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Preface

These notes provide an introduction to association schemes, along with some
related algebra. Their form and content has benefited from discussions with
Bill Martin and Ada Chan.
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Chapter 1

Schemes and Algebras

Our first three chapters provide an introduction to the basic theory of associ-
ation schemes and to some of their applications. In this chapter we introduce
association schemes and describe their structure.

1.1 Definitions and Examples

We try to motivate the definitions to come. Suppose X is a graph with vertex set
V and diameter d . For i = 1, . . . ,d we define Xi to be the graph with vertex set V ,
where two vertices are adjacent in Xi if they are at distance i in X . (So X = X1.)
Let Ai denote the adjacency matrix of Xi , set A0 equal to I and consider the
matrix algebra C[A ] over C generated by A1, . . . , Ad .

If we identify the automorphism group of X with the set of permutation ma-
trices that commute with A1, then each automorphism of X lies in the commu-
tant of C[A ]. Thus, for example, if C[A ] = Matn×n(C), then the automorphism
group of X must be the identity group. Since the matrices A0, . . . , Ad are lin-
early independent, C[A ] has dimension at least d + 1. This suggests that the
case where dim(C[A ]) = d +1 should be interesting. In fact the dimension of
C[A ] is d +1 if and only if the matrices A0, . . . , Ad form an association scheme.

An association scheme with d classes is a set A = {A0, . . . , Ad } of 01-matrices
such that

(a) A0 = I .

(b)
∑d

i=0 Ai = J .

1



2 CHAPTER 1. SCHEMES AND ALGEBRAS

(c) AT
i ∈A for each i .

(d) Ai A j = A j Ai ∈ span(A ).

Note that (b) implies that the matrices A0, . . . , Ad are linearly independent, and
(d) that the algebra they generate has dimension d +1. Since J is the sum of the
Ai , it commutes with each Ai , which implies that all rows and columns of Ai

have the same sum.
An association scheme is symmetric if each matrix in it is symmetric. We

view A1, . . . , Ad as adjacency matrices of directed graphs X1, . . . , Xd , with com-
mon vertex set V . We say two vertices u and v are i -related if uv is an arc in
Xi .

1.1.1 Example. The Johnson scheme J (v,k). The vertex set of this scheme is
the set of all k-subsets of a fixed set of v elements. Two vertices α and β are
i -related if |α∩β| = k − i . This scheme has k classes.

1.1.2 Example. The Grassman scheme Jq (v,k). The vertex set is the set of all
subspaces of dimension k of the vector space of dimension n over GF (q). Sub-
spaces α and β are i -related if dim(α∩β) = k − i . This scheme has k classes.

1.1.3 Example. The Hamming scheme H(n, q). Let Q be an alphabet of q sym-
bols. The vertex set of H(n, q) is Qn , the set of all words of length n over Q. Two
words are i -related if they differ in exactly i coordinate positions. This scheme
has n classes.

1.1.4 Example. The bilinear forms scheme. The vertices are the m×n matrices
over the field of q elements. Two matrices A and B are i -related if rk(A−B) = i .
The number of classes in this scheme is the minimum of m and n.

1.1.5 Example. The conjugacy classes of a finite group Γ. Let the congugacy
classes of Γ be C0, . . . ,Cd , where C0 = {1}. The vertex set of this scheme consists
of the elements of Γ, and two group elements g and h are i -related if hg−1 ∈Ci .
This is our first example of a scheme that is not symmetric.

1.1.6 Example. Let Z be the complete graph on n2 vertices. A parallel class
in Z is a subgraph isomorphic to nKn . Two parallel classes are orthogonal is
they are edge-disjoint. A partial spread is a set of pairwise orthogonal parallel
classes C1, . . . ,Ct . Define Ai to be the adjacency matrix of the i -parallel class,
set A0 = I as usual and define

At+1 = J −
t∑

i=1
Ai .
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Then A0, . . . , At+1 is a symmetric association scheme. (These schemes corre-
spond to orthogonal arrays with index 1.)

1.2 Strongly Regular Graphs

The simplest association schemes are the schemes with one class. In this case
we have A0 = I and A1 = J−I ; the directed graph X1 is the complete graph itself.
We cannot think of anything intelligent to say about this situation, so we turn
to the next simplest case. These are the symmetric schemes with two classes,
and are equivalent to strongly-regular graphs.

Rather than offer the necessary definitions, we consider a classical example.
We consider graphs with diameter two and maximum degree k. If X is such a
graph and u ∈ V (X ), then u has at most k neighbours, and at most k(k − 1)
vertices lie at distance two from u. Therefore

|V (X )| ≤ 1+k +k2 −k = k2 +1.

If equality holds then X is k-regular and its girth is at least five. This leads us to
study k-regular graphs on k2 +1 vertices with diameter two. Suppose X is such
a graph and let A be its adjacency matrix.

We claim that
A2 + A− (k −1)I = J . (1.2.1)

This is an easy consequence of the fact that the i j -entry of A2 is the number of
walks of length two from i to j in X . The number of walks of length two that
start and finish at the same vertex is the valency of the vertex, and therefore
since X is regular, (A2)i ,i = k. The number of walks of length two that start at a
given vertex i and end at the adjacent vertex j is the number of triangles in X
that contain the edge i j . Therefore (A2)i , j = 0 in this case. Finally if i and j are
distinct and not adjacent in X then, since there are no 4-cycles in X and since
the diameter of X is two, (A2)i , j = 1. Equation (1.2.1) follows from these facts.

We explain the connection with association schemes. The adjacency matrix
A of the complement X of X is J − I − A. From (1.2.1)

A = J − I − A = A2 −kI .

Since A is thus a polynomial in A, it commutes with A. We also see that A2 is a
linear combination of I , A and A. Since AJ = J A = k J we can also show that A A
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and A
2

are linear combinations of I and A. We conclude that the matrices I , A
and A form a symmetric association scheme with two classes.

We can use (1.2.1) to obtain more information about our graphs. They key
is that we can compute the eigenvalues of A.

First note that the all-ones vector 1 is an eigenvector for A; in fact

A1 = k1

and so the corresponding eigenvalue of the valency k. Suppose λ is an eigen-
value of A with eigenvector z. We may assume that z is orthogonal to 1, whence
J z = 0. Therefore

0 = J z = (A2 + A− (k −1)I )z = (λ2 +λ−k +1)z

and so λ is a zero of the quadratic polynomial

t 2 + t −k +1.

Denote the roots of this by θ and τ. Since θτ = 1 − k we may assume that
θ > 0 > τ. Let mθ and mτ denote respectively the multiplicity of θ and τ as
an eigenvalue of A. Since X has k2+1 vertices and k is an eigenvalue with mul-
tiplicity at least one, we have

1+mθ+mτ = k2 +1. (1.2.2)

Also tr(A) = 0 and consequently

k +mθθ+mττ= 0. (1.2.3)

These two equations imply that

mτ = θk2 +k

θ−τ (1.2.4)

The existence of this expression for the multiplicity of an eigenvalue is a
consequence of the fact that we are dealing with an association scheme. The
fact that its right side must be an integer provides a very useful constraint. The
ensuing calculations show how we may put it to work.

We distinguish two cases. First, suppose that θ and τ are irrational. We have

0 = k + (mθ−mτ)θ+mτ(θ+τ) = k −mτ+ (mθ−mτ)θ
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and since k −mτ is an integer and θ is irrational, it follows that mθ −mτ = 0.
Then (1.2.3) yields that k = mθ = mτ and so (1.2.2) now yields that k2 −2k = 0.
The only useful solution to this is k = 2, when we see that X =C5.

Thus we may assume that θ and τ are rational, and hence they are integers.
Since θ and τ are the roots of t 2 + t −k +1, we have

(θ−τ)2 = 1+4(k −1) = 4k −3

and therefore 4k −3 must be a perfect square. Since 4k −3 is odd, we may as-
sume

4k −3 = (2s +1)2

and therefore
k = s2 + s +1.

From this it follows that θ = s and τ=−s −1 and consequently

mτ = (s2 + s +1)(s(s2 + s +1)+1)

2s +1

Now
4s2 +4s +4 = (2s +1)2 +3

and

8s3 +8s2 +8s +8 = 2s(2s +1)2 +3(2s +1)+5 = (4s2 +4s +3)(2s +1)+5.

Hence there is a polynomial p with integer coefficients such that

32mτ = p(s)+ 15

2s +1
.

We conclude that mτ is an integer if and only if 2s +1 divides 15. This implies
that

s ∈ {1,2,7}

and so
k ∈ {3,7,57}.

To summarise, we have shown that if there is a k-regular graph of diameter
two on k2+1 vertices, then k is 2, 3, 7 or 57 (and v is 5, 10, 50 or 3250). The case
k = 2 is realized by C5. The case k = 3 is realized by the Petersen graph and the
case k = 7 by the famous Hoffman-Singleton graph. We do not know if there is
a graph with valency 57. This is an old and famous open question.
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1.3 The Bose-Mesner Algebra

The Bose-Mesner algebra of an association scheme A = {A0, . . . , Ad } is the al-
gebra generated by the matrices A0, . . . , Ad ; equivalently it is the complex span
of these matrices. There is a second multiplication on the Bose-Mesner algebra
which will prove to be very important. We define the Schur product A◦B of two
matrices of the same order by

(A ◦B)i , j := Ai , j Bi , j .

This is a commutative and associative product with J as unit. Since the set
A ∪0 spans the Bose-Mesner algebra, and since this set is closed under Schur
multiplication, it follows that the Bose-Mesner algebra is closed under Schur
multiplication. Hence it is an algebra with respect to Schur multiplication. The
Bose-Mesner algebra is also closed under complex conjugation and the trans-
pose map.

A coherent algebra is a matrix algebra over C that is Schur-closed, closed
under transpose and complex conjugation, and contains I and J . Any Bose-
Mesner algebra is a commutative coherent algebra. We will discuss coherent
algebras at greater length in Chapter ??, but we offer some simple observations
now.

1.3.1 Lemma. A commutative coherent algebra is the Bose-Mesner algebra of
an association scheme.

Define the commutant of a set of matrices to be the set of all matrices that
commute with each element of the set.

1.3.2 Lemma. The commutant of a set of v×v permutation matrices is a coher-
ent algebra.

Proof. It suffices to show that the commutant of a single permutation matrix P
is a coherent algebra. The key point is then to show that the commutant of P is
Schur-closed.

Suppose M and N commute with P . Then

P (M ◦N ) = (P M)◦ (P N ) = (MP )◦ (N P ) = (M ◦N )P

and therefore the commutant of P is Schur-closed.
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A permutation group Γ on a set V is generously transitive if, for each pair of
points u and v in V , there is an element γ of Γ such that

uγ= v, vγ= u.

Clearly a generously transitive permutation group is transitive.

1.3.3 Lemma. The commutant of a permutation group is the Bose-Mesner al-
gebra of a symmetric association scheme if and only if the group is generously
transitive.

Proof. Let Γ be a permutation group on V . The commutant of Γ is a coherent
algebra, so we need only decide when it is commutative. We note Γ acts as a
group of permutations of V ×V , and the orbits of Γ form a partition of this set.
Each orbit is a directed graph, and the adjacency matrices of the orbits form a
basis for the commutant of Γ.

The set
{(v, v) : v ∈V },

known as the diagonal of V ×V , is a union of orbits of Γ, and is a single orbit if
and only if Γ is transitive. Suppose u and v are distinct. Then uv and vu lie in
the same orbit if and only if there is an element of Γ that swaps u and v .

Hence if Γ is transitive, then it is generously transitive if and only if all matri-
ces in the commutant of Γ are symmetric. Since the product of two symmetric
matrices A and B is symmetric if and only if AB = B A, the lemma follows.

This lemma can be used to verify that the schemes J (v,k), Jq (v,k), H(n, q)
and Matm×n(F) are symmetric, with the stated number of classes.

1.4 Idempotents

Let C[A ] be the Bose-Mesner algebra of the association scheme

A = {A0, . . . , Ad }.

The matrices A0, . . . , Ad form a basis, each element of which is a Schur idem-
potent. In this section we identify a second basis, consisting of matrix idempo-
tents.

Two idempotents E and F are orthogonal if EF = 0. For example, if E is an
idempotent, then E and I −E are orthogonal idempotents. We define a partial
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ordering on the idempotents of a commutative algebra C[A ]. Suppose E and
F are idempotents in C[A ]. We write E ≤ F if F E = E . This relation is reflexive,
antisymmetric and transitive; therefore it is a partial order. A minimal idempo-
tent is a minimal element of the set of non-zero idempotents. If E and F are
idempotents, then EF ≤ E ,F ; it follows that if E and F are minimal, then they
are orthogonal.

1.4.1 Theorem. Let B be a commutative matrix algebra with identity over an
algebraically closed field. Assume that if N ∈ B and N 2 = 0, then N = 0. Then
B has a basis of pairwise orthogonal idempotents.

Proof. As a first step, we show that each element of B is a linear combination
of idempotents.

Suppose A ∈B. Let ψ(t ) be the minimal polynomial of A and assume that

ψ(t ) =
k∏

i=1
(t −θi )mi .

If

ψi (t ) := ψ(t )

(t −θi )mi
,

then the polynomialsψ1, . . . ,ψk are coprime, and therefore there are polynomi-
als f1(t ), . . . , fk (t ) such that

1 =∑
i

fi (t )ψi (t ).

Therefore
I =∑

i
fi (A)ψi (A). (1.4.1)

If i 6= j , then ψi (A)ψ j (A) = 0 because ψ divides ψiψ j . Hence if we multiply
both sides of (1.4.1) by fi (A)ψi (A), we find that

fi (A)ψi (A) = ( fi (A)ψi (A))2.

Thus fi (A)ψi (A) is an idempotent, which we denote by Ei . We note that Ei E j =
0 if i 6= j . Since ψ divides (t −θi )miψi (t ), we have

(A−θi I )mi Ei = 0.

Consequently
[(A−θi I )Ei ]mi = 0,
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and, given our hypothesis, it follows that (A−θi I )Ei = 0. We may rewrite (1.4.1)
as

I = E1 +·· ·+Ek

and so
A = AE1 +·· ·+ AEk = θ1E1 +·· ·+θk Ek .

This expresses A as a linear combination of idempotents.
We have shown that B is spanned by idempotents. The essential problem

that remains is to show that minimal idempotents exist. Suppose E and F are
distinct idempotents and E ≤ F . Then

F (I −E) = F −E 6= 0

but E(I −E) = 0. Hence the column space of E must be a proper subspace of
the column space of F . Therefore if E1, . . . ,Em are distinct idempotents and

E1 ≤ ·· · ≤ Em

then m ≤ n +1. We conclude that minimal idempotents exist.
Now we prove that each idempotent is a sum of minimal idempotents. Sup-

pose F is an idempotent and E is a minimal idempotent. If EF 6= 0, then EF ≤ E
and therefore EF = E . This also shows that distinct minimal idempotents are
orthogonal. Let F0 be the sum of the distinct minimal idempotents E such that
E ≤ F . Then F0 is an idempotent. If F0 6= F then F −F0 is an idempotent and so
there is a minimal idempotent below it, which contradicts our choice of F0. We
conclude that B is spanned by minimal idempotents.

Suppose B is a Schur-closed algebra that contains J over some field. Then
1.4.1 implies that B has a basis of 01-matrices. Of course this can be proved
more directly (and with less effort).

A matrix N is nilpotent if N k = 0 for some k. Theorem 1.4.1 asserts that a
commutative matrix algebra with identity has a basis of orthogonal idempo-
tents if there are no non-zero nilpotent matrices in it. Since a non-zero lin-
ear combination of pairwise orthogonal idempotents cannot be nilpotent, this
condition is necessary too. A commutative algebra is semisimple if it contains
no non-zero nilpotent elements.

1.5 Idempotents for Association Schemes

We will apply the theory of the last section to Bose-Mesner algebras.
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1.5.1 Theorem. Suppose B is a commutative subalgebra of Matv×v (C) that is
closed under conjugate transpose and contains the identity. Then B has a basis
of matrix idempotents E0, . . . ,Ed such that

(a) Ei E j = δi , j Ei .

(b) The columns of Ei are eigenvectors for each matrix in C[A ].

(c)
∑d

i=0 Ei = I .

(d) E∗
i = Ei .

Proof. Suppose N ∈C[A ] and N 2 = 0. Then

0 = (N∗)2N 2 = (N∗N )2

and hence
0 = tr((N∗N )2) = tr((N∗N )∗(N∗N )).

If H := N∗N , then tr(H∗H) = 0 if and only if H = 0, so we deduce that N∗N = 0.
But then tr(N∗N ) = 0 and therefore N = 0. Hence C[A ] satisfies the hypothe-
ses of Theorem 1.4.1, and so it has a basis of pairwise orthogonal idempotents,
which we denote by E0, . . . ,Ed . Thus (a) is proved.

If A ∈C[A ], then
A =∑

i
ai Ei

for suitable scalars ai . Since the idempotents Ei are orthogonal,

AEr = ar Er .

This shows that the columns of Er are eigenvectors for A, and the scalars ai are
eigenvalues of A. So (c) is proved.

Since I ∈C[A ], it is a linear combination of E0, . . . ,Ed :

I =∑
i

ai Ei .

Since the scalars ai are eigenvalues for I , they must all equal 1. Hence (d) holds.
Finally we show that the idempotents Ei are Hermitian. SinceC[A ] is closed

under transpose and complex conjugation, E∗
i ∈ C[A ]. Therefore there are

scalars a0, . . . , ad such that
E∗

i =∑
j

a j E j
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and so
E∗

i Ei = fi Ei .

Since tr(E∗
i Ei ) > 0 and tr(E j ) > 0, it follows that fi 6= 0. But E∗

i is a minimal idem-
potent, and therefore f j = 0 if j 6= i . This implies that E∗

i is a scalar multiple of
Ei , but tr(Ei ) = tr(E∗

i ), and therefore E∗
i = Ei .

This theorem applies immediately to the Bose-Mesner algebra of an associ-
ation scheme. In this case 1

v J ∈ B; since this is an idempotent with rank one,
it must be minimal and therefore it is equal to one of the idempotents Ei . It is
conventional to assume it is E0.

If Ai is Schur idempotent in A , so is AT
i . If E j is a matrix idempotent, so is

E T
j (which is equal to E j ). We adopt the useful convention that

Ai ′ := AT
i

and
E j ′ := E T

j = E j .

Note that vi ′ = vi and m j ′ = m j .

To give a better idea of the power of 1.4.1, we use it to derive one of the basic
results in linear algebra. A complex matrix A is normal if A A∗ = A∗A. We adopt
the convention that the algebra generated by a set of matrices always contains
the identity.

1.5.2 Theorem. If A is normal, then A is unitarily similar to a diagonal matrix.

Proof. The algebra generated by A and A∗ is commutative and closed under
conjugate-transpose. Hence it has a basis of orthogonal idempotents F1, . . . ,Fd .
Since each Fi is Hermitian, the condition Fi F j = 0 implies the column spaces
of Fi and Fi are orthogonal. If follows that there is an orthogonal basis of eigen-
vectors of A.

Notes

There a number of useful references for association schemes. Bannai and Ito
[?], is the oldest of these, but carries its age well. It views the subject from a
group theoretic viewpoint. Bailey’s book [?] is more recent and views associa-
tion schemes from the viewpoint of design theory. Since this is the origin of the
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subject, this is a very natural approach. We note that Bailey restricts herself to
what we call symmetric association schemes; for design theory this is very nat-
ural. However it excludes the association schemes arising from the conjugacy
classes of a finite group and as the only real cost in allowing non-symmetric
schemes is the use of C rather than R, and we have happily chosen to pay it.

Brouwer, Cohen and Neumaier’s book on distance-regular graphs [?] offers
a lot of information on association schemes. Zieschang [?] allows his associ-
ation schemes to be infinite and/or non-commutative. For an algebraist this
can be very interesting, but the resulting theory does not seem to have much
contact with the combinatorial questions that we are interested in.

The classic source of information on association schemes (in the sense we
use the term) is Delsarte’s thesis [?]. A copy of this is available online at http:
//users.wpi.edu/~martin/RESEARCH/philips.pdf. One of Delsarte’s main
contributions was to demonstrate that the theory of association schemes pro-
vides an extremely useful framework for work in coding theory.

http://users.wpi.edu/~martin/RESEARCH/philips.pdf
http://users.wpi.edu/~martin/RESEARCH/philips.pdf


Chapter 2

Parameters

To each association scheme there are four associated families of parameters:
the eigenvalues,the dual eigenvalues, the intersection numbers and the Krein
parameters. We introduce these and present a few of their applications. We will
see that the algebraic structure of an association scheme is entirely determined
by its eigenvalues.

2.1 Eigenvalues

There are scalars pi ( j ) such that

Ai =
d∑

r=0
pi (r )Er , (i = 0, . . . ,d) (2.1.1)

and scalars qi ( j ) such that

E j = 1

v

d∑
r=0

q j (r )Ar . ( j = 0, . . . ,d) (2.1.2)

The scalars pi ( j ) are called the eigenvalues of the scheme. Since they are eigen-
values of the 01-matrices Ai , they are algebraic integers. Note that

Ai J = pi (0)J

and therefore pi (0) is equal to the common value of the row sums of Ai . We
define

vi := pi (0),

13
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call v0, . . . , vd the valencies of the scheme. Because I = ∑
i Ei , we also have

p0(i ) = 1 for each i .
The eigenvalues of AT

i are the numbers pi ( j ), for i = 0,1, . . . ,d .
The scalars qi ( j ) are the dual eigenvalues of the scheme. Since

E0 = 1

v

∑
i

Ai ,

we have q0(i ) = 1. The columns of Ei are eigenvectors for each matrix in C[A ],
and so its column space is an eigenspace for C[A ]. The dimension of this
eigenspace is the rank of Ei . Since Ei is an idempotent, all its eigenvalues are
equal to 1 and

rk(Ei ) = tr(Ei ).

The quantities tr(Ei ) are the multiplicities of the scheme. From refEA we have

tr(Ei ) = 1

v

∑
i

qi (r ) tr(Ar ).

Now tr(Ar ) = 0 if r 6= 0 and tr(A0) = v , so we find that

tr(Ei ) = qi (0).

We use mi to denote tr(Ei ).
The eigenmatrix of C[A ] is the (d +1)× (d +1) matrix P given by

Pi , j = p j (i ).

The dual eigenmatrix Q is the (d +1)× (d +1) matrix Q given by

Qi , j = q j (i ).

From 2.1.1 and 2.1.2, we have

PQ = v I .

One consequence of this is that the dual eigenvalues of C[A ] are determined
by the eigenvalues. As we proceed we will see that much of the structure of an
association scheme is determined by its eigenmatrix.
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2.2 Strongly Regular Graphs

A graph X is strongly regular if it is neither complete nor empty and there are
integers k, a and c such that:

(a) X is regular with valency k.

(b) Any two adjacent vertices have exactly a common neigbours.

(c) Any two distinct non-adjacent vertices have exactly c common neighbours.

