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a b s t r a c t

By formulating a constrained optimization model, we address the problem of optimal reinsurance design
using the criterion of minimizing the conditional tail expectation (CTE) risk measure of the insurer’s total
risk. For completeness, we analyze the optimal reinsurance model under both binding and unbinding
reinsurance premium constraints. By resorting to the Lagrangian approach based on the concept of
directional derivative, explicit and analytical optimal solutions are obtained in each case under some
mild conditions. We show that pure stop-loss ceded loss function is always optimal. More interestingly,
we demonstrate that ceded loss functions, that are not always non-decreasing, could be optimal. We also
show that, in some cases, it is optimal to exhaust the entire reinsurance premium budget to determine
the optimal reinsurance, while in other cases, it is rational to spend less than the prescribed reinsurance
premium budget.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Since the seminal papers by Borch (1960) and Kahn (1961),
the quest for optimal reinsurance has remained a fascinating
area of research and it has drawn significant interest from both
academicians and practitioners. Numerous creative models have
been proposed with elegant mathematical tools, and sophisticated
optimization theories have also been used in deriving the optimal
solutions to the proposed models. The fascination with the
optimality of reinsurance stems from its potential as an effective
risk management tool for insurers. Indeed, by resorting to a
meticulous choice of reinsurance treaty, it allows the insurer to
control better and thereby manage its risk exposure. The use of
reinsurance, on the other hand, incurs an additional cost to the
insurer in the form of reinsurance premium. Naturally, the larger
the expected risk that is transferred to a reinsurer, the higher the
reinsurance premium. This implies that an insurer has to deal with
the classical risk and reward tradeoff in balancing the amount of
risk retained and risk transferred.

In this paper, we assume a single-period setting. The
optimal reinsurance treaty is typically determined by solving an
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optimization problem, which could involve either maximization
or minimization, depending on the chosen criterion. For example,
one of themost classical results is based on the varianceminimiza-
tion model. It states that pure stop-loss reinsurance is the optimal
treaty in the sense that it yields the least variance of the insurer’s
retained loss among all the treaties with the same pure premium;
see, for example Kaas et al. (2001). Another classical result corre-
sponds to the utility maximization model, which is attributed to
Arrow (1974). It asserts that stop-loss reinsurance maximizes the
expected utility of the insurer, provided that the insurer has a con-
cave utility function.

In recent years, extensive research on optimal reinsurance has
been conducted by Kaluszka (2001, 2004a,b, 2005), who derived
explicit optimal reinsurance policies on a number of ingenious risk
measure based reinsurance models. Other related contributions
include Gajek and Zagrodny (2000, 2004), Promislow and Young
(2005), Balbás et al. (2009) and the references therein. Recent
relevant papers on the expected utility maximization models
include Zhou and Wu (2008) and Zhou et al. (2010).1

More recently, two important risk measures known as the
Value-at-Risk (VaR) and the conditional tail expectation (CTE) have

1 Both papers analyze the optimal insurance purchase, but their results could be
applied to the optimal reinsurance purchase.
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been applied to insurance and reinsurance for the determination
of optimal policies. This area of research is inspired by the
prevalent use of these two risk measures among banks and
insurance companies for risk assessment and for determining
regulatory capital requirement (see, for example, Wang et al.
(2005), Huang (2006), Cai and Tan (2007), Cai et al. (2008), Bernard
and Tian (2009), Balbás et al. (2009), and Tan and Weng (2010)).
In particular, Bernard and Tian (2009) analyzed the optimal
reinsurance contracts under two tail risk measures: a VaR-like risk
measure (the probability for the underlying loss to exceed a given
threshold) and a CTE-like risk measure (the expected loss over a
given threshold); see Remark 2.2 for more detailed comments. Cai
and Tan (2007), Cai et al. (2008) and Tan andWeng (2010) derived
the optimal reinsurance treaties under the strict definition of VaR
and CTE. While the optimal reinsurance obtained in these three
papers are explicit, one critical limitation is the lack of generality
in that the optimality of the reinsurance designs is confined to
reinsurance treaties of specific structure. For example, Cai and
Tan (2007) assumed that the feasible ceded loss function is of the
form stop-loss, while Cai et al. (2008) and Tan and Weng (2010)
restricted to the class of increasing convex functions. Balbás et al.
(2009) characterized the optimal reinsurance treaties under a very
general risk measure including CTE as one of the special cases.

The objective of the paper is to explicitly derive the optimal
solutions over all possible reinsurance treaties using the criterion
of minimizing CTE of the insurer’s resulting risk. Because of the
generality of the optimal reinsurance model, we will see shortly
that this is a mathematically more complex problem. In fact,
our formulation of the reinsurance model entails us in solving
some convex optimization problem over a Hilbert space using
the Lagrangian method. Because the objective function is only
directionally differentiable but not Gâteaux differentiable, we
utilize the concept of directional derivative in searching for the
optimal solutions.

It is interesting to note that pure stop-loss reinsurance is always
optimal under our CTE minimization model, a result which is
consistent with the variance minimization and expected utility
maximization reinsurance models. More interestingly, we also
establish formally that ceded loss function of other structures
(such as those that do not need to be always non-decreasing)
could also be optimal. Moreover, it should be emphasized that
our proposed reinsurance model is a constrained optimization
model in that one of the constraints can be interpreted as
either a reinsurance premium budget or an insurer’s profitability
guarantee. For completeness, we analyze the optimal solutions
under both binding and unbinding cases depending on the optimal
reinsurance premium expenditure relative to the reinsurance
premium budget. Enforcing the reinsurance premium budget
constraint to be binding, it facilitates us in establishing the optimal
risk and reward profile and hence leads to the insurer’s reinsurance
efficient frontier. On the other hand, if the reinsurance premium
budget constraint does not have to be binding, then there are
cases where it is optimal to spend less than the prescribed
budget.

The remaining paper is organized as follows. Section 2 gives
some preliminaries and describes the setup of the proposed rein-
surance models. Section 3 states the solutions to our proposed op-
timal reinsurance models with an unbinding constraint. Remarks
and numerical examples to further elaborate these key results are
also provided in the same section. Section 4 discusses the optimal
solutions to the binding reinsurance model. Section 5 concludes
the paper. Key mathematical background with respect to the op-
timization theory in Banach spaces, together with some relevant
concepts related to the directional derivative are collected in Ap-
pendix. The proofs of all the propositions and theorems are also
given in the same Appendix.
2. Preliminaries and reinsurance model

Let X denote the (aggregate) loss initially assumed by an
insurer. Suppose X is a nonnegative random variable, and identify
it by a probability measure Pr on the measurable space (Ω,F )
with Ω = [0,∞) and F being the Borel σ -field on Ω , such that
the distribution function FX of the underlying risk X is defined by
FX (t) = Pr{[0, t]} for t ≥ 0. It is worth noting that the distribution
of the loss random variable defined in such a way it is general
enough for modeling a loss distribution. It can be any of a general
distribution, not necessarily either continuous or discrete. Denote
by f (X) the part of loss transferred from the insurer to a reinsurer
in the presence of the reinsurance. The function f : [0,∞) →

[0,∞), satisfying 0 ≤ f (x) ≤ x for all x ≥ 0, is known as
the ceded loss function or the indemnification function. Associated
with the ceded loss function f (X), we denote If (X) := X − f (X)
as the retained loss function of the insurer in the presence of
reinsurance. Similarly, If can also be recognized as a function If :

[0,∞) → [0,∞). By transferring part of its loss to the reinsurer,
the insurer is obligated to pay the reinsurance premium Π(f (X))
to the reinsurer, whereΠ is a principle adopted for calculating the
reinsurance premium. Consequently, the total cost or the total risk
for the insurer in the presence of reinsurance, denoted by Tf (X), is
the sum of the retained loss and the reinsurance premium,2 i.e.,
Tf (X) = If (X)+Π(f (X)) = X − f (X)+Π(f (X)). (2.1)
In situation where there is no ambiguity on the explicit depen-
dence on the random variable X , we simplify the notation by writ-
ing f (X), If (X) and Tf (X) as f , If and Tf , respectively.

Eq. (2.1) demonstrates clearly the intricate role of the reinsur-
ance treaty f on the resulting total risk Tf . A more conservative in-
surer could reduce its risk exposure by transferringmost of the risk
to a reinsurer at the expense of higher reinsurance premium. On
the other hand, a more aggressive insurer could reduce the cost of
reinsurance by exposing to a greater expected risk. This illustrates
the classical tradeoff between risk retained and risk transferred. In
determining the optimal reinsurance treaties, one prudent strat-
egy from the insurer’s perspective is to minimize the resulting risk
exposure Tf (X) in terms of an appropriately chosen risk measure.
In this paper, we focus on the risk measure CTE risk measure.

Before providing a formal definition of CTE, it is necessary to
define a closely related risk measure known as the Value-at-Risk
(VaR):

Definition 2.1. The VaR of a loss randomvariable Z at a confidence
level 1 − α, 0 < α < 1, is formally defined as

VaRα(Z) = inf{z ∈ R : Pr(Z ≤ z) ≥ 1 − α}. (2.2)

In practice, the parameter α typically is a small value such as 5%
or even 1%. Consequently, VaRα(Z) captures the underlying risk
exposure by ensuring that with a high degree of confidence (such
as 1 − α probability) the loss will not exceed the VaR level. While
VaR is intuitive and iswidely accepted among financial institutions
as a risk measure for market risk, it is often criticized for its
inadequacy in capturing the tail behavior of the loss distribution,
in addition to its violation of properties such as the subadditivity.
To overcome these drawbacks, the risk measure CTE has been
proposed. CTE is defined as the expected loss given that the loss
falls in the worst α part of the loss distribution.

