-partitioning and column-generation model, see Desrochers, Desrosiers, and
Solomon [13] and Kohl [25].
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4 Parallel Computation

The solution procedure described in this paper contains two distinct portions that have
been implemented in parallel using the TreadMarks [1] distributed shared memory system.
First, each of the calls to the k-path separation routine for £ > 2 at the root node of the
branching tree is implemented in parallel. Second, after all of the violated valid inequalities
that could be determined are added to the LP relaxation, the branch-and-bound procedure
is then performed in parallel. The combination of these two parallel portions enabled the
overall algorithm to solve a total of 10 out of the 17 unsolved Solomon instances.

In the parallel implementation of the k-path separation routine, the relevant sets S are
generated and stored in the set I using Karger’s algorithm on a single processor. Once the
set I' is known, each set S € I must be evaluated to determine if k(S) > k. If k = 2, this
may require solving a TSPTW; if £ > 2, this may require solving a smaller VRPTW. In
either instance, the evaluation of each set S can be done independently of the other sets.
Thus, the sets contained in I' are divided evenly into the sets I';,I's,...,I',, where p is
the number of processors. Each processor ¢ then considers each of the sets contained in
T';, recording only those sets that are valid. Since some processors may finish evaluating
their assigned sets sooner than others, we implement a task-stealing procedure in which a
processor ¢ that finishes evaluating the sets in I'; may remove and process unevaluated sets
from another processor’s list of sets until all of the sets have been considered. After all of
the sets on all processors have been evaluated, a single processor collects the list of valid
sets from each machine and adds the corresponding cutting planes to the LP.

The parallel implementation of the cutting-plane procedure differs from the sequential
version in one way. In the sequential algorithm, only the minimal valid sets are added to
the LP formulation. In other words, a set S is not checked for validity if it contains a
subset that has already been determined to be valid. In the parallel version, this would
involve checking each set S against the list of valid sets over all processors. This would
involve considerable communication between the processors, which undermines the benefits
of parallelization. Adding only the minimal valid sets to the LP formulation, though, is a
restriction made only to limit the number of rows added at a time, not because it is required
for correctness. Computational experiments could not determine if adding all of the valid
sets is better or worse than adding only the minimal valid sets. Thus, it is advantageous in
the parallel implementation for each processor to either check each set S only against the
valid sets found on that processor, or against none at all. The result in either case is that
the final list of valid sets may include non-minimal valid sets.

At the end of the cutting-plane phase of the algorithm, a single processor has maintained
an LP relaxation for the VRPTW. If the optimal solution to this problem is integer-feasible,
then the algorithm is complete; otherwise, branch-and-bound with column generation must
be performed. To parallelize this process, all of the processors must have access to a global
heap of active nodes and a best known upper bound. At the beginning of the branch-
and-bound routine, one processor starts to process the root node of the branching tree,
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while all of the other processors are told to “wait” until the list of active nodes is not
empty. Processing a node involves first removing a node from the heap of active nodes,
then solving the LP relaxation using column generation. If an integer solution is found,
then the best upper bound is updated and the heap is pruned; otherwise, a branching
variable is determined and the appropriate new nodes are created. If the new nodes are
feasible, then they are added to the set of active nodes. The heap is a minimal heap that
is indexed on the objective value for each active node. It there exists a waiting processor,
then when a node is added to the heap a message is sent to the waiting processor that tells
the processor that the list of active nodes is no longer empty; otherwise, the node is simply
inserted into the heap. Processors continue to remove nodes from the heap and process
them until the heap is empty and an integer solution has been found, or until the time
limit has been reached. Further information on implementing a parallel branch-and-bound
algorithm using TreadMarks can be found in Bixby, Cook, Cox, and Lee [6].

5 Computational Results

Our computational study is carried out on the 87 instances in “Problem Set 1”7 of the well-
known Solomon problems [33]. These instances are the standard benchmark for testing exact
solution techniques for the VRPTW. The arc costs and the travel times for the problem set
are determined by the Euclidean distance between pairs of (z,y) coordinates; we adopt the
rounding convention used in Kohl [25], Kohl, Desrosiers, Madsen, Solomon, and Soumis [26],
and Kohl and Madsen [27] for computing these distances. The test instances consist of three
classes, “c”, “r”, and “rc.” The c-instances are clustered, the r-instances are random, and
the rc-instances are random-clustered.