If A is the adjacency matrix of X , these conditions are equivalent to the two
matrix equations

AJ = k J , A2 = kI +a A+ c(J − I − A).

It is usually better to write the second of these as

A2 − (a − c)A− (k − c)I = c J .

A strongly regular graph on v vertices with parameters k, a and c as above is
called a (v,k; a,c) strongly regular graph.

It is straightforward to use the above matrix equations to show that if A is
the adjacency matrix of a strongly regular graph, then

I , A, J − I − A

form an association scheme with two classes. Conversely, any association scheme
with two classes arises from a strongly regular graph.

Suppose A1 is the adjacency matrix of a strongly regular graph X and A is
the corresponding association scheme, with matrix idempotents E0, E1 and E2.
If X is k-regular, then

A0 = E0 +E1 +E2, A1 = kE0 +θE1 +τE2.

This equations determine two columns of the eigenmatrix P . Since A2 = J − I −
A1, we also have

A2 = (v −1−k)E0 − (θ+1)E1 − (τ+1)E2.

Therefore

P =
1 k v −1−k

1 θ −θ−1
1 τ −τ−1
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from which we compute that

Q = 1

θ−τ

θ−τ −k − (v −1)τ k + (v −1)θ
θ−τ v −k +τ k − v −θ
θ−τ τ−k k −θ


The entries in the first row of Q give the multiplicities of the eigenvalues of the
graph. One consequence of this is that the ratio

θ(v −1)+k

θ−τ
must be an integer. Constraints of this form play a major role in the theory of
distance-regular graphs.

2.3 Intersection Numbers

Suppose A is a scheme with d classes. Since C[A ] is closed under multiplica-
tion, there are constants pi , j (k) such that

Ai A j =
d∑

k=0
pi , j (k)Ak .

We call these the intersection numbers of the scheme. We see that

pi , j (k)Ak = Ak ◦ (Ai A j ),

from which it follows that the intersection numbers are non-negative integers.
We see also that

pi , j (k) = sum(Ak ◦ (Ai A j ))

v vk
= tr(AT

k Ai A j )

v vk
. (2.3.1)

We define the intersection matrices B0, . . . ,Bd by

(Bi ) j ,k := pi , j (k).

If π denotes the relation partition of V (A ) with respect to v , then Bi = A/π.
Hence the matrices B0, . . . ,Bd generate a commutative algebra of (d+1)×(d+1)
matrices which is isomorphic to C[A ] as an algebra. (However it is not Schur-
closed in general.)
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The intersection numbers are determined by the eigenvalues of the scheme.
The eigenvalue of AT

k Ai A j on the column space of E` is

pi (`)p j (`)pk (`)

whence 2.3.1 implies that

pi , j (k) = 1

v vk

d∑
`=0

m`pi (`)p j (`)pk (`).

Let X1, . . . , Xd be the graphs of an association scheme. If Xi has diameter s
then the matrices

A0
i , . . . , As

i

are linearly independent. (It might be easier to see that the first s +1 powers of
Ai +I are linearly independent.) Therefore the diameter of Xi is bounded above
by d , the number of classes of the scheme.

An association scheme with d classes is metric with respect to the i -th re-
lation if the diameter of Xi is d . If the scheme is metric with respect to the i -th
relation, then Xi is said to be a distance-regular graph. The Johnson scheme,
the Grassman scheme, the Hamming scheme and the bilinear forms scheme
are all metric with respect to their first relation. A primitive strongly regular
graph is primitive with respect to each non-identity relation. An association
scheme may be metric with respect to more than one relation. The standard
example is the Johnson scheme J (2k +1,k), which is metric with respect to A1

and Ak .
If A is metric with respect to Ai and s ≤ d , then (I+Ai )s is a linear combina-

tion of exactly s+1 distinct Schur idempotents. It is customary to assume i = 1,
and to order the Schur idempotents so that (I + A1)s is a linear combination of
A0, . . . , As . With this convention, the intersection matrix B1 is tridiagonal.

2.4 Krein Parameters

We consider the parameters dual to the intersection numbers. Let A be a scheme
on v vertices with d classes. Then there are constants qi , j (k) such that

Ei ◦E j = 1

v

d∑
k=0

qi , j (k)Ek . (2.4.1)
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We call these constants the Krein parameters of the scheme. We have

qi , j (k)Ek = vEk (Ei ◦E j )

and therefore

qi , j (k) = v
tr(Ek (Ei ◦E j ))

mk
= v

sum(E k ◦Ei ◦E j )

mk

Now

E k ◦Ei ◦E j = 1

v3

d∑
`=0

qi (`)q j (`)qk (`)A`

which yields

qi , j (k) = 1

vmk

d∑
`=0

qi (`)q j (`)qk (`)v` =
mi m j

v

d∑
`=0

p`(i )p`( j )p`(k)

v2
`

.

(Here the second equality is derived using 2.3.1). We see that the Krein param-
eters are determined by the eigenvalues of the scheme.

If M is a square matrix and p(t ) a polynomial, we define the Schur polyno-
mial p ◦M to be the matrix with

(p ◦M)i , j = p(Mi , j ).

We define the Schur diameter of a matrix M to be the least integer s such that
there is a polynomial p with degree s and p ◦M is invertible. (If A is the adja-
cency matrix of a directed graph, the diameter of the graph is the least integer s
such that there is a polynomial p of degree s and p ◦ A is Schur invertible.)

2.4.1 Lemma. If E is a square matrix with Schur diameter s, the Schur powers

J ,E , . . . ,E◦s

are linearly independent.

Proof. If E◦(r+1) lies in the span Ur of the first r Schur powers of E , then Ur

is invariant under Schur multiplication by Er . Therefore Ur contains all Schur
polynomials in E . If r < s, no Schur polynomial in E is invertible, which contra-
dicts our hypothesis. It follows that spaces U0, . . . ,Us form a strictly increasing
sequence, and this implies the lemma.
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Let A be an association scheme with d classes. If Ei is a matrix idempotent
of A with Schur diameter s, then s ≤ d . We say A is cometric with respect to
Ei if the Schur diameter of Ei is d . The Johnson scheme, the Grassman scheme,
the Hamming scheme and the bilinear forms scheme are all cometric. A primi-
tive strongly regular graph is primitive with respect to each non-identity idem-
potent. If A is cometric with respect to the idempotent E , then it is conven-
tional to order the idempotents so that E◦r is a linear combination of E0, . . . ,Er .

In the following we make use of the Kronecker product of matrices. What
we need is summarised in Section 4.1.

Examples show that the Krein parameters need not be non-negative inte-
gers, or even rational. We do have the following.

2.4.2 Theorem. The Krein parameters are non-negative real numbers.

Proof. From (2.4.1), we see that the Krein parameters are the eigenvalues of the
matrix vEi ◦E j . The matrices Ei and E j are positive semidefinite, and therefore
Ei ⊗E j is a positive semidefinite matrix. The matrix Ei ◦E j is a principal sub-
matrix of this Kronecker product, and therefore it is positive semidefinite too.
Hence its eigenvalues are non-negative real numbers.

We offer a second proof that the Krein parameters are non-negative real
numbers.

Let A be an association scheme on v vertices and let e1, . . . ,ev denote the
standard basis for Cv . Define T by

T =
v∑

i=1
ei ⊗ei ⊗ei .

2.4.3 Lemma. Let A be an association scheme. Then

qi , j (k) = v

mk
‖(Ei ⊗E j ⊗Ek ′)T ‖2,

and qi , j (k) = 0 if and only if (Ei ⊗E j ⊗Ek ′)T = 0.

Proof. We have
sum(Ei ◦E j ◦Ek ) =T ∗(Ei ⊗E j ⊗Ek )T .

Since Ei ⊗E j ⊗Ek is idempotent and self-adjoint,

sum(Ei ◦E j ◦Ek ) = ‖(Ei ⊗E j ⊗Ek )T ‖2.

Both claims of the lemma follow.
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If qi , j (k) = 0, then Ek (Ei ◦E j ) = 0 and therefore each column of Ek ′ = E T
k is

orthogonal to each column of Ei ◦E j . We will need the following strengthening
of this result.

2.4.4 Lemma. Let A be an association scheme on v vertices. If qi , j (k) = 0 and
x, y and z are three elements of Cv , then Ek ′z is orthogonal to Ei x ◦E j y .

Proof. We have

T ∗(Ei ⊗E j ⊗Ek ′)(x ⊗ y ⊗ z) = 1∗(Ei x ◦E j y ◦Ek ′z).

The right side is zero if and only if Ek ′z is orthogonal to Ei x ◦E j y . The left side
is zero if qi , j (k) = 0.

Suppose A is cometric with respect to E1. A harmonic polynomial of de-
gree i is defined to be an element of the column space of Ei . A polynomial
function of degree i is a linear combination of harmonic polynomials with de-
gree at most i . The previous result implies that if f is a polynomial with degree
1 and g is a polynomial with degree i , then f ◦ g has degree at most i +1. Note
that f ◦ g is just the usual product of functions.

2.5 The Frame Quotient

Let A be an association scheme with d classes on the vertex set v . Let eu be the
characteristic vector of the vertex u and let H be the matrix

H := (A0eu , A1eu , · · · , Ad eu).

Then H is the characteristic matrix of the relation partition relative to the vertex
u, and an easy computation shows that the column space of V is A-invariant.
Hence there are (d +1)× (d +1) matrices B0, . . . ,Bd such that

Ar H = HBr .

Since

Ar Ai eu =
d∑

j=0
pr,i ( j )A j eu ,

we find that
(Br )i , j = pr, j (i ).
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The matrices Br are the intersection matrices of the scheme. They form an
algebra of (d +1)× (d +1) matrices isomorphic to the Bose-Mesner algebra of
A , because

Br Bs =
d∑

i=0
pr,s(i )Bi .

There are also matrices F0, . . . ,Fd such that Er H = HFr and

Br =
d∑

i=0
pr (i )Fi .

Since E 2
r = Er , we have HFr = HF 2

r and since the columns of H are linearly
independent, it follows that Fr is an idempotent and

I =∑
r

Fr .

As tr(Fr ) is a positive integer, this implies that tr(Fr ) = 1 for all r . Therefore

tr(Br ′Bs) =∑
i

pr ′(i )ps(i ) =∑
i

pr (i )ps(i ) = (P∗P )r,s .

One consequence of this is that the entries of P∗P are integers.

2.5.1 Theorem. Let P be the eigenmatrix of the association scheme A , let p
be a prime and let F denote GF (p). Then F[A ] contains a non-zero nilpotent
matrix if and only if p divides

vd+1
d∏

i=0

vi

mi
.

Proof. Let G = P∗P viewed as a matrix over F. Suppose M ∈ F[A ] and M H =
H N . By changing u if needed, we may assume that M H 6= 0. If M 2 = 0 then
H N 2 = 0 and therefore N 2 = 0. Hence (Br N )2 = 0 for each r and so

tr(Br ′N ) = 0

for all r . Since N is an F-linear combination of B0, . . . ,Bd , this implies that the
null space of G is not zero.

Suppose conversely that the null space of G is not zero. If Gx = 0 where x 6= 0
and

N :=∑
r

xr Br ,
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then tr(Br ′N ) = 0 for all r . Therefore tr(N k ) = 0 when k > 0, and so N is nilpo-
tent.

We conclude that F[A ] contains a nilpotent element if and only if det(G) = 0
mod p. As we will see in Section 3.1,

P∗DmP = vDv

and therefore
det(P∗P ) = det(vDv )/det(Dm).

The theorem follows immediately.

The expression

vd+1
d∏

i=0

vi

mi

is known as the Frame quotient of the scheme. It is known that for each k and
any prime p,

|{i : pk |mi }| ≤ |{i : pk |v vi }|.
One consequence of the previous theorem is that F[A ] is semisimple if and only
if the Frame quotient is not divisible by p, the characteristic of F.

The Frame quotient of the Petersen graph is

1000
18

20
= 900.

It is not a surprise that this quotient is a perfect square, since the following
simple observation holds.

2.5.2 Lemma. If the eigenvalues of an association scheme are integers, the Frame
quotient is the square of an integer.

Notes

There is little to say about this section; our approach is straightforward and
fairly standard. We have not addressed the problem of determining the param-
eters of an association scheme. The actual approach taken will depend on how
the scheme is presented. If the scheme is the centralizer of a multiplicity free
permutation representation of a group, then it may be possible to use charac-
ter theory. In general though the problem is usually difficult for association
schemes with more than three classes.



Chapter 3

An Inner Product

Here we find that the Bose-Mesner algebra of an association scheme is an inner
product space. The inner product can be computed in two different ways, and
both the matrix and the Schur idempotents form orthogonal bases relative to it.
This leads immediately to one of the most important application of association
schemes, namely the linear programming method developed by Delsarte [?].

3.1 An Inner Product

There is one important property of Bose-Mesner algebras still to be discussed.
If M , N ∈ Matm×n(C), we define

〈M , N〉 := tr(M∗N ).

As is well known, this is a complex inner product on Matm×n(C). Note that

〈N , M〉 = 〈M , N〉.
If sum(M) denotes the sum of the entries of the matrix M , then

tr(M∗N ) = sum(M ◦N )

and therefore
〈M , N〉 = sum(M ◦N ).

It follows that the Bose-Mesner algebra of an association scheme A is an
inner product space. If

A = {A0, . . . , Ad }

23
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then A is an orthogonal set: if i 6= j , then Ai ◦ A j = 0 and therefore

〈Ai , A j 〉 = sum(Ai ◦ A j ) = 0.

Similarly if i 6= j , then Ei E j = 0 and

〈Ei ,E j 〉 = tr(E∗
i E j ) = tr(Ei E j ) = 0.

We have
〈Ai ,E j 〉 = tr(AT

i E j ) = tr(pi ( j )E j ) = m j pi ( j )

and
〈Ai ,E j 〉 = sum(Ai ◦E j ) = q j (i )vi .

Hence we have the important relation:

q j (i )

m j
= pi ( j )

vi
. (3.1.1)

We express this last identity in matrix terms. Let Dm be the (d +1)× (d +1)
diagonal matrix with i -th diagonal entry equal to mi and let Dv be the (d +1)×
(d +1) diagonal matrix with i -th diagonal entry equal to vi . Then 3.1.1 implies
that

QD−1
m = D−1

v P∗

or equivalently that
Q = D−1

v P∗Dm

Since PQ = v I , it also follows that

vDv = P∗DmP.

3.2 Orthogonal Projection

Now suppose M ∈ Matv×v (C) and let M̂ denote the orthogonal projection of M
onto C[A ]. Then

M̂ =
d∑

i=0

〈Ai , M〉
〈Ai , Ai 〉

Ai ,

since A0, . . . , Ad is an orthogonal basis for C[A ]. But we also have

M̂ =
d∑

j=0

〈E j , M〉
〈E j ,E j 〉

E j .
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This yields a new proof of the following important result, which I am ascribing
to J. J. Seidel.

3.2.1 Theorem. If the matrices A0, . . . , Ad form an association scheme on v ver-
tices with idempotents E0, . . . ,Ed and M ∈ Matv×v (C), then

M̂ =
d∑

i=0

〈Ai , M〉
v vi

Ai =
d∑

j=0

〈E j , M〉
m j

E j .

Proof. We note that

〈Ai , Ai 〉 = sum(Ai ◦ Ai ) = sum(Ai ) = v vi

and
〈E j ,E j 〉 = tr(E j ) = m j .

The way to view this result is that the first expression for M̂ gives us its en-
tries, while the second gives us its eigenvalues. The set

{i : 1 ≤ i ≤ d , 〈M , Ai 〉 6= 0}

is called the degree set of M , and its size is the degree of M . The set

{i : 1 ≤ i ≤ d , 〈M ,Ei 〉 6= 0}

is called the dual degree set of M , and its size if the dual degree of M .

3.3 Linear Programming

Suppose A is an association scheme with vertex set V and d classes. If C is a
subset of V , its degree set if the set of integers i such that some pair of distinct
vertices in C is i -related. (This usage is consistent with the usage introduced
at the end of the previous section.) The degree set of C is a subset of {1, . . . ,d}.
If R ⊆ {1, . . . ,d}, we call a subset C of V an R-clique if the degree set of C is
contained in R. If thedegree set of C is disjoint from R, we call it an R-coclique.
A clique in Xi is an {i }-clique.

Suppose y is the characteristic vector of an R-clique in A and M = y yT .
Then the projection M̂ of M onto the Bose-Mesner algebra of A satisfies

(a) M̂ < 0.
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(b) If i ∉ R ∪ {0}, then M̂ ◦ Ai = 0.

Since

M̂ =
d∑

i=0

yT Ai y

v vi
Ai =

d∑
i=0

yT Ei y

mi
Ei

we have

tr(M̂) = yT y

v
= |C |

v

and

sum(M̂) = yT J y

v
= |C |2

v
.

Accordingly

|C | = sum(M̂)

tr(M̂)
.

We summarise our conclusions.

3.3.1 Theorem. Let A be an association scheme with d classes and let C be an
R-clique in it. Then

|C | ≤ max
M

sum(M)

tr(M)
,

where M runs over the positive semidefinite matrices inC[A ] such that M◦Ai =
0 if i ∉ R ∪ {0}.

We next derive a bound on the size of an R-coclique. Let N be a matrix in
C[A ] such that

(a) N < 0.

(b) If i ∉ R ∪ {0}, then N ◦ Ai ≤ 0.

Assume
N =∑

i
ai Ai =

∑
i

bi Ei

and let x be the characteristic vector of an R-coclique S. If i ∈ R then xT Ai x = 0
and, if i ∉ R ∪ {0}, then ai xT Ai x ≤ 0. Consequently

xT N x =∑
i

ai xT Ai x ≤ a0xT x = a0|S|
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and

xT N x =∑
j

b j xT E j x ≥ b0xT E0x ≥ b0

v
|S|2.

Hence

|S| ≤ v
a0

b0
= v

tr(N )

sum(N )
.

Thus we have the following. (Note that tr(N ) = a0v and sum(N ) = b0v .)

3.3.2 Theorem. Let A be an association scheme with d classes and let S be an
R-coclique in it. Then

|S| ≤ min
N

v
tr(N )

sum(N )

where N runs over the set of positive semidefinite matrices in C[A ] such that
N ◦ Ai ≤ 0 if i ∉ R ∪ {0}.

From this theorem we also see that

v

|S| ≥ max
N

sum(N )

tr(N )

where N runs over the set of positive semidefinite matrices in C[A ] such that
N ◦ Ai ≤ 0. Hence the same inequality holds when N runs over the smaller set
of positive semidefinite matrices in C[A ] such that N ◦ Ai = 0 if i ∉ R ∪ {0}. It
follows from Theorem 3.3.1 that if C is an R-clique, then

v

|S| ≥ |C |.

Thus we have proved that if C is an R-clique and S is an R-coclique in A , then

|C ||S| ≤ v. (3.3.1)

This inequality is due to Delsarte. We offer an alternative derivation of it in
Section 4.6.

If P is the matrix of eigenvalues of A and a = (a0, . . . , ad ), then the eigenval-
ues of the matrix M =∑

i ai Ai are the entries of the vector Pa. Since

tr(M) = va0, sum(M) = veT
0 Pa,
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we see that |S| is bounded above by the value of the following linear program

maxeT
0 Pa

a0 = 1, ai = 0 if i ∈ R

Pa ≥ 0

a ≥ 0.

Alternatively, suppose b = (b0, . . . ,bd ). Then the entries of the matrix N =∑
j b j E j are the entries of the vector P−1b. Since PQ = v I and

sum(N ) = b0, tr(N ) = eT
0 Qb,

we see that |S| is bounded above by the reciprocal of the value of the linear
program

mineT
0 Qb

b ≥ 0

b0 = 1,eT
i Qb ≤ 0 if i ∈ R.

In working with these linear programs, it can be useful to recall that Q =
D−1

v P∗Dm . If in the last linear program we replace the constraints eT
i Qb ≤ 0 by

eT
i Qb = 0, the resulting linear program is dual to the first.

3.4 Cliques and Cocliques

We use the theory of the previous section to derive some specific bounds. Let
A be an association scheme on v vertices with d classes.

Suppose first that C is a 1-clique, that is, a clique in the graph X1 with ad-
jacency matrix A1. We seek to use Theorem 3.3.1 to obtain an upper bound on
|C |. If M ∈C[A ] and M ◦ Ai = 0 if i 6= 0,1, then

M = aI +b A1.

Hence
sum(M)

tr(M)
= av +bv v1

av
= 1+ v1

b

a
.

Here v1 is the valency of X1, and want to choose a and b to maximise the last
term, subject to the condition that M < 0. Since our objective function depends
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only on the ratio b/a, we may assume b = ±1. If b = −1, then the least eigen-
value of aI − A1 is a − v1, and we maximise our objective function by taking
a = v1. The value of the objective function is 2. If b = 1 and the least eigenvalue
of A1 is τ, then the least eigenvalue of aI + A1 is a + τ and we maximise our
objective function by taking a =−τ. This gives a bound

|C | ≤ 1− v1

τ
.

This bound is never less than 2, and so it is the linear programming bound on a
1-clique.

3.4.1 Lemma. If X is a graph in an association scheme with valency k and least
eigenvalue τ, then

ω(X ) ≤ 1− k

τ
.

By using Theorem 3.3.2, we can derive an upper bound on the size of a 1-
coclique in a union of classes from an association scheme. Suppose A is the
adjacency matrix of such a graph X with valency k, and that its least eigenvalue
is τ. If N := A−τI , then N < 0 and

tr(N ) =−vτ, sum(N ) = vk − vτ

By Theorem 3.3.2, this results in the bound

α(X ) ≤ v

1− k
τ

.

This bound actually holds for all regular graphs. Note that here we did not need
to solve the linear program in Theorem 3.3.2, any matrix which satisfies the
conditions provides an upper bound.

We give an application of the inequality (3.3.1). Let A be the Hamming
scheme H(n, q). Let Be denote the ball of radius e about the zero word in the
Hamming graph. Then

βe := |Be | =
e∑

i=0

(
n

i

)
(q −1)i .

Any two words in Be are at distance at most 2e. If R := {2e +1, . . . ,n}, then Be is
an R-coclique, while an R-clique is a code with minimum distance 2e +1. So
(3.3.1) yields that

|C | ≤ qn

βe
;



30 CHAPTER 3. AN INNER PRODUCT

in coding theory this is the sphere-packing bound.
Note that if C is an R-clique and D is an R-coclique, then |C ∩D| ≤ 1. Hence

if we could partition the vertex set V of A into disjoint copies of an R-coclique
D , no code has more than one vertex in any cell of this partition and so we triv-
ially get the bound |C | ≤ |V |/|D|. Suppose q is a prime power and the vertices of
the Hamming scheme H(n, q) are taken to be the vectors in V (n, q). If D is an R-
coclique and a subspace, then the cosets of D partition the vertices of H(n, q)
into copies of D and therefore any S-clique contains at most qn/|D| vertices.
The above result enables us to derive the same bound, given only a single copy
of D . From a coding theorist’s viewpoint, association schemes provide a tool
which enables us to extend results about linear codes to the general case. This
crucial fact is due to Delsarte.