2 Alternatively, we can choose to work with the net risk or net loss random
variable, Γ (f ), defined as Γ (f ) = Tf − p0 , where p0 is the insurance premium
collected by the insurer from the policyholders. Γ (f ) takes into account the
insurance premium received by the insurer for underwriting risk X . Because p0 is
a constant, our proposed optimal CTE-based reinsurance models, whether defined
via Tf or Γ (f ), are equivalent due to the translation invariance property of the CTE
risk measure.



K.S. Tan et al. / Insurance: Mathematics and Economics 49 (2011) 175–187 177
Definition 2.2. The CTE of a loss random variable Z at a confidence
level 1 − α, 0 < α < 1, is defined as the average of VaR:

CTEα(Z) =
1
α

∫ α

0
VaRq(Z)dq.

Remark 2.1. (a) At this point we caution the readers that the
literature on CTE can be quite confusing, as different authors
have adopted different name even though they essentially mean
the same risk measure. For example, the term ‘‘conditional
tail expectation’’ is coined by Wirch and Hardy (1999) while
others have used names such as the Tail Conditional Expectation
(see Artzner et al., 1999), Conditional Value-at-Risk (CVaR) (see
Rockafellar and Uryasev, 2002), Tail Value-at-Risk (TVaR) (see
Dhaene et al., 2006) and Expected Shortfall (ES) (see Tasche, 2002
and McNeil et al., 2005).

(b) The formal definition of CTE is also another potential area of
confusion. For instance,many authors (see, for example, Landsman
and Valdez, 2003 and Dhaene et al., 2006) have defined CTE as
CTEα(Z) = E[Z |Z > VaRα(Z)]. This is, however, not quite correct
as Wirch and Hardy (1999) make it clear that the equality CTEα(Z)
= E[Z |Z > VaRα(Z)] is true only when the distribution of Z is
continuous. In fact, E[Z |Z > VaRα(Z)] is not well defined in the
case that Z > VaRα(Z)with zero probability.

(c) Generally, the risk measure CTE can also be equivalently
defined as either of the following ways.

(i) Let β = inf{u : VaRu(Z) = VaRα(Z)}, or equivalently β =

Pr{Z > VaRα(Z)}, then

CTEα(Z) =
1
α


(α − β)VaRα(Z)+ βE


Z |Z > VaRα(Z)


, (2.3)

provided that {Z > VaRα(Z)} has nonzero probability; other-
wise, CTEα(Z) = VaRα(Z).

(ii) Consider the α-upper-tail distributionΨα(ξ) constructed from
loss distribution of Z as below:

Ψα(ξ) =


0, for ξ < VaRα(Z),
Pr(Z ≤ ξ)− (1 − α)

α
, for ξ ≥ VaRα(Z).

(2.4)

CTEα(Z) is then defined as the mean of a random variable with
Ψα(ξ) as its distribution.

For the proof of the equivalence between the above definitions and
Definition 2.2, seeWeng (2009, p. 14), where additional properties
associated with CTE are also discussed.

We remark that both VaR and CTE satisfy the property of
translation invariance. A risk measure ρ(·) is said to satisfy the
translation invariance property if ρ(Z + m) = ρ(Z) + m for any
scalarm ∈ R and a loss random variable Z .

We now proceed with our reinsurance model formulation.
Suppose that the reinsurance premium uses the expectation
principle with a safety loading θ > 0, i.e.,Π(f ) = (1+ θ)E[f ]. We
suppose further that the insurer is seeking an optimal reinsurance
that minimizes the CTE of the total risk Tf . Then a plausible
reinsurance model can be formulated as follows:

min
f

CTEα(Tf ) = min
f

CTEα

X − f (X)+ (1 + θ)E[f ]


s.t. 0 ≤ f (x) ≤ x for all x ≥ 0,

E[f (X)] ∈

[
0,

π

1 + θ

]
,

(2.5)

where α, θ , and π are constants satisfying 0 < α < 1, θ > 0,
and 0 ≤ π ≤ (1 + θ)E[X]. The above optimal reinsurance model
generalizes those in Cai and Tan (2007) and Cai et al. (2008) in
that the minimization is taken with respect to all possible ceded
loss functions. In contrast, the model in Cai and Tan (2007) is
confined to the class of stop-loss function so that the reinsurance
problem simplifies to a one-dimensional optimization problem
while the feasible ceded loss function in Cai et al. (2008) is a class
of increasing convex function.

Remark 2.2. The ‘‘CTEmodel’’ analyzed in Bernard and Tian (2009)
is expressed through the insurer’s initial wealth W0 and final
wealthW . Under a reinsurance contract with a ceded loss function
f (x), the final wealthW = W0 − (1+ θ)E[f (X)] − X + f (X). Thus,
their model essentially can be formulated as follows:
min

f
E


(W0 − W )1(W0−W>v)


s.t. 0 ≤ f (x) ≤ x for all x ≥ 0,

E[f (X)] ∈

[
0,

π

1 + θ

]
,

where v, not related to the (1 − α) quantile of the loss, is exoge-
nously specified.

For mathematical convenience, we suppose that X has finite
first two moments so that we can restrict to the space L2

:=

L2(Ω,F , P) for the optimal ceded loss functions. Let Q =

Qf


Qπ where

Qf := {f ∈ L2
: 0 ≤ f (x) ≤ x for x ≥ 0}, (2.6)

and

Qπ := {f ∈ L2
: 0 ≤ (1 + θ)E[f ] ≤ π}, (2.7)

respectively. Then the reinsurance model (2.5) can be succinctly
reformulated as

min
f∈Q

CTEα(Tf ) = min
f∈Q

CTEα

X − f (X)+ (1 + θ)E[f ]


. (2.8)

The following section is devoted to analyzing the solution to the
optimization problem (2.8) while in Section 4, we will focus on the
binding casewith the constraint inQπ replaced by (1+θ)E[f ] = π .

3. Optimal reinsurance treaties: the unbinding case

The mathematical challenges of solving the reinsurance model
(2.8) directly arise from at least two aspects. First, the model is
an infinite-dimensional problem which involves searching for an
optimal function instead of the optimal values of a finite number
of parameters. Thus, many of the prevalent numerical techniques
cannot be applied. Second, there is no analytical expression for
the objective function CTEα(Tf ) for a general feasible ceded loss
function f . Recognizing that solving (2.8) directly can be very
challenging, we resolve this through an auxiliary model. The
auxiliary model, which will be defined in the following subsection,
is much more tractable than the original reinsurance model (2.8).
More importantly, a key result in Rockafellar and Uryasev (2002)
asserts that the solution to the auxiliarymodel regarding the ceded
loss function f is also the solution to our reinsurance model (2.8).

3.1. Auxiliary model and the optimality conditions

To describe the auxiliary model, it requires us to introduce the
mapping Gα(ξ , f ) : R × L2

→ R such that

Gα(ξ , f ) = ξ +
1
α
E


X − f + (1 + θ)E[f ] − ξ


+


, (3.1)

where α is the same constant associated with the risk measure
CTE in (2.8). The significance of introducing Gα(ξ , f ) can be
deduced from the following Lemma 3.1, which is a direct
consequence of Rockafellar and Uryasev (2002, Theorem 14).
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Lemma 3.1. Minimizing CTEα(Tf ) with respect to f ∈ Q is equiva-
lent to minimizing Gα(ξ , f ) over all (ξ , f ) ∈ R × Q, in the sense that

min
f∈Q

CTEα(Tf ) = min
(ξ ,f )∈R×Q

Gα(ξ , f ), (3.2)

where moreover,

(ξ ∗, f ∗) ∈ argmin(ξ ,f )∈R×QGα(ξ , f ) (3.3)

if and only if

f ∗
∈ argminf∈QCTEα(Tf ), and ξ ∗

∈ argminξ∈RGα(ξ , f ∗). (3.4)

The above lemma states that, in order to find the minimizer of
CTEα(Tf ) over Q, it is sufficient to focus on minimizing Gα(ξ , f )
over the product space R×Q. The latter optimization problem can
be written in a more explicit form as follows:

min
(ξ ,f )∈R×Qf

Gα(ξ , f )

≡ ξ +
1
α
E


X − f + (1 + θ)E[f ] − ξ


+


s.t. E[f ] ∈ [0, π/(1 + θ)].

(3.5)

By Lemma 3.1, if (ξ ∗, f ∗) is one solution to problem (3.5), then f ∗

solves the reinsurance model (2.8), i.e., f ∗ is one optimal ceded
loss function. Comparing to problem (2.8), an obvious advantage
of (3.5) is that its goal function is more tractable.

