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Abstract

A weighted empirical likelihood approach is proposed to take account of the heteroscedastic structure of
the data. The resulting weighted empirical likelihood ratio statistic is shown to have a limiting chisquare
distribution. A limited simulation study shows that the associated con*dence intervals for a population mean
or a regression coe+cient have more accurate coverage probabilities and more balanced two-sided tail errors
when the sample size is small or moderate. The proposed weighted empirical likelihood method also provides
more e+cient point estimators for a population mean in the presence of side information. Large sample resem-
blances between the weighted and the unweighted empirical likelihood estimators are characterized through
high-order asymptotics and small sample discrepancies of these estimators are investigated through simula-
tion. The proposed weighted approach reduces to the usual unweighted empirical likelihood method under a
homogeneous variance structure.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The empirical likelihood method *rst proposed by Owen (1988) is a powerful nonparametric
inference tool with applications in many areas of statistics. New development is still active trying to
extend the method to handle various non-regular situations. Owen (2001) provides a comprehensive
account and an updated overview of the subject.

Suppose Y1; Y2; : : : ; Yn are independent and identically distributed random variables from an
unknown distribution F(y). Let pi = F(Yi) − F(Yi−). The empirical log-likelihood function
l(F)=

∑n
i=1 log(pi) is maximized, subject to the normalization constraints pi¿ 0 and

∑n
i=1 pi=1,

by the empirical distribution function, i.e. p1 = · · ·=pn = n−1. Let 
0 =
∫
y dF(y) be the unknown

population mean. The nonparametric maximum empirical likelihood estimator for 
0 is given by
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̂ = n−1 ∑n
i=1 Yi. Let l(
̂) =

∑n
i=1 log(n−1) and l(
) =

∑n
i=1 log(pi) where the pi maximize l(F)

subject to

pi¿ 0;
n∑
i=1

pi = 1 and
n∑
i=1

piYi = 
:

It was shown by Owen (1988) that, under some mild *nite moment conditions, −2[l(
0) − l(
̂)]
converges to �21 in distribution, and consequently a 1 − � con*dence interval for 
0 can be con-
structed as

{
 | − 2[l(
)− l(
̂)]¡�21(�)}; (1.1)

where �21(�) is the 1− � quantile from a �2 distribution with one degree of freedom.
More generally, if the parameter of interest, �, is de*ned through a one-dimensional estimating

equation E{U (Y; �)}=0 (or E{U (x; Y; �)}=0 where x is a covariate and the expectation is conditional
on the given x), the foregoing formulation of (1.1) for 
0 can be adapted for � by simply replacing
the constraint

∑n
i=1 piYi = 
 by

∑n
i=1 piU (Yi; �) = 0.

The empirical likelihood con*dence interval (1.1) is similar to the one based on Wilks’s theo-
rem under a parametric model, and is more applicable due to its non-parametric nature and weak
assumptions. There are several possible directions to extend or generalize this result. For instance,
one can assume Y1; : : : ; Yn being independent, having a common mean 
0 but with non-constant
variances V (Yi) = vi�2. In this case the con*dence interval (1.1) can still be justi*ed under slightly
diHerent moment conditions. A more general case is covered by the triangular array empirical like-
lihood theorem of Owen (2001).

While (1.1) has approximate con*dence level of 1− � for large samples, its *nite sample perfor-
mance depends on the actual underlying distribution and cannot exactly be quanti*ed. Some empirical
evidences, however, do indicate that the actual coverage probability under small samples is usually
lower than the nominal value, resulting in a false claimed con*dence level. See the simulation results
reported in Owen (1988) and also those reported in Section 3 of this article.

In this article we propose to use a weighted empirical likelihood approach assuming a non-constant
variance structure of the data. The resulting weighted empirical likelihood ratio statistic is shown
to have a limiting chisquare distribution, and the associated con*dence intervals for a population
mean or a regression coe+cient are shown to have more accurate coverage probabilities and more
balanced two-sided tail errors when the sample size is small or moderate. The proposed approach
also provides more e+cient point estimator for a population mean (in terms of smaller variance or
mean square error) when the mean values of auxiliary variables are known. The proposed approach
reduces to the usual unweighted empirical likelihood method under homogeneous variances.