3.5 Feasible Automorphisms

Let A be an association scheme with d class on v vertices. Let P be a v × v
permutation matrix. Then P is an automorphism of A if it commutes with
each Schur idempotent Ai or equivalently if it commutes with each matrix in
C[A ].

We derive a necessary condition for P to be an automorphism, due to G.
Higman.

Let σ denote the permutation associated with P . Define vi (σ) to be the
number of vertices u in the scheme such that u is i -related to u. Then

vi (σ) = sum(P ◦ Ai ).

We compute the projection P̂ of P onto C[A ]:

P̂ =
d∑

i=0

vi (σ)

v vi
Ai =

d∑
i=0

〈P,Ei 〉
mi

Ei .

Therefore

P̂E j =
d∑

i=0

vi (σ)

v vi
pi ( j )E j =

〈P,E j 〉
m j

E j

and consequently

〈P,E j 〉 =
m j

v

d∑
i=0

pi ( j )

vi
vi (σ).



3.5. FEASIBLE AUTOMORPHISMS 31

We claim that if P is an automorphism, then 〈P,E j 〉 must be an algebraic
integer. For since E j is idempotent and Hermitian, we may write it as

E j =UU∗

where U is a v ×m j matrix such that U∗U = I . Hence

〈P,E j 〉 = tr(E j P ) = tr(UU∗P ) = tr(U∗PU ).

If P commutes with E j , then

PUU∗ =UU∗P

and therefore
PU =U (U∗PU ).

This implies that the characteristic polynomial of U∗PU divides the charac-
teristic polynomial of P , and therefore tr(U∗PU ) is a sum of eigenvalues of P .
Hence it is an algebraic integer.

We apply this theory to the Petersen graph. Suppose σ is an automorphism
of this graph which maps each vertex to an adjacent vertex. Thus

v0(σ) = 0, v1(σ) = 10, v2(σ) = 0.

The eigenvalues of the Petersen graph are −2, 1 and 3 with respective multi-
plicities 4, 5 and 1. If E1 is the matrix idempotent associated to the eigenvalue
1 and A1 is the adjacency matrix of the Petersen graph, then

〈P,E〉 = 5

10
× 1

3
×10 = 4

3
.

Since 4/3 is not an algebraic integer, we conclude that no automorphism of the
Petersen graph maps each vertex to an adjacent vertex.

Suppose H is a projection that commutes with C[A ]. Then the above argu-
ment yields that

〈H ,E j 〉 =
m j

v

d∑
i=0

pi ( j )

vi
〈H , Ai 〉

is a non-negative integer. (The value of this observation is unclear, but in prin-
ciple it could be used to show that certain equitable partitions do not exist.)
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Notes

The observation that the Bose-Mesner algebra of an association scheme is an
inner product space is surprising useful, and allows a comparatively easy ap-
proach to the linear programming method. Nonetheless the results in this chap-
ter are all standard. The linear programming method was developed in [?] by
Delsarte. The method developed in Section 3.5 is an unpublished idea of G.
Higman, and is used in [?] to show that a Moore graph of diameter two and
valency 57 cannot be vertex transitive.



Chapter 4

Products and Tensors

We show how to use the Kronecker product of matrices, or equivalently the ten-
sor product of algebras, to construct new association schemes from old.

4.1 Kronecker Products

If A and B are matrices and A = (ai , j ), we define their Kronecker product A⊗B
to be the matrix we get by replacing ai , j with the matrix ai , j B , for all i and j .
(We have made use of this already in Section 2.4.) We summarise some of the
basic properties of this operation.

First it is linear in each variable and, for any scalar c

c A⊗B = A⊗ cB.

We have
tr(A⊗B) = tr(A) tr(B)

and
(A⊗B)T = AT ⊗B T .

4.1.1 Lemma. If the matrix products AC and BD are defined, then

(A⊗B)(C ⊗D) = AC ⊗BD.

One consequence of this is that if x and y are eigenvectors of A and B re-
spectively, then x ⊗ y is an eigenvector of A ⊗B . It follows that if A and B are
positive semidefinite, so is A⊗B . Note also that

A⊗B = (A× I )(I ⊗B) = (I ⊗B)(A⊗ I ).

33
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The Kronecker product also interacts nicely with the Schur product:

4.1.2 Lemma. If A and C are matrices of the same order and B and C are matri-
ces of the same order, then

(A⊗B)◦ (C ⊗D) = (A ◦C )⊗ (B ◦D).

4.1.3 Lemma. There is a permutation matrix P such that P 2 = I and

P (A⊗B)P = B ⊗ A.

Proof. Assume A has m columns and B has n. Let e1, . . . ,em and f1, . . . , fn denote
the standard bases for Fm and Fn respectively. Then

ei ⊗ f j , 1 ≤ i ≤ m, 1 ≤ j ≤ n

and
f j ⊗ei , 1 ≤ i ≤ m, 1 ≤ j ≤ n

are two orderings of the standard basis for Fmn . Define P to be the matrix that
represents the linear mapping that takes ei ⊗ f j to f j ⊗ ei , for all i and j . Then
P is a permutation matrix and P 2 = I . Finally

(B ⊗ A)P (ei ⊗ f j ) = Be j ⊗ Aei = P (Aei ⊗Be j ),= P (A⊗B)(ei ⊗ f j ).

and as this holds for all i and j and as P T = P , the result follows.

4.2 Tensor Products

The Kronecker product is a concrete realisation of the tensor product of vector
spaces, which we introduce now.

Roughly speaking, tensor products are a tool we use to avoid discussing bi-
linear functions. We recall that if V1, V2 and W are vector spaces over a field,
then a map β from V1 ×V2 is bilinear if it is linear in each variable. Note here
that, although V ×W is the underlying set of vectors for the vector space V1⊕V2,
the bilinear map β is not a linear map from V1 ⊕V2. (A good example of a bilin-
ear map is the determinant of a 2×2 real matrix, viewed as a function from the
two columns of the matrix to R. Thus here V1,V2

∼= R2 and W = R.) Although
bilinear maps are not linear maps, the set of bilinear maps from V1 ×V2 to W is
a vector space.
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The solution to our avoidance problem is to construct a new vector space,
denoted V1 ⊗V2 and a canonical bilinear map

β : V1 ×V2 →V1 ⊗V2

so that for each bilinear map γ from V1 ×V2 to W there is a linear map

g : V1 ⊗V2 →W

such that γ = g ◦β. Since β is determined by the three vector spaces V1, V2

and W , we see that we can work with linear maps from V1 ⊗V2 to W in place
of bilinear maps from V1 ×V2. (Thus we have simplified the maps we need to
deal with by complicating our objects. This is not an uncommon practice in
mathematics, and the trade-off is usually worth it.)

The construction of V1⊗V2 is a two-stage process—we derive it as a quotient
of a larger vector space. Let U denote the vector space of all functions with finite
support from V1 ×V2 to the underlying field. Less formally we may identify U
as the set of (finite) linear combinations∑

i
ai (xi , yi )

where (xi , yi ) ∈V1 ×V2. Next we introduce the subspace U0 of U spanned by all
linear combinations of the following vectors:

(x1 +x2, y)− (x1, y)− (x2, y)

(x, y1 + y2)− (x, y1)− (x, y2)

(ax, y)−a(x, y)

(x, ay)−a(x, y).

Finally we define V1 ⊗V2 to be the quotient space U /U0; the canonical bilinear
map β is defined by

β(x, y) := x ⊗ y.

The problem left is to prove that each bilinear map from V1 ×V2 can be ex-
pressed uniquely as a composition of a linear map from V1 ⊗V2 to W . We leave
this to the reader—there are lots of places where you can look it up! We note
that the Kronecker product of Fm and Fm is isomorphic to Fm ⊗Fn (and in turn
this isomorphic to Fmn). In particular if V and W have finite dimension, then

dim(V ⊗W ) = dim(V )dim(W ).
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Having introduced tensor products of vector spaces, we turn to algebras.
Suppose V1 and V2 are vector spaces and Ai ∈ End(Vi ). We define A1 ⊗ A2 by
decreeing that if xi ∈Vi , then

(A1 ⊗ A2)(x1 ⊗x2) := A1x1 ⊗ A2x2.

It remains to be checked that this product satisfies the rules we gave for the
Kronecker product (you may do this) and hence that the span of the products
A1 ⊗ A2 is an algebra. It is isomorphic as a vector space to End(V1)⊗End(V2).

Tensor products may be generalised. We could attempt to work with vec-
tor space with infinite dimension or, in place of vector spaces, we could use
modules. In both cases the subject becomes much more more subtle—for ex-
ample the tensor product of the Z-modules Z2 and Z3 is the zero module. But
even the case of tensor products of finite dimensional vector spaces there can
be surprises.

We offer some exercises. The complex numbers are an algebra over the re-
als, show that Matd×d (R)⊗C∼= Matd×d (C). Show that the tensor product of F[x]
with itself is isomorphic to the ring of polynomials in two non-commuting vari-
ables F[x, y].

Suppose V is a finite dimensional vector space with dual space V ∗. If

x ⊗ f ∈V ⊗V ∗

then we can define an associated mapping from V to itself by

(x ⊗ f )(v) := f (v)x, v ∈V.

Here f (v) is a scalar, and it is easy to verify that x ⊗ f ∈ End(V ). Do this, and
also show that

V ⊗V ∗ ∼= End(V ).

If V = Fn , with elements viewed as column vectors and we identify V ∗ with
Fn viewed as row vectors, then we may identify x ⊗ f with the matrix x yT for
suitable y . The isomorphism above is then equivalent to the observation that
every matrix can be written as a sum of rank-one matrices.) If V = Fn we are
prepared to identify V ∗ with V , then we can identify V ⊗V with the space of
n ×n matrices.
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4.3 Tensor Powers

We consider constructions of association schemes that make use of the tensor
product.

4.3.1 Lemma. If Ao , . . . , Ad and B0, . . . ,Be are two association schemes with d
and e classes respectively, then the matrices

Ai ⊗B j , 0 ≤ i ≤ d , 0 ≤ j ≤ e

form an association scheme with de +d + e classes, and that the Bose-Mesner
algebra of this product is the tensor product of the Bose-Mesner algebras of its
factors.

Proof. This is not hard to verify directly. Alternatively let the two schemes be de-
noted by A and B respectively. It follows from Lemma 4.1.1 and Lemma 4.1.2
that the tensor product

C[A ]⊗C[B]

is closed under matrix and Schur multiplication. Since it contains J and is
transpose-closed, we deduce that it is the Bose-Mesner algebra of a scheme.
The dimension of this algebra is (d +1)(e +1) and hence this product scheme
has the stated number of classes.

Similarly we have a power construction:

4.3.2 Lemma. If A is an association scheme with d classes, then C[A ]⊗k is the
Bose-Mesner algebra of an association scheme with (d +1)k −1 classes.

It is not hard to construct new association schemes with a large number
of classes, hence the previous two constructions are not as useful as we might
hope. However there is an interesting construction based on the tensor power,
which we develop now.

Suppose V is a vector space. We define an action of Sym(k) on V ⊗k by
declaring that if

x1 ⊗·· ·⊗xk

and σ ∈ Sym(k), then

σ : x1 ⊗·· ·⊗xk 7→ x1σ⊗·· ·⊗xkσ.
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It follows that σ induces a linear map from V ⊗k to itself (which we will denote
by σ. If e1, . . . ,ed is a basis for V , then the products

ei1 ⊗·· ·⊗eik

form a basis for V ⊗k . Since σ permutes the elements of this basis, the matrix
representing σ is a permutation matrix.

Note that some elements of V ⊗k are left fixed by the action of Sym(k). As
examples we have the diagonal terms

ei ⊗·· ·⊗ei

and, when k = 2, the sum
e1 ⊗e2 +e2 ⊗e1

is fixed by Sym(2). We define the k-th symmetric power of V to be the sub-
space of V ⊗k formed by the vectors that are fixed by each element of Sym(k). If
dim(V ) = d , then its k-th symmetric power has dimension

(d+k−1
k

)
.

4.3.3 Theorem. If A is an association scheme with d classes, then the k-th sym-
metric power of C[A ] is an association scheme with

(d+k
k

)−1 classes.

Proof. The k-th symmetric power of C[A ] is the centralizer of a set of permuta-
tion matrices, and therefore it is Schur-closed by Lemma ??. It is closed under
matrix multiplication and transpose and contains I and J , and it is commu-
tative since C[A ] is. Therefore it is the Bose-Mesner algebra of an association
scheme.

We call the scheme produced by this construction the k-th symmetric power
of A , and we denote it by H(k,A ).

We note the proof of the previous theorem theorem also yields that a sym-
metric power of a coherent algebra is again a coherent algebra, and this power
is homogeneous if the input is.

4.4 Generalized Hamming Schemes

In this section we offer an alternative, more concrete, construction of the sym-
metric power and consider some examples.

Suppose A is an association scheme with Schur idempotents A0, . . . , Ad and
vertex set V . If u and v are two elements of V n , let h(u, v) be the vector of length
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d +1 whose i -th entry hi (u, v) is the number of coordinates j such that u j and
v j are i -related. The entries of h(u, v) sum to n; conversely any non-negative
vector of length n whose entries sum to n is equal to h(u, v) for some u and v .
If α is a non-negative vector of length d +1 and 1Tα = n, define Aα to be the
01-matrix with rows and columns indexed by V n and with (Aα)u,v = 1 if and
only if h(u, v) = α. This set of matrices forms the k-th symmetric power of A .
If A is the scheme with one class on q vertices, then H(n,A ) is the Hamming
scheme H(n, q).

By way of a more particular example, suppose I , A1 and A2 form an associ-
ation scheme with two classes, i.e., the association scheme of a strongly regular
graph. The Schur idempotents of A ⊗A are the nine matrices

I , I ⊗ A1, A1 ⊗ I ,
I ⊗ A2, A2 ⊗ I , A1 ⊗ A2,

A2 ⊗ A1, A1 ⊗ A1, A2 ⊗ A2.

The Schur idempotents of H(2,A ) are

I , I ⊗ A1 + A1 ⊗ I , I ⊗ A2 + A2 ⊗ I ,
A1 ⊗ A2 + A2 ⊗ A1, A1 ⊗ A1, A2 ⊗ A2.

4.5 A Tensor Identity

We use A ⊗B to denote the Kronecker product of two matrices A and B . We
offer a more exalted version of Seidel’s identity, due to Koppinen.

4.5.1 Theorem. Let A be an association scheme with d classes. Then

d∑
i=0

1

v vi
Ai ⊗ AT

i =
d∑

i=0

1

mi
Ei ⊗Ei .

Proof. Suppose that V is an inner product space and u1, . . . ,uk and v1, . . . , vk are
two orthogonal bases for a subspace U of V . If

R =
k∑

i=1

1

〈ui ,ui 〉
ui u∗

i

and

S =
k∑

i=1

1

〈vi , vi 〉
vi v∗

i ,
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and x ∈ V , then Rx and Sx are both the orthogonal projection of x onto U . So
Rx = Sx for all x and therefore R = S. Since

x y∗ = x ⊗ y∗,

we thus have
k∑

i=1

1

〈ui ,ui 〉
ui ⊗u∗

i =
k∑

i=1

1

〈vi , vi 〉
vi ⊗ v∗

i . (4.5.1)

Now let vec : Matm×n(C) →Cmn be the linear map given by

vec(A) =

Ae1
...

Aen

 .

If M ∈ Matn×n(C), let M # denote the linear map from Matn×n(C) to C given by

M #(X ) := tr(M∗X ).

Note that
M #(X ) = vec(M)∗ vec(X ).

Then (4.5.1) yields that

d∑
i=0

1

v vi
Ai ⊗ A#

i =
d∑

i=0

1

mi
Ei ⊗E #

i .

Consequently

d∑
i=0

1

v vi
Ai ⊗vec(Ai )T =

d∑
i=0

1

mi
Ei ⊗vec(E i )T

and therefore
d∑

i=0

1

v vi
Ai ⊗ Ai =

d∑
i=0

1

mi
Ei ⊗E i .

Let I denote the identity map on Matv×v (C) and τ the transpose map. If we
apply I ⊗τ to both sides of this identity, the result follows.

We let K denote either of the two sums in the statement of Theorem 4.5.1.
Since E j ⊗E j is self-adjoint, we have K ∗ =K and therefore we also have

K =
d∑

i=0

1

v vi
AT

i ⊗ Ai .
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4.6 Applications

We present three applications of our tensor identity.
First, suppose X ∈ Matv×v (C) and T : C[A ] ⊗C[A ] → C[A ] is the linear

mappping given by
T (C ⊗D) = tr(D X )C .

Therefore

T (K ) =
d∑

i=0

1

v vi
tr(AT

i X )Ai =
d∑

i=0

1

mi
tr(Ei X )Ei .

This shows that Theorem 3.2.1 is a consequence of Theorem 4.5.1.

An association scheme A with d classes is pseudocyclic if its valencies v1, . . . , vd

are all equal and its multiplicities mi are all equal. If we denote the common
value of these parameters by m, then v = dm+1. Koppinen’s identity yields that

K = 1

v
I + 1

vm

d∑
i=1

A⊗2
i = E0 + 1

m

d∑
i=1

E⊗2
i .

Here
d∑

i=1
A⊗2

i

is the adjacency matrix of a regular graph. The previous equality shows that it
has exactly three eigenvalues (vm −m, v −m and −m), and therefore it is the
adjacency matrix of a strongly regular graph.

The simplest example of a pseudocyclic scheme is the scheme with d classes
associated to the odd cycle C2d+1. (In this case the strongly regular graph is
L(K2d+1,2d+1).)

We offer another proof of the inequality (3.3.1).

4.6.1 Theorem. Let A be an association scheme with d classes on v vertices
and let R be a subset of {1, . . . ,d}. If C is an R-clique and D is an R-coclique,
then |C ||D| ≤ v .

Proof. Let C be an R-clique and D an R-coclique, with characteristic vectors y
and z respectively. Let S be the subset C ×D of V ×V , with characteristic vector
x. Then x = y ⊗ z and

xT (Ai ⊗ Ai )x = yT Ai y zT Ai z = 0
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if i 6= 0. So

xT x = xT

(∑
i

1

v vi
Ai ⊗ Ai

)
x =

d∑
j=0

1

m j
xT (E j ⊗E j )x.

The matrices Ei are positive-semidefinite, and therefore so are the matrices Ei⊗
Ei . Consequently each term in the last sum is non-negative, and thus

|S| = xxT ≥ xT (E0 ⊗E0)x = |S|2
v2

.

Therefore |S| ≤ v .

Notes

Bailey [?] also offers a detailed treatment of constructions based on tensor prod-
ucts. Delsarte [?, ???] introduced what we called the generalised Hamming
schemes, calling them ???. We will see that this viewpoint leads to an elegant
approach to the computation of the matrix of eigenvalues for the Hamming
scheme. Koppinen’s identity appears in [?]. Its applications in Section 4.6 are
new, although the results themselves are not. (In particular the pseudocyclic
schemes we present were first found by [?].)



Chapter 5

Subschemes and Partitions

If a subspace of the Bose-Mesner algebra of an association scheme A contains
I and J and is closed under Schur and matrix multiplication, it must be the
Bose-Mesner algebra of an association scheme, B say. We say that B is a sub-
scheme of A . In this chapter we study subschemes and some related matters.

5.1 Equitable Partitions

Let V be set of size v and let π be a partition of V with k cells. Then π is a set,
each element of which is a subset of V . The characteristic matrix of π is the
v ×k matrix whose columns are the characteristic vectors of the cells of π. The
column space of π is the space of functions on V that are constant on the cells
of π; we denote this space by F (π).

If B is an algebra of matrices with rows and columns indexed by V , we say
that a partition π of V is equitable relative to B if F (π) is B-invariant. The
algebras of interest to us will be generated by adjacency matrices of graphs.
Suppose A is the adjacency matrix of a graph X and π is a partition of V (X )
with characteristic matrix H . Then F (π) is A-invariant if and only if there is a
k ×k matrix B such that

AH = HB. (5.1.1)

We call B the quotient of A relative to π, and denote it by A/π. If the cells of
π are C1, . . . ,Ck , then 5.1.1 holds if and only if for each i and j , the number of
neighbours in Ci of vertex in C j is determined by i and j (and is equal to Bi , j ).
Note that H T H is diagonal and invertible, whence

B = (H T H)−1H T AH .

43
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Hence B is determined by A and H .
We consider two classes of examples. Let A be the adjacency matrix of a

graph X . A partitionπof V (X ) is an equitable partition of X if it is A-invariant. A
subspace that contains 1 is J-invariant, and so if π is A-invariant, it is invariant
under the algebra generated by A and J . (The latter algebra is often the algebra
of all matrices.) An orbit partition of a graph X is a partition whose cells are
the orbits of some group of automorphisms of X . Any orbit partition of a graph
X is equitable, but not all equitable partitions of a graph are orbit partitions.
For example, X is regular if and only if the partition with V (X ) as its only cell is
equitable.

Our second class of examples concerns association schemes. If A is an as-
sociation scheme with vertex set V , we call a partition π of V an equitable par-
tition of the scheme if it is equitable relative to the Bose-Mesner algebra C[A ].
Suppose v ∈V and let Ci denote the set of vertices w such that v is i -related to
w . Then πv = {C0, . . . ,Cd } is a partition of V (X ) which is an equitable partition
of the scheme. We call it the relation partition with respect to v . The quotient
matrix Ai /πv is independent of v .

A subspace of FV is equal to F (π) for some π if and only if it is closed under
Schur multiplication and contains the vector 1. The following result is not too
hard to verify.

5.1.1 Lemma. If π and σ are partitions of V , then

F (π)∩F (σ) = F (π∨σ).

(Hereπ∨σ denotes the join ofπ andσ in the lattice of partitions of V .) From
this lemma, we see that if π and σ are equitable partitions relative to B, then
π∨σ is also equitable.

If p(t ) is a polynomial, then 5.1.1 implies that p(A)H = H p(B). Conse-
quently we have a homomorphism from the algebra of polynomials in A to the
algebra of polynomials in B . It follows that the minimal polynomial of B divides
the minimal polynomial of A, but something a little stronger is true.

5.1.2 Lemma. Suppose A, B and H are matrices such that AH = HB . If the
columns of H are linearly independent, the characteristic polynomial of B di-
vides the characteristic polynomial of A.

Proof. Assume A is v×v and let x1, . . . , xv be a basis for Fv such that x1, . . . , xk are
the columns of H in order. Then relative to this basis, the matrix representing
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A has the form (
B ∗
0 A1

)
where A1 is square. Therefore

det(t I − A) = det(t I −B)det(t I − A1).

We give one of the standard applications of this result. Let X be a graph. A
perfect 1-code in X is a subset C of V (X ) such that:

(a) Any two vertices in C are at distance at least three.