However, obtaining solution to (3.5) is still mathematical
challenging since it remains an infinite-dimensional problem.
Furthermore, its objective function is not Gâteaux differentiable
which implies that thewidely used Karush–Kuhn–Tucker Theorem
is not helpful to tackle this problem. Our strategy of solving (3.5)
involves the following. We demonstrate in Appendix that (3.5) is
a convex problem and its goal function Gα(ξ , f ) is directionally
differentiable with respect to (ξ , f ) over its feasible set. This
result motivates us in adopting the Lagrangian method based on
the directional derivatives to solving (3.5). More specifically, by
defining g∗ and V , respectively, as

g∗
= X − f ∗

+ (1 + θ)E[f ∗
] − ξ ∗ (3.6)

and

V = (1 + θ)E[f ] − ξ − f . (3.7)

One of the key results of the paper is to establish the following
optimality conditions for the optimization problem (3.5). The proof
of these results is relegated to Appendix A.2.

Proposition 3.1. An element (ξ ∗, f ∗) ∈ R×Q solves problem (3.5) if
and only if there exist a constant r ∈ R and a random variableλ ∈ L2

such that the following three conditions are satisfied:

C1. A(ξ , f ) ≡ α

ξ + r(1 + θ)E[f ] + E[λf ]


+ E[V1{g∗>0}] +

E[V+1{g∗=0}] ≥ 0, ∀(ξ , f ) ∈ R × L2;
C2. E[λ(f − f ∗)] ≤ 0, f ∈ Qf ;
C3. r


E[f ] − E[f ∗

]


≤ 0 for every f ∈ Qπ .

Using the above proposition, an optimal solution to (3.5) can be
deduced by first selecting some potential candidate. The candidate
is then shown to be an optimal solution by verifying conditions
C1, C2 and C3 as asserted in Proposition 3.1. We will elaborate this
procedure in the following subsection.

3.2. Optimal ceded loss functions

Throughout this subsection, we assume α(1 + θ) ≤ 1. Let

πα = (1 + θ)E

(X − dα)+


(3.8)
where

dα = inf {d : Pr[X > d] ≤ α} . (3.9)

The notation πθ and dθ are defined analogously as

πθ = (1 + θ)E

(X − dθ )+


(3.10)

and

dθ = inf

d : Pr[X > d] ≤

1
1 + θ


. (3.11)

We emphasize that the condition α(1 + θ) ≤ 1 is quite mild as
in practice both α and θ are typically much smaller than one. Note
that the same condition also implies dα ≥ dθ so that πα ≤ πθ .

To discuss the solution to the reinsurance model (3.5), we
proceed by splitting into three cases, depending on the level of the
reinsurance premium budget; i.e.

Case (i): π ∈ (0, πα);
Case (ii): π ∈ [πα, πθ ]; and
Case (iii): π ∈ [πθ ,∞).

The solutions to these cases are formally stated in the follow-
ing three subsections as Theorems 3.1–3.3, respectively. See Ap-
pendix A.4 for their proofs.

3.2.1. Case (i): π ∈ (0, πα)

Theorem 3.1. Suppose α(1 + θ) ≤ 1. Then all the ceded loss func-
tions f ∗ of the following form are the optimal solutions to the reinsur-
ance model (3.5):

f ∗(x) =


0, x < d̂,
l(x), x ≥ d̂

(3.12)

where the function l(x) satisfies

0 ≤ l(x) < x − dα, for x ≥ d̂, (3.13)

and the retention d̂ > 0 is determined by

E[f ∗
] =

π

(1 + θ)
. (3.14)

Remark 3.1. We reiterate that Theorem 3.1 only provides solu-
tion, if it exists, for π ∈ (0, πα). This is an immediate consequence
of conditions (3.13) and (3.14).More explicitly, suppose f ∗ is an op-
timal ceded loss function identified by Theorem 3.1, then we must
have π ∈ (0, πα) as can be justified below:

π = (1 + θ)E[f ∗(X)]
= (1 + θ)E[l(X) · 1

{X≥d̂}]

< (1 + θ)E[(X − dα)1{X≥dα}]

= (1 + θ)E[(X − dα)+]

= πα.

Remark 3.2. The constraint (3.13) states that for x ≥ d̂, the
function l(x) ≥ 0 is bounded from above by x − dα . Furthermore,
when x = d̂, we have d̂ > l(d̂) + dα ≥ dα . Consequently, the
optimal function (3.12) satisfying (3.13) and (3.14) defines a class
of ceded loss functions which is bounded from above by the curve
f (x) = (x − dα)+ with a retention larger than dα and a resulting
reinsurance premium equals to the preset budget π . In Fig. 1, the
dashed lines depict three samples of such ceded loss functions
that are also optimal. In Examples 3.1 and 3.2 (see Section 3.3),
we illustrate numerically that in addition to the pure stop-loss
function, there exist many other more interesting ceded loss
functions that could also be optimal. In particular, these optimal
ceded loss functions could have a variety of shapes as long as they



K.S. Tan et al. / Insurance: Mathematics and Economics 49 (2011) 175–187 179
Fig. 1. Three typical optimal ceded loss functions.

are bounded from above by the curve f (x) = (x − dα)+ and that
they have the same reinsurance premium. In Example 3.1, we also
present some other ceded loss functions which violate the above
boundedness property and these ceded loss functions result in CTE
values that are larger than the minimal one.

Remark 3.3. It is worth noting that pure stop-loss treaty is one of
the optimal solutions for π < πα . The reason is as follows. Because
E[(X − d)+] is continuous in d, there must exist a constant d∗ such
that (1+θ)E[(X−d∗)+] = π . Now thatπ < πα, d∗ must be no less
than dα and hence the stop-loss treaty f (x) = (x−d∗)+ is bounded
from above by f (x) = (x − dα)+. Applying the above Remark 3.2,
we immediately conclude that the stop-loss treaty is optimal.

Remark 3.4. According to Remark 3.2, as long as there exists a
ceded loss function that is bounded from above by the f (x) = (x−

dα)+ and thatwith a reinsurance premium equals toπ , then it is an
optimal solution to our CTE minimization model. Thus, an optimal
ceded loss function f (x)may not always be non-decreasing for all
x ≥ 0. We will present in Example 3.2 (see Section 3.3 and Fig. 2)
some of thesemore involved ceded loss functions that are optimal.
In some ceded loss functions, the indemnification f (x) drops to
zero when the ground loss x exceeds certain threshold, while in
other cases, the indemnification starts to decrease after certain
threshold. Nevertheless, all of them lead to the same minimal CTE
level of the insurer’s total risk.

It should be pointed out that issues related to moral hazard
could surface when the ceded loss function is not non-decreasing;
see Bernard and Tian (2009) for additional discussion on this
aspect. Under the expectation premiumprinciple, we could always
choose the non-decreasing ceded loss functions in the reinsurance
design, since we have identified a class of such optimal solutions
in Theorem 3.1. However, the question remains interesting to
discuss whether there always exists an optimal non-decreasing
indemnification function to our CTE minimization model for
other reinsurance premium principles. The promising techniques
to tackle this research problem might be the rearrangement
inequality and approximation method as developed by Carlier and
Dana (2003) for a utility maximization model; see also Carlier and
Dana (2005) and Dana and Scarsini (2007). We would leave this
topic as one of the future research directions.

3.2.2. Case (ii): πα ≤ π ≤ πθ

Theorem 3.2. For a given underlying loss random variable X, if there
exists a positive constant d∗ such that

(1 + θ)E[(X − d∗)+] = π, (3.15)

Pr{X ≥ d∗
} ≤

1
1 + θ

, (3.16)

Pr{X ≥ d∗
} ≥ α, (3.17)

then f ∗
= (X − d∗)+ is an optimal ceded loss function to the

reinsurance model (3.5).

Remark 3.5. Note that (3.16) and (3.17), respectively, imply dθ ≤

d∗ and dα ≥ d∗, where dα and dθ are defined in (3.9) and (3.11)
respectively. The last condition, in turn, implies that Theorem 3.2
only provides solution, if it exists, for πα ≤ π ≤ πθ .

Remark 3.6. It is interesting to discuss whether there exist some
optimal reinsurance treaties other than the stop-loss contract as
identified in Theorem 3.2. Example 3.3 (see Section 3.3) analyzes
a set of contracts that are either the combination of the quota-
share and the stop-loss or the truncated stop-loss treaties with
an upper limit. They all have the same reinsurance premium as
the optimal stop-loss treaty. However, none of these ceded loss
function is optimal.
Fig. 2. Some optimal ceded loss functions in Example 3.2 that are not non-decreasing.
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Table 1
CTE of some typical reinsurance treaties with π = 10 < πα .

α = 1% α = 5% α = 10%

dα 4605.17 2995.73 2302.59
πα 12 60 120

Minimal CTE 4781.84 3839.07 3229.25
Tr1: f (x) = c∗(x − dα)+ c∗

=
10
12 c∗

=
2
12 c∗

=
1
12

Tr2: f (x) = (x − d̂)+ d̂ = 4787.49 d̂ = 4787.49 d̂ = 4787.49
Tr3: f (x) = (x − dα)+ ∧ lα lα = 1791.76 lα = 182.32 lα = 87.01

Tr4: f (x) = cx, c = 1/120 CTE = 5568.46 CTE = 3972.44 CTE = 3285.06
Tr5: f (x) = c(x − 1000)+, c = 0.0113 CTE = 5568.67 CTE = 3977.47 CTE = 3292.17
Tr6: f (x) = c(x − 1500)+, c = 0.0149 CTE = 5553.84 CTE = 3968.45 CTE = 3285.66
Tr7: f (x) = c(x − 2000)+, c = 0.0205 CTE = 5530.91 CTE = 3954.51 CTE = 3275.59
3.2.3. Case (iii): π ∈ [πθ ,∞)

Theorem 3.3. Suppose α(1 + θ) ≤ 1 and π ≥ πθ . Then f ∗
= (X −

dθ )+ is an optimal ceded loss function to the reinsurance model (3.5).