Formulation of a weighted empirical likelihood function and establishment of the limiting distri-
bution of the weighted empirical likelihood ratio statistic are presented in Section 2. The weighted
and the unweighted empirical likelihood ratio con*dence intervals for a regression coe+cient are
compared in Section 3 through a simulation study. In Section 4 the proposed weighted empirical
likelihood method is applied to obtain more e+cient point estimator of a population mean in the
presence of side information. Large sample resemblances between the weighted and the unweighted
empirical likelihood estimators are characterized through high order asymptotics and small sample
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discrepancies of these estimators are investigated through simulation. All proofs are deferred to the
appendix. Some additional remarks are given in Section 5.

2. Weighted empirical likelihood

Consider situations where Y1; : : : ; Yn are independent, have a common mean 
0 and variances
V (Yi) = vi�2 where the vi are known constants. Typically the vi are related to certain covariates
under the context of regression analysis. See Sections 3 and 4 for further illustration. Our goal is to
formulate a weighted likelihood function using the vi, an idea similar to the one used in weighted
regression analysis.

The task would be much easier if we work with the so-called Euclidean likelihood function lE(F)=
−(1=2)

∑n
i=1 (npi − 1)2 discussed in Owen (2001). This likelihood function is derived based on the

Euclidean distance
∑n

i=1 (pi−n−1)2 between the two sets of probability measure F=(p1; : : : ; pn) and
F̂=(n−1; : : : ; n−1). A natural weighting scheme using the vi would be l∗E(F)=−Cn

∑n
i=1 vi(pi−n−1)2,

where Cn¿ 0 is a scaling constant and its role will be clari*ed shortly. Such a weighting scheme
reIects the relevance of the data: the larger the value of vi, the less informative the observation Yi,
and the consequence from maximizing l∗E(F) under various constraints will force pi taking values
closer to the basic probability measure n−1. This argument will become more convincing in Section 4
when a connection between the estimation of the population mean and the estimation of the under-
lying regression coe+cients is observed. Note that maximizing l∗E(F) subject to

∑n
i=1 pi = 1 gives

p1 = · · ·= pn = n−1.
It is not obvious that one can re-weight the empirical likelihood function l(F) =

∑n
i=1 log(pi) in

a similar fashion as in the case of Euclidean likelihood. Note that the empirical loglikelihood ratio
statistic r(F)= l(F)− l(F̂)=

∑n
i=1 log(npi) is not a true distance measure between F=(p1; : : : ; pn)

and F̂ =(n−1; : : : ; n−1). Our proposed strategy is to re-weight an empirical likelihood-based distance
measure using the so-called minimum entropy distance given by

D(F; F̂) =−
n∑
i=1

{
1
n
log(npi)− pi +

1
n

}
:

It can be seen that D(F; F̂) is a true distance measure and is clearly originated from the log-likelihood
function. If we impose the normalization constraint

∑n
i=1 pi = 1, then D(F; F̂) = −r(F)=n. Maxi-

mizing r(F) is equivalent to minimizing D(F; F̂). This entropy distance has previously been used in
information theory as well as in survey sampling for the construction of calibration estimators. See,
for instance, Deville and SLarndal (1992) for further discussion.

De�nition 1. Let v1; : : : ; vn be a set of known positive constants. The weighted empirical (log) like-
lihood function is given by lW(F) =Cn

∑n
i=1 vi{log(pi)− npi}, where Cn = n=

∑n
i=1 vi is a scaling

constant.

One can alternatively view lW(F) as obtained by modifying l(F) =
∑n

i=1 log(pi) through penal-
izing (the term −npi) and re-weighting (the factor vi). The very crucial nature of this formulation,
however, lies in the fact that some of the basic properties of the empirical likelihood method will
be preserved, as shown by Theorem 1 below and the results presented in Section 4. When the vi are
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all equal, the weighted lW(F) reduces to the unweighted l(F) if one ignores a trivial constant term.
To maximize lW(F) subject to pi ¿ 0 and

∑n
i=1 pi =1, a Lagrange multiplier argument shows that

p1 = · · ·= pn = n−1.
We consider a parameter � de*ned through E{U (Y; �)}= 0 (or E{U (x; Y; �)}= 0). Let lW(�̂) =

Cn
∑n

i=1 vi{log(n−1) − 1} and lW(�) = Cn
∑n

i=1 vi{log(pi) − npi}, where the pi maximize lW(F)
subject to pi ¿ 0,

∑n
i=1 pi = 1 and

∑n
i=1 piU (Yi; �) = 0. Let �0 be the true value of �.