(b) Any vertex not in C is adjacent to exactly one vertex in C .

Suppose C is a perfect 1-code in X , and let π be the partition with cells C1 =C
and C2 =V (X )\C . If X is regular with valency k, this is an equitable partition of
X , with quotient matrix

B =
(
0 k
1 k −1

)
.

Both rows of this matrix sum to k, so k is an eigenvalue for B . Since tr(B) = k−1
it follows that −1 is an eigenvalue for B . We conclude that if a regular graph X
contains a perfect 1-code, then −1 must be an eigenvalue of A.

Note that if X is k-regular and has v vertices, then a perfect 1-codes has size
v/(k +1). Thus we have a second necessary condition: k +1 must divide v .

Let π be a partition with characteristic matrix H and suppose D is the non-
negative diagonal matrix such that D2 = H T H . Then all columns of HD−1 have
length 1, and so the columns of this matrix form an orthonormal set. We call
HD−1 the normalized characteristic matrix of π, for some purposes it is more
useful than H . If G = HD−1 then GGT represents orthogonal projection onto
F (π). We note that F (π) is A-invariant if and only if A and G commute. (This
is a special case of a general fact from linear algebra: if E is idempotent, then
col(E) is A-invariant if and only if E A = AE .)

5.2 Subschemes and Partitions

Suppose C and D are association schemes on the same vertex set. We say
that C is a subscheme of D is the Bose-Mesner algebra of C is a subspace of
the Bose-Mesner algebra of D. To give a very simple example, the association
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scheme of the complete graph on v vertices is a subscheme of any scheme on
v vertices. We will meet more examples soon.

We admit that what we call a subscheme is often (more often?) called a
fusion scheme and, to make it worse, the term subscheme is used for another
concept.

5.2.1 Lemma. Let A1 and A2 be association schemes. If A1 is a subscheme of
A2, then each Schur idempotent of A1 is a sum of Schur idempotents of A2.

Proof. Suppose A1 = {A0, . . . , Ad }. If A1 is a subscheme of A2, then Ai must be
a linear combination of Schur idempotents of A2; since Ai is a 01-matrix, the
coefficients in this linear combination must be 0 or 1.

Let A be an association scheme with d classes, and let π be a partition of
{0,1, . . . ,d} with cells {C0, . . . ,Ce }. Define Mi to be sum of the matrices in the set

{Ar : r ∈Ci }.

The matrices Mi are Schur idempotents, but not minimal Schur idempotents.
We call them the Schur idempotents corresponding to the cells of π. We wish to
characterise the partitions π such that the matrices Mi are the minimal Schur
idempotents of a subscheme of A . We note three necessary conditions:

(a) Since some Mi must be the identity matrix, some cell of π must equal {0}.

(b) The set of matrices Mi is transpose-closed.

(c) The algebra generated by the matrices Mi must have dimension |π|.
It is not hard to see that together these three conditions are also sufficient.
There is a direct way to determine the dimension of the algebra, which we dis-
cuss next.

5.2.2 Theorem. Let A be an association scheme with d classes and eigenmatrix
P . Let π be a partition of {0,1, . . . ,d} with cells {C0, . . . ,Ce } and with character-
istic matrix S. Assume that the set of Schur idempotents corresponding to π is
transpose-closed and contains I . Then the dimension of the algebra they gen-
erate is equal to the number of distinct rows of PS.

Proof. Let E0, . . . ,Ed be the minimal matrix idempotents of A . Let M0, . . . , Me

be the Schur idempotents corresponding to the cells of π, and let M be the
algebra they generate. Then M is commutative and closed under transposes
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and complex conjugation. We apply the theory of Sections 1.4 and 1.5. From
this it follows that M has a basis of pairwise orthogonal idempotents F1, . . . ,F`.
Each of these idempotents lies in C[A ], and hence Fi is the sum of the Er such
that Er ≤ Fi .

Let mi ( j ) denote the eigenvalue of Mi associated to the idempotent E j of
A . Then

m j (i ) = (PS)i , j .

If Er ≤ Fi , then M j Er = m j (i )Er .
Suppose Fr and Fs are distinct idempotents of M . If mi ,r = mi ,s for all i ,

then Fr +Fs together with the idempotents Fi with i ∉ {r, s} spans M . Therefore
for each r and s, there is a matrix Mi such that mi (r ) 6= mi (s).

We conclude that Er and Es are summands of the same idempotent Fi if and
only if rows r and s of PS are equal. The theorem follows.

The Schur idempotents corresponding to π are linearly independent, so we
see that the dimension of the algebra they generate is at least |π| = e +1.

5.2.3 Corollary. Let A be an association scheme with d classes and eigenma-
trix P . Let π be a partition of {0,1, . . . ,d} with cells {C0, . . . ,Ce } and with char-
acteristic matrix S. Assume that the set {M0, . . . , Me } of Schur idempotents cor-
responding to π is transpose-closed and contains I . Then {M0, . . . , Me } are the
minimal Schur idempotents of a subscheme of A if and only if PS has exactly
e +1 distinct rows.

Let P be an m ×n matrix and let σ be a partition of its columns with char-
acteristic matrix S. Define two rows of P to be equivalent if the corresponding
rows of PS are equal, and let ρ be the partition of the rows of P with the equiv-
alence classes of this relation as its cells. We say that ρ is the partition induced
by σ.

5.2.4 Lemma. Let P be an m ×n matrix, let σ be a partition of its columns and
let ρ be the partition of its rows induced by σ. If the columns of P are linearly
independent, then |ρ| ≥ |σ|.
Proof. If the columns of P are linearly independent, then PSx = 0 if and only if
Sx = 0. But the columns of S are linearly independent and so Sx = 0 if and only
if x = 0. Hence the columns of PS are linearly independent. Therefore

|σ| = rk(PS).

Since the number of distinct rows of PS is an upper bound on its rank, the
lemma follows.
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We call a partition σ of the columns of a matrix tight if |σ∗| = |σ|.
Suppose σ is a partition of the columns of M , with induced partition ρ. Let

S and R respectively denote the characteristic matrices of σ and π. Then each
column of PS is a linear combination of the columns of R, and so there is a
matrix M1 such that

MS = RM1.

Here M1 has order |ρ|× |σ|; if the columns of M are linearly independent, then
so are the columns of M1.

Let P be the eigenmatrix of an association scheme A with d classes. If σ is
a tight partition of the columns of P , then

PS = RP1

where R is the characteristic matrix of σ∗. In this case P is invertible, and so P1

is invertible. If Q is the dual eigenmatrix of A , then QP = v I and we have

vSP−1
1 =QR.

This implies that σ∗ is a tight partition of the columns of Q, with induced par-
tition equal to σ.

If the Schur idempotents associated with the cells ofσ form a subscheme of
A , then P1 is the matrix of eigenvalues of the subscheme.

5.3 Primitivity

An association scheme with d classes is primitive if each of its graphs X1, . . . , Xd

is connected. (Although these graphs may directed, they are finite and all ver-
tices have the same in- and out-valency, hence the strong weak components
coincide.) An association scheme that is not primitive is imprimitive.

In the binary Hamming scheme H(n,2) we see that Xn consists of 2n−1 dis-
joint edges. The graph X1 is the n-cube, which is bipartite, and so the graphs
X2i are all disconnected.

The imprimitive strongly regular graphs are the graphs mKn (where m,n >
1) and their complements. Product schemes are imprimitive in all non-trivial
cases.

Suppose A = {A0, . . . , Ad } is an association scheme with vertex set V and
let V1 be a subset of V . The principal submatrices of A0, . . . , Ad with rows and
columns indexed by V1 generate a matrix algebra with dimension at least s +1,
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where s is the degree of Vi . If the dimension is s+1, it is the Bose-Mesner algebra
of an association scheme with s classes.

5.3.1 Lemma. Suppose X is the graph of a minimal Schur idempotent in the
association scheme A . If X is not connected, then the restriction of A to a
component of X is an association scheme whose parameters are independent
of the choice of components. The partition whose cells are the components of
X1 is equitable.

Proof. Suppose that X1 is not connected and let σ be the partition whose cells
are the components of X1. We prove that SST ∈ C[A ], which implies that σ is
equitable.

If u and v are i -related vertices in the same component of X1, they are
joined by a walk, each arc of which lies in X1. It follows that any pair of i -
related vertices in A lie in the same component of X1. Consequently the graph
on V (A ) with two vertices adjacent if and only if they lie in the same compo-
nent of X1 is the edge-disjoint union of graphs from A . Since SST − I is the
adjacency matrix of this graph, our claim is proved.

If SST ∈ C[A ], then SST commutes with J , and therefore the cells of σ all
have the same size, which we denote by c. Since SST ∈ C[A ], Seidel’s identity
yields

SST =
d∑

i=0

〈SST , Ai 〉
v vi

Ai =
d∑

j=0

〈SST ,E j 〉
m j

E j .

Since SST is a Schur idempotent, the non-zero coefficients in the first sum are
all equal to 1. Hence Ai ◦(SST ) is either 0 or Ai . Since 1

c SST is a matrix idempo-
tent, the non-zero coefficients in the second sum are all equal to c.

If
D := {i : Ai ◦ (SST ) 6= 0},

then since
(SST )2 = cSST ,

it follows that if i and j belong to D and pi , j (k) 6= 0, then k ∈ D. Therefore the
span of the set

{Ai : i ∈D}

is closed under multiplication. Each of these matrices is block diagonal, with
blocks of size c. The matrices we get by taking the r -th block of Ai for each i
in D form an association scheme, and the r association schemes we get in this
way all have the same parameters.
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Suppose
E := { j : 〈S,S〉T ,E j 6= 0}.

Since SST is a Schur idempotent, it follows that if i and j belong to E and
qi , j (k) 6= 0, then k ∈ E . So the span of the set

{E j : j ∈D}

is closed under the Schur product.
If j ∈ E then

E j = F j ⊗ c

v
Jv/c .

Hence the F j ’s are a set of pairwise orthogonal idempotents and∑
j∈E

F j = I .

It follows that the matrices F j (for j ∈ E ) form an association scheme whose
vertices are the cells of σ.

5.4 Simple Subsets

Let A = {A0, . . . , Ad } be an association scheme with vertex set V and let C be a
subset of V with characteristic vector x. We will work with the cyclic subspace
generated by x, which is the subspace generated by the vectors

A0x, A1x, . . . , Ad x.

We view this as a space of functions on V , and denote it by D(C ).
The vectors

E0x,E1x, . . . ,Ed x

form a second basis for D; since these vectors are orthogonal it follows that
dim(D) is equal to the number of non-zero vectors in this set. If s∗ denotes the
dual degree of C , then we have

dim(D(C )) = 1+ s∗.

If u ∈V , we define its profile relative to C to be the vector

(eT
u A0x, . . . ,eT

u Ad x)
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The i -th entry of this is the number of vertices v in C such that u is i -related to
v . We can partition the vertices of C by their profiles, and we call it the partition
induced by C . Any element of D(C ) is constant on the cells of this partition,
and therefore if π(C ) is the partition induced by C ,

dim(D(C )) ≤ |π(C )|.
We call C a simple subset of V if equality holds.

Let F (π) denote the space of functions on V that are constant on the cells
of π. This space has dimension |π| and contains D(π). This immediately yields
the following.

5.4.1 Lemma. Let C be a subset of the vertices of the association scheme A

with induced partition π. Then C is simple if and only if D(C ) = F (π).

Note also that F (π) is C[A ]-invariant if and only if π is equitable. Hence
the partition induced by a simple subset is equitable. (The converse is false,
although examples are not trivial to find.)

5.4.2 Example. If C is a linear code in H(n, q), then the profile of u relative to C
is the distance distribution of the coset C +eu of C .

5.4.3 Example. If C is just a single vertex u of A , then

eT
u E j eu > 0

for j = 0,1, . . . ,d and so the dual degree of {u} is d . The partition of V induced
by u is just its relation partition, which has d +1 cells. So {u} is simple.

5.4.4 Example. Suppose A is imprimitive, and that C is the vertex set of a con-
nected component of A1.

5.5 Completely Regular Subsets

Suppose the association scheme A is metric with respect to A1. If V is the
vertex set of A and C ⊆ V (A ), we define Ci to be the subset of V consisting of
the vertices that are at distance i (in X1) from C . Thus C0 =C . The sets Ci form
a partition of V which we call the distance partition. The maximum distance of
a vertex from C is the covering radius of C . The covering radius of C is t if and
only if its distance partition has exactly t +1 cells. If the distance partition of C
is equitable, we say C is completely regular. The canonical example is a perfect
code in the Hamming scheme.
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5.5.1 Lemma. If A is a metric association scheme and C is a completely regular
subset of V (A ), then C is simple.

Proof.

5.5.2 Lemma. If A is a metric association scheme and C is a completely regular
subset of V (A ) with covering radius t and dual degree s, then t ≤ s.

Translation drgs correspond to cr codes in Hamming scheme.
δ≥ 2δ−1 implies cr.
Lloyd’s theorem.
Examples.
Do quotients schemes a là Godsil and Martin
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Translation Schemes

Suppose Γ is an abelian group of order v . The conjugacy class scheme on Γ is
a scheme with v −1 classes, and each minimal Schur idempotent is a permu-
tation matrix. Many interesting schemes arise as subschemes of these; they are
known as translation schemes.

6.1 Characters

Let Γ be a finite abelian group. A character of Γ is a homomorphism from Γ

into the multiplicative group formed by the non-zero complex numbers. The
set of all characters of Γ is denoted by Γ, and is called the character group of Γ.
If ψ ∈ Γ∗ and g ∈ Γ, then g k for some integer k. Therefore

ψ(1) =ψ(g k ) =ψ(g )k ,

whence we see that ψ(g ) is a k-root of unity. It follows that

ψ(g−1) =ψ(g ).

The trivial character is the map that sends each element of Γ to 1. If ϕ and ψ

are characters, we define the map ϕψ by

ϕψ(g ) :=ϕ(g )ψ(g ).

Using this definition it follows that Γ∗ is an abelian group. Ifψ ∈ Γ∗, thenψ−1 =
ψ.

53
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To give an example, suppose Γ=Zn . Let θ be an n-th root of unity in C and
let g be a generator for Γ. Then the map

g k 7→ θk

is readily seen to be a character of Γ. Thus each n-th root of unity determines
a character of Γ, and these characters form a subgroup of Γ∗ with order n. For
further progress, we need the following.

6.1.1 Lemma. If ψ is a non-trivial character of the finite abelian group Γ, then∑
g∈Γ

ψ(g ) = 0.

Proof. If a ∈G then ∑
g∈Γ

ψ(g ) = ∑
g∈Γ

ψ(ag ) =ψ(a)
∑
g∈Γ

ψ(g ),

whence we see that if ψ(a) 6= 1, then
∑

g ψ(g ) = 0.

If S ⊆ Γ and ψ ∈ Γ∗, we define

ψ(S) = ∑
g∈S

ψ(g ).

The previous result thus states that if ψ is not trivial, then ψ(Γ) = 0.

6.1.2 Corollary. If ϕ and ψ are characters of Γ, then

∑
g∈Γ

ϕ(g )ψ(g ) =
{
|Γ|, if ϕ=ψ;

0, otherwise.

Proof. Apply the lemma to the product ϕψ.

We define the sum in this corollary to be the inner product of ϕ and ψ; we
see that distinct characters are orthogonal. It follows that the elements of Γ∗

are linearly independent elements of the vector space CG of complex-valued
functions of Γ. Since this space has dimension |Γ|, we conclude that

|Γ∗| ≤ |Γ|.
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We can now show that Γ∗ and Γ are isomorphic abelian groups. We saw above
that Z∗

n contains a subgroup isomorphic to Γ, and therefore

Z∗
n
∼=Zn .

A finite abelian group is the direct product of cyclic groups. If A and B are finite
abelian groups then we may assume inductively that

(A×B)∗ ∼= A∗×B∗,

and so our claim follows.

Let Γ be a finite abelian group of order n. A character table of Γ is the n ×n
matrix with i j -entry equal to the value of the i -character on the j -th element
of Γ. By 6.1.2,

H H∗ = nI .

Also
H ◦H = J .

For example, the character table of Zn
2 may be taken to be the Kronecker

product of n copies of (
1 1
1 −1

)
.

For another example, let Γ beZn and suppose η is a primitive n-th root of unity.
The matrix P with rows and columns indexed by Γ and with

Pi , j = ηi j

is a character table for Γ. Since this is symmetric, any finite abelian group has a
symmetric character table.

6.2 Translation Graphs

Let G be a group and suppose C ⊆G . The Cayley graph X (C ) is the graph with
vertex set G and arc set

{(g ,h) : hg−1 ∈C }.

Define
C−1 = {c−1 : c ∈C }
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and call C inverse-closed if C =C−1. Then X (C ) is a directed graph if and only
if C is not inverse-closed, and it will contain loops if 1 ∈C . We do not insist that
Cayley graphs be undirected, but we do insist that they do not have loops.

If a ∈G , let ρa be the map that sends x in G to xa. Then ρa is a permutation
of G and an automorphism of X (C ). Hence G acts as a regular group of auto-
morphisms of X (C ). Conversely, if G acts as a regular group of automorphisms
of a graph X , we may choose a vertex v in X and define C to be the set of ele-
ments g of G such that (v, g v) is an arc in X . Then X is isomorphic to the Cayley
graph X (C ).

We define a translation graph to be a Cayley graph for an abelian group.
One advantage of translation graphs is that their eigenvalues and eigenvectors
are more accessible, as we show now.

Suppose Γ is an abelian group of order v . Each character of G can be ex-
tended to a function on the subsets of Γ as follows. Suppose ψ ∈ Γ∗ and S ⊆ Γ.
Then

ψ(S) := ∑
g∈S

ψ(g ).

6.2.1 Lemma. Let X be a Cayley graph for the abelian group Γ, relative to the
subset C . Each character ψ of Γ is an eigenvector for A(X ) with eigenvalue
ψ(C ).

Proof. A function ψ on V (X ) is an eigenvector if there is a complex number λ
such that

λψ(g ) = ∑
h∼g

ψ(h)

Since ∑
h∼g

ψ(h) = ∑
c∈C

ψ(cg ) =ψ(g )
∑
c∈C

ψ(c) =ψ(g )ψ(C ),

we see that ψ is an eigenvector with eigenvalue ψ(C ).

6.3 Translation Schemes and their Duals

Let Γ be a finite abelian group of order v . Each element of Γ gives rise to a per-
mutation of Γ—the permutation corresponding to a maps g in Γ to g a. Hence
for each element g in Γ we have a permutation matrix P (g ); the map g 7→ P (g )
is a group homomorphism. Therefore

P (g )P (h) = P (h)P (g ), P (g−1) = P (g )T .
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We have P (1) = I and
∑

g P (g ) = J . Hence the matrices P (g ) form an association
scheme with v −1 classes. (This is in fact the conjugacy class scheme on Γ, but
the description we have just presented may be more transparent.) We call it the
abelian group scheme on Γ.

6.3.1 Lemma. Let A be an association scheme with v vertices. Then A has v−1
classes if and only if it is the association scheme of an abelian group.

Proof. Suppose A has v vertices and v classes A0, . . . , Av−1. Since
∑

i Ai = J ,
we have vi = 1 for each i . It follows that Ai is a permutation matrix, and that
together they form an abelian group of order v .

We define a translation scheme to be a subscheme of an abelian group
scheme. The Hamming schemes and the bilinear forms schemes are transla-
tion schemes.

6.3.2 Example. Let F be a finite field of order q and suppose K is a subgroup of
F∗, the multiplicative group of F. The cyclotomic scheme has the elements of
F as its vertices, and (u, v) is i -related if and only if v −u lies in the i -th coset of
K . Hence if k = |K |, this scheme has (q −1)/k classes each of valency k. This
scheme is symmetric if and only if −1 ∈ K . It is a translation scheme relative to
the additive group of F. If q = pn for some prime n, then the scheme is linear if
and only if K contains GF (p)∗.

Let A be a subscheme of the scheme coming from the abelian group Γ.
Then Γ acts by right multiplication as a group of permutations on itself, and
thus Γ acts transitively on the vertices of A . In particular, Γ ≤ Aut(Xi ) for i =
1, . . . ,d and therefore each Xi is a Cayley graph for Γ relative to a subset Ci . The
sets Ci partition Γ\1 and are closed under inverses, that is, for each i we have
C−1

i =C j for some j .
The matrix of eigenvalues P of an abelian group scheme is the character

table of the group. Thus the columns of P are indexed by the elements of the
group, the rows by the characters and the i j -entry is the value of the i -th char-
acter on the j element. Assume π is a partition C0, . . . ,Cd of Γ such that C0 = {1}
and the set of cells is inverse-closed. Let S be the characteristic matrix of π.
Then by Theorem 5.2.2, the dimension of the algebra generated by the matri-
ces Ai = A(X (Ci )) is equal to the number of distinct rows of PS. Further, by
Corollary 5.2.3, is this dimension is e +1, then e ≥ d and equality holds if and
only if A0, . . . , Ad form an association scheme.

If equality holds thenπdetermines a partition ofΓ∗ into d+1 cells, D0, . . . ,Dd

say. It is not hard to show that one of these cells consists of the trivial charac-
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ter, and that the set of cells in inverse-closed. Hence we obtain an association
scheme on Γ∗. We call this scheme the dual of the scheme determined by π.
Thus translation schemes come in dual pairs.

6.4 Linear Graphs

Let V be the vector space of dimension n over the field F of order q . Then
V is an abelian group of order qn and in this case the characters of V can be
constructed from the characters of the additive group of the underlying field,
as follows. If ϕ is a non-trivial character of the additive group of F and a ∈ V ,
define the map ϕa from V to C by

ϕa(x) =ϕ(aT x).

Then ϕa is a character of V and, as a runs over the elements of V , we obtain
all characters of V . The kernel of ϕa consists of the set of vectors x such that
aT x = 0, which we denote by a⊥.

A Cayley graph X (C ) for the vector space V is linear if 0 ∉C and C is closed
under multiplication by the non-zero elements of F. (If C satisfies these condi-
tions, we say it is linear subset of V .) If C is linear and a ∈ V , there is a simple
expression for ϕa(C ) which we derive now.

Let F∗ denote the set of non-zero elements of F. If aT x 6= 0, then the set

{λaT x :λ ∈ F∗}

consists of the distinct non-zero elements of F. Hence∑
λ∈F∗

ϕa(λx) = ∑
λ∈F∗

ϕ(λaT x) =−1.

If aT x = 0, this sum equals q −1, and so we conclude that

ϕa(C ) = 1

q −1
(q|C ∩a⊥|− |C |).

We note that if λ ∈ F∗, then (λa)⊥ = a⊥, and so ϕλa(C ) =ϕa(C ) if λ ∈ F∗.

6.4.1 Example. Let V be the vector space of dimension four over Z2 and sup-
pose

C = {e1,e2,e3,e4,e1 +e2 +e3 +e4}.
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Over Z2, any subset that does not contain 0 is linear. If a = 0 then a⊥ = V and
ϕa(C ) = 5. If a = e1 then

C ∩a⊥ = {e2,e3,e4}

and so
ϕa(C ) = 2×3−5 = 1.

