
ALGEBRAICCOMBINATORICS

c
1993 C. D. Godsil



To Gillian



PrefaceThere are people who feel that a combinatorial result should be given a\purely combinatorial" proof, but I am not one of them. For me the mostinteresting parts of combinatorics have always been those overlapping otherareas of mathematics. This book is an introduction to some of the interac-tions between algebra and combinatorics. The �rst half is devoted to thecharacteristic and matchings polynomials of a graph, and the second topolynomial spaces. However anyone who looks at the table of contents willrealise that many other topics have found their way in, and so I expand onthis summary.The characteristic polynomial of a graph is the characteristic polyno-mial of its adjacency matrix. The matchings polynomial of a graph G withn vertices is bn=2cXk=0 (�1)kp(G; k)xn�2k;where p(G; k) is the number of k-matchings in G, i.e., the number of sub-graphs of G formed from k vertex-disjoint edges. These de�nitions suggestthat the characteristic polynomial is an algebraic object and the matchingspolynomial a combinatorial one. Despite this, these two polynomials areclosely related and therefore they have been treated together. In devel-oping their theory we obtain as a by-product a number of results aboutorthogonal polynomials. The number of perfect matchings in the comple-ment of a graph can be expressed as an integral involving the matchingspolynomial. This motivates the study of moment sequences, by which wemean sequences of combinatorial interest which can be represented as thesequence of moments of some measure.To be brief, if not cryptic, a polynomial space is obtained by associat-ing an inner product space of \polynomials" to a combinatorial structure.The combinatorial structure might be the set of all k-subsets of a set of velements, the symmetric group on n letters or, if the reader will be gener-ous, the unit sphere in Rn. Given this set-up it is possible to derive boundson the sizes of \codes" and \designs" in the structure. The derivations arevery simple and apply to a wide range of structures. The resulting boundsare often classical|the simplest and best known is Fisher's inequality fromdesign theory.



iv PrefacePolynomial spaces are perhaps impossibly general. We distinguish oneimportant family which corresponds, when the underlying set is �nite, toQ-polynomial association schemes. The latter have a well-developed theory,thanks chie
y to work of Delsarte. Our approach enables us to rederive andextend much of this work. In summary, the theory of polynomial spacesprovides an axiomatisation of many of the applications of linear algebrato combinatorics, along with a natural way of extending the theory of Q-polynomial association schemes to the case where the underlying set isin�nite.From this discussion it is clear that to make sense of polynomial spaces,some feeling for association schemes is required. Hence I have includeda reasonably thorough introduction to this topic. To motivate this inturn, I have also included chapters on strongly regular and distance-regulargraphs. Orthogonal polynomials arise naturally in connection with polyno-mial spaces and distance-regular graphs, and thus form a connecting linkbetween the two parts of this book.My aim has been to write a book which would be accessible to begin-ning graduate students. I believe it could serve as a text for a number ofdi�erent courses in combinatorics at this level, and I also hope that it willprove interesting to browse in. The prerequisites for successful digestion ofthe material o�ered are:Linear algebra: Familiarity with the basics is taken for granted. Thespectral decomposition of a Hermitian matrix is used more than once.The theory is presented in Chapter 2. Positive semi-de�nite matricesappear. A brief summary of the relevant material is included in theappendix.Combinatorics: The basic language of graph theory is used withoutpreamble, e.g., spanning trees, bipartite graphs and chromatic num-ber. Once again some of this is included in the appendix. Generatingfunctions and formal power series are used extensively in the �rst halfof the book, and so there is a chapter devoted to them.Group theory: The symmetric group creeps in occasionally, alongwith automorphism groups of graphs. The orthogonal group is men-tioned by name at least once.Ignorance: By which I mean the ability to ignore the odd paragraphdevoted to unfamiliar material, in the trust that it will all be �ne atthe end.I have not been able to draw up a dependence diagram for the chapterswhich would not be misleading. This is because there are few chains ofargument extending across chapter boundaries, but many cases where the



Preface vmaterial in one chapter motivates another. (For example it should bepossible to get through the chapter on association schemes without readingthe preceding chapter on distance-regular graphs. However these graphsprovide one of the most important classes of association schemes.)By way of compensation for the lack of this traditional diagram, Iinclude some suggestions for possible courses.(1) The matchings polynomial and moment sequences:1{3, 4.1{2, 4.4, 5.1{2, 5.6, 6, 7, 8.1{3, 9.(2) The characteristic polynomial:1.1, 2, 3, 4.1{4, 5.1{4, 5.6, 6, 8.(3) Strongly regular graphs, distance-regular graphs and associ-ation schemes:2, 5.1{2, 8, 10{13.(4) Equitable partitions and codes in distance-regular graphs:2, 5.1{2, 5.6, 8.1{2, 11, 12.(5) Polynomial spaces:2, 8.1{2, 10, 12.1{4, 13.1, 13.6, 14{16.In making these suggestions I have made no serious attempt to considerthe time it would take to cover the material indicated. On the basis of myown experience, I think it would be possible to cover at most three pagesper hour of lectures. On the other hand, it would be easy enough to paredown the suggestions just made. For example, Chapter 3 covers formalpower series and generating functions and depending on the backgroundsof one's victims, this might not be essential in (1) and (2).I have been helped by advice and comments from Ed Bender, AndriesBrouwer, Dom de Caen, Michael Doob, Mark Ellingham, Tony Gardiner,Bill Martin, Brendan McKay, Gillian Nonay, Jack Koolen, Gordon Royle,J. J. Seidel and �Akos Seress. Dom in particular has made heroic e�orts toprotect me from my own stupidity. I am very grateful for all this assistance.I would also like to thank John Kimmel and Jim Geronimo of Chapmanand Hall for their part in the production of this book.
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