Remark 3.7. According to Theorems 3.2 and 3.3 (see also
Remarks 3.3 and 3.5), the pure stop-loss treaty f ∗(x) = (x − d∗)+
with the retention d∗ satisfying (1 + θ)E[(X − d∗)+] = π is an
optimal ceded loss function for π < πα . Hence, combining this
fact with Theorem 3.3, we see that a pure stop-loss treaty f ∗(X) =

(X − d∗)+ is optimal for a general reinsurance premium budget π ,
where the retention d∗ is determined by (1 + θ)E[(X − d∗)+] =

min{π, πθ }.

Remark 3.8. Suppose an insurer is willing to spend up to π with
π ≥ πθ to transfer part of its risk to a reinsurer. Theorem 3.3
asserts that a rational insurer should only spend exactly πθ . It is
not possible to reduce its risk (in terms of smaller CTE) by spending
more than πθ . In fact, this fact is apparent if we restrict to the stop-
loss treaties. Under a stop-loss treaty with a retention d, the total
loss would be Tf = X ∧ d + (1 + θ)E[(X − d)+], which implies

CTEα(Tf ) = d + (1 + θ)

∫
∞

d
SX (x)dx.

Clearly, by the above expression, CTEα(Tf ), as a function of d,
is decreasing on [0, dθ ] while increasing on [dθ ,∞). Thus, it is
impossible for stop-loss treaties with reinsurance premium larger
than πθ to be optimal.

3.3. Some numerical examples

In this subsection, we will present some numerical examples
to highlight the theoretical results developed in the preceding
subsection. These examples will also complement the remarks as
discussed in the last subsection. The basic setup of our examples
below is based on the following information, which for ease of
reference, we refer as the base case parameters set.
(a) Assume the safety loading factor θ = 0.2 for the reinsurance

premium calculation.
(b) Suppose the loss random variable X is exponentially distributed

with mean µ = 1000 and with survival function SX and
probability density function fX

SX (x) = e−
x
µ , fX (x) =

1
µ
e−

x
µ , for x ≥ 0.

Thus, it follows from the definition (3.9) that dα = S−1
X (α) =

−µ lnα for 0 < α ≤ 1. Consequently, it is easy to verify that
πα = (1 + θ)E[(X − dα)+] = (1 + θ)µα. �

Example 3.1. This example aims to illustrate Theorem 3.1 and to
support the arguments as presented in Remark 3.2. Using the above
base case parameter set and together with α ∈ {1%, 5%, 10%},
we have

πα = 12 and dα = 4605.17, for α = 1%
πα = 60 and dα = 2995.73, for α = 5%
πα = 120 and dα = 2302.56, for α = 10%.


(3.18)

In order for Theorem 3.1 to be applicable, we assume the
reinsurance premiumbudgetπ = 10 so that the conditionπ ≤ πα
is satisfied for all three levels α. We consider seven reinsurance
treaties. The first three treaties are

Tr1 : f (x) = c∗(x − dα)+,

Tr2 : f (x) = (x − d̂)+,
Tr3 : f (x) = (x − dα)+ ∧ lα.

The remaining four treaties take the form: f (x) = c(x − d)+,
for d = 0, 1000, 1500 and 2000 and these treaties are labeled,
respectively, as Tr4–Tr7. For these reinsurance treaties to be well
defined, we have yet to specify their parameter values (such as c∗

in Tr1, d̂ in Tr2, . . .). The required parameter is determined in such
a way that the loaded reinsurance premium coincides exactly with
the reinsurance premium budget; i.e.

(1 + θ)E[f (X)] = π.

It is easy to see that while the graphs of the first three treaties
are bounded from above by pure stop-loss function f (x) = (x −

dα)+, the other four samples (i.e. Tr4–Tr7) do not satisfy this
property. By applying Theorem 3.1 (see also Remark 3.2), we see
that treaties Tr1, Tr2 and Tr3 are all optimal reinsurance treaties,
while Tr4–Tr7 may not be. Table 1 reports, for each reinsurance
treaty, the CTE value of the resulting total loss. Clearly treaties
Tr4–Tr7 are not optimal due to the higher CTE values.

Example 3.2. In this example we demonstrate that under our
proposed CTE minimization model, the optimal ceded loss
functions need not always be non-decreasing, as pointed out in
Remark 3.2. We use the same base case parameters set with π =

10 and α = 1%. From (3.18), we have dα = 4605.17. We consider
the following four reinsurance treaties:

• f (x) = (x − dα)+ · 1(x≤dl), where dl = 7840.357.
• f (x) = min{(x − dα)+, l} · 1(x≤dl), where l = 2000 and dl =

8761.452.
• f (x) = (x − dα)+ · 1(x≤dl) + (2dl − dα − x)+ · 1(x>dl), where

dl = 7045.535.
• f (x) = min[(x − dα)+, l] · 1(x≤dl) + (dl + l − x)+ · 1(x>dl),

where l = 2000 and dl = 7922.892.

Note that the parameters l and dl in the above ceded loss functions
are determined using the condition (1 + θ)E[f (X)] = π . These
four treaties are plotted in Fig. 2. As a benchmark, we also plot
pure stop-loss function of the form f (x) = (x − dα)+ and this is
represented by the dashed curve. Note that by construction, the
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Table 2
CTE of some typical reinsurance treaties with πα ≤ π = 400 ≤ πθ .

α = 1% α = 5% α = 10%

dα 4605.17 2995.73 2302.59
πα 12 60 120

Tr1: f (x) = (x − d∗)+, d∗
= 1098.61 CTE = 1498.612 CTE = 1498.61 CTE = 1498.61

Tr2: f (x) = cx, c = 0.3333 CTE = 4136.780 CTE = 3063.82 CTE = 2601.72
Tr3: f (x) = c(x − 200)+, c = 0.4071 CTE = 3804.54 CTE = 2850.36 CTE = 2439.42
Tr4: f (x) = c(x − 400)+, c = 0.4973 CTE = 3416.77 CTE = 2607.67 CTE = 2259.20
Tr5: f (x) = c(x − 600)+, c = 0.6074 CTE = 2965.17 CTE = 2333.26 CTE = 2061.11
Tr6: f (x) = c(x − 800)+, c = 0.7418 CTE = 2440.47 CTE = 2024.99 CTE = 1846.05
Tr7: f (x) = c(x − 1000)+, c = 0.9061 CTE = 1832.45 CTE = 1681.32 CTE = 1616.23
Tr8: f (x) = (x − d)+ ∧ l, d = 1000, l = 2365.46 CTE = 3639.71 CTE = 2090.92 CTE = 3090.92
above four treaties are bounded from above by the dashed curve
and hence according to Remark 3.2 these treaties are optimal. In
fact, it is easy to verify that under each of these treaties, the CTE
of the resulting total cost Tf is 4781.837, which corresponds to the
minimum CTE as obtained in Example 3.1.

Example 3.3. The objective of this example is to illuminate
Theorem 3.2 by demonstrating that pure stop-loss reinsurance
treaty is optimalwhilemany reinsurance treaties are not necessary
optimal, even though these latter treaties are commonly discussed
in the optimal reinsurance literature. These results supplement
Remark 3.6.

We use the same basic setup as in Example 3.1 with α ∈

{1%, 5%, 10%}. These parameter values imply πθ = (1 + θ)E[(X −

dθ )+] = µ = 1000 and the values of dα and πα are given in
(3.18) for the corresponding values of α. Furthermore, we set the
reinsurance premium budget to π = 400 so as to ensure πα <
π < πθ . Using Theorem 3.2, pure stop-loss reinsurance f (x) =

(x− d∗)+ satisfying (1+ θ)E[(X − d∗)+] = π is one of the optimal
treaties. The optimal retentions d∗, together with the resulting
minimal CTE of the insurer’s total loss, are reported in Table 2. In
addition, we consider seven other reinsurance treaties and these
are labeled as Tr2–Tr8 as shown in Table 2. Note that these treaties
are either some combinations of the stop-loss and the quota-share
contracts, or a truncated stop-loss treaty. The parameter values
of these treaties are selected so that the resulting reinsurance
premium coincides with 400. Clearly, none of these treaties are
optimal as exemplified by the corresponding higher CTE.

4. Optimal reinsurance model: the binding case

To illustrate the best risk and reward profile for the insurer’s
optimal selection of reinsurance, this section focuses on the
reinsurance model with binding reinsurance premium budget
constraint as follows:
min
f∈Qf

CTEα(Tf ),

s.t. (1 + θ)E[f ] = π.
(4.1)

As previously defined, the notation Qf denotes the set of feasible
ceded loss functions, i.e. Qf = {f ∈ L2

: 0 ≤ f (x) ≤ x for x ≥

0}, and π is an exogenous variable representing the reinsurance
premium budget. The only difference between the reinsurance
model (2.8) and the above (4.1) lies on how we interpret the
constraint associated with the reinsurance premium budget π . In
the former case, the insurer is willing to spend up to π while in
the latter case, the constraint is binding in that the insurer is to
spend exactly π on reinsuring its risk. Hence problem (4.1) is more
restrictive and we are interested in its solution for π ∈ (0, πX ]

where πX = (1 + θ)E[X].
Onemotivation for considering the above optimizationproblem

(4.1) is that it allows us to address more explicitly the tradeoff
between risk and reward. To see this, we will first focus on the
objective function in model (4.1) and then on its constraint. Recall
that in Footnote 2 on page 4, Γ (f ) was defined as the insurer’s
net risk; i.e., Γ (f ) = Tf − p0 = X − f (X) + (1 + θ)E[f ] − p0,
where p0 is the insurance premium collected by the insurer from
the policyholders. Because of the translation invariance property,
we have CTEα(Γ (f )) = CTEα(Tf ) − p0. Since p0 is a constant for a
given X , this implies that if f ∗ is a minimizer of CTEα(Tf ), it is also
a minimizer of CTEα(Γ (f )).