If a = e1 +e2 +e3 +e4 we find that

ϕa(C ) = 2×1−5 =−3.

You may check that these are all the eigenvalues of X (C ); hence it is strongly
regular. (This is the Clebsch graph. It is an interesting exercise to show that the
vertices at distance two from 0 induce a copy of the Petersen graph.)

6.5 Geometry, Codes and Graphs

Let V be the vector space of dimension d over the finite field GF (q). The 1-
dimensional subspaces of V are the points of the projective space PG(d −1, q).
Suppose Ω ⊆ PG(d − 1, q). We can represent the set Ω by the columns of a
d ×|Ω| matrix M whose columns are homogeneous coordinate vectors for the
elements ofΩ. We call the row space of M the code ofΩ. The kernel of M is the
dual code ofΩ. We will usually denote the code ofΩ by C (Ω), or by C . The dual
code of C is C⊥.

If Ω ⊆ PG(d −1, q), then 〈Ω〉 denotes the smallest projective subspace that
contains Ω. The dimension of Ω is the projective dimension of 〈Ω〉; the rank
rk(Ω) is the dimension of the subspace of V corresponding to the projective
subspace 〈Ω〉. (The rank is one greater than the projective dimension.) We
note that rk(Ω) is equal to the dimension of its code.

Using the machinery we have just defined, we can translate geometric ques-
tions aboutΩ into questions about its code. However there is also a translation
into graph theory. Suppose M is a matrix representing Ω. Let X (Ω) denote the
Cayley graph for the additive group of V with the non-zero scalar multiples of
the columns of M as its connection set. Thus X is a Cayley graph on qd vertices,
with valency (q −1)|Ω|. It is connected if and only rk(M) = d , and this holds if
and only if rk(Ω) = d .

If C is a subspace of V , its coset graph is the graph with the cosets of C as its
vertices, and the number of edges joining two cosets C1 and C2 is equal to the
number of vectors in C2 at Hamming distance one from a given vector in C1.
This definition allows a coset graph to have loops as well as multiple edges.
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6.5.1 Lemma. The coset graph of a code C is simple if and only if the minimum
distance of C is at least three.

Note that the columns of M are distinct, and so the dual code ofΩ has min-
imum distance at least three. (A code with minimum distance at least three is
often called a projective code.)

6.5.2 Lemma. IfΩ⊆ PG(d −1, q), then X (Ω) is the coset graph of the dual code
ofΩ.

There is also a direct geometric description of X (Ω). View PG(d−1, q) as the
hyperplane at infinity of the affine geometry AG(d , q). The vertices of AG(d , q)
are the elements of V and its subspaces are the cosets of the linear subspaces
of V . Construct a graph with vertex set V by defining two distinct points to be
adjacent if the unique line through them meets the hyperplane at infinity in a
point ofΩ; this graph is X (Ω).

We will see that there are many interesting connections between the prop-
erties ofΩ, its code C and its graph X (Ω). Before we can develop these, we need
information about the eigenvalues and eigenvectors of X .

Let tr denote the trace map from the field F of order q to its prime field (of
order p). If θ is a complex primitive p-th root of 1, then the map

x 7→ θtr(aT x)

is a character of the additive group of V , which we denote by ψa . If a ∈V , then

a⊥ := {x : aT x = 0}.

Usually we will view a⊥ as a subset of PG(d −1, q).

6.5.3 Lemma. IfΩ⊆ PG(d −1, q) and ψa is as above, then ψa is an eigenvector
for X (Ω) with eigenvalue q|Ω∩a⊥|− |Ω|.
Proof. The connection set C of X (Ω) consists of the vectors

γx,

where γ varies over the non-zero elements of F and x varies over the columns
of M . Then

x 7→ tr(γaT x)
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is a linear map from F to GF (p). It is onto, and so takes each possible value
exactly q/p times as γ varies over F. Since the sum of the distinct powers of θ is
zero, ∑

γ∈F\0
θtr(γaT x) =

{
−1, x 6= 0;

q −1, x = 0.

Therefore ψa(C ) = q |Ω∩a⊥|− |Ω|.
Geometrically |Ω∩a⊥ is the number of points ofΩ that lie on the hyperplane

of PG(d −1, q) with coordinate vector aT . If γ 6= 0, then

q|Ω∩a⊥| = q |Ω∩ (γa)⊥|,

whence we see that each hyperplane gives rise to q −1 eigenvectors for X (Ω),
all with the same eigenvalue.

6.6 Language

In this section we develop a set of dictionaries, allowing us to translate between
the languages of finite geometry, coding theory and graph theory.

We assume thatΩ is a subset of PG(d −1, q) with rank d and size m, repre-
sented by a matrix M . We denote the code ofΩ by C and its graph by X .

Suppose H is a hyperplane in PG(d −1, q), with coordinate vector hT . The
elements ofΩ∩hT index the zero entries of hT M . If wt(x) denote the weight of
the code word x, then

|Ω∩hT | = m −wt(hT M).

Thus a hyperplane of PG(d − 1, q) that intersects Ω in exactly i points deter-
mines q −1 code words of weight m− i , and q −1 eigenvectors of X with eigen-
value qi −m. In particular, the eigenvalues of X and their multiplicities are
determined by the weight enumerator of the code ofΩ.

6.6.1 Lemma. Let Ω be a set of m points in PG(d − 1, q) and let τ be the least
eigenvalue of X (Ω). Then τ≥−m, and equality holds if and only if the code of
Ω contains a word of weight n.

6.6.2 Theorem. LetΩ be a set of n points in PG(d−1, q) with code C Then X (Ω)
is q-colourable if and only if C⊥ contains a word of weight n.
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Proof. If there is no word of weight n in C⊥, then the least eigenvalue of X (Ω) is
greater than −n. The valency of X (Ω) is n(q −1) and so the ratio bound yields
that

α(X (Ω)) < |V (X )|
1+ n(q−1)

n

= |V (X )|
q

.

Hence χ(X (Ω)) > q .
Conversely, let M be a matrix that representsΩ and suppose aT M is a word

of weight n in the code ofΩ. If x and y are vertices of X (Ω) and aT x = aT y , then
aT (x − y) = 0 and therefore x and y are not adjacent in X (Ω). Hence the map
x 7→ aT x is a proper colouring of X (Ω) using the elements of F.

6.6.3 Corollary. Let Ω be a set of points in PG(d −1, q). To determine the least
eigenvalue of X (Ω) fromΩ is NP-hard.

Proof. Take M to be the incidence matrix of an orientation of a graph Y . If
aT M has no zero entries, the vector a determines a proper colouring of Y with
q colours. If q = 3, then Y is 3-colourable if and only if the code over GF (3)
generated by M contains a word of weight n. Hence X (M) is 3-colourable if and
only if Y is 3-colourable. Since it is NP-hard to decide if a graph is 3-colourable,
we are done.

We also see that it is NP-hard to decide if the adjacency matrix of a Cayley
graph for Zn

2 is invertible (over R).
The connection between eigenvalues of the coset graph and the weight dis-

tribution of the code appears to be folk-lore. Some information appears in De-
lorme and Solé (European J. Comb. 12 (1991)) [***but I have not checked this
yet***].

The covering radius of a code C is the least integer r such that every word is
at distance at most r from a word of C .

6.6.4 Lemma. The covering radius of C⊥(Ω) is equal to the diameter of X .

A cap in projective space is a set of points such that no three are collinear.

6.6.5 Lemma. SupposeΩ⊆ PG(d −1, q). Then the following are equivalent:

(a) Ω is a cap.

(b) The minimum distance of C⊥ is at least four.

(c) X (Ω) is triangle-free.
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Duality

7.1 The Discrete Fourier Transform

The set Cn of n×n circulants over F is closed under matrix and Schur multipli-
cation and contains I and J , the units for these multiplications. (Thus it is the
Bose-Mesner algebra of the association scheme of the cyclic group of order n.)
We introduce an important endomorphism of this algebra.

Let E be an extension field of F that contains a primitive n-th root of unity.
Equivalently, E is a splitting field for t n −1. Let θ be a fixed n-th root of unity in
E. If M = p(R), define

Θ(M) =
n−1∑
i=0

p(θi )R i .

ThusΘ is an endomorphism, a linear operator on Cn . We call it a duality map.

7.1.1 Lemma. If M ∈Cn thenΘ2(M) = nM T .

Proof. It is enough to show thatΘ2(Rk ) = nRT . We have

Θ2(Rk ) =∑
j
θk jΘ(R j ) =∑

i , j
θk jθi j R i

=∑
i

(∑
j
θ j (i+k)

)
R i .

The inner sum is zero unless i =−k, when it is n. Therefore Θ2(Rk ) = R−k and
since R−1 = RT , the result follows.

63
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7.1.2 Theorem. If M , N ∈Cn thenΘ(M N ) =Θ(M)◦Θ(N ) andΘ(M◦N ) = 1
nΘ(M)Θ(N ).

Proof. We have

Θ(p(R)q(R)) =∑
i

p(θi )q(θi )R i =
(∑

i
p(θi )R i

)
◦
(∑

i
q(θi )R i

)
,

which is the first claim. The second follows from this and the previous lemma.

7.1.3 Theorem. If M T =∑
v µi R i , then MΘ(R i ) =µiΘ(R i ).

Proof. We have

MΘ(R i ) = v−1Θ2(M T )Θ(R i )

=Θ(Θ(M T )◦R i )

=Θ(µi R i )

=µiΘ(R i ).

It follows from this that the entries of Θ(M) are eigenvalues of M , and the
columns ofΘ(Ri ) are eigenvectors for all circulants.

Define the weight of a circulant to be the number of non-zero entries in a
column.

7.1.4 Lemma. If deg(q(t )) = `, thenΘ(q(R)) has weight at least n −`.

Proof. If deg(q(t )) = `, then at most ` distinct powers of θ are zeros of q and so
Θ(q(R)) has at most ` zero entries in any column.

The following result is the BCH-bound.

7.1.5 Theorem. If M = ϕ(R) and ϕ(t ) vanishes on k consecutive powers of θ,
the minimum distance of the column space of M is at least k +1.

Proof. Suppose M = p(R). If p(t ) has k consecutive powers of θ as zeros, then
Θ(M) has k cyclically consecutive zeros in its first column. Hence there is an
integer s such that last k entries in R sΘ(M) are zero, and therefore there is a
polynomial q(t ) with degree at most n −1−k such that

R sΘ(M) = q(R).

Consequently
Θ(q(R)) =Θ(R s)◦Θ2(M)
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has weight at least k +1. Since Θ(R s) =Θ(R)◦s has no zero entries and Θ2(M) =
M T , it follows that M has weight at least k +1.

If g (t ) is a polynomial, then g (R)M = g (R)p(R) and g (t )p(t ) vanishes on
k consecutive powers of θ. Therefore g (R)M has weight at least k +1, for any
polynomial g . This implies that the minimum weight of the column space of M
is at least k +1.

M is diagonalisable if and only n ·1 6= 0 in F.
The subset {0,3,4,9,11} in Z21 is a cyclic difference set for a projective plane

of order four. Hence if
ψ(t ) = 1+ t 3 + t 4 + t 9 + t 11

then N = p(R) is the incidence matrix of a plane of order four. Since deg(p) =
11, we see that rk(N ) ≥ 10 over Z2. We can check though that ψ divides t 21 −1:
in fact

(t −1)ψ(t )ψ∗(t ) = t 21 −1

and consequently rk(N ) = 10.

7.2 The Hadamard Transform

In the previous we worked with a duality related to the cyclic group. Here we
introduce an analogous duality map related to the elementary abelian group
Zn

2 . It may help to view this as the additive group of a vector space of dimension
n over Z2.

When working with the cyclic group we used circulant matrices, which are
linear combinations of the powers of R, where R is a cyclic permutation matrix.
We introduce the analagous matrices for Zn

2 . First define a matrix P

P =
(
0 1
1 0

)
.

If u ∈Z2, define Au to be the Kronecker product

Au := P u1 ⊗·· ·⊗P un .

Then A0 = I ,
Au Av = Au+v

(and in particular A2
u = I ). It follows that the map

u 7→ Au



66 CHAPTER 7. DUALITY

is a group isomorphism. A simple induction argument on n yields that∑
u

Au = J .

(Partition the sum over the vectors u such that u1 = 0 and the vectors u with
u1 = 1.)

It follows that the matrices in

A := {Au : u ∈Zn}

are linearly independent. Define F[A ] to be vector space over F spanned by the
matrices in A . (For our purposes here, F=Rwill suffice.)

If u ∈Zn , define the function ψu :Zn → {−1,1} by

ψu(v) = (−1)uT v .

Define a duality mapΘ on F[A ] by setting

Θ(Au) =∑
v
ψu(v)Av

and extendΘ to F[A ] by linearity. We have at once that

Θ(I ) = J .

Then

Θ(Au)Θ(Av ) =∑
x

∑
y
ψu(x)ψv (y)Ax Ay

=∑
x,y

(−1)uT x+vT y Ax+y

= ∑
x,x+y

(−1)(u−v)T x(−1)vT (x+y) Ax+y .

Since ∑
x

(−1)(u−v)T x =
{

2n , u = v ;

0, otherwise

we conclude that
Θ(Au)Θ(Av ) = δu,v 2nΘ(Au).
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Consequently, for all M and N in F[A ],

Θ(M)Θ(N ) = 2−nΘ(M ◦N ).

We also haveΘ(Au)◦Θ(Av ) =Θ(Au+v ), whenceΘ(Au Av ) =Θ(Au)◦Θ(Av ) and

Θ(M N ) =Θ(M)◦Θ(N ).

Next

AuΘ(Av ) = Au
∑
w
ψv (w)Aw =∑

w
(−1)vT w Au+w

= (−1)vT u
∑
w

(−1)vT (u+w) Au+w

=ψu(v)Θ(Av )

which shows that the columns of Θ(Av ) are eigenvectors for Au . Moreover, we
see that the entries ofΘ(M) are the eigenvalues of M .

We leave the proof of the next result as an exercise.

7.2.1 Theorem. If M ∈ F[A ], thenΘ2(M) = 2n M .

SinceΘ(I ) = J , it follows thatΘ(J ) = 2n I . The proof of Theorem 7.1.3 is easily
modified to yield our next result.

7.2.2 Theorem. If M ∈ F[A ], then the entries of Θ(M) are the eigenvalues of
M .

7.2.3 Lemma. If M ∈ F[A ], then tr(Θ(M)) = sum(M).

Proof. Let ρ denote the sum of a row of M . We have

I ◦Θ(M) = 2−nΘ2(I )◦Θ(M)

= 2−nΘ(Θ(I )M)

= 2−nΘ(J M)

= 2−nΘ(ρ J )

= ρI

Therefore tr(Θ(M)) = sum(M).
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7.3 Two Matrix Duals

Let C be a linear code of length n and let ai denote the number of words in C
of weight i . The weight enumerator WC (x, y) is the polynomial

WC (x, y) =
n∑

i=0
ai xn−i y i .

It is a surprising fact that WC⊥ can be obtained from WC (x, y), and in a simple
way.

If C is a linear binary code of length n, define the matrix AC by

AC := ∑
u∈C

Au .

7.3.1 Lemma. If C is a binary linear code, thenΘ(AC ) = |C |AC⊥ .

Proof. If β is a basis for C , then ∏
u∈β

(I + Au) = AC .

and accordinglyΘ(AC ) is the Schur product of the matrices

Θ(I + Au) = J +Θ(Au),

where u runs over β. Now

J +Θ(Au) =∑
v

(1+ (−1)uT v )Av = 2
∑

v∈u⊥
Av

and therefore the Schur product of the matrices J +Θ(Au) is 2|β|AC⊥ , as re-
quired.

Let K be the matrix

K :=
(
0 1
1 0

)
.

If M is a matrix M⊗n denotes the Kronecker product of n copies of M .

7.3.2 Lemma. We have∑
u

xn−wt(u) ywt(u) Au = (xI + yK )⊗n .
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Proof. Let e1, . . . ,en denote the standard basis for Zn
2 . If u ∈Zn

2 , then

u =∑
i

ui ei .

Then
Au = K u1 ⊗·· ·⊗K un

and so xn−wt(u) ywt(u) Au is the Kronecker product of the n terms x1−ui yui K ui for
i = 1, . . . ,n. This implies the lemma.

7.3.3 Lemma. We haveΘ(M ⊗N ) =Θ(M)⊗Θ(N ).

Proof. The entries of Θ(M)⊗Θ(N ) are the products of the entries of Θ(M) and
Θ(N ), and these are the eigenvalues of M and N . The products of the eigen-
values of M and N are the eigenvalues of M ⊗ N , and these are the entries of
Θ(M ⊗N ). [We have neglected some bookkeeping, you are welcome to supply
it. :-)]

7.3.4 Corollary. We have

Θ
(∑

u
xn−wt(u) ywt(u) Au

)
=∑

u
(x + y)n−wt(u)(x − y)w t (u) Au .

Proof. We haveΘ(I ) = J . Since K = J − I ,

Θ(K ) =Θ(J )−Θ(I ) = 2I − J .

Therefore

Θ(xI + yK ) = x J +2y I − y J = (x − y)(J − I )+ (x + y)I = (x + y)I + (x − y)K .

We now obtain the result by applying Lemmas 7.3.2 and 7.3.3.

7.4 MacWilliams Theorem

We apply the results from the previous section to derive MacWilliams theorem,
a fundamental result in Coding Theory.

7.4.1 Theorem. Let C be a binary linear code of length n. Then

WC⊥(x, y) = 1

|C |WC (x + y, x − y).
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Proof. Set M equal to
∑

u xn−wt(u) ywt(u) Au . Then the diagonal entries of AC⊥M
are each equal to WC⊥(x, y), whence

tr(AC⊥M) = 2nWC⊥(x, y).

Using Lemma 7.2.3, we have

tr(AC⊥M) = 2−n tr(Θ2(AC⊥M))

= 2−n sum(Θ(AC⊥M))

= 2−n sum(Θ(AC⊥)◦Θ(M))

= 2−n |C⊥|sum(AC ◦Θ(M))

= |C |−1 sum(AC ◦Θ(M)).

Since the row sum of AC ◦Θ(M) is WC (x + y, x − y), the last term above is equal
to 2n |C |−1WC (x + y, x − y), and so the theorem is proved.

By way of example, suppose C is the code of the plane of order four. Our
computations in Section ?? yield that the weight enumerator of C is

x21 +21x16 y5 +210x13 y8 +280x12 y9 +280x9 y12 +210x8 y13 +21x5 y16 + y21.

Using MacWilliams theorem, we find the weight enumerator of the dual is

x21 +168x15 y6 +210x13 y8 +1008x11 y10 +280x9 y12 +360x7 y14 +21x5 y16.

7.4.2 Theorem. The length of a doubly even binary self-dual code is divisible by
8.

Proof. If C is self-dual with length n, then |C | = 2n/2 and

WC (x, y) = 2−n/2WC (x + y, x − y) =WC

(x + yp
2

,
x − yp

2

)
.

Therefore WC (x, y) is invariant under the substitution represented by the ma-
trix

τ= 1p
2

(
1 1
1 −1

)
.

Since C is doubly even, it is also invariant when we replace y by i y (with i 2 =
−1). Equivalently it is invariant under the substitution represented by

σ=
(
1 0
0 i

)
.
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We find that

(τσ)3 = 1+ ip
2

I .

Hence if θ := (1+ i )/
p

2, the substitution

x 7→ θx, y 7→ θy

leaves WC (x, y) invariant. But

WC (θx,θy) = θnWC (x, y)

and as θ is a primitive 8-th root of unity, this implies that 8 | n.

7.5 Projective Planes

We use the theory at hand to prove that there is no projective plane of order n,
where n ≡ 6 modulo 8.

We work with linear codes over GF (2). A code is even if all its word have
even weight, and it is doubly even if all words have weight divisible by four.
If C is a binary code of length n, the extended code by adding an (n + 1)-th
coordinate to each code word, such that the weight of the extended code word
is even. (Thus we are adding a parity check; the operation is trivial if C is even.)

7.5.1 Theorem. Let N be the incidence matrix of a projective plane with order
n and let C be the linear code spanned by the rows of N over GF (2). Then the
extended code is self-dual and doubly even.

Proof. Let N be the incidence matrix of our projective plane. Let N1 denote the
matrix we get by adding a final column equal to 1 to N . Since n is even and
since equal row of N has weight n + 1, the rows of N1 have even weight. One
consequence is that each word in row(N ) has even weight.

Further
N N T = nI + J

and hence
N1N T

1 = (nI + J )+ J = 0 mod 2.

It follows that the code generated by the rows of N1 is self-orthogonal. As n ≡ 2
modulo four, each row of N1 has weight divisible by four, whence it follows that
all code words in row(N1) have weight divisible by four.
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Each row of N1 has length n2 +n +2, and it remains for us to show that

rk(N1) = 1

2
(n2 +n +2).

Since 1 lies in col(N ) over GF (2), we see that N1 and N have the same rank. We
will therefore compute rk(N ).

Let v = n2 +n +1 and let H be a parity check matrix for C —in other words,
H is a binary matrix with linearly independent rows such that N H T = 0 and

rk(N )+ rk(H) = v.

(Or to put it yet another way, the rows of H are a basis for ker(N ).) Permuting
columns of N and H if needed, we may assume that H has the form(

Ir K
)

where r = rk(H). Let H1 be given by

H1 =
(

Ir K
0 Iv−r

)
.

Now view N and H1 as 01-matrices overQ.
Since det(H1) = 1, we have

det(N ) = det(N H T
1 ).

Since N H T = 0 modulo two, each entry in the first r columns of N H T
1 is even,

and therefore 2r divides det(N ). Now

N N T = nI + J ,

from which it follows that

det(N ) = (n +1)nn(n+1)/2.

As both n + 1 and n/2 are odd, we conclude that r ≤ n(n + 1)/2. This implies
that

rk(N ) = v − r ≥ 1

2
(n2 +n +2);

since rk(N1) = rk(N ) and since row(N1) is self-orthogonal,

rk(N1) = (n2 +n +2)/2.

If n ≡ 6 modulo eight, then n2 +n + 2 ≡ 4 modulo eight. Consequently by
Theorem 7.4.2, there is no binary doubly even self-dual code of this length.
Thus we have the following result.
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7.5.2 Corollary. If n ≡ 6 modulo eight, there is no projective plane of order n.

This condition is weaker than the Bruck-Ryser-Chowla theorem, but cer-
tainly easier to use.

7.6 Duality

We say an association scheme A is formally self-dual if Q = P .
If i ∈ {0,1, . . . ,d}, we define i T to be the element of i ∈ {0,1, . . . ,d} such that

Ai T = AT
i . We recall that p j (k) = p j (kT ).

7.6.1 Theorem. Let A be an association scheme on v vertices such that Q = P
and letΘbe the linear mapping fromC[A ] to itself such thatΘ(Ai ) =∑

j pi ( j )A j .
Then:

(a) Θ(Ai ) = vEi .