Our sequential experiments are performed on a 300 MHz Pentium II with 256 megabytes
of memory, and our parallel experiments are performed on a cluster of 32 of these worksta-
tions, linked via a switched 100 megabit ethernet network. Running times are reported not
in CPU time, but in total elapsed time. All of the algorithms are implemented in the ANSI
C programming language and compiled with the GNU gcc 2.7.2.1 complier, using the —O
option.

The sequential version of the algorithm using only subtour and 2-path cutting planes
prior to branching succeeds in solving 73 out of 87 of the Solomon benchmark instances.
Three of these, specifically 7103.100,7106.100, and r112.50, were previously unsolved in
the literature. Table 2 reports the statistics for the r- and rc-instances having 50 and 100
customers using the 2-path routine. Since all of the c-instances and all of the 25-customer
instances can be solved using the described branch-and-bound method without adding any
cutting planes, we do not provide the specific statistics for those 47 examples. The column
designated LB(1) refers to the value of the LP relaxation prior to the addition of valid
inequalities. The value of the lower bound after all cutting planes have been inserted into
the LP is denoted as LB(2). The optimal integer objective value is given as OPT. In those
instances where cutting planes are added to the LP, the “Closed” column indicates the
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Problem LB(1) LB(2) OPT | Closed | Nodes | Cuts | Veh | Cols Time(s)
r101.50 1043.367 1044.000 1044.0 1.000 1 1 12 292 1.67
r101.100 1631.150 1634.000 1637.7 0.435 9 1 20 1360 37.51
r102.50 909.000 909.000 909.0 1 0 11 418 1.43
r102.100 1466.600 1466.600 1466.6 1 0 18 1320 34.92
r103.50 765.950 767.300 772.9 0.194 49 2 9 2051 47.37
r103.100 | 1206.312 | 1206.376 | 1208.7 | 0.027 39 2 14 4860 741.60
r104.50 616.500 620.758 625.4 0.478 74 12 6 3382 489.87
r104.100

r105.50 892.120 893.650 899.3 0.213 8 2 9 609 5.51
r105.100 1346.142 1349.316 1355.3 0.347 71 7 15 2892 251.37
r106.50 791.367 793.000 793.0 1.000 1 5 8 499 4.19
r106.100 | 1226.440 | 1227.404 | 1234.6 | 0.118 760 4 13 | 10781 | 13975.23
r107.50 704.438 705.880 711.1 0.216 42 3 7 2262 67.07
r107.100

r108.50

r108.100

r109.50 775.096 776.231 786.8 0.097 140 8 7 1955 91.88
r109.100

r110.50 692.577 694.150 697.0 0.356 3 3 7 666 12.16
r110.100

r111.50 691.812 692.642 707.2 0.054 199 6 7 3955 477.35
r111.100

r112.50 607.219 612.389 630.2 | 0.225 | 2895 15 6 18052 | 43675.00
r112.100

rc101.50 850.021 944.000 944.0 1.000 1 16 8 604 6.98
rc101.100 1584.094 1616.921 1619.8 0.919 7 23 14 1568 136.23
rc102.50 719.902 813.037 822.5 0.908 303 21 7 5123 671.32
rc102.100

rc103.50 643.133 710.112 710.9 0.988 4 15 6 1403 44.55
rc103.100

rc104.50 543.750 543.750 545.8 17 0 5 2855 58.89
rc104.100

rc105.50 754.443 853.675 855.3 0.984 15 17 8 1432 38.83
rc105.100 1471.160 1509.733 1513.7 0.907 36 16 15 3288 502.27
rc106.50 664.433 716.501 723.2 0.886 7 14 6 941 29.61
rc106.100

rc107.50 591.476 631.588 642.7 0.783 71 7 6 2843 139.08
rc107.100

rc108.50 538.957 587.120 598.1 0.814 8 7 6 1579 56.80
rc108.100

Table 2: r- and rc-instances: Subtour and 2-path cutting planes added at root node

search tree.
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proportion of the gap between OPT and LB(1) closed by the insertion of valid inequalities.
The number of nodes in the search tree is provided in the “Nodes” column, and the number
of cutting planes added to the LP is given in the “Cuts” column. The number of vehicles
used in the optimal solution is found in the “Veh” column and the total number of columns
in the final LP is provided in the “Cols” column. Finally, the computation time in total
elapsed seconds is displayed in the last column. A blank row indicates that the code is
unable to find the optimal solution within a time limit of 50,000 seconds. Those instances
that were previously unsolved in the literature that our algorithm solved are printed in
boldface.