We now shift our attention to the constraint condition in (4.1).
The term b(f ) ≡ −E[Γ (f )] = p0 − E[X] − θE[f ] captures the
insurer’s expected net profit in the presence of reinsurance. Note
that the insurer’s expected net profit depends on the choice of
the ceded loss function. Furthermore, the constraint E[f ] =

π
1+θ ,

where π =
1+θ
θ
(p0 − E[X] − b(f )), can be interpreted as the prof-

itability requirement in that once the condition is attained, the re-
sulting optimal ceded loss function f ∗ ensures a certain prescribed
level of expected net profit b(f ∗). Consequently, f ∗ that solves
model (4.1) represents the insurer’s least risk exposure (as mea-
sured by the CTE) for a given level of expected profitability. Hence
if model (4.1) is solved repeatedly for each π ∈ (0, πX ], where
πX = (1+ θ)E[X], then we trace out pairs of


CTEα(Γ (f ∗)), b(f ∗)


that give the best possible risk and reward tradeoff. This is anal-
ogous to the efficient frontier of the Markowitz portfolio mean-
variance analysis. For this reason, we refer the curve represented
by


CTEα(Γ (f ∗)), b(f ∗)


as the insurer’s reinsurance ‘‘efficient’’

frontier. Depending on the risk tolerance of an insurer, the rein-
surance efficient frontier facilitates the insurer on its optimal selec-
tion of ceded loss function. Bernard and Tian (2009) also discussed
the reinsurance efficient frontier under a VaR-like minimization
model. For more detailed remarks, please refer to Remark (v) in
Example 4.1.

The mathematical technique used to solve the reinsurance
model (2.8) can similarly be used to derive the optimal solution
to (4.1). This entails reformulating (4.1) as

min
(ξ ,f )∈R×Qf

Gα(ξ , f )

≡ ξ +
1
α
E


X − f + (1 + θ)E[f ] − ξ


+


s.t. (1 + θ)E[f ] = π.

(4.2)

If (ξ ∗, f ∗) are the optimal solutions to (4.2), then f ∗ is also the
optimal solution to (4.1) (see Lemma 3.1). Moreover, the problem
(4.2) is convex and thus a ceded loss function f ∗ is a solution to
(4.2) if and only if there exist constants ξ ∗ and r , and the random
variable λ ∈ L2 such that the three optimality conditions C1,
C2 and C3 in Proposition 3.1 are satisfied except with the binding
condition (1 + θ)E[f ] = π in defining the set Qπ . To avoid any
confusion, we will define Q′

π as Q′
π = {f ∈ L2

: (1+ θ)E[f ] = π}

to distinguish from the previously introduced notation Qπ .
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Remark 4.1. Theorems 3.1 and 3.2 indicate that for any given
reinsurance premium budget π ∈ (0, πθ ], pure stop-loss treaty
f ∗(x) = (X − d∗)+, where (1 + θ)E[f ∗

] = π , is an optimal
reinsurance solution to the reinsurance model (2.8). Note that
the optimal retention d∗ is determined such that the resulting
reinsurance premium coincides with the reinsurance premium
budget π . In other words, the optimal ceded loss function is
attained at the reinsurance premium budget. Theorem 3.3, on the
other hand, suggests that even if an insurer is willing to spend π ≥

πθ , the stop-loss treaty is still a possible optimal reinsurance treaty,
except that the solution is no longer binding. The optimal retention
d∗ is always dθ so that the reinsurance premium is capped at πθ .
Hence it is never rational for an insurer to spend more than πθ
to reinsure its risk. Nevertheless, it is of theoretical interest to
examine the solution to our optimal reinsurance model under the
binding reinsurance premiumbudget constraint, as we establish in
the following theorem for π ∈ (0, πX ].

Theorem 4.1. Assume α(1 + θ) ≤ 1 and there exists a constant d∗

such that (1 + θ)E[(X − d∗)+] = π for each π ∈ (0, πX ]. Then
the stop-loss treaty f ∗(x) = (x − d∗)+ is an optimal solution to the
reinsurance model (4.1).

Proof. See Appendix A.4. �

Remark 4.2. The above Theorem 4.1 can also be used to explain
why the deduction level dα and the constant dθ play such an
important role in determining solutions to our model (2.5) in the
unbinding case. Under a stop-loss treaty with deductible d, the
insurer’s total loss is

Tf ≡ X − f (X)+ (1 + θ)E[f (X)]
= min{X, d} + (1 + θ)E[(X − d)+],

and its resulting CTE level is

CTEα(Tf ; d) =



d + (1 + θ)

∫
∞

d
SX (x)dx,

for d ≤ dα,

dα +
1
α

∫ d

dα
S(x)dx + (1 + θ)

∫
∞

d
S(x)dx,

for d ≥ dα.

According to Theorem 4.1, this is the minimal CTE level the insurer
can attain by spending a reinsurance premium of (1 + θ)E[(X −

d)+]. Clearly, as a function of d, CTEα(Tf ; d) is increasing on interval
[0, dθ ], and decreasing on interval [dθ ,∞]. For d decreases from
∞ to dθ , the resulting premium of the stop-loss treaty increases
from 0 to πθ (see (3.8)) and CTEα(Tf ; d) keeps decreasing. Thus,
to be optimal under our model (2.5) with an unbinding premium
constraint (1+θ)E[f (X)] ≤ π forπ ∈ [0, πθ ], a ceded loss function
f must exhaust the premium budget π , i.e., (1 + θ)E[f (X)] = π .
On the other hand, for d decreases from dθ to 0, the resulting
reinsurance premium of the stop-loss treaty increases from πθ to
(1 + θ)E[X], while CTEα(Tf ; d) keeps increasing. This implies that,
to be optimal under the unbinding case with reinsurance premium
budget constraint (1 + θ)E[f (X)] ≤ π for π ≥ πθ , a ceded loss
function f must cost a reinsurance premium of πθ .

Remark 4.3. From the above Theorem 4.1, the ceded loss function
f ∗(x) = (x − d∗)+ with (1 + θ)E[f ∗

] = π solves model (4.1) if
α(1 + θ) ≤ 1. Thus the reinsurance efficient frontier is given by

CTEα(Γ (f ∗)), b(f ∗)


: f ∗
= (X − d∗)+, (1 + θ)E[f ∗

] = π,

and π ∈ (0, πX ]


,

where Γ (f ∗) = (X ∧ d∗)+π − p0, and b(f ∗) = p0 − E[X]−
θ

1+θ π .
Fig. 3. Risk reward under optimal reinsurance arrangement.

Example 4.1. Using our base case parameter set and togetherwith
η = 0.1 and α = 5%, it is easy to show that dα = 2995.73, dθ =

182.32, πα = 60, πθ = 1000 and πX ≡ (1 + θ)E[X] = 1200.
With these parameter values, Theorem 4.1 asserts that to obtain
an optimal ceded loss function, we merely need to determine the
retention level d∗ that satisfies (1 + θ)E[(X − d∗)+] = π for each
π ∈ (0, πX ]. Under the exponential distribution with mean µ, it is
easy to show that

d∗
= µ ln


µ(1 + θ)

π


.

Furthermore, it is clear that CTEα(X∧d) = d for d ≤ dα ≡ −µ lnα,
or equivalently π ≥ πα . For d ≥ dα , i.e., π ≤ πα ,

CTEα(X ∧ d) = dα +
1
α

∫
∞

dα
Pr{X ∧ d > x}dx

= dα +
µ

α


e−dα/µ − e−d/µ

= µ(1 − lnα)−
π

α(1 + θ)
.

Thus the reinsurance efficient frontier,

CTEα(Γ (f ∗)), b(f ∗)


, is

given by

CTEα(Γ (f ∗)) = CTEα(X ∧ d∗)+ π − p0

=


µ(1 − lnα)− p0 + π

[
1 −

1
α(1 + θ)

]
,

π ≤ πα,

µ ln

µ(1 + θ)

π


+ π − p0,

π ≥ πα,

=


−

47
3
π + 2895.73, π ≤ 60,

1000 ln

1200
π


+ π − 1100, π ≥ 60,

(4.3)

and

b(f ∗) = p0 − E[X] −
θ

1 + θ
π = 100 −

1
6
π. (4.4)

Fig. 3 plots the resulting reinsurance efficient frontier for π ∈

[0, πX ]. We now conclude the example with the following
remarks:

(i) It is striking to note that the reinsurance efficient frontier
has a tremendous resemblance to the classical Markowitz
mean-variance efficient frontier even though the risk in our
reinsurance model is captured by the CTE.