(b) Θ(I ) = J ,Θ(J ) = v I .

(c) Θ(M N ) =Θ(M)◦Θ(N ) for all M and N in C[A ].

(d) Θ(M ◦N ) = 1
vΘ(M)Θ(N ) for all M and N in C[A ].

(e) If B is a subscheme of A , thenΘ(B) is also a subscheme.

Proof. Since pi ( j ) = qi ( j ), we have

Θ(Ai ) =
d∑

j=0
qi ( j )A j = vEi .

In particular,Θ(I ) = J .
Next

Θ(vEi )) =∑
j

qi ( j )Θ(A j ) =∑
j ,k

qi ( j )p j (k)Ak =∑
j ,k

qi ( j )p j (kT )AT
k .

Since QP = v I , it follows that

Θ(vEi ) = v AT
i .

Hence
Θ2(M) = v M T (7.6.1)
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for all M in C[A ]. (Note thatΘ(J ) = v I .)
Since the entries of Θ(Ai ) are the eigenvalues of Ai , we see that Θ(Ai A j ) =

Θ(Ai )◦Θ(A j ) and hence

Θ(M N ) =Θ(M)◦Θ(N ), (7.6.2)

for all M and N in C[A ].
Finally

Θ(Ai ◦ A j ) = δi , j vEi = 1

v
Θ(Ai )Θ(A j ).

and thus

Θ(M ◦N ) = 1

v
Θ(M)Θ(N ). (7.6.3)

for all M and N in C[A ].

If Θ is a map satisfying the conditions of this theorem, we call it a duality
map. The matrix representingΘ relative to the basis A0, . . . , Ad is P .

Suppose A is the scheme of the cyclic group of order v . If θ is a primitive
v-th root of 1 then we may assume that

Pi , j = θ(i−1)( j−1). (7.6.4)

It is easy to verify that PP = v I , so this scheme is formally self-dual. The map
Θ is essentially the discrete Fourier transform. We may take θ from any field F
that contains a primitive v-th root of 1, and thus we may defineΘ on F[A ].

It seems reasonable to define an association scheme on v vertices to be self-
dual if there is an endomorphism Θ of Matn×n(C) such that Θ(Ai ) = vEi for
i = 0,1, . . . ,d .

If A and B are schemes and the matrix of eigenvalues of B is the complex
conjugate of the matrix of dual eigenvalues of A , we say that A and B are for-
mally dual. In this case we can define a mapΘ as above, and a slightly modified
version of Theorem 7.6.1 still holds. If Θ is induced by an endomorphism of
Matn×n(C), we say the pair of schemes is dual.

De Caen observed that if A and B are dual, then the product scheme A ⊗
B is self-dual. Hence we may choose to view self-duality as the fundamental
concept.

Each translation scheme is either self-dual or has a distinct dual translation
scheme. The only known examples of dual pairs of non-isomorphic schemes
arise in this way. The Higman-Sims scheme is self-dual and is not a translation
scheme.
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7.7 Duality and Type II Matrices

Consider symmetric formally self-dual schemes. Then P is real and P 2 = v I ,
whence it follows that the eigenvalues of P (orΘ) are ±pv . If we know tr(P ), we
can compute the multiplicities of these eigenvalues. If M ∈C[A ] then

Θ(
p

v M +Θ(M)) =p
vΘ(M)+ v M =p

v(
p

v M +Θ(M).

Thus we have an eigenvector for Θwith eigenvalue
p

v . Similarly
p

v M −Θ(M)
is an eigenvector forΘwith eigenvalue −pv .

7.7.1 Theorem. Let Θ be a duality map on the symmetric association scheme
A on v vertices, and let M be an eigenvector for Θ with eigenvalue

p
v . The

following assertions are equivalent:

(a) Θ(M−1) =p
v M−1.

(b) Θ(M (−)) =p
v M (−).

(c) v M−1 = M (−) (and M is a type II matrix).

Proof. AssumeΘ(M) =p
v M . Then we have

J =Θ(I ) =Θ(M M−1) =Θ(M)◦Θ(M−1) =p
v M ◦Θ(M−1).

Hence M (−) =p
vΘ(M−1). Now M is type II if and only if v M−1 = M (−) and so

(a) and (c) are equivalent.
Next

Θ(M)Θ(M (−)) = vΘ(M ◦M (−)) = vΘ(J ) = v2I

and therefore
v−3/2Θ(M (−)) = M−1.

Hence (b) and (c) are equivalent.

The matrix of eigenvalues of the scheme of an abelian group Γ can be taken
to be the Kronecker product of matrices of the form given by (7.6.4). Hence
these schemes are also formally self-dual. Perhaps the most interesting case
is when Γ = Zm

2 . In this case a matrix M is a bent function if both M and
v−1/2Θ(M) are ±1-matrices. Note that if M is a ±1-matrix, then it is type II if
and only if v−1/2Θ(M) is a ±1-matrix. Hence bent functions are the ±1-matrices
which are eigenvectors forΘ.
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7.8 Difference Sets

Let A denote an association scheme on v vertices. A difference set in A is
01-matrix A such that

A AT = nI +λJ

for some positive integers n and λ. Hence A is an incidence matrix for a sym-
metric design. It is easy to verify that if A is a difference set then so is J − A, and
thus we may assume A ◦ I = 0 is we like. If k is the row sum of A, then n = k −λ.

Consider the case where A is a difference set and A = AT . Then the squares
of the eigenvalues of A are λv +n and n. If k denotes the row sum of A, then k
is an eigenvalue of A and

k2 =λ(v −1)+k;

the remaining eigenvalues of A are ±pn. If tr(A) = 0, there are positive integers
a and b such that 1+a +b = v and

k +a
p

n −b
p

n = tr(A) = 0.

Accordingly

b −a = kp
k −λ

,

from which it follows that k −λ is a perfect square. Since A has exactly three
distinct eigenvalues, it is the adjacency matrix of a strongly regular graph with
a = c.

The case where A is not symmetric is more complex. Since A lies in the
Bose-Mesner algebra of the scheme, A AT = AT A and therefore A is normal. A
normal matrix is symmetric if and only if its eigenvalues are real, consequently
some eigenvalues of A are complex. The valency aside, all eigenvalues of A have
absolute value

p
k −λ. The matrix A is still an incidence matrix of a symmetric

design.
Suppose A is a 01-matrix in A with each row summing to k. Since A is

normal, A = LDL∗ where L is unitary. Hence

AT = A∗ = LDL∗

and thus if Az = θz, then AT z = θz and A AT z = |θ|2z. If the valency k is a
simple eigenvalue of A and its remaining eigenvalues each have absolute valuep

k −λ, then A AT − (k −λ)I has rank one. It follows that A is a difference set.



7.8. DIFFERENCE SETS 77

Classical difference sets arise as difference sets in the association scheme of
an abelian group Γ. In this case we can view the first row of A as the character-
istic function of a subset S of Γ, and the eigenvalues are the complex numbers

ψ(S)+ ∑
g∈Γ

ψ(g ).
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Chapter 8

Type-II Matrices

In this chapter we present one of the more unusual constructions of associa-
tion schemes. Its main weakness is that the actual examples is provides can
readily be obtained by other methods. But it is closely connected to Vaughan
Jones’s construction of link invariants, and provides an interesting viewpoint
on duality.

8.1 Type-II Matrices

If M ◦ N = J we say that N is the Schur inverse of M , and denote it M (−). A
type-II matrix is a Schur invertible n ×n matrix W over C such that

W W (−)T = nI .

This condition implies that W −1 exists and

W (−)T = nW −1.

We consider some examples. First (
1 1
1 −1

)
is a symmetric type-II matrix. If ω is a primitive cube root of unity then1 1 ω

ω 1 1
1 ω 1
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is also type II. For any complex number t , the matrix

W =


1 1 1 1
1 1 −1 −1
1 −1 t −t
1 −1 −t t


is type II. Next we have the Potts models : if W is n ×n and

W = (t −1)I + J ,

then

W W (−)T = ((t −1)I + J )((t−1 −1)I + J )

= ((2− t − t−1)I + (n −2+ t + t−1)J ,

whence it follows that W is type II whenever 2− t − t−1 = n, i.e., whenever t is a
root of the quadratic

t 2 + (n −2)t +1.

As the first example suggests, any Hadamard matrix is a type-II matrix, and
it is not unreasonable to view type-II matrices as a generalization of Hadamard
matrices.

The Kronecker product of two type-II matrices is a type-II matrix; this pro-
vides another easy way to increase the supply of examples. Recall that a mono-
mial matrix is the product of a permutation matrix and a diagonal matrix. It is
straighforward to verify that if W is type-II and M and N are invertible mono-
mial matrices, then MW N is type II. We say W ′ is equivalent to W if W ′ =
MW N , where M and N are invertible monomial matrices.

The transpose W T is also type II, as is W (−), but these may not be equivalent
to W . It would be a useful exercise to prove that any 2 × 2 type-II matrix is
equivalent to the first example above, any 3×3 type-II matrix is equivalent to
the second, and any 4× 4 type-II matrix is equivalent to a matrix in the third
family.

Type-II matrices play a role in the study of von Neumann algebras, but in-
terest there is focussed on those that are unitary. The next result is easy to verify.

8.1.1 Lemma. For an n ×n matrix, any two of the following statements imply
the third:
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(a) W is a type-II matrix.

(b) n−1/2W is unitary.

(c) |Wi , j | = 1 for all i and j .

We say a type-II matrix is flat if all its entries have the same absolute value.
The character table of an abelian group is a flat type-II matrix. A flat real type-II
matrix is a Hadamard matrix.

Nomura [?] has shown that there are exactly three equivalence classes of
5× 5 type-II matrices. One class is represented by the character table of the
cyclic group of order five, the other two have representatives of the form αI + J
(so here W (−) is not equivalent to W ). Haagerup [?] has shown that if n is not
prime, there are infinitely many equivalence classes of unitary type-II matrices
of order n.

8.2 Two Algebras

Let W be a Schur-invertible n×n matrix. We define NW to be the set of matrices
for which all the vectors

W ei ◦W (−)e j , 1 ≤ i , j ≤ n

are eigenvectors. Clearly this set of matrices is closed under multiplication and
contains the identity. Thus it is a matrix algebra, known as the Nomura algebra.
Note also that

NW (−) =NW .

If M ∈ NW , we define ΘW (M) to be n ×n matrix with i j -entry equal to the
eigenvalue of M on W ei ◦W (−)e j . We have

ΘW (I ) = J .

We also see that if M and N belong to NW , then

ΘW (M N ) =ΘW (M)◦ΘW (N ).

It follows that the image of NW underΘ is Schur-closed and contains J .

8.2.1 Lemma. The matrix W is type II if and only if J ∈NW .
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Let W be a type-II matrix, with rows and columns indexed by the set Ω,
where |Ω| = n. We define two families of vectors in Cn , as follows.

Ya,b :=W ea ◦W (−)eb , Y ′
a,b :=W T ea ◦W (−)T eb

Suppose

Fi := 1

n
Yu,i Y T

i ,u .

We verify easily that
Fi F j = δi , j Fi ,

which shows that the Fi ’s form an orthogonal set of n idempotents. We note
that rk(Fi ) = 1 and tr(Fi ) = 1. As the Fi ’s commute it follows that

∑
i Fi is an

idempotent matrix with trace equal to n; hence∑
i

Fi = I .

8.2.2 Lemma. If M ∈NW then

M =∑
i

(Θ(M))u,i Fi .

Proof. We have

MFi = 1

n
MYu,i Y T

i ,u = (Θ(M))u,i Fi .

Summing this over i inΩ, recalling that
∑

i Fi = I , we get

M =∑
i

(Θ(M))u,i Fi .

The following critical result is due to Nomura [?].

8.2.3 Theorem. If M ∈NW then

ΘW (M)Y ′
s,r = nMr,sY ′

s,r .

HenceΘW (M) ∈NW T andΘW T (ΘW (M)) = nM T ∈NW .

Proof. We have

(Fi )r,s = 1

n

w(r,u)

w(r, i )

w(s, i )

w(s,u)
= 1

n

w(r,u)

w(s,u)

w(s, i )

w(r, i )
.
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Therefore, by 8.2.2,

Mr,s = 1

n

w(r,u)

w(s,u)

∑
i

(Θ(M))u,i
w(s, i )

w(r, i )

and so

nMr,s(Y ′
s,r )u = (Θ(M)Y ′

s,r )u .

This implies the theorem.

8.2.4 Corollary. If W is a type-II matrix, then NW and NW T are Bose-Mesner
algebras of association schemes.

Another consequence of the previous theorem is that ΘW and ΘW T are bi-
jections.

8.2.5 Lemma. If W is real then all matrices in NW are symmetric.

Proof. If W is real then the eigenvectors Ya,b are real. Hence the Schur idem-
potents of the scheme have only real eigenvalues. Since NW is closed under
transposes and is a commutative algebra, the Schur idempotents are real nor-
mal matrices. A real normal matrix is symmetric if and only if its eigenvalues
are real.

If W is a type-II matrix with algebra NW then W determines a spin model if
and only if some type-II matrix equivalent to W lies in NW . As any type-II ma-
trix equivalent to W has the same algebra, we may concentrate on the matrices
W that lie in their algebra. If W ∈ NW then its diagonal must be constant, and
all its row and column sums are equal.

8.3 Eigenspaces

The algebra NW determines a scheme consisting of n×n matrices. We describe
how we can determine the eigenmatrix of the scheme. Let us say that vectors
Ya,b and Yr,s overlap if Y T

a,bYr,s 6= 0.

8.3.1 Lemma. If Ya,u and Yb,c overlap then (Θ(M))u,a = (Θ(M))b,c .
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Proof. As the vectors Yu,i for fixed u form a basis, Yb,c lies in their span. In fact

Yb,c =
1

n

∑
i

(Y T
i ,uYb,c )Yu,i .

So

(Θ(M))b,c Yb,c = MYb,c =
1

n

∑
i

(Y T
i ,uYb,c )(Θ(M))u,i Yu,i .

Multiply both sides of this by Y T
a,u to get

(Θ(M))b,c Y T
a,uYb,c =

1

n
(Y T

a,uYb,c )(Θ(M))u,aY T
a,uYu,a

= Y T
a,uYb,c (Θ(M))u,a .

If Y T
a,uYb,c 6= 0, this implies that (Θ(M))u,a = (Θ(M))b,c .

We define a graph with vertex set Ω. Define i and j to be adjacent if there
are b and c such that Yb,c overlaps both Yu,i and Yu, j . Note u is adjacent to
itself, and to no other vertex. Any matrix

∑
Fi , where i ranges over the vertices

in a component of this graph, is a matrix idempotent of the scheme belonging
to NW . (The key point is that this sum lies in NW .)

We have the following observation, due to Jaeger et al [?].

8.3.2 Lemma. Let W be a Hadamard matrix of order n. If NW is non-trivial,
then n is divisible by eight.

Proof. Let wi denote W ei . Normalize W so that w1 = 1 and assume 1, i , j and
k are distinct. Then

(w1 +wi )◦ (w1 +w j )◦ (w1 +w j )

is the Schur product of three vectors with entries 0,±2. The sum of the entries
of this vector is

〈1, w◦3
1 〉+〈1, w◦2

1 ◦ (wi +w j +wk )〉
+〈1, w1 ◦ (wi ◦w j +wi ◦wk +w j ◦wk )〉+〈1, wi ◦w j ◦wk〉

Since W is a Hadamard matrix, the second and third terms here are zero, whence
we deduce that, modulo 8,

n +〈1, wi ◦w j ◦wk〉 = 0

and therefore, if n is not divisible by 8, then wi cannot be orthogonal to w j ◦
wk .



Chapter 9

Galois Theory

We are going to use Galois theory to establish a correspondence between cer-
tain subfields of L and subschemes of A . This may be viewed as an extension
of work of Bridges and Mena [bm2] and of Hou [xdh].

9.1 Bose-Mesner Automorphisms

Let A be an association scheme with Bose-Mesner algebra C[A ]. A linear map
M 7→ Mψ on C[A ] is an algebra automorphism if for all M and N in C[A ]:

(a) (M N )ψ = MψNψ.

(b) (M ◦N )ψ = Mψ ◦Nψ.

It follows immediately that ψ maps Schur idempotents to Schur idempotents
and matrix idempotents to matrix idempotents. Using this, we will prove:

(c) ψ is invertible.

We have J ◦ J = J and therefore

Jψ ◦ Jψ = Jψ.

Hence Jψ is a 01-matrix. We also have J 2 = v J and so

(Jψ)2 = Jψ;

85
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it follows that Jψ = J . Consequently

J = Jψ =∑
i

Aψ

i ,

from which we see that ψ permutes the Schur idempotents. Therefore it maps
a basis of C[A ] to a basis of C[A ], and therefore it is invertible. We also see that
ψ must permute the set of matrix idempotents.

Since
sum((Ai A j )◦ I ) = tr((Ai A j )I ) = tr(Ai A j ) = 〈AT

i , A j 〉,
we find that (Ai A j )◦ I 6= 0 if and only if A j = A∗

i . Hence

(d) (M∗)ψ = (Mψ)∗.

This completes our list of properties of an algebra automorphism.
The transpose map is an algebra automorphism, which is non-trivial if A is

not symmetric.
We are going to use algebra automorphisms to construct subschemes. If ψ

is an algebra automorphism, the fixed-point space of ψ is the set of matrices
in C[A ] that are fixed by ψ. This is evidently a subspace of C[A ], as the name
implies.

9.1.1 Lemma. The fixed-point space of an algebra automorphism of an associ-
ation scheme is the Bose-Mesner algebra of a subscheme.

Proof. The fixed-point space is closed under multiplication, Schur multiplica-
tion and contains I and J .

By way of example, consider the transpose map acting on A . Its fixed-point
space is spanned by those Schur idempotents that are symmetric, together with
the matrices

Ai + AT
i ,

where Ai is not symmetric. By the lemma, these matrices are the Schur idem-
potents of a symmetric subscheme of A .

9.2 Galois

Let A be an association scheme. The splitting field of A is the extension F of
the rationals generated by the eigenvalues of the scheme. The Krein field is the
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extension of the rationals generated by the Krein parameters. From the relation
between the dual eigenvalues and the eigenvalues we see that the splitting field
is also generated by the dual eigenvalues. From our expression for the Krein
parameters in terms of the eigenvalues, the Krein field is a subfield of F.

Let A be an association scheme with splitting field L, and Krein field K . Let
Γ be the Galois group of L/Q and let H be the Galois group of L/K . (So H is a
subgroup of Γ.)

If σ ∈ Γ and M ∈ L[A ], define Mσ to be matrix obtained by applying σ to
each entry of M . This gives the entry-wise action of Γ. This is not an L-linear
map.

We define a second action of Γ on L[A ]. Suppose τ ∈ Γ and M ∈ L[A ]. Then
M =∑

j a j E j and we define M τ̂ by

M τ̂ =∑
j

a j Eτ
j .

This is an L-linear map.

9.2.1 Theorem. Let A be an association scheme with splitting field L and Krein
field K . If τ is an element of the Galois group of L/Q, then τ̂ is an algebra auto-
morphism if and only if τ fixes each element of K .

Proof. There are a number of steps to the argument.
If M ∈ L[A ] and M =∑

j a j E j then, since E∗
j = E j , we have

(M∗)τ =∑
j

a∗
j Eτ

j = (M τ̂)∗

Next, if M and N belong to L[A ] and σ ∈ Γ, then

(M N )σ = MτNσ, (M ◦N )σ = Mσ ◦Nσ.

It follows from this that, if Ai ∈ A , then Aσ
i ∈ A and similarly Eσ

j is a principal
idempotent for each j . (Note, however that this entry wise action is linear over
Q, but not over L.)

Since (Ei )τ(E j )τ = (Ei E j )τ, we have

(M N )τ̂ = M τ̂N τ̂.
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We show that τ̂ commutes with Schur multiplication if and only if τ ∈ H . On the
one hand,

(Ei ◦E j )τ̂ = 1

v

∑
r

qi , j (r )E τ̂
r = 1

v

∑
r

qi , j (r )Eτ
r

while, on the other

E τ̂
i ◦E τ̂

j = Eτ
i ◦Eτ

j = (Ei ◦E j )τ = 1

v

∑
r

qi , j (r )τEτ
r .

Comparing these two equations yields that

(Ei ◦E j )τ̂ = E τ̂
i ◦E τ̂

j

for all i and j , if and only if τ fixes each Krein parameter.
From this we see that τ̂ is an algebra automorphism of A if and only if τ

fixes each element of K .

Using related, but distinct, actions of the Galois group of L/K , Munemasa
[mune] proved that H lies in the centre of Γ. (Similar results appear in [dbg,
coga].) Since the argument is short, we present a version of it here. Ifσ ∈ Γ then
Eσ

j is a principal idempotent. Therefore

Eστ̂
j = Eστ = 1

v

∑
i

q j (i )στAi

and similarly,

E τ̂σ
j = Eτσ = 1

v

∑
i

q j (i )τσAi .

Noting that Aσ
i = Ai and that τ̂ is linear, we also have

(∑
i

q j (i )Ai

)στ̂
=∑

i
q j (i )σAτ̂

i =
(∑

i
q j (i )Ai

)τ̂σ
.

As the first term here equals Eστ̂
j and the second equals E τ̂σ

j , we conclude that

q j (i )στ = q j (i )τσ.

Since the dual eigenvalues generate L, this implies that σ and τ commute, for
all σ in Γ and all τ in H . Therefore H lies in the centre of Γ.
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9.2.2 Theorem. Let A be an association scheme with splitting field L and Krein
field K and let H be the Galois group of L/K . Let F be a subfield of L that con-
tains K and let HF be the corresponding subgroup of H . Then the matrices in
L[A ] with eigenvalues and entries in F are the Bose-Mesner algebra over F of
the subscheme fixed by the elements τ̂, for τ in HF .

Proof. Let ĤF denote the group formed by the mappings τ̂, for τ in HF . Let F

denote the set of matrices in L[A ] with eigenvalues and entries in F . If M ∈
L[A ] and M =∑

i ai Ei then

M τ̂τ−1 =∑
i

aτ
−1

i Ei .

This shows that a 01-matrix in L[A ] is fixed by τ̂ if and only if its eigenvalues
are fixed by τ; thus a 01-matrix lies in F if and only if it is fixed by ĤF .

Clearly F is a transpose-closed algebra. Suppose M and N belong to F and

M =∑
i

ai Ei , N =∑
i

bi Ei .

Then
M ◦N =∑

i , j
ai b j Ei ◦E j

and, as the eigenvalues of Ei ◦E j lie in F , it follows that the eigenvalues of M ◦N ,
along with its entries, lie in F . Therefore F is Schur-closed. This implies that
F is spanned by 01-matrices.

Consequently F is the span over F of the 01-matrices in L[A ] with eigen-
values in F . This completes the proof.