Theorem 1. Let Y1; Y2; : : : be a sequence of random variables and Ui = U (Yi; �0) such that
E(Ui) = 0, V (Ui) = vi�2 and v−1=2

i Ui are independent and identically distributed. If E(U 4
i )¡∞,∑n

i=1 v
2
i =(
∑n

i=1 vi)
2 = o(1) and n−1 ∑n

i=1 v
−2
i =O(1), then −2{lW(�0)− lW(�̂)} converges to �21 in

distribution as n → ∞.

Proof. See the appendix.

The assumptions that the v−1=2
i Ui are iid, E(U 4

i )¡∞, and
∑n

i=1 v
2
i =(
∑n

i=1 vi)
2 =o(1) can alto-

gether be replaced by a version of Lindeberg’s condition. Such a condition, however, will gener-
ally be di+cult to verify. The condition

∑n
i=1 v

2
i =(
∑n

i=1 vi)
2 = o(1) can be su+ciently replaced by

n−1 ∑n
i=1 v

2
i =O(1). The theorem is most useful under the context of regression analysis where the

Ui are often related to the error terms. For instance, the common mean 
0 =E(Yi) can be related to
the regression model Yi = 
0 + v1=2i �i. The conditions required by the theorem simply state that the
error terms �i are iid with *nite forth moment.
A unique solution to the constrained maximization problem exists if U(1)¡ 0¡U(n), where U(1)=

min{U1; : : : ; Un} and U(n) =max{U1; : : : ; Un}. This occurs with probability approaching to 1 as n →
∞. It is also clear from the proof of the theorem that one may choose Cn = (n− 1)=

∑n
i=1 vi as the

scaling constant to match the unbiased estimator for �2. This Cn was used in the simulation study
reported in Section 3.

The major computational task is to maximize lW(F) under the constraints
∑n

i=1 pi = 1 (pi ¿ 0)
and

∑n
i=1 piU (Yi; �) = 0. It can easily be seen through the Lagrange multiplier method that, unlike

the usual empirical likelihood approach, the Lagrange multiplier corresponding to the normalization
constraint

∑n
i=1 pi=1 cannot be eliminated under the current context. We need to combine

∑n
i=1 pi=

1 and
∑n

i=1 piU (Yi; �) = 0 together to form a single set of constraints as
∑n

i=1 pizi = Z , where
zi = (1; Ui)′ and Z = (1; 0)′. It can be shown by using the Lagrange multiplier method that the pi

which maximize lW(F) subject to
∑n

i=1 pizi=Z are given by pi={n(1+�′ziqi)}−1, where qi=v−1
i ,

and the Lagrange multiplier � is the solution to

g(�) =
1
n

n∑
i=1

zi
1 + �′ziqi

− Z = 0: (2.1)

It should be noted that the convex duality property from the usual empirical likelihood method is
no longer true for the weighted empirical likelihood approach proposed here. A modi*ed Newton-
Raphson algorithm similar to the one introduced in Wu (2003a), however, can be used for solving
(2.1). Note that the constraints pi ¿ 0 and

∑n
i=1 pi = 1 require that 1 + �′ziqi ¿n−1 for all i.

This is a crucial requirement that should be checked at each updating step when the conventional
Newton–Raphson method is used to solve g(�) = 0.
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Step 0: Let �0 = 0. Set �= 10−8.
Step 1: Calculate �(�k) where

�(�) =

{
−1
n

n∑
i=1

qiziz′i
(1 + �′ziqi)2

}−1(
1
n

n∑
i=1

zi
1 + �′ziqi

− Z
)
:

If ‖�(�k)‖¡�, stop the algorithm and report �k ; otherwise go to Step 2.
Step 2: Let �k = �(�k). If 1 + (�k − �k)′ziqi6 n−1 for some i, let �k = �k =2 and repeat Step 2.
Step 3: Set �k+1 = �k − �k and k = k + 1. Go to Step 1.
Our experience from the reported simulation studies shows that this procedure works very well,

and is indeed very e+cient when Z is not near the boundary of the convex hull formed by {zi :
16 i6 n}.

The weighted empirical likelihood ratio con*dence interval for �0 in the form of

{�| − 2[lW(�)− lW(�̂)]¡�21(�)} (2.2)

is now justi*ed to have approximate coverage probability of 1 − � for large samples. The two
con*dence intervals, the conventional unweighted one and (2.2), however, do behave diHerently
when sample size is small. We will illustrate this in Section 3 using a simple linear regression
model where the weighted and the unweighted empirical likelihood ratio con*dence intervals for the
regression coe+cient � are examined through a simulation study.