The sequential algorithm that looks for 3-path cutting planes, in addition to subtour
and 2-path inequalities, generates optimal solutions for the same set of problems. In these
instances, the time limit on solving each of the smaller VRPTW problems within the 3-
path cutting-plane routine is set at 600 seconds. A limit of 60 seconds was tested as well,
but we found that many of the smaller VRPTW’s were not solved within this smaller
time limit, while only one failure occurred with the larger limit. The value of LB(2)
improved with the addition of 3-path cuts in six of the r-instances (r101.100, r103.50,
r104.50, 105.100, 7106.100, and 7111.50) and seven of the rc-instances (rc101.100, r¢102.50,
rc103.50, r¢105.100, rc106.50, rc107.50 and rc108.50). Clearly, in those examples which do
not yield any 3-path cuts, the additional time spent in the cutting-plane portion of the code
provides no benefits. Unfortunately, for the thirteen instances that do find 3-path cuts, the
improvement of the lower bound prior to branching does not yield similar improvements
in time. However, it is clear that the 3-path separation routine can be applied without an
unreasonable cost in terms of time. This can be seen in Table 3. The table indicates the

k=2 k=3
Problem | Num | Num Num Average Average Average Average
Set nodes | solved | w/ cuts gab closed time gap closed time
25 12 7 0.382 (0.654) 1.56 0.382 (0.654) 3.63
r 50 11 10 0.348 (0.383) | 4079.41 | 0.356 (0.391) | 4170.24
100 5 4 0.186 (0.232) | 3008.13 | 0.252 (0.315) | 3148.62
25 8 3 0.267 (0.713) 1.46 0.267 (0.713) 3.52
Ic 50 8 7 0.795 (0.909) 130.76 0.822 (0.939) 615.71
100 2 2 0.913 (0.913) 319.25 0.920 (0.920) | 502.545
25 9 0 0.000 (0.000) 1.60 0.000 (0.000) 1.63
c 50 9 1 0.007 (0.067) 25.22 0.007 (0.067) 25.57
100 9 1 0.111 (1.000) 118.81 0.111 (1.000) 118.90

Table 3: Average gap closed and average time for those instances solved by the sequential
algorithm.

total number of instances in each set that are solved and the total number of instances
out of those solved that added cutting planes to the linear programming problem. We give
both the average gap closed over all instances in the test set, as well as the average gap
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Time (seconds) for k=3

Problem Number of Processors

1 4 8 16
r101.50 1.66 1.97 2.10 2.18
r101.100 117.07 140.39 112.46 119.31
r102.50 1.44 1.46 1.49 1.51
r102.100 34.93 35.92 36.13 36.16
r103.50 329.49 298.82 294.29 299.44
r103.100 838.29 488.11 542.98 563.96
r104.50 822.42 367.22 954.16 940.14
r104.100 - - - -
r105.50 14.94 9.73 9.23 10.59
r105.100 354.62 280.72 189.61 370.14
r106.50 4.18 4.56 4.51 4.75
r106.100 14398.17 4311.20 2418.88 1424.43
r107.50 82.45 47.81 55.31 56.56
r107.100 - 21363.82 | 9966.76 6231.27
r108.50 - 32467.77 | 14688.51 | 9605.05
r108.100 - - - -
r109.50 95.92 42.47 43.69 43.14
r109.100 - - - 34,456.37
r110.50 30.34 20.74 19.98 20.88
r110.100 - - - -
r111.50 930.51 307.05 193.41 186.08
r111.100 - - - -
r112.50 43559.24 7589.11 3794.89 1730.38
r112.100 - - - -

Table 4: Summary of times for r-instances on 1, 4, 8, and 16 processors using subtour, 2-
and 3-path cutting planes.

calculated only for those instances that added cutting planes (this latter value is given in
parentheses).

Note that the average time for solving the 50 and 100 customer instances in set  is much
larger than the corresponding times for the ¢ and rc sets. This is due to the fact that r112.50
and r106.100 took considerably longer than the other solved examples of comparable size.
Based on the results in Table 3, it appears that the cutting-plane procedure is most effective
for the rc-problem set.