If F is a subfield of L that contains K , we use A /F to denote the subscheme
of A corresponding to F .

9.3 Applications

An association scheme A is metric if its elements A0, . . . , Ad can be ordered so
that Ai is polynomial of degree i in A1, for i = 0,1, . . . ,d .

9.3.1 Lemma. Let A be a symmetric association scheme with splitting field L
and Krein field K . If A is metric then [L : K ] ≤ 2.
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Proof. Suppose that A0, . . . , Ad are the minimal Schur idempotents of A , and
that A is metric relative to A1. Let τ be an element of the Galois group H of
L/K . Then Aτ̂

1 is a minimal Schur idempotent for A , and it follows that A is
metric relative to Aτ̂

1. By [bcn: Theorem 4.2.12] we know that A is metric with
respect to at most two of its classes. As each Ai is a rational polynomial in A1,
any element of H which fixes A1 must fix each Ai and therefore |H | ≤ 2.

If A has the property that the valencies vi are all distinct then each minimal
Schur idempotent must be fixed under the eigenvalue action of an element of
L/K ; hence for schemes with this property L and K must coincide.

Let G be a finite group of order v . We may view the complex group algebra
C[G] as an algebra of v × v matrices, with permutation matrices representing
the elements of G . Then centre of C[G] is then an association scheme. The ma-
trices in this scheme correspond to the conjugacy classes of G and the principal
idempotent to the irreducible characters of G . For these schemes the Krein pa-
rameters are known to be rationals. If G has exponent m then the splitting field
L is the extension of Q by a primitive m-th root of unity. Each subfield of L
thus determines a subscheme. In particular, if some character of G is not ra-
tional valued then the rational matrices with rational eigenvalues are the Bose-
Mesner algebra overQ of a proper subscheme.

When G is abelian we can say more. If we view the elements of G as v × v
permutation matrices then G itself is an association scheme. Bridges and Mena
[bm2] proved that, if A = G then A /Q has dimension equal to the number of
cyclic subgroups of G . They also determined the minimal Schur idempotents
of A /Q: if g ∈ G , let [g ] denote the set of elements h of G ; the corresponding
sum in the Bose-Mesner algebra C[G] is a 01-matrix and can be shown to have
rational eigenvalues.

We present one application, proved independently by R. A. Liebler (private
communication).

9.3.2 Lemma. A regular abelian group of automorphisms of the n-cube has ex-
ponent dividing 4.

Proof. Let G be an abelian group acting regularly on the n-cube Qn , and sup-
pose that G has exponent 2m , where m ≥ 3. Let g be an element of G with order
2m . Then [g ] consists of all powers g i , where i is odd and less than 2m . This
implies that [g ] is the adjacency matrix of the graph formed by 2n−m vertex dis-
joint copies of K2m−1,2m−1 .
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Let A be the association scheme formed by the elements of G . As the eigen-
values of Qn are integers, its adjacency matrix belongs to A /Q. Therefore it is
a sum of matrices [g ], where g ranges over a generating set for G . At least one
element of this generating set must have order 2m and, consequently Qn must
contain an induced subgraph isomorphic to K4,4.

We complete our argument by showing that K3,3 cannot be an induced sub-
graph of Qn . This proof is by induction on n. The crucial property of K3,3 is that
we cannot disconnect it by deleting the edges of a matching. For all match-
ings in K3,3 lie in a matching of size three, all 3-matchings in K3,3 are equivalent
under its automorphism group and K3,3 with a 3-matching deleted is C6, the
cycle on six vertices. The n-cube on the other hand is the Cartesian product of
K2 with Qn−1, hence we may delete a perfect matching from Qn , obtaining two
disjoint copies of Qn−1 as a result. So any induced K3,3 in Qn must be contained
in one of these copies of Qn−1, and hence our claim follows.

The abelian group Zn
4 acts regularly on Q2n , since Q2n is isomorphic to the

Cartesian product of n copies of C4. Thus the hypothesis of the lemma cannot
be weakened.

We explain briefly why the last result is of interest. Any abelian group of
exponent dividing four and order 4n acts a regular group of automorphisms of
the Hamming scheme H(2n,2). Hence we can identify its vertices with the ele-
ments of the group Zn

4 , or with the elements of Z2n
2 . An additive code over Z4 is

a subset which forms a subgroup of Zn
4 , a linear binary code is a subset which

is a subgroup of Z2n
2 . A code can be additive over Z4 but not over Z2. In [hkcss]

it is shown that the Kerdock codes, which are non-linear binary codes, are ad-
ditive codes over Z4. Thus the above result indicates one obstacle to extending
the results in [hkcss] to codes over Z2m when m ≥ 3.

9.4 Multipliers

Let G be an abelian group with elements g1, . . . , gn , where g1 is the identity el-
ement, and let Ag denote the n ×n permutation matrix corresponding to the
element g of G . The eigenvalues of Ag are all the complex m-th roots of unity;
hence if G has exponent m then the splitting field L of A is Q extended by a
primitive m-th root of unity. (This is true for all finite groups, abelian or not,
but is much harder to prove.)

Let L be the splitting field of the association scheme A , let Γ be the Galois
group of L/Q and let α be a primitive m-th root of unity. If τ ∈ Γ, then there is
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an integer t (τ), coprime to m, such that

ατ =αt (τ).

Thus we may view t as a map from Γ into Z∗
m , the group of units of the integers

mod m, and this mapping is an isomorphism. (For the missing details see, e.g.,
[frotay: §VI.1].)

Let A be the association scheme of the abelian group G . If τ ∈ Γ and A ∈
L[A ], let Aτ̂ denote the image of A under the eigenvalue action of τ, which we
introduced in 9.2. If g ∈G and t = t (τ) then

(Ag )τ̂ = (Ag )t (τ) = Ag t ,

consequently we may view Γ as acting as a group of automorphisms of G . (By
[ser: §13.1], two elements of G are conjugate under this action if and only if they
generate the same cyclic subgroup of G .)

9.4.1 Theorem. Let A be the association scheme formed by the elements of
the abelian group G , where G has exponent m. If t is an integer coprime to m,
then the map A 7→ A(t ) permutes the Schur idempotents of A and fixes each
subscheme in it.

Proof. The first claim follows from 9.2, where we proved that the Schur idem-
potents of A are permuted among themselves under the eigenvalue action of
Γ. The remaining claim requires some work though.

It is enough to prove that each subscheme is fixed if t is prime. So assume
t is prime and that τ ∈ Γ such that t = t (τ). Suppose that B0, . . . ,Bd are the
minimal Schur idempotents of a subscheme B of A . For each Bi there is a
subset Ci of G such that

Bi =
∑

g∈Ci

Ag .

As the matrices Ag commute it follows that, modulo t ,

B t
i ≡

∑
g∈Ci

Ag t = B τ̂
i . (9.4.1)

The right side here is a 01-matrix, because it is the image of Bi under τ. On the
other hand, there are integers bi ( j ) such that

B t
i =

∑
j

bi ( j )B j
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and therefore we see that B τ̂ is equal to the sum of the matrices B j , as j ranges
over the set

{ j : bi ( j ) ≡ 1, mod t }.

Accordingly B τ̂
i ∈B.

We note one consequence of the above proof or, more precisely, of (9.4.1).

9.4.2 Corollary. Let A be the association scheme formed by the elements of the
abelian group G , where G has exponent m. Let L be the splitting field of A , and
let Γ be the Galois group of L/Q. If Γ contains an element of prime order p then
A(p) ≡ Ap modulo p.

This corollary implies that every subalgebra of the group ring Zp [G] is fixed
by the map A 7→ A(p); thus it is a slight strengthening of [Land: Prop. 4.7].

An association scheme B is called a translation scheme if there an abelian
group, G say, acting as a regular group of automorphisms on it. It is not hard to
show that a translation scheme is the same thing as a subscheme of the scheme
formed by the elements of G . In [BCN: Thm 11.1.10], Brouwer et al. use 9.4.1
to show that every metric translation scheme arises from a completely regular
linear code in a Hamming scheme. We make a diversion, to show that it im-
plies the standard multiplier theorem in design theory. (For background and
terminology, see Lander’s book [Land].)

Let D be the incidence matrix of a symmetric (v,k,λ)-design D. This design
is determined by a difference set in the abelian group G if and only if D be-
longs to the Bose-Mesner algebra of the association scheme A formed by the
elements of G . (This is not how a design theorist would express it!) A Schur
idempotent D in C[A ] is the incidence matrix of a symmetric (v,k,λ)-design if
and only if

DT D = nI +λJ ,

where n := k −λ. Let L be the splitting field of A and suppose that the Galois
group of L/Q contains an element τ of prime order p. We find that

DT Dp = DT Dp−1D = nDp−1 +λkp−1 J ≡λkp−1 J (mod n).

Now assume that p divides n. Then, modulo p we have that Dp ≡ D (p) and
kp−1 ≡ 1; whence

DT D (p) ≡λJ (mod n). (9.4.2)

As the map A 7→ A(p) preserves Schur multiplication, D (p) is the incidence ma-
trix of a design. If S is a block in this design and p > λ then (9.4.2) implies
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that S meets each block of D in at least λ points. By a nice result of Lander
[Land: Lemma 5.2], it follows that S must belong to D, and so D (p) differs from
D by a permutation of its columns.

The points of D can be taken to be the elements of G , then τ is permutation
of the points of G and we have just shown that this permutation is an automor-
phism of G . Thus we have proved that p is a multiplier.

9.4.3 Lemma. Let A be a primitive subscheme of the association scheme formed
by the elements of the abelian group G , and let p be a prime that divides |G|.
Then, for each minimal Schur idempotent Ai of A , there is an integer ci such
that Ap

i ≡ ci I , mod p.

Proof. If Ci ⊆G such
Ai =

∑
g∈Ci

Ag

then, modulo p, we have
Ap

i ≡ ∑
g∈Ci

Ag p .

The coefficient of Ah in the right side of this expression is equal to

|{g ∈Ci : g p = h}|,
which we denote by nh . We also have integers ai ( j ) such that

Ap
i =∑

j
ai ( j )A j .

Consequently ∑
h:nh 6≡0

nh Ah = ∑
j :ai ( j )6≡0

ai ( j )A j (9.4.3)

The elements h in the index set of the sum on the left of (9.4.3) all lie in the
subgroup formed by the p-th powers of elements of G . Therefore∑

h:nh 6≡0
Ah

is the adjacency matrix of a disconnected graph. Since (9.4.3) implies that this
sum belongs to C[A ], it follows that A is imprimitive if∑

g∈Ci

Ag p

is not a scalar matrix, mod p.
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9.4.4 Theorem. Let A be a primitive translation scheme relative to the abelian
group G . If, for some prime p, the Sylow p-subgroup of G is cyclic then G has
prime order.

Proof. If A is primitive then so is A /Q. If A /Q has only one class then G has
prime order. Hence we can assume that A = A /Q and that it has at least two
classes. Let A0, . . . , Ad be the Schur idempotents of A . As A is a translation
scheme, it is a subscheme of the scheme formed by the elements of G , there are
subsets C0, . . . ,Cd such that C0 = {1} and

Ai =
∑

g∈Ci

Ag .

The sets Ci partition the elements of G .
Let U be the subgroup of G formed by the elements of order dividing p.

Since the Sylow p-subgroup of G is cyclic, |U | = p.
Because A is primitive, for each index i there is a constant ci such that Ap

i ≡
ci I , modulo p. But, modulo p,

Ap
i ≡ ∑

g∈Ci

Ag p

and, therefore, the number of elements g in Ci such that g p = h is divisible by
p when h 6= 1. If x, y ∈G and

xp = y p = h

then (x y−1)p = 1 and so x y−1 ∈U . This implies that the set of elements g in Ci

such that g p = h is a union of cosets of U , and consequently the set Ci \U is also
a union of cosets of U . We also see that |Ci ∩U | must be congruent to ci modulo
p and, as |U | = p, this implies that |Ci ∩U | = ci .

Next, J =∑
i Ai and, as p divides |G|, modulo p we have

0 ≡ J p =
(∑

i
Ai

)p ≡∑
i

Ap
i ≡∑

i
ci I .

Since A0 = I , we have c0 = 1 and therefore, mod p

d∑
i=1

ci ≡ p −1. (9.4.4)

Let Γ be the Galois group of the splitting field of the association scheme
belonging to G . Then, under the eigenvalue action of Γ, each minimal idempo-
tent Ai of A is fixed. This implies that each set Ci is fixed by Γ. As remarked just
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before the statement of 9.4.1, two elements of G are conjugate under Γ if and
only if they generate the same subgroup of G . In particular, the non-identity
elements of U must form a single conjugacy class. This implies that, if i 6= 0,
then ci is equal to 0 or p −1. From (9.4.4) we conclude that one of the sets Ci

contains U \1 and that the remaining sets Ci are all disjoint from U . In each
case the set Ci \U is a union of cosets of U .

Suppose that Ci ∩U = ; if i 6= j . Then it follows that there are 01-matrices
B1, . . . ,Bd such that if i 6= j , then

Ai = Bi ⊗ Jp

and
A j = B j ⊗ Jq + I ⊗ (Jp − Ip ).

If we assume B0 = I then B0, . . . ,Bd form a translation scheme relative to the
quotient group G/U . Hence

∑
i 6= j Bi = J −Bi and, therefore,∑

i 6= j
Ai = J − A j .

This implies that I ⊗ (Jp − Ip ) ∈A , and so A is imprimitive.

The argument in the last part of the proof actually implies that G/U ×U acts
as a group of automorphisms of A . It follows inductively that if the Sylow p-
subgroup P of G is cyclic and Q is any abelian group such that |Q| = |P |, then
G/P×Q acts as group of automorphisms of A . The result itself is best attributed
to Wielandt, see Theorem 25.4 in [Wiel].
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Chapter 10

A Bestiary

10.1 Cyclic Schemes

Let P be the permutation matrix representing a cycle of length n. Thus, if
e1, . . . ,en is the standard basis, then Pei = ei+1 (where the subscripts are com-
puted modulo n. If we define Ai := P i for i = 0,1, . . . ,n−1, then the matrices Ai

form an association scheme with n −1 classes, which we are calling the cyclic
scheme.

Let θ denote a primitive n-th root of unity, and let ui denote the column
vector in Cn with j -th entry equal to θ(i−1)( j−1). Then

〈ui ,u j 〉 = nδi , j

and
Pui = θi ui .

It follows that each vector ui spans an eigenspace of the cyclic scheme. The
matrix representing orthogonal projection onto the span of ui is

Ei := 1

n
ui u∗

i .

The matrices E0, . . . ,En−1 are the principal idempotents of our scheme. We note
that

n(Ei )r,s = θ(i−1)(r−1)θ−(i−1)(s−1) = θ(i−1)(r−s).

Further
Ai E j = P i E j = θ j i E j ,

99
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whence, if V denotes the matrix of eigenvalues, we have

Vi , j = θ(i−1)( j−1).

Thus the columns of the matrix of eigenvalues are the eigenvectors of the scheme;
this happens because each eigenspace is 1-dimensional. Note that V =V ∗ and
that V is a type II matrix. This shows that the cyclic scheme is contained in the
Nomura algebra of V . Since the dimension of a scheme consisting of n×n ma-
trices is at most n, we deduce that the cyclic scheme is the Nomura algebra of
V .

Let n be an integer. If n is even, let η be a primitive 2n-th root of unity; if n
is odd let it be a primitive n-th root of unity. Let W be the n×n matrix given by

Wi , j := η(i− j )2
, i , j ∈Zn .

Then W (−) =W and

(W W (−)T )a,b = ∑
i∈Zn

η(a−i )2−(b−i )2

= ∑
i∈Zn

ηa2−b2−2(a−b)i

= ηa2−b2 ∑
i∈Zn

η−2(a−b)i

= nδa,b .

This shows that W is a type II matrix. Since W is a circulant, it lies in the No-
mura algebra of V . On the other hand

(W ea ◦W (−)eb)i = η(a−i )2−(b−i )2 = ηa2−b2
η−2(a−b)i ,

whence NW =NV . Hence W ∈NW and therefore it determines a spin model.

10.2 Paley Graphs

Let F be a field of order q , where q = 1 modulo 4. Let X denote the graph with
the elements of F as its vertices, where elements x and y of F are adjacent if and
only if x − y is a square in F. We call X the Paley graph of order q .

Recall that, if F has odd order q , then the number of non-zero squares in F
is (q −1)/2, and that −1 is a square in F if and only if q = 1 modulo 4. Further,
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each element of F is the sum of two squares. It follows that X is a connected
regular graph with valency (q −1)/2. It is easy to verify that, if a ∈ F, then the
map τa that sends x to x + a is an automorphism of X . The maps τa form a
regular subgroup of Aut(X ). If s is a non-zero square in F then the map µs that
sends x to sx is an automorphism of X that fixes 0. The maps τa andµs together
generate a group of order

(q
2

)
which acts arc-transitively on X (and on X ). It is

not too difficult to use this group to show that X is strongly regular; we will use
another approach though.

We first construct eigenvectors for X . Let ψ be an additive character of F
and let S denote the set of non-zero squares in F. Then ψ is a function on the
vertices of X . Since ∑

x∼a
ψ(x) = ∑

s∈S
ψ(a + s) =ψ(a)

∑
s∈S

ψ(s),

We deduce that ψ is an eigenvector of X with eigenvalue∑
s∈S

ψ(s).

If ψ is the trivial character, then this eigenvalue is the valency (q −1)/2 of X .
To get the remaining eigenvalues, note that if ψ is a non-trivial additive

character and a is a non-zero element of F, then the compositionψ◦µa is again
an additive character, and all additive characters arise in this way. We useψa to
denote ψ◦µa . If a is a non-zero square in F then∑

s∈S
ψa(s) = ∑

s∈S
ψ(as) = ∑

s∈S
ψ(s).

If a is not a square then, since
∑

x∈Fψ(x) = 0, we have∑
s∈S

ψa(s) = ∑
s∈S

ψ(as) = ∑
s∉S

ψ(s) =−1−∑
s∈S

ψ(s).

It follows that there is a real number θ such that θ and −1−θ are eigenvalues of
X , both with multiplicity (q −1)/2.

If A = A(X ) then

q
q −1

2
= tr(A2) = q −1

2
(−1−θ)2 + q −1

2
θ2 +

(
q −1

2

)2

,

whence

q = 2θ2 +2θ+1+ q −1

2
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and so θ is a zero of

t 2 + t − q −1

4
.

Thus

θ = 1

2
(−1±p

q).

P =Q =

1 q−1
2

q−1
2

1
−1+pq

2
−1−pq

2

1
−1−pq

2
−1+pq

2 .


A strongly regular graph on q vertices with valency (q − 1)/2 and remain-

ing eigenvalues (−1+±pq)/2 and (−1−±pq)/2 is called a conference graph.
The product of the two eigenvalues other than the valency is (1− q)/4, so if a
conference graph exists then q ≡ 1 modulo 4. In fact q must be the sum of two
squares (and thus there is no conference graph on 21 vertices, for example).
The complement of a conference graph is a conference graph.

10.3 Quasisymmetric Designs

Let B be the set of blocks of a 2-(v,k,1) design. The block graph X of this design
has vertex set v , and two blocks are adjacent if and only if they have exactly one
point in common. This is a regular graph with valency

k

(
v −1

k −1
−1

)
= k(v −k)

k −1
.

Let N be the incidence matrix of a 2-(v,k,1) design. Then

N N T = v −k

k −1
I + J

and
N T N = kI + A(X ),

where X is the block graph of the design. Since N T N is positive semidefinite,
so is kI + A(X ). Hence the least eigenvalue of X is at least −k.

The above expressions for N N T and N T N imply that X is strongly regular,
as we demonstrate now. The key fact is that N N T and N T N have the same
non-zero eigenvalues, with the same multiplicities. The eigenvalues of

v −k

k −1
I + J
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are
v −k

k −1
+ v = vk −k

k −1
and

v −k

k −1
,

with respective multiplicities 1 and v −1. It follows that these are eigenvalues
of kI + A(X ), with the same multiplicities. Hence the eigenvalues of A(X ) are

k(v −k)

k −1
,

v −k2

k −1
, −k (10.3.1)

with respective multiplicities 1, v −1 and

v(v −1)

k(k −1)
− v = v

v −1+k −k2

k(k −1)
. (10.3.2)

The first of these eigenvalues is the valency of X and, since it is simple, X must
be connected. (This is easy to prove directly.)

If X is the block graph of a 2-(v,k,1) design then −k is an eigenvalue of X .
Since the multiplicity of an eigenvalue is non-negative, (10.3.2) implies that

v ≥ k2 −k +1.

If equality holds, −k has multiplicity zero and, from (10.3.1), the valency of X is
k2 −k—hence X is complete. (Of course, if equality holds then our block set is
the set of lines of the projective plane of order k −1.)

If v > k2 −k +1, then X is a connected regular graph with exactly three dis-
tinct eigenvalues and is therefore strongly regular. Its eigenmatrices are

P =

1 k(v−k)
k−1

(v−k)(v−k2+k−1)
k(k−1)

1 v−k2

k−1 − v−k2+k−1
k−1

1 −k k −1


and

Q =

1 v −1 v(v−k2+k−1)
k(k−1)

1 (v−1)(v−k2)
k(v−k) − v(v−k2+k−1)

k(v−k)

1 − (v−1)k
v−k

v(k−1)
v−k


If N is the incidence matrix of a 2-(v,k,λ) design then N 1 = r 1 and

N N T = (r −λ)I +λJ .
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Here r is, as usual, the number of blocks that contain a given point. So

r =λv −1

k −1

and thus if v > k, then r >λ and consequently N N T is invertible and has exactly
two eigenvalues. Consequently we can determine the eigenvalues and their
multiplicities for N T N .

We say that a 2-design is quasisymmetric if there are distinct integers α and
β such that the size of the intersection of any two distinct blocks is α or β. If
N is the incidence matrix of a quasisymmetric design, then there are square
matrices A1 and A2 such that

N T N = kI +αA1 +βA2.

It is not hard to show that A1 and A2 are the adjacency matrices of complemen-
tary regular graphs with exactly three eigenvalues. Hence each quasisymmetric
design gives rise to a strongly regular graph. Note that a 2-(v,k,1) design is qua-
sisymmetric, with α= 0 and β= 1.

10.4 Partial Spreads

Let Z be a complete graph on n2 vertices. A parallel class in Z is a spanning
subgraph isomorphic to nKn . We say two parallel classes S1 and S2 are orthog-
onal if they have no edges in common. If Ai denotes the adjacency matrix of
Ai , then S1 and S2 are orthogonal if and only if

(A1 + I )(A2 + I ) = J .

It is also not difficult to verify that

(Ai + I )2 = n(Ai + I ).