3. Con�dence intervals for a regression coe"cient

In this section we consider a simple linear regression model Y = �x + v1=2� where E(� | x) = 0,
V (� | x)=�2. Typically v= v(x) for some known function v(·), and the exact distribution of � is left
unspeci*ed. We are interested in constructing a 1− � con*dence interval for �.

Let {(Yi; xi); i=1; : : : ; n} be an independent sample from the regression model. Let Ui(�)=Yi−�xi,
i = 1; : : : ; n. It follows that E{Ui(�)} = 0 and V{Ui(�)} = vi�2, where � is the true value of the
regression coe+cient. The weighted empirical likelihood ratio con*dence interval for �, denoted
by WL, can be constructed in the form of (2.2). The usual unweighted empirical likelihood ratio
con*dence interval for � is denoted by EL, where the normal equation

∑n
i=1 xi(Yi − �xi)=vi = 0 is

used as constraint. A normal con*dence interval based on the weighted least-squares estimator and
its estimated variance for � is given by

{�̂ − Z�=2 SE(�̂); �̂ + Z�=2 SE(�̂)}; (3.1)

where �̂=(
∑n

i=1 xiYi=vi)=(
∑n

i=1 x
2
i =vi), and SE(�̂) is the standard error of �̂ computed using standard

weighted least-squares theory. This interval is denoted by NC.
The 1−� coverage probability for all three intervals WL, EL and NC is justi*ed for large samples,

and therefore the three intervals are all asymptotically valid. When sample size is small or moderate,
however, these con*dence intervals behave quite diHerently, as shown from the simulation results
reported below.

At each simulation run, a sample of size n is generated from the model Yi = �xi + |xi|1=2�i with
the true value of � setting to 1. The covariates xi are generated from a standard gamma distribution.
Two distributions are used to generate the error terms �i: the symmetric distribution N(0; 1) and the
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Table 1
Performance of 90% con*dence intervals for �

n CI CP L U AL

20 NC 84.8 2.6 12.6 1.03
EL 81.4 5.1 13.5 0.94
WL 84.5 5.9 9.6 1.01

40 NC 86.9 2.7 10.4 0.72
EL 84.8 4.9 10.3 0.70
WL 87.5 6.1 6.4 0.75

100 NC 88.8 3.2 8.0 0.46
EL 88.2 4.5 7.3 0.46
WL 89.9 5.8 4.3 0.48

right skewed distribution �21 − 1. Let (Lb; Ub) be a con*dence interval (CI) computed from the bth
simulated sample for b= 1; : : : ; B. The total number of simulation runs is B = 5000. The simulated
coverage probability (CP), lower side tail error (L), upper side tail error (U), average length of
the interval (AL) are computed as CP= B−1 ∑B

b=1 I(Lb¡�¡Ub), L= B−1 ∑B
b=1 I(�6Lb), U =

B−1 ∑B
b=1 I(�¿Ub), and AL = B−1 ∑B

b=1 (Ub − Lb), respectively. Note that CP + L+U = 1. The
simulated results of 90% con*dence intervals for � with �i ∼ �21 − 1 under various sample size n
are reported in Table 1.

Table 1 can be summarized as follows: (i) the coverage probability for the conventional EL
interval is lower than the nominal value 90% at all cases and is as low as 81.4% for n = 20. The
associated two-sided tail errors are also not balanced; (ii) the normal con*dence interval NC has
better performance than that of the EL in terms of coverage probability but the two-sided tail errors
are severely unbalanced; (iii) the weighted WL interval has the best coverage probability among the
three intervals and is also most balanced in terms of tail errors; (iv) the better coverage probability
of the WL interval is partially due to the fact that it is slightly wider than the EL interval. The
balanced tail behavior of the WL interval, however, remains unexplained.

As for the case of �i ∼ N(0; 1) for which the results are not reported here, the WL interval
performs similar to the NC interval and both intervals perform well. The under-coverage problem
for the EL interval is still evident when n6 60, although it is less severe than those seen in Table 1.
The two-sided tail errors are quite balanced for all three intervals.