Results for the parallel version of the algorithm relative to the sequential version are
provided in Table 4. The value of LB(2) may vary depending on which cutting planes
are added to the LP formulation. In general, though, the LB(2) values remain close to
the ones obtained using the sequential algorithm. Only the elapsed time in seconds for
the algorithm using subtour, 2- and 3-path cutting planes for the 50 and 100 customer r-
instances is reported in Table 4. Note that optimal solutions for three additional instances
(r107.100, 7108.50, and 7109.100) are found. Specific statistics on these examples are found
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in Table 5. In some of the instances in Table 4, the times do not decrease as expected
with the addition of more machines. For example, in the case of r104.50, the increase in
time from 4 machines to 8 machines occurred because adding more machines increases the
number of non-minimal valid sets that are found and added as cutting planes. In this case,
the new inequalities lead to different LLP relaxations which yield better cuts and ultimately
a better lower bound. Thus, the longer runtime is the consequence of a more successful cut-
generation phase. In those instances in which the time stays relatively constant regardless
of an increase in the number of processors, we believe that the runtime cannot be reduced
further, as our algorithm is written. The problem lies in the fact that if k is greater than or
equal to 3, then there may exist a difficult smaller VRPTW that must be solved. No matter
how many processors are used, a single machine will have to solve this difficult problem,
and all other machines will have to wait until it has done so. Thus, there exists a minimal
amount of time that is required to complete the cut-generation phase of the problem based
on the time it takes to solve these smaller VRPTW’s on a single machine. If the branching
tree is large enough, the runtime in the search tree portion of the code will be reduced with
the addition of more processors.

For those instances that remained unsolved after using 16 processors, but showed a
relatively small optimality gap, we ran the parallel version of the code on 32 processors
and increased the maximum value of £ to 6. (In these examples, k = 5 is the largest value
for which a violated cut was actually detected.) In this way, three additional instances
were solved. Also a clear indication that r110.100 would solve was obtained, but due to a
technical issue with TreadMarks we were forced to use only 16 machines and solve using an
increased time limit. Thus, a total of 10 previously unsolved instances from the data set are

Problem | k | Procs LB(1) LB(2) OPT | Gap closed | Nodes | Cuts | Veh Time(s)
r107.100 6 32 1051.844 | 1052.927 | 1064.6 0.085 3,201 9 11 4,050.73
r108.50 6 32 588.926 595.625 617.7 0.233 2,507 40 6 6,359.41
r109.100 6 32 1130.587 | 1133.164 | 1146.9 0.158 | 13,832 35 13 19,135.05
r110.100 3 16 1048.482 | 1049.939 | 1068.0 0.075 | 90,448 9 12 457,024.92
r111.100 6 32 1032.028 | 1032.075 | 1048.7 0.003 | 28,503 4 12 41,879.97
rcl102.100 | 6 32 1403.646 | 1439.547 | 1457.4 0.668 | 26,632 65 14 42,150.49
rcl103.100 | 6 32 1218.495 | 1242.491 | 1258.0 0.607 9,236 77 11 84,438.90

Table 5: Results from the parallel version of the algorithm for 7 previously unsolved in-
stances.

solved. The 7 examples which were solved using the parallel implementation are provided
in Table 5. The value in the column marked “k” refers to the maximum value of k for
which the separation routine is called. The column marked “Procs” indicates the number
of processors used to obtain the optimal solution. The other column headings remain the
same.

The best results obtained for the still unsolved instances on 16 processors with a 30,000
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second time limit are given in Table 6. The column marked “Number of cuts” indicates the
number of valid inequalities by type: subtour/2-path/3-path/4-path/5-path/6-path. The
LB(3) column indicates the lower bound achieved on a single machine prior to termination.
In other words, the “lower bound” is not actually valid since a different machine may have

Problem | LB(1) LB(2) LB(3) | Number of cuts | nodes
*1c104.100 | 1094.333 | 1098.505 | 1109.4 | 2/17/14/0/0/0 | 6069
rc106.100 | 1308.781 | 1332.824 | 1356.1 1/27/36/0/0/0 17904
rc107.100 | 1170.689 | 1180.995 | 1201.2 1/17/10/0/0/0 10457
*rc108.100 | 1063.011 | 1085.781 | 1093.3 | 10/12/11/0/0/0 387

r104.100 | 949.103 951.135 962.3 2/8/1/0/0/0 10184

r108.100 | 907.162 | 909.472 | 919.4 | 2/8/1/0/0/0 | 8905
r112.100 | 919.192 | 922.337 | 935.1 | 5/29/3/0/0/0 | 3279