(ii) Without reinsurance, the insurer retains the entire amount of
the insurance premium and hence its expected profit margin
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is 100.3 This is not surprising since we have assumed that the
insurer’s loading factor is η = 10%. Moreover, the insurer’s
risk exposure in term of CTE reaches its peak at 2895.72.
These values can be obtained by setting π = 0 in (4.3)
and (4.4). However, as the insurer becomes more risk averse
and is willing to spend more on reinsurance, its expected
profit declines with decreasing CTE risk exposure. This is
the classical risk and reward tradeoff. More precisely, as the
reinsurance premium budget π increases from 0 to 60, both
the expected profit and the CTE decline linearly at the rate of
1
6 and15 2

3 from100 and2895.72, respectively. The dot-dashed
line in Fig. 3 depicts the tradeoff for π ∈ [0, 60].

(iii) When an insurer is willing to spend more than 60 on the
reinsurance premium budget, the insurer’s expected profit
continues to drop linearly. The CTE, on the other hand,
continues to decrease but it reaches its minimum at π =

πθ = 1000. This is depicted as the solid line in Fig. 3.
When π > 1000, the CTE actually increases even though the
expected profit still declines. Consequently, it is never rational
to spend more than 1000 in reinsuring its risk as already
noted in Theorem 3.3. To distinguish these two parts of the
frontier, we denote the portion with π ≤ 1000 as the efficient
frontier while the portion with π > 1000 as the inefficient
frontier, in analogous to the Markowitz model. The efficient
and inefficient reinsurance frontiers are depicted in Fig. 3.

(iv) We point out that while π ≤ 1000 yields a reinsurance
frontier that is ‘‘efficient’’, we also note that for π > 600,
the expected profit of the insurer is negative (see (4.4)).
Hence under ordinary circumstances, the insurer will not be
spending more than 600 on reinsurance, otherwise it would
be prudent of not insuring the risk at all.

(v) A reinsurance efficient frontier with a similar shape has been
obtained in Bernard and Tian (2009) (see Fig. 1 in their
paper). While their efficient frontier depicts the efficient risk-
return profile between the guaranteed insurer’s expected final
wealth and the minimum probability that the underlying loss
X exceeds an exogenously specified threshold, ours clearly
describes the risk-return tradeoff between the insurer’s
expected profit and the minimum risk measure CTE of the
insurer’s net cost. The insurer’s expected final wealth can
be recovered by adding a constant to the insurer’s expected
profit defined in the present paper. Thus, the only difference
between these two frontiers lies in the risk measure that is
used.

5. Conclusion

In this paper, we generalized the reinsurance models of Cai and
Tan (2007) and Cai et al. (2008) by seeking optimal reinsurance
design over all possible ceded loss function under the CTE
minimization criterion. Under some very mild conditions, analytic
optimal solutions were derived for both binding and unbinding
reinsurance premium budget constraint. In particular, we found
that stop-loss reinsurance treaty is one of the optimal solutions.
In some other cases, we also found that more elaborate ceded loss
functions (such as those depicted in Fig. 2) could be optimal. For
the unbinding reinsurance model, we showed that in some cases
the entire reinsurance premium budget should be optimally used
in determining the reinsurance design while in other cases, it was
rational to spend less than the allowable budget. For the binding
reinsurance model, we derived explicitly the classical tradeoff
between risk (in term of CTE) and reward (in term of expected
profit) and we presented the insurer’s reinsurance ‘‘efficient’’ and
‘‘inefficient’’ frontiers.

3 In practice, the profit margin will be less than 100 since this amount also
includes expenses, administration charges, in addition to profits. In our analysis,
we ignore these charges for simplicity.
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Appendix

The main objective of this Appendix is to establish formally the
optimality conditions of the reinsurance model (3.5) as asserted
in Proposition 3.1. As the objective functional in model (3.5) is
not Gâteaux differentiable, the analysis is quite mathematically
involved. We adopt the Lagrangian method and develop the
optimality conditions by exploiting the concept of directional
derivative. Appendix A.1 provides a brief summary of the
mathematical concepts of relevance to subsequent discussions.
Detailed descriptions of these topics can be found in Bonnans and
Shapiro (2000). Appendix A.2 presents the proof of Proposition 3.1,
and Appendix A.3 devotes to establishing the directional derivative
of the Lagrangian function of problem (3.5), which is essential
in the proof of Proposition 3.1. Finally, Appendix A.4 collects the
proofs of Theorems 3.1–3.3 and 4.1.

A.1. Mathematical background for optimization over Banach spaces

Throughout this subsection, let E and F be two Banach spaces
with dual spaces E∗ and F ∗ respectively. Note that the dual space
consists of all linear and continuous operator which map the
Banach space onto the real line. By convention, for any operator
L ∈ E∗ (or F ∗), we use ⟨L, x⟩ to denote L(x) for x ∈ E (or F ).

Definition A.1. A mapping g : E → F is said to be directionally
differentiable at a point x ∈ E in a direction h ∈ E if the limit

g ′(x)[h] := lim
t→0+

g(x + th)− g(x)
t

exists, and in this case, g ′(x)[h] is called the directional derivative
of g at point x in direction h.4 If g is directionally differentiable
at x in every direction h ∈ E , then g is said to be directionally
differentiable at x.

Remark A.1. By the above definition, g is directionally differen-
tiable at x in a direction h if and only if g(x+th) = g(x)+tw+o+(t)
for t ≥ 0, where o+(t) denotes a function such that o+(t)/t → 0
as t → 0+, and w is a vector in F , which indeed is identified as
the corresponding directional derivative.

Definition A.2. (1) AmultifunctionΨ : E → 2F is said to be con-
vex, if its graph grh(Ψ ) is a convex subset of E × F , or equiv-
alently tΨ (x1) + (1 − t)Ψ (x2) ⊂ Ψ (tx1 + (1 − t)x2) for any
x1, x2 ∈ E and t ∈ [0, 1].

(2) We say that a mapping H1 : E → F is convex with respect
to a convex closed set C ⊂ F , if the corresponding multifunc-
tion MH1(x) = H1(x) + C is convex, where H1(x) + C denotes
{H1(x)+ y : y ∈ C}.

Remark A.2. By the above definition, if H0(x) : E → F is linear
then it is convex with respect to any convex subset of F .

4 The directional derivative can be defined in the sameway for anymapping from
a general normed vector space to another.
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Definition A.3. The collection of all subgradients of H0 at x,
denoted by ∂H0(x), is called the subdifferential of H0 at x, i.e.,

∂H0(x) = {x∗
∈ E∗

: H0(y)− H0(x) ≥ ⟨x∗, y − x⟩
holds for all y ∈ E}.

Definition A.4. The normal cone of the closed convex subset K of
F at point y0, denoted by NK (y0), is defined as the set {λ ∈ F ∗

:

⟨λ, y − y0⟩ ≤ 0, holds for all y ∈ K}.

Now let Q and K denote, respectively, two nonempty subsets of
E and F , and consider the following program:

min
x∈Q

H0(x) s.t. H1(x) ∈ K , (A.1)

where H0 and H1 are two mappings such that H0 : E → R and
H1 : E → F . Note that the feasible set of problem (A.1) is {x ∈ Q :

H1(x) ∈ K} = Q ∩ H−1
1 (K),where H−1

1 (K) = {x ∈ E : H1(x) ∈ K}.

Definition A.5. Theprogram (A.1) is called convex, if it satisfies the
following three conditions: (i) H0(x) is convex, (ii) H1(x) is convex
with respect to the set (−K), and (iii) both Q and K are convex and
closed subsets.

Lemma A.1. Assume that problem (A.1) is convex. Then one sufficient
and necessary condition for a feasible point x0 to solve problem (A.1) is
as follows: there exists λ ∈ F ∗ such that

0 ∈ ∂xL(x0, λ)+ NQ (x0), and λ ∈ NK (H1(x0)).

Here, L(x, λ) denotes the Lagrangian function corresponding to
problem (A.1), which is defined as

L(x, λ) = H0(x)+ ⟨λ,H1(x)⟩, (x, λ) ∈ E × F ∗.

Proof. See Bonnans and Shapiro (2000, p. 148). �

Lemma A.2. SupposeX is a linear vector space, and let f be a convex
functional from X to the extended real line R taking a finite value at
a point x ∈ X, and let ψ(·) denote the directional derivative f ′(x)[·]
of f . Then ∂ f (x) = ∂ψ(0).

Proof. See Proposition 2.15 of Bonnans and Shapiro (2000,
p. 86). �

A.2. Proof of Proposition 3.1 (optimality conditions)

In this subsection we will provide the formal proof of Proposi-
tion 3.1. Recall that this proposition establishes the optimality con-
ditions corresponds to the reinsurance model (3.5). We will com-
pare the problem (3.5)with the general optimization problem (A.1)
and complete the proof by applying Lemmas A.1 and A.2.

The goal function Gα(ξ , f ) in problem (3.5) is a functional
defined on the product space H := R × L2. It is clear that H is
a Hilbert space if we equip it with the inner product ≪ ·, · ≫

defined by ≪ u1, u2 ≫= E[ξ1ξ2 + f1f2] = ξ1ξ2 + E[f1f2] for
ui = (ξi, fi) ∈ H and i = 1, 2.5 Thus, problem (3.5) can be
discussed as an optimization problem over a Hilbert space. Since
Hilbert spaces are special cases of Banach spaces, any results about
the optimization problem (A.1) can be applied to (3.5).