There exist more sophisticated approaches that can be combined to the usual empirical likelihood
ratio con*dence interval to improve the coverage probabilities. For example, several bootstrap related
methods as described in Owen (1988) or a second order adjustment such as the Bartlett correction
can be used to achieve this goal. The weighted empirical likelihood approach proposed here can be
viewed as a special adjustment for the heteroscedastic variance structure of the data. It has the major
advantage of computational simplicity. It should be noted, however, that our proposed approach is
diHerent from those used by Kolaczyk (1994) and Chen and Cui (2003) where weighting is applied
to constraints, not directly to the empirical likelihood function. Our approach is also very useful
and generally applicable for e+cient point estimation of a population mean when side information
is available. This is detailed in the next section.
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4. Estimation of a population mean using side information

It turns out that the weighted empirical likelihood method provides a very useful alternative
approach for point estimation of a population mean when side information is available. This is
of particular interest in the context of survey sampling where auxiliary information is routinely
used through the so-called calibration method. Chen and Qin (1993), Chen and Sitter (1999) and
Zhong and Rao (2000) contain detailed treatment of the empirical likelihood method in survey
sampling. See also Wu (2003a) for a discussion. In this section we show that the proposed weighted
maximum empirical likelihood estimator de*ned shortly provides considerable gain in e+ciency over
the unweighted estimator when the sample size is not large.

4.1. In6nite populations

Suppose Y is the variable of interest with unknown mean 
y, and x is a vector of covariates with
known mean values �x. Let {(yi; xi); i=1; : : : ; n} be a random sample. The inference problem here
is to improve the point estimate of 
y using the known side information �x. Such a scenario is most
commonly seen in survey sampling where the covariates x are also termed auxiliary variables, and
the population means �x are often available from census or other sources.
The empirical likelihood method provides a natural way of incorporating �x for the estimation

of 
y through constrained maximum likelihood estimation. The unweighted maximum empirical
likelihood estimator of 
y is computed as 
̂y =

∑n
i=1 piyi where the pi maximize the empirical

likelihood function l(F) =
∑n

i=1 log(pi) subject to

n∑
i=1

pi = 1 (pi ¿ 0) and
n∑
i=1

pixi = �x: (4.1)

The two constraints in (4.1) may be combined together and the computation may be carried through
as in the previous section. We can also treat the unweighted empirical likelihood method as a special
case of the weighted empirical likelihood approach using vi = 1. From the proof of Theorem 2 in
the appendix we see that


̂y = Ty + �̂
′
(�x − Tx) + Op(n−1); (4.2)

where Ty and Tx are the sample means, and �̂=(
∑n

i=1 xix
′
i)
−1 ∑n

i=1 xiyi is the ordinary least-squares
estimator for the regression coe+cients � associated with the underlying model

yi = x′i� + �i; i = 1; : : : ; n; (4.3)

where the �i are independent given the xi and E(�i | xi) = 0.
Suppose the regression model (4.3) has a heteroscedastic variance structure, i.e. V (�i | xi) = vi�2.

The unweighted estimator �̂ is no longer optimal under this model. One is compelled to replacing �̂
by the (weighted) best linear unbiased estimator (BLUE) �̂W = (

∑n
i=1 v

−1
i xix

′
i)
−1(
∑n

i=1 v
−1
i xiyi) in

the formulation of 
̂y if such a replacement can be done within the same framework of maximum
empirical likelihood estimation. This is indeed one of the motivations behind the weighted empirical
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likelihood method. If p̃i maximize lW(F) = Cn
∑n

i=1 vi{log(pi) − npi} subject to the same set of
constraints (4.1), the resulting weighted maximum empirical likelihood estimator of 
y is given by

̃y=

∑n
i=1 p̃iyi= Ty+�̂′W(�x− Tx)+Op(n−1). See the proof of Theorem 2 in the appendix for arguments

leading to this.
The aforementioned expansions for 
̂y and 
̃y do not constitute a precise comparison between

the two estimators. Both estimators are approximately unbiased for 
y, and their exact variances
are not tractable for a *xed sample size n. The two estimators 
̂y and 
̃y become indistinguishable
as n → ∞.

Theorem 2. Suppose that n−1 ∑n
i=1 ‖xi‖6 = O(1) and n−1 ∑n

i=1 v
−4
i = O(1), then the biases for

both 
̂y and 
̃y are of order O(n−1), and the two estimators have the same variance up to the
order of O(n−3=2).

Proof. See the appendix.

It follows that the two estimators have the same mean square error up to the high order of
O(n−3=2). To weight or not to weight is not a critical issue for large samples. The use of the
weighted empirical likelihood estimator 
̃y over the unweighted one 
̂y, however, has the implicit
eHect of replacing �̂ by the best linear unbiased estimator �̂W which is indeed bene*cial for the
estimation of 
y when the sample size is not large, as supported by results from a limited simulation
study reported below.