A partial spread is a set of pairwise orthogonal parallel classes.
Now suppose that S1, . . . ,Sr is a partial spread of size r . The graph X formed

by the union of (the edges in) the parallel classes is a regular graph with valency
r (n −1); we show that it is strongly regular. Let A be the adjacency matrix of X .
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Then

(A+ r I )2 =
(

r∑
i=1

(Ai + I )

)2

=
r∑

i=1
(Ai + I )2 + ∑

i 6= j
(Ai + I )(A j + I )

= n
r∑

i=1
(Ai + I )+ r (r −1)J

= n A+nr I + r (r −1)J

and therefore
A2 − (n −2r )A− (nr − r 2)I = r (r −1)J .

This shows that A is strongly regular, with parameters(
n2, r (n −1); r (r −3)+n, r (r −1)

)
.

If r = 1 then X = nKn , which is a trivial strongly regular graph, and if r = 2 then
X is L(Kn,n). When r = 3, the graph X is best known as a Latin square graph.
The eigenmatrices are

P =Q =
1 r (n −1) (n +1− r )(n −1)

1 n − r −1−n + r
1 −r r −1


Now set r =−s and n =−m. Then, if m ≤ s(s +3), there could be a strongly

regular graph with parameters(
m2, s(m +1); s(s +3)−m, s(s +1)

)
.

and eigenmatrices

P =Q =
1 s(m +1) (m −1− s)(m +1)

1 −m + s −1+m − s
1 s −s −1


In fact, strongly regular graphs with these parameters do exist in some cases,
and are said to be of negative Latin square type.

Two especially interesting cases occur when m = s(s +3) and s = 1 or 2. The
corresponding parameter vectors are

(16, 5; 0, 2), (100, 22; 0, 6).

The first is associated to the Clebsch graph, the second to the Higman-Sims
graph. The vertices at distance two from a given vertex in the Clebsch graph
form a triangle-free graph on 10 vertices with valency 5−2 = 3. Given this hint,
it is not hard to construct the Clebsch graph from the Petersen graph.
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A partial spread contains at most n + 1 parallel classes, and a spread is a
partial spread with exactly n + 1 classes. If A1, . . . , An+1 are the corresponding
matrices and A0 = I , then A0, . . . , An+1 is an association scheme. We have(

A1 + I − 1

n
J
)(

A2 + I − 1

n
J
)= J −2J + J = 0,

whence we see that the matrices Ai + I − 1
n J together with n−2 J form the com-

plete set of principal idempotents. Next, if i 6= j , then

Ai
(

A j + I − 1

n
J
)=−(

A j + I − 1

n
J
)

and

Ai
(

Ai + I − 1

n
J
)= (n −1)

(
A j + I − 1

n
J
)

Hence the eigenmatrices are the (n +2)× (n +2) matrices

P =Q =
(

1 (n −1)1
1 nI − J

)
.

If π denotes a partition of {1, . . . ,n +1}, the matrices∑
i∈C

Ai ,

where C runs over the cells of π, form a subscheme. Each class in this sub-
scheme is strongly regular. It follows that the n + 1 parallel classes form an
amorphic association scheme. Note that spreads correspond to affine planes.
Hence examples are only known when n is a prime power; further if n > 4 and
is a prime power, but not a prime, there are at least two different spreads in Kn2 .

10.5 Covers of Complete Bipartite Graphs

We consider distance-regular 2-fold covers of the complete graph Kn,n .
Suppose V (Kn,n) is the disjoint union of the sets

A = {a1, . . . , an}, B = {b1, . . . ,bn}

and that each vertex in A is adjacent to each vertex in B . We construct a new
graph as follows. Let H be a Hadamard matrix of order n. The vertices of the
new graph X (H) are the elements of

(A∪B)× {−1,1}
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and (ar , i ) is adjacent to (bs , j ) if and only if Hr,si = j . We see that X (H) is a reg-
ular bipartite graph on 4n vertices with valency n. If H and H ′ are monomially
equivalent, then X (H) and X (H ′) are isomorphic.

10.5.1 Lemma. Let H be an n ×n Hadamard matrix. The number of vertices at
distance two from a fixed vertex in X (H) is 2n −2.

Since X (H) is bipartite with 2n vertices in each colour class, it follows that
there is a unique vertex at distance four from each vertex. Hence X (H) is an-
tipodal, with diameter four.

The matrix of eigenvalues is

P =


1 n 2n −2 n 1
1

p
n 0 −pn −1

1 0 −2 0 1
1 −pn 0

p
n −1

1 −n 2n −2 −n 1

 .

If H = H0 −H1 where H0 and H1 are non-negative and H0 ◦H1 = 0, then

A1 =
(

0 H0 ⊗ I2 +H1 ⊗ (J2 − I2)
H T

0 ⊗ I2 +H T
1 ⊗ (J2 − I2) 0

)
Note that

nI = (H0 −H1)(H0 −H1)T = (H0H T
0 +H1H T

1 )− (H0H T
1 +H1H T

0 )

and

n J = (H0 +H1)(H0 +H1)T = (H0H T
0 +H1H T

1 )+ (H0H T
1 +H1H T

0 ),

whence

H0H T
0 +H1H T

1 = n

2
(J + I ), H0H T

1 +H1H T
0 = n

2
(J − I ).

Note that
A2 = (Jn − In)⊗ J2, A4 = In ⊗ (J2 − I2)

and that A3 = A1 A4.
This scheme is formally self-dual.



108 CHAPTER 10. A BESTIARY

10.6 Groups

Let Γ be a finite group of order v with conjugacy classes C0, . . . ,Cd . Using the
regular permutation representation of Γ, we may view each element of Γ as a
v × v permutation matrix and define Ai to be the sum of the matrices in the
i -th conjugacy class. The matrices A0, . . . , Ad form an association scheme (and
its Bose-Mesner algebra is isomorphic to the centre of the group algebra of Γ).
The matrix of eigenvalues of this scheme is determined by the character table
of Γ. Since group theorists have determined the character tables of many finite
groups, it is useful to be able to translate the information in these tables into
the language of association schemes. We show how to do this.

First we must explain what the character table is, which will take some time.
A representation of Γ of degree d over F is a homomorphism of Γ into the group
of d ×d matrices over F. If φ is a representation of Γ then tr(φ(g )) is a function
from Γ to F that is constant on the elements in a conjugacy class of Γ. Such
functions are called characters of Γ. We will only use representations of Γ over
C here.

The sum of two characters is a character of Γ; a character is irreducible if
it cannot be written as a sum of two non-zero characters. The number of irre-
ducible characters is equal to the number of conjugacy classes of Γ. The char-
acter table of Γ is the complex matrix with i j -entry equal to the value of the i -th
character of Γ on an element in the j -th conjugacy class. What we have called
the character table of an abelian group is a character table in the sense we are
using here.

If ψ is a character of Γ, let Mψ denote the v × v matrix such that

(Mψ)g ,h = ψ(1)

|G| ψ(g−1h).

10.6.1 Theorem. Let Γ be a finite group. The matrices Mψ, where ψ runs over
the distinct irreducible characters of Γ, are the principal idempotents of the
conjugacy class scheme of Γ.

We offer some comments that go some way towards a proof of this theorem.
Suppose C is a conjugacy class of Γ. Let X (C ) be the Cayley graph for Γ with
connection set C . (Thus g and h are adjacent in X (C ) if and only if hg−1 ∈ C .)
Let AC denote the adjacency matrix of X (C ). If Ni is the v × v matrix with g h-
entry ψ(g−1h), then the g h-entry of AC Nψ is equal to∑

{x:xg−1C }

ψ(x−1h) = ∑
c∈C

ψ(g−1ch).
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Assume that ψ is the trace of the irreducible representationΨ. Then∑
c∈C

ψ(g−1ch) = ∑
c∈C

ψ(chg−1) = ∑
c∈C

tr(Ψ(chg−1)).

SinceΨ is a homomorphism,Ψ(chg−1) =Ψ(c)Ψ(hg−1) and consequently∑
c∈C

tr(Ψ(chg−1)) = tr(Ψ(C )Ψ(hg−1)),

where Ψ(C ) denotes the sum of the values of Ψ over the elements of C . Since
Ψ is irreducible, Ψ(C ) is a scalar matrix and so there is a constant λC such that
Ψ(C ) =λC I . It follows that

(AC Nψ)g ,h = tr(λCΨ(hg−1)) =λCψ(hg−1) =λCψ(g−1h).

This shows that each column of Nψ is an eigenvector for AC with eigenvalue
λC .

If c ∈C , then tr(Φ(C )) = |C |ψ(c) and therefore

λC = |C |
ψ(1)

ψ(c);

thus we have the eigenvalues of the matrices AC in terms of character values.
Since the distinct irreducible characters are pairwise orthogonal,

NψNρ = 0

if ψ and ρ are distinct irreducible characters of Γ.
This result has several consequences. First, it provides an explicit formula

for the dual eigenvalues: if ψ0, . . . ,ψd are the distinct irreducible characters of
Γ, then

qi ( j ) =ψi (1)ψi (g ),

where g is any element in the j -th conjugacy class of Γ. Now

pi ( j ) = vi

m j
q j (i )

Since Mψ is a projection, the eigenvalues of

|G|
ψ(1)

Mψ
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are 0 and |G|
ψ(1) . Since the entries of this matrix are values of characters of Γ, they

are algebraic integers. Therefore its eigenvalues are algebraic integers. Conse-
quently the rational number

|G|
ψ(1)

must be an integer and therefore ψ(1) divides Γ.
[show Krein parameters are rational; give char table for Alt(5) and its ratio-

nal subscheme]



Chapter 11

Algebra and Modules

11.1 Algebras

A ring A is an algebra over the commutative ring R if there is a homomorphism
ψ from R into the centre of A. Any ring A is an algebra over Z, because the
subring of A generated by 1 is homomorphic image of Z. We will mainly be
interested in the case where R is a field, in which case the algebra is a vector
space over R.

We offer some examples:

(a) The ring of polynomials F[x1, . . . , xn] over the field F, in the commuting vari-
ables x1, . . . , xn .

(b) The ring of all n×n matrices over the field F. (We will denote this by Matn×n(F).)

(c) The group algebra F[G] of a finite group G .

(d) The set of all linear mappings of F[x] to itself is an algebra over F. If M
denotes multiplication by x and D denotes differentiation with respect to
x, then M and D generate a subalgebra. We note that DM −MD = I , from
which it follows the algebra generated by D and M is spanned by elements
of the form M r D s . It is possible to show that these elements are linearly
independent, whence we see that this algebra has infinite dimension over
F.

(e) The ring of polynomials over F in non-commuting variables x1, . . . , xn is
again an algebra over F. Its main use to us will arise from the fact that many
interesting algebras are best presented as its quotients:

111
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(i) The quantum plane is generated by variables x, y and q subject to the
relations

y x −qx y = 0, xq −qx = 0, yq −q y = 0.

(ii) The Weyl algebra is the quotient of the non-commuting algebra gen-
erated by variables x and d , subject to the relation d x − xd = 1. (The
algebra in (d) generated by D and M is a quotient of this.)

(iii) The enveloping algebra of the Lie algebra sl(2,F), generated by ele-
ments x, y and h subject to:

x y − y x = h, hx −xh = 2x, hy − yh =−2y.

(iv) The Hecke algebra : this is generated by elements T1, . . . ,Tn and q ,
where q commutes with each Ti and we have the additional relations

Ti T j = T j Ti , |i − j | > 1

and
Ti Ti+1Ti = Ti+1Ti Ti+1, T 2

i = (q −1)Ti +q I .

There is one problem that arises when we define an algebra as a quotient,
as in (e) above, namely that the algebra might be the trivial algebra (with 0 and
1 as its only elements). This does not happen in the examples above.

11.2 Division Algebras

A division algebra is an algebra where each non-zero element is invertible. Ex-
amples include any field. Division algebras provide basic building blocks for
algebras.

11.2.1 Lemma. If D is a division algebra over an algebraically closed field F,
then D = F.

Proof. Suppose a ∈ D and let ψ(t ) be the minimal polynomial for right multi-
plication by a. If we have a factorization

ψ=ψ1ψt

thenψ1(a)ψ2(a) = 0. SInce D is a division algebra eitherψ1(a) = 0 orψ2(a) = 0.
Hence one of ψ1 and ψ2 is constant and therefore ψ is irreducible. Since F is
algebraically closed, ψ must be linear and therefore A ∈ F.
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By considering division algebras overR, we arrive at a very important exam-
ple, the quaternions, which we denote byH.

11.2.2 Theorem. The only finite dimensional division algebras over the reals
are the reals, the complex numbers and the quaternions.

Proof. Suppose D is a real division algebra. We first prove that if d ∈D\R, then
R[d ] ∼=C.

Let ψ be the minimal polynomial over R for right multiplication by d . As
above it must be irreducible. Since an irreducible real polynomial has degree at
most two and since d ∉R, we conclude that ψ is quadratic, say

ψ(t ) = t 2 +at +b.

Since ψ is irreducible, a2 −4b < 0 and as ψ(d) = 0 we have

(d + 1

2
a)2 − 1

4
a2 +b = 0.

Therefore
(2d +a)2

4b −a2
=−1;

since 4b − a2 > 0, it follows that R[d ] contains an element i such that i 2 = −1,
and so R[d ] ∼=C.

Next we show that if i , j are both square roots of −1 in D and i 6= ± j , then i
and j do not commute. For suppose i j = j i . Then

(i j )2 = i j i j = i 2 j 2 = (−1)2 = 1

and so i j =±1. Hence j =±i .
If dimR(D) = 2, then D ∼= C. Assume that dim(D) > 2 and let i be a square

root of −1 in D. Let C denote the subalgebra R[i ]. We prove that the centralizer
of C in D is C itself. Suppose d ∈ D\C. Then R[d ] ∼= R[ j ] where j 2 = −1 and so
d commutes with i if and only if j does. But if j i = i j then j =±i and so d ∈C.
We conclude that d and i do not commute.

Next let T denote the operation of conjugation by i on D; then

T (d) :=−i di

for all d in D. Then
T 2(d) = (−i )(−i )di 2 = d



114 CHAPTER 11. ALGEBRA AND MODULES

and so T 2 = I . The minimal polynomial of T is t 2 −1 and since this has simple
roots T is diagonalizable, with eigenvalues 1 and−1. If T d = d , then i d = di , so
d lies in the centralizer of C,that is, d ∈ C. If T d = −d , then i d = −di , we say
that d and i anticommute. Since T is diagonalizable its eigenvectors span and
accordingly each element of D can be written as a+b, where a commutes with
i and b anticommutes with i .

Suppose w ∈D and T (w) =−w . If we have T (x) =−x, then

T (xw) = T (x)T (w) = (−x)(−w) = xw

and therefore, if U = ker(T + I ), then

U w ∈ ker(T − I ) =C.

Since D is a division algebra, right multiplication by w is injective, and therefore
dim(ker(T+I )) ≤ 2. As w 2 ∈ ker(T−I ), we see thatCw ≤U and so U w =C. Since
D is the direct sum of the eigenspaces ker(T−I ) and ker(T+I ), we conclude that
dim(D) = 4.

We leave the rest of the proof as an exercise, but offer that if dim(D) = 4,
then D must contains elements i and j such that

i 2 = j 2 =−1, j i =−i j .

The rest should not be too difficult.

The above proof is based on the one in Farenick [], which he ascribes to ???.
If we set k equal to i j , then

k2 = i ( j i ) j =−i 2 j 2 =−1.

Similarly
ki = i j i =−i 2 j = j , i k = i 2 j =− j .

and
j k = j i j =−i j 2 = i , k j = i j 2 =−i .

As

(a +bi + c j +dk)(a −bi − c j −dk) = a2 − (bi + c j +dk)2 = a2 +b2 + c2 +d 2,

the elements 1, i , j and k are linearly independent over R.
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11.3 Maps and Modules

If A and B are algebras over R, then an algebra homomorphism from A to
B is a ring homomorphism from A to B that commutes with the respective
maps ψA and ψB from R into the centres of A and B. If R is a field, an algebra
homomorphism is a ring homomorphism that is also an R-linear map from A

to B.
We will generally use ‘map’ and ‘homomorphism’ as synonyms for ‘algebra

homomorphism’. Unless explicitly stated otherwise any module is Artinian and
Noetherian (in fact an Artinian module must be Noetherian).

If A is an algebra over R, then a module for A consists of an R-module, M
say, and a homomorphism from A in End(M) (which is also an algebra over
R). It is conventional to avoid explicit mention of the homomorphism; thus if
x im M and a ∈ A , then the image of x under the action of a is denoted by xa.
When ψ is a module homomorphism, we may also use xψ to denote the image
of x under ψ. (The reasons for placing a and ψ on the right are given in the
next section.) When R is a field, any module for A will be a vector space over
R. In the absence of an explicit warning, modules over algebras will have finite
dimension.

If M and N are R-modules, then Hom(M , N ) is the set of all homomor-
phisms from M to N . If M = N , we write End(M) in place of Hom(M , M). If
there is a homomorphism ρ from the algebra B to the algebra A and M is a
module over A , then it is also a module over B: the composite of the homo-
morphism from B to A with the homomorphism from A into End(M) makes
M into a B-module. For example suppose V is a vector space and A ∈ End(V ).
Then V is a module for the algebra F[A] of all polynomials in A. This algebra is
a homomorphic image of the polynomial ring F[t ], where the homomorphism
maps t to A. So V is also a module for F[t ]—if v ∈V then v t := v A.

If M and N are also A -modules then HomA(M , N ) denotes the set of ho-
momorphisms from M to N that commute with the action of A . Thus if ψ ∈
Hom(M , N ), then ψ ∈ HomA(M , N ) if

uψa = uaψ

for all u in M and all a in A . Both Hom(M , N ) and HomA(M , N ) are R-modules,
but only HomA(M , N ) is an A -module in general.

Any algebra A can be viewed as a module over itself. The mapping from A

to End(A ) assigns to a in the linear mapping ρa , given by

xρa := xa.
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This gives the regular module for A . We note that its submodules correspond
to the right ideals of A . We will make great use of the regular module of an
algebra.

In cases where A is generated by some subset S, we might write HomS(M , N )
or EndS(M) rather than HomA (M , N ) or EndA (M). The opportunity to do this
will arise when A is F[A], the algebra of polynomials over F in the operator A,
or when it is F[G], the group algebra of the group G .

11.4 Opposites

We use A op to denote the algebra with the same set of elements as A, and mul-
tiplication ∗ defined by

a ∗b := ba,

for all a and b. We call it the opposite algebra of A. We say that M is a left
module over A if it is a right module over A op. By way of example, if a ∈A we
define the element λa of End(A ) by

xλa = ax.

Then λaλb maps x to bax and therefore λaλb = λba . Thus we have a homo-
morphism of A op into End(A ).

The point here is that to compute the image of x underψϕ, we first applyψ,
then ϕ. Effectively we are viewing ψ and ϕ as operations, and as customary we
apply the leftmost operation first. It we take this approach, then right modules
are more natural than left modules.

An algebra A is a module over the tensor product A op ⊗A . Here if

a ⊗b ∈A op ⊗A

and x ∈A , then
a ⊗b : x 7→ axb.

Note that
axb = xλaρb = xρbλx ;

here ρa and λb commute because a(xb) = (ax)b. The submodules of A corre-
spond to the ideals of A .

11.4.1 Lemma. If A is an algebra, then EndA (A ) ∼=A op.
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Proof. If µ ∈ EndA (A ) and m = 1µ, then

xµ= (1x)µ= (1µ)x = mx.

Thus µ=λ1µ ∈A op.

We use Z (A ) to denote the centre of A .

11.4.2 Lemma. If B =A op ⊗A , then EndB(A ) = Z (A ).

Proof. Exercise.

The (A op ⊗A )-submodules of A are its ideals.

11.5 Schur’s Lemma

A module is simple if it has no non-zero proper subodules. If M is a module
over an algebra and M has dimension one (as a vector space) then M is sim-
ple. More generally any if M is a module over and algebra and N is a non-zero
submodule with the least possible dimension, then N is simple. Thus simple
modules are not hard to find.

Despite its brevity, the next result will prove to be extremely powerful.

11.5.1 Lemma. If M and N are simple modules over A , then HomA (M , N ) is a
division ring if M and N are isomorphic, and is zero otherwise.

Proof. Suppose x ∈ HomA (M , N ). The kernel and range of x are submodules
of M . If x 6= 0 then the kernel of x must zero, consequently x is injective. Now
it follows that x must be surjective. Therefore either x = 0 or x is invertible; we
conclude that HomA (M , N ) is a division ring.

This result provides the reason why we need information about division al-
gebras. If A is an algebra over F then any division ring D obtained by appeal to
Schur’s lemma will have F in its centre.

11.5.2 Corollary. If eA is a simple submodule of A and a ∈ A , then aeA is
either zero or isomorphic to eA .

Proof. The subset
{x ∈ eA : ax = 0}

is a submodule of eA and, since eA is simple, it is either zero or equal to eA .
In the latter case aeA = 0, in the former left multiplication by a is injective and
is therefore an isomorphism.
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If M is an A -module and m im M , then mA is a submodule of M We say M
is cyclic if there is an element m in M such that mA = M . A simple module is
automatically cyclic. If M is an A -module, then the set

ann(M) := {a ∈A : M a = 0}

is called the annihilator of M . It is a submodule of A and, if M is cyclic you
may show that A /ann(M) ∼= M . (Note that A /ann(M) is a module, and not a
quotient algebra.) You might also show that M is simple if and only if ann(M)
is a maximal proper submodule of A .



Chapter 12

Semisimple Modules

12.1 Summands and Idempotents

One of our basic tasks will be to express a module for an algebra as a direct sum
of simple modules. You will have already had experience with this, when you
found bases of eigenvectors for linear mappings in a linear algebra course. For
suppose A is a symmetric real v×v matrix. Then V =Rv is a module for the alge-
bra R[A] of all polynomials in A. Any eigenvector for A spans a 1-dimensional
subspace invariant under A, and hence its span is a simple module for R[A].
Now a set of vectors x1, . . . , xv is linearly independent if and only if V is the direct
sum of the 1-dimensional subspaces 〈xi 〉. In other words, A is diagonalizable if
and only if V is the direct sum of v simple R[A]-modules.

An element e in a ring A is idempotent if e2 = e. Two idempotents e and f
are orthogonal if e f = f e = 0. If e is an idempotent then 1−e is an idempotent
orthogonal to e. Idempotents provide an approach to direct sum decomposi-
tions of modules.

Suppose M is a module over A and M ∼= M1 ⊕M2. If m ∈ M then there are
unique elements m1 in M1 and m2 in M2 such that m = m1+m2. It follows that
the maps ei given by

ei : m 7→ mi

are endomorphisms of M . Since Mi is a submodule of M , it follows that mi a ∈
Mi , for all a in A. Therefore

mi aei = mi a = mi ei a,

from which it follows that aei = ei a, for all a. Consequently ei ∈ EndA (M). As

119
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mi ei = mi , we have e2
i = ei . Also e1 + e2 = 1. Conversely, each idempotent e

distinct from 0 and 1 in EndA (M) determines a direct sum decomposition of
M with summands Me and M(1−e).

A module M is indecomposable if it cannot be expressed as a direct sum
of proper submodules