Table 6: Results on unsolved instances using 16 processors.

been working on a node from the heap that has a lower value; it does, however, give a sense
of how much the branch-and-bound tree has accomplished. In the case of the two examples
marked with an asterisk (*), the code could not even complete the cut-generation phase of
the algorithm before the end of the time limit. This is due to the presence of many (at
least 50) very difficult to solve smaller VRPTW?’s, each of which took the full time limit of
600 seconds to determine that the instance could not be solved. To avoid this phenomenon
specifically for these two instances, the time limit on the smaller VRPTW’s was reduced
to 60 seconds. The results in Table 6 marked with an asterisk refer to the code using the
reduced time limit on the smaller VRPTW’s.

Thus far, we have only considered Problem Set 1 of the Solomon test instances. In [33],
Solomon also proposed a second collection of examples that are much less tightly constrained
than those in Problem Set 1. No optimization results have been reported in the literature
for these “Problem Set 2” instances, and they pose difficult challenges for the algorithms
currently available, including our implementation. We did however make a small amount
of progress on this set of examples, and in Table 7 we report the optimal values for 20
out of the 24 Problem Set 2 c-instances. The running times varied between 2 seconds and
25,000 seconds on a single processor. We also solved 8 out of the 33 r-instances and 2 out
of the 24 rc-instances. The optimal values for these 10 examples are given in Table 8. A
major difficulty we encountered with the r and rc instances is in our implementation of the
Dumas, Desrosiers, Gélinas, and Solomon TSPTW algorithm, where the storage required
for the state space in the loosely constrained instances quickly exceeded the limits of our
workstation.

As a final test, we ran our code on the 200-customer Problem Set 1 “Extended Solomon”
instances generated by Homberger [18]. We succeeded in solving 8 out of the 30 instances,
using 4 processors and setting k = 3. The results for the solved instances are reported in
Table 9.

17



Problem | OPT Problem | OPT Problem | OPT Problem | OPT
c201.25 | 214.7 c203.25 | 214.7 c205.25 | 214.7 c207.25 | 214.5
c201.50 | 360.2 c203.50 | 359.8 c205.50 | 359.8 c207.50 | 359.6

¢201.100 | 589.1 || ¢203.100 €205.100 | 586.4 || c207.100 | 585.8
c202.25 | 214.7 c204.25 | 213.1 c206.25 | 214.7 c208.25 | 214.5
c202.50 | 360.2 ¢204.50 ¢206.50 | 359.8 c208.50 | 350.5
¢201.100 | 589.1 || c204.100 ¢206.100 | 586.0 || ¢208.100

Table 7: Optimal values for c-instances of Problem Set 2.

Problem | OPT | Problem | OPT || Problem | OPT | Problem | OPT
r201.25 | 463.3 r202.50 | 698.5 r206.25 | 374.4 || rc202.25 | 338.0
r201.50 | 791.9 r203.25 | 391.4 r210.25 | 404.6
r202.25 | 410.5 r205.25 | 393.0 || rc201.25 | 360.2

Table 8: Optimal values for r- and rc-instances of Problem Set 2.

Problem | OPT | Time (Seconds)
¢1.200 2698.6 106.98
¢2.200 2694.3 6121.15
¢5.200 2694.9 140.49
¢6.200 2694.9 190.80
¢7.200 2694.9 228.97
¢8.200 2684.0 11,850.68
r1.200 4667.2 3587.01

Table 9: Results on 200-customer extended Solomon instances, using 4 processors and a
20,000 second time limit.
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6 Conclusions

Karger’s algorithm is an efficient method for searching for subtour-like cuts in the VRPTW
and it should have an impact on solution methods for other classes of vehicle routing
problems. In particular, a Karger-driven approach can make effective use of an array of
processors, as we did in our work with the TreadMarks distributed shared memory system.
However, the fact that not all of the (relatively small) Solomon instances could be solved
in our tests indicates that much work remains to be done in this area. We carried out
experiments with variations of the TSP blossom and comb inequalities, but discovered that
very few were found and even fewer improved the LP bound (and so we did not report these
results in our computational tests). A weakness of the blossoms and combs we tested is
that they do not make direct use of the time windows on the nodes; an area that would
appear to be of direct practical value would be further research into TSP-like inequalities
that incorporate time-window information.
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