Simulated samples {(yi; xi); i=1; : : : ; n} are generated from the same regression model Yi=�xi+
|xi|1=2�i used in Section 3. The unweighted and the weighted estimators 
̂y and 
̃y are computed
based on each of the simulated samples, treating 
x = 1 as known. The process is independently
repeated for B=5000 times. Performance of 
̂y (also similarly de*ned for 
̃y) is measured in terms
of relative bias (RB) and relative e+ciency (RE) de*ned as

RB =
1
B

B∑
b=1


̂y(b)− 
y

y

and RE =
MSE( Ty)
MSE(
̂y)

;

where the true value of 
y is known under the simulation setting, 
̂y(b) is the value of 
̂y computed
from the bth simulated sample, and MSE(
̂y) = B−1∑B

b=1{
̂y(b) − 
y}2 (and MSE( Ty) similarly
de*ned). The sample mean Ty is used as baseline estimator for comparison. Large values of RE
(¿ 1) indicate high e+ciency of the estimator compared to Ty.

The simulated absolute values of RB are less than 0:7% for all cases and thus are not reported
here. Part of Table 2 summarizes the simulated values of RE for various sample sizes and for each
of the two error distributions used in the simulation.

The simulation results show that the use of side information (the known 
x) makes the empirical
likelihood estimators 
̂y and 
̃y much more e+cient than the naive estimator Ty. It is also shown
clearly that the weighted estimator 
̃y performs uniformly better than the unweighted estimator 
̂y,
with larger gain in e+ciency occurring at smaller sample size. The reduction in terms of mean
square error (MSE) from using 
̃y over 
̂y ranges from about 10% for n=20 to 2.5% for n=100.
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Table 2
Simulated relative e+ciencies for 
̂y and 
̃y

In*nite population Finite population

n → 20 40 100 20 40 100

� ∼ N(0; 1) 
̂y 1.64 1.88 1.93 1.60 1.84 1.99

̃y 1.78 1.96 1.98 1.72 1.92 2.03

� ∼ �21 − 1 
̂y 1.20 1.34 1.42 1.22 1.35 1.47

̃y 1.33 1.42 1.47 1.34 1.43 1.51

4.2. Finite populations

The asymptotic arguments presented in Theorem 2 do not apply directly to *nite populations. The
so-called design-based approach in survey sampling, where randomization is induced by repeated
sampling from the *xed *nite population, imposes certain restrictions for large sample comparisons.

Let {(yi; xi); i = 1; : : : ; N} be the values of the study variable Y and the vector of auxiliary
variables x for the *nite population of size N . With some misuse of notation but without caus-
ing any confusion, let 
y = N−1∑N

i=1 yi and �x = N−1 ∑N
i=1 xi be the *nite population means,

� = (
∑N

i=1 xix
′
i)
−1 ∑N

i=1 xiyi and �W = (
∑N

i=1 xix
′
i=vi)

−1 ∑N
i=1 xiyi=vi be the unweighted and the

weighted *nite population regression coe+cients. Our goal is to estimate 
y using survey sample
data {(yi; xi); i∈ s}, where s is the set of n sampled elements from the *nite population. The mean
values �x are assumed known. We restrict our discussion to cases where s is drawn by simple
random sampling without replacement. Wu (2003a) contains a brief discussion on the formulation
of the weighted empirical likelihood method in survey sampling under an arbitrary probability
sampling design.

The unweighted and the weighted maximum empirical likelihood estimators 
̂y and 
̃y are once
again computed as

∑n
i=1 piyi, where the pi maximize l(F) and lW(F), respectively, subject to the

set of constraints (4.1).
Our discussion below requires suitable asymptotic set-up that allows n → ∞ under the framework

of *nite populations. We refer to Isaki and Fuller (1982) for a detailed formulation. Under the same
*nite moment conditions used in Theorem 2, we have


̂y = Ty + �̂
′
(�x − Tx) + Op(n−1) = Ty + �′(�x − Tx) + Op(n−1);


̃y = Ty + �̂′W(�x − Tx) + Op(n−1) = Ty + �′W(�x − Tx) + Op(n−1):

The stochastic order Op(·) refers to the probability sampling under the design-based approach.
It is now evident that the two estimators 
̂y and 
̂y have the same order of bias at O(n−1) but

their design-based variances are diHerent even at the *rst order of O(n−1). More speci*cally, let
Vp(·) denote the design-based variance, we have

Vp(
̂y) = (1− f)n−1Ve +O(n−3=2) and Vp(
̃y) = (1− f)n−1Vr +O(n−3=2);
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where Ve=(N−1)−1 ∑N
i=1 (ei− TeN )2, Vr=(N−1)−1 ∑N

i=1 (ri− TrN )2, ei=yi−�′xi, TeN=N−1 ∑N
i=1 ei,

ri = yi − �′Wxi, TrN = N−1 ∑N
i=1 ri, and 1− f = 1− n=N is the *nite population correction factor.