In order to apply Lemma A.1, we need to show the convexity
of the optimization problem (3.5). First note that the feasible set
Q ≡ Qf


Qπ of the problem is clearly a closed convex subset of

H . Moreover, for any u1 = (ξ1, f1) and u2 = (ξ2, f2) from Q, and

5 The Hilbert space is a special Banach space endowed with an appropriately
defined inner product.
any scalar b ∈ [0, 1],

bGα(ξ1, f1)+ (1 − b)Gα(ξ2, f2)

= bξ1 + b
1
α
E


X − f1 + (1 + θ)E[f1] − ξ1


+


+ (1 − b)ξ2 + (1 − b)

1
α
E


X − f2 + (1 + θ)E[f2] − ξ2


+


≥ [bξ1 + (1 − b)ξ2] +

1
α
E


b

X − f1 + (1 + θ)E[f1] − ξ1


+ (1 − b)


X − f2 + (1 + θ)E[f2] − ξ2


+


= Gα


bξ1 + (1 − b)ξ2, bf1 + (1 − b)f2


,

which implies the convexity of the functionalGα(ξ , f ). Finally, E(f )
is linear as a functional mapping L2 into R, and hence, in view of
Remark A.2, it is clearly convex with respect to the interval [0, π].
Therefore, (3.5) is a convex problem.

To proceed, it is worth emphasizing a fact about the Hilbert
space H resulted from the Riesz representation theorem: For any
linear mapping M ∈ H∗,6there exists a unique pair of elements
(r, λ) ∈ H such that

⟨M, (ξ , f )⟩ =≪ (r, λ), (ξ , f ) ≫≡ rξ + E[λf ]

for all (ξ , f ) ∈ H . Therefore, the Lagrangian function corresponds
to (3.5) has the following form:

L(ξ , f ; r) = Gα(ξ , f )+ r(1 + θ)E[f ], (A.2)

for ξ ∈ R, f ∈ L2 and r ∈ R.
Furthermore by setting Kπ = [0, π] and applying Lemma A.1,

we establish the following two optimality conditions for u∗
≡

(ξ ∗, f ∗) that solves (3.5): there exists a constant r ∈ R such that

r ∈ NKπ (E[f
∗
]) (A.3)

and that

0 ∈ ∂(ξ ,f )L(ξ ∗, f ∗
; r)+ NR×Qf (ξ

∗, f ∗). (A.4)

Here, ∂(ξ ,f )L(ξ ∗, f ∗
; r) denotes the subdifferential of L(ξ , f ; r) at

point (ξ ∗, f ∗),NKπ (E[f
∗
]) is the normal cone to the convex setKπ

at E[f ∗
], and NR×Qf (ξ

∗, f ∗) is the normal cone to R × Qf at point
(ξ ∗, f ∗).

We now complete the proof of Proposition 3.1 by first
demonstrating condition (A.3) is equivalent to the proposition’s
condition C3 and then verifying condition (A.4) is equivalent to
both conditions C1 and C2. The first equivalence is easily shown
by using the definition of normal cone that (A.3) is equivalent to
r(m − E[f ∗

]) ≤ 0 for allm ∈ Kπ , or equivalently

r(E[f ] − E[f ∗
]) ≤ 0 for all f ∈ Qf .

This is exactly the condition C3.
To verify the second equivalence, it is useful to first focus

on NR×Qf (ξ
∗, f ∗) and let (ζ , λ) ∈ NR×Qf (ξ

∗, f ∗). Then by the
definition of NR×Qf (ξ

∗, f ∗), we have

ζ (ξ − ξ ∗) ≤ 0, and E[λ(f − f ∗)] ≤ 0 for all (ξ , f ) ∈ R × Qf ;

thus ζ = 0 and (A.4) is equivalent to the condition that there exists
a random variable λ ∈ L2 such that

E[λ(f − f ∗)] ≤ 0 for all f ∈ Qf , (A.5)

and

(0,−λ) ∈ ∂(ξ ,f )L(ξ ∗, f ∗
; r). (A.6)

6 Here, H∗ denotes the dual space of the Hilbert space H . The dual space consists
of all the bounded linear functionals defined on the Hilbert space H .
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Note that (A.5) corresponds to condition C2. The final part of
the proof is to establish the equivalence between condition (A.6)
and condition C1. To achieve this, we first derive the following
directional derivative of the Lagrangian function L(· , · ; r):
Ψ (ξ , f ) := L′(ξ ∗, f ∗

; r)[ξ, f ]

= ξ +
1
α


E[V1{g∗>0}] + E[V+1{g∗=0}]


+ r(1 + θ)E[f ], (A.7)

where g∗ and V are defined, respectively, in (3.6) and (3.7). As
establishing (A.7) ismathematically quite involved,we relegate the
details to Appendix A.3. The above directional derivative Ψ (ξ , f ),
together with Lemma A.2, imply that condition (A.6) is equivalent
to (0,−λ) ∈ ∂Ψ (0, 0),which in turn is equivalent to condition C1
sinceΨ (0, 0) = 0. This completes the proof of Proposition 3.1. �

A.3. Directional derivative of the Lagrangian function

Recall that we have used the notation L(ξ , f ; r) : R × L2
×

R → R to denote the Lagrangian function of the optimization
reinsurance model (3.5). Moreover, an explicit form of L(ξ , f ; r) in
term of Gα(ξ , f ) is given in (A.2). The objective of this subsection
is to establish the directional derivative of the functional L(ξ , f ; r)
at (ξ ∗, f ∗) in the direction (ξ , f ) is Ψ (ξ , f ) = L′(ξ ∗, f ∗

; r)[ξ, f ],
as asserted in (A.7). Before presenting the proof, it is useful to first
introduce the following notation
g(ξ , f ) = X − f + (1 + θ)E[f ] − ξ, (A.8)
h(Y ) = Y+, (A.9)

e(Y ) = E[h(Y )], (A.10)
so that (3.1) can equivalently be expressed as

Gα(ξ , f ) = ξ +
1
α
E


X − f + (1 + θ)E[f ] − ξ


+


= ξ +

1
α
(e ◦ g)(ξ , f ), (A.11)

where ‘‘e ◦ g ’’ denotes the composition of functions e and g .
By examining (A.2), (A.10) and (A.11), we would first focus on

e(Y ) by deriving its directional derivative e′(Y )[Z] at Y ∈ L2

in a direction Z ∈ L2. The derivation of e′(Y )[Z] is outlined in
Steps 1–5 below. The final Step 6 is then devoted to deriving the
directional derivative G′(ξ ∗, f ∗)[ξ, f ] of Gα(ξ , f ) and hence the
required L′(ξ ∗, f ∗

; r)[ξ, f ].
Step 1: Let Z be an indicator random variable such that Z(x) =

a1[δl,δr )(x) for all x ∈ Ω , where a, δl and δr are nonnegative
constants and δl < δr . Using Definition A.1, we have

h′(Y )[Z](x) = lim
t→0+

1
t
[(Y + tZ)+ − Y+] (x)

=


a · 1[δl,δr )(x), Y (x) ≥ 0,
0, otherwise.

= Z(x) · 1{Y≥0}(x). (A.12)
Step 2: Suppose Z is a nonnegative simple random variable such
that Z(x) =

∑n
i=1 aiZi(x) for all x ∈ Ω , where n is some positive

integer, {Zi, i = 1, 2, . . . , n} are indicator random variables of the
form 1[δl,δr ) with disjoint domains [δl, δr), and {ai}ni=1 is a sequence
of positive real numbers. Then,

h′(Y )[Z] = lim
t→0+

1
t

{(Y + tZ)+ − Y+}

=

n−
i=1

lim
t→0+

1
t


(Y + taiZi)+ − Y+


=

n−
i=1

aiZi · 1{Y≥0}

= Z · 1{Y≥0}, (A.13)
where the second equality follows from the assumption that Zi, i =

1, 2, . . . , n have disjoint domains, and the third equality is due to
Step 1.
Step 3: Assume Z is a general nonnegative randomvariable fromL2.
From the definition of directional derivative, we have

e′(Y )[Z] = lim
t→0+


1
t
[E(Y + tZ)+ − E(Y+)]


.

Clearly, on {x : Y (x) < 0} we have1t 
(Y + tZ)+ − Y+

 =

Y
t

+ Z


+

−


Y
t


+

 ≤ Z,

while on {x : Y (x) ≥ 0}1t 
(Y + tZ)+ − Y+

 =

Y
t

+ Z


−


Y
t

 = Z .

Combining the above results with the dominated convergence
theorem results in

e′(Y )[Z] = E


lim
t→0+

1
t


(Y + tZ)+ − Y+


.

Furthermore, it is well known that there exists a non-decreasing
sequence of nonnegative simple random variable {Zn, n ≥ 1} such
that Zn → Z almost surely; thus

e′(Y )[Z] = E


lim
t→0+

lim
n→∞

1
t


(Y + tZn)+ − Y+


.