A *rst-order comparison between Vp(
̂y) and Vp(
̃y) under the design-based approach is not
feasible, since the diHerence lies between the two versions of regression coe+cients � and �W in
de*ning Ve and Vr , and such a diHerence can only be assessed under the regression model (4.3).
A model such as (4.3) is also termed as superpopulation model in the survey sampling context.
The *nite population is viewed as independent realizations from the superpopulation model. Large
sample comparisons, however, can often be made using the so-called anticipated variances (Isaki
and Fuller, 1982) E){Vp(
̂y)} and E){Vp(
̃y)}, where E)(·) represents the conditional expectation
under the superpopulation model given the xi, i = 1; : : : ; N . The anticipated variance E){Vp(·)} is
the design-based variance for a particular *nite population, averaged over all possible realizations of
such populations under the superpopulation model.

Theorem 3. Suppose that N−1 ∑N
i=1 ‖xi‖4=O(1), N−1 ∑N

i=1 vi=O(1), N−1 ∑N
i=1 v

−4
i =O(1), then

E)(Ve) = E)(Vr) + O(N−1), where ) denotes the regression model (4.3).

Proof. The proof involves some lengthy matrix manipulation and can be found in Wu (2003b).

Hence the two estimators have virtually the same anticipated variance. The *rst-order diHer-
ence between their design-based variances may not have substantial consequence even under the
design-based framework if the sample size is large.

To further explore their small sample design-based performances, we modify the simulation study
of Section 4.1 as follows. First, a *nite population of size N = 2000 is generated from the same
regression model used in Section 4.1, and this population is treated as *xed. The true values of 
y
and 
x are determined from this particular population. Repeated samples are then drawn from this
*xed population by simple random sampling without replacement, and the estimators 
̃y and 
̂y are
computed for each of the simulated samples. The total number of repeated samples is B=5000. The
absolute values of the simulated relative biases are all less than 1% and in most cases are smaller
than 0.1%. The relative e+ciencies are reported in Table 2. The message conveyed here resembles
those of Section 4.1: the weighted estimator 
̃y performs uniformly better than the unweighted one

̂y, and the gain in e+ciency is higher when the sample size is smaller.

5. Additional remarks

Weighting is commonly used in statistics to account for speci*c structure of the data. The weighted
empirical likelihood approach proposed in this article can be adapted to other type of likelihood func-
tion such as the Euclidean likelihood brieIy mentioned in Section 2, and the associated large sample
properties can similarly be established. The empirical likelihood function is often preferred due to
its similarity to the parametric likelihood, and the natural constraints pi ¿ 0 and

∑n
i=1 pi = 1. The

latter is particularly attractive for point estimation. Obtaining normalized positive weights is a con-
stant theme for estimation in survey sampling. While such constraints can also be imposed to any
other approach, the empirical likelihood method achieves these with simple algorithms. The modi-
*ed Newton–Raphson algorithm described in Section 2 can easily be programmed using statistical
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softwares such as SAS or R/Splus. The simulation studies reported in this article are programmed
in R/Splus, and the source codes are available from the author.

There is strong evidence in favor of a weighted approach when the sample size is not large and
the heteroscedastic structure of the data can clearly be identi*ed. More work is needed, however, to
explore the robustness of the approach under misspeci*ed variance structure, and to extend the idea
of weighting to more complex situations.
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Appendix. Proofs

Proof of Theorem 1. We assume U(1)¡ 0¡U(n) so that the maximum weighted empirical likeli-
hood solution exists. There are two major aspects involved in our proof which are diHerent from
the usual empirical likelihood method. First, as mentioned in Section 2, the Lagrange multiplier
corresponding to

∑n
i=1 pi = 1 cannot be eliminated under the current context; and secondly, the

weighting factor vi needs to be treated with care at various points of the proof.
If we substitute zi=(1 + �′ziqi) by zi − qiziz′i�=(1 + �

′ziqi), we can re-write (2.1) as S̃� = Tz − Z ,
where Tz = n−1 ∑n

i=1 zi and

S̃ =
1
n

n∑
i=1

qiziz′i
1 + �′ziqi

:

Let B2
n =

∑n
i=1 V (Ui) = �2 ∑n

i=1 vi. The assumptions
∑n

i=1 v
2
i =(
∑n

i=1 vi)
2 = o(1) and E(U 4

i )¡∞
imply that

n∑
i=1

E(U 4
i ) = �4

n∑
i=1

v2i = o(B4
n);

where �4 = E{(v−1=2
i Ui)4} is *nite and independent of i. So the Liapunov’s condition holds for

Ui, which in turn implies the Lindeberg’s condition for Ui. By the central limit theorem, TU =
n−1∑n

i=1 Ui = Op(n−1=2), and hence Tz − Z = (0; TU )′ = Op(n−1=2). The conditions E(U 4
i )¡∞ and

n−1∑n
i=1 v

−2
i =O(1) also imply that max16i6n ‖qizi‖=op(n1=2). Following similar arguments as in

Owen (2001, p. 220) we can show that ‖�‖ = Op(n−1=2) and � = S−1( Tz − Z) + op(n−1=2), where
S = n−1 ∑n

i=1 qiziz
′
i . We also conclude that max16i6n |�′ziqi|= op(1) under the given conditions.

To *nish the proof, we note that log(1 + ui) = ui − u2i =2 + ,i and (1 + ui)−1 = 1− ui + u2i + -i if
ui =op(1), where the remainder terms ,i and -i can be treated similarly as in Owen (2001, p. 221),
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we have

−2{lW(�0)− lW(�̂)}=2Cn

n∑
i=1

q−1
i {log(1 + �′ziqi) + (1 + �′ziqi)−1 − 1}

=Cn

{
�′
(

n∑
i=1

qiziz′i

)
�

}
+ op(1)

= nCn( Tz − Z)′S−1( Tz − Z) + op(1)

= ( TU )2=B+ op(1);

where B = n−3 ∑n
i=1 vi

∑n
i=1 qi(Ui − TUW)2, TUW =

∑n
i=1 qiUi=

∑n
i=1 qi. The very last step follows

by noting that Tz − Z = (0; TU )′, and the lower right corner element in the two by two matrix S−1

is {n−1 ∑n
i=1 qi(Ui − TUW)2}−1. The *nal conclusion that ( TU )2=B converges in distribution to �21

follows from the fact that E( TU ) = 0, V ( TU ) = n−2 ∑n
i=1 vi�

2, E{∑n
i=1 qi(Ui − TUW)2} = (n − 1)�2

and applying the central limit theorem to TU .

Proof of Theorem 2. The key argument is to show that the Lagrange multiplier � can be approxi-
mated by S−1( Tx − �x) with an error of order Op(n−1) (the commonly claimed order is op(n−1=2)).
We show this for the case of weighted empirical likelihood method. The unweighted case amounts
to setting vi = 1. Let qi = v−1

i .
Let xi be augmented to include 1 as its *rst component. The weighted empirical likelihood esti-

mator of 
y is computed as 
̃y =
∑n

i=1 piyi where pi = {n(1 + �′xiqi)}−1 with � satisfying (A):
�x = n−1 ∑n

i=1 (1 + �′xiqi)−1xi. Apply the identity (1 + �′xiqi)−1 = 1 − (1 + �′xiqi)−1qix′i� twice
to (A) we get

Tx− �x = S� − ‖�‖2 1
n

n∑
i=1

(1 + �′xiqi)−1q2i (x
′
i.)xix

′
i.;

where S = n−1 ∑n
i=1 qixix

′
i and � = ‖�‖. for some unit vector .. Note that (1 + �′xiqi)−1 = 1 +

op(1), with the term op(1) uniformly over 16 i6 n. Under the conditions of the theorem we have
n−1 ∑n

i=1 q
2
i ‖xi‖3=O(1), it follows from ‖�‖=O(n−1=2) and S=O(1) that �=S−1( Tx−�x)+Op(n−1).

Note that, if A and B satisfy V (A)=O(n−1) and B=Op(n−1), then V (A+B)=V (A)+O(n−3=2). It

is a straightforward expansion to show that 
̃y= Ty+ �̂
′
W(�x− Tx)+Op(n−1)= Ty+�′(�x− Tx)+Op(n−1),

and consequently E(
̃y)=
y +O(n−1) and V (
̃y)=V{ Ty+�′(�x − Tx)}+O(n−3=2). Same arguments
hold for 
̂y.
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