To proceed, we denote M(t, n) =
1
t


(Y + tZn)+ − Y+


as a

function of the variables t and n. Clearly,M(t, n) is non-decreasing
in n for any fixed t > 0. We now fix n and consider the
monotonicity of M(t, n) as a function of t . Recall that Zn is a
nonnegative random variable. Thus, on {x : Y (x) ≥ 0},M(t, n)
is uniformly equal to Zn for all t ≥ 0. On {x : Y (x) < 0}, for
0 < t ≤ −Y/Zn,M(t, n) = 0 − (Y/t)+ = 0 and for t ≥

−Y/Zn,M(t, n) = Y/t + Zn, which is monotonically decreasing
to 0 as t decreases to −Y/Zn. Therefore, for any sample point in
Ω and any fixed n,M(t, n) is decreasing as t decreases to 0. This
implies that the two limits in the above expression of e′(Y )[Z] are
exchangeable and hence

e′(Y )[Z] = E


lim
n→∞

lim
t→0+

1
t


(Y + tZn)+ − Y+


= E


lim
n→∞

Zn · 1Y≥0


= E


Z · 1Y≥0


(A.14)

where the second equality follows from Step 2.
Step 4: Now assume Z is a general negative random variable from
L2. Then the procedure described in Steps 1–3 can similarly be
used to establish the following directional derivative

e′(Y )[Z] = E [Z · 1Y>0] . (A.15)

Note the slight (but important) difference between (A.14) and
(A.15).
Step 5: We now consider the directional derivative e′(Y )[Z] in the
direction of a general random variable Z ∈ L2. LetN = {x : Z(x) <
0},N = {x : Z(x) ≥ 0} and Z− = max{0,−Z}, then we have

e′(Y )[Z] = lim
t→0+

1
t


E (Y + tZ)+ − E(Y+)


= lim

t→0+

1
t
E


1N


(Y + tZ+)+ − Y+


+ lim

t→0+

1
t
E


1N


(Y − tZ−)+ − Y+


= e′(Y )[Z+] + e′(Y )[−Z−]

= E[1{Y≥0}Z+] − E[1{Y>0}Z−], (A.16)
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where the last equality is due to (A.14) and (A.15).
Step 6: Because of (A.2), we first focus on obtaining the derivative
G′(ξ ∗, f ∗)[ξ, f ] so that L′(ξ ∗, f ∗

; r)[ξ, f ] follows trivially. For
brevity, we let u∗

:= (ξ ∗, f ∗) ∈ R × L2 and u := (ξ , f ) ∈ R × L2.
Furthermore, in what follows, all the equalities can be understood
as t → 0+, if necessary.

From (A.8) and (A.10), we have

g(u∗
+ tu) = X − (f ∗

+ tf )+ (1 + θ)E[f ∗
+ tf ] − (ξ ∗

+ tξ)

= g(ξ ∗, f ∗)+ t

(1 + θ)E[f ] − f − ξ


,

and

(e ◦ g)(u∗
+ tu) = e


g∗

+ tV

,

where g∗
= g(ξ ∗, f ∗) and V = (1+θ)E[f ]−f −ξ . Thus, combining

(A.16) results in

(e ◦ g)(u∗
+ tu) = e(g∗)+ te′(g∗)[V ] + o+(t)

= e(g∗)+ tE[V+1{g∗≥0} − V−1{g0>0}] + o+(t)

= e(g∗)+ tE[V1{g∗>0} + V+1{g∗=0}] + o+(t).

It follows immediately from Definition A.1 and Remark A.1 that
e ◦ g

′
(ξ ∗, f ∗)[(ξ , f )] = E[V1{g∗>0} + V+1{g∗=0}],

which, together with (A.11), leads to

G′

α(ξ
∗, f ∗)[ξ, f ] = ξ +

1
α
E


V1{g∗>0} + V+1{g∗=0}


.

Hence, by (A.2) we obtain the directional derivative L′(ξ ∗, f ∗
; r)

[ξ, f ] of the Lagrangian function L as asserted in (A.7).

A.4. Proofs of Theorems 3.1–3.3 and 4.1

The key to establishing the ceded loss function f ∗ is indeed
an optimal solution to the reinsurance model (3.5) is to exploit
Proposition 3.1. This entails two steps. The first step is to select
appropriate constants ξ ∗, r ∈ R, and random variable λ ∈ L2.
Based on the chosen ξ ∗, r and λ, step two is to verify the three
sufficient conditions C1–C3 in Proposition 3.1. If these conditions
are satisfied, then f ∗ is an optimal solution and the proof is
complete. This is the strategy we will adopt for the proofs of
Theorems 3.1–3.3 and 4.1. We will provide a detailed proof of
Theorem 3.1. Because of the similarity in the proofs, wewill simply
state the choices of ξ ∗, r andλ that are essential to the proofs of the
remaining theorems.

Proof of Theorem 3.1. We begin the proof by first focusing on
condition C3. It is easy to see that condition C3 holds immediately
by setting

r =
1

α(1 + θ)
− 1. (A.17)

Note that r ≥ 0 since α(1 + θ) ≤ 1.
We now proceed to verifying condition C2. Recall that as

pointed out in Remark 3.2, we have dα < d̂. Then by choosing
ξ ∗

= π + dα , (3.6) becomes

g∗(x) =


x − dα < 0, x < dα,
x − dα ≥ 0, dα ≤ x < d̂,
x − l(x)− dα > 0, x ≥ d̂.

Clearly, we have 1{g∗<0} = 1{X<dα} and 1{g∗=0} = 1{X=dα}. By
defining

βα =


α − Pr{X > dα}

Pr{X = dα}
, if Pr{X = dα} ≠ 0;

0, if Pr{X = dα} = 0,
(A.18)
we note that 0 ≤ βα ≤ 1, since from the definition of dα in (3.9),
we have

Pr{X > dα} ≤ α, and Pr{X ≥ dα} ≥ α.

Moreover Pr{X = dα} = 0 provided that Pr{X > dα} = α. By
setting

λ = −
1
α


1{X<dα} + (1 − βα)1{X=dα}


. (A.19)

Then, for any f ∈ Qf ,

αE[λ(f − f ∗)] = −E

1{X<dα} + (1 − βα)1{X=dα}


(f − f ∗)


= −E


f ·


1{X<dα} + (1 − βα)1{X=dα}


≤ 0,

where the second equality follows from the definition that f ∗(x) =

0 for x ≤ dα . Hence, condition C2 is satisfied.
To demonstrate condition C1, we first combine (A.18) with

(A.19) to obtain

E[λ] = −
1
α


Pr{X < dα} + (1 − βα) Pr{X = dα}


= −

1 − α

α
.

This result in turn leads to

E[1 + αλ] = α. (A.20)

Moreover, we establish the following relation:

E

V1{g∗>0} + V+1{g∗=0}


= E


V1{X>dα} + V+1{X=dα}


≥ E


V1{X>dα} + βαV+1{X=dα}


≥ E


V

1{X>dα} + βα1{X=dα}


= E[V (1 + αλ)], (A.21)

where the last equality follows from (A.19). The above result,
together with (A.17), (A.19) and (A.20), assert condition C1 as
shown below:

A(ξ , f ) ≥ α

ξ + r(1 + θ)E[f ] + E(λf )


+ E[V (1 + αλ)]

= α

ξ + r(1 + θ)E[f ] + E(λf )


+ E


(1 + θ)E[f ] − f − ξ


(1 + αλ)


= ξ


α − E[1 + αλ]


+ E[f ]


α(1 + θ)(1 + r)− 1


= 0.

Since conditions C1, C2 and C3 hold with constants ξ ∗
= π +

dα, r as defined in (A.17), and the random variable λ ∈ L2 as
defined in (A.19), f ∗ defined in (3.12) is indeed an optimal ceded
loss function and hence the proof is complete. �

Proof of Theorem 3.2. We set

ξ ∗
= d∗

+ (1 + θ)E[f ∗
]

λ = −
δ

α
1{X<d∗}

r =
δ

α


1

1 + θ
− Pr{X ≥ d∗

}


,

where δ =
α

Pr{X≥d∗}
so that 0 < δ ≤ 1. Similar to the proof of

Theorem 3.1, we can verify that the ceded loss function of the form
f ∗

= (X − d∗)+ satisfies the three sufficient conditions C1, C2 and
C3 in Proposition 3.1with the above selected ξ ∗, λ and r , and hence
complete the proof. �
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Proof of Theorem 3.3. Using the same line of arguments as in the
proof of Theorem 3.1, we can show that the ceded loss function of
the form f ∗

= (X − dθ )+ satisfies the required conditions C1, C2
and C3 if we were to set

ξ ∗
= dθ + (1 + θ)E[f ∗

]

r = 0

λ = −(1 + θ)

1{X<dθ } + (1 − βθ )1{X=dθ }


,

where

βθ =


1/(1 + θ)− Pr{X > dθ }

Pr{X = dθ }
, if Pr{X = dθ } ≠ 0;

0, if Pr{X = dθ } = 0. �
(A.22)

Proof of Theorem 4.1. It follows from Remark 4.1 that we only
need to address the optimal solution for the reinsurance premium
that falls in the range (πθ , πX ]. Moreover, it suffices to demonstrate
that f ∗(x) = (x − d∗)+ satisfies the three optimality conditions
C1, C2 and C3 in Proposition 3.1 with Qπ replaced by the binding
constraint Q′

π . In fact, because of the binding condition f ∈ Q′
π ,

condition C3 holds trivially for any constant r ∈ R. This implies
that we only need to verify conditions C1 and C2 which, in turn,
can be demonstrated by setting

ξ ∗
= d∗

+ (1 + θ)E[f ∗
]

r =
1

δ(1 + θ)
− 1

λ = −
1
δ
1{X<d∗},

where δ = Pr{X ≥ d∗
}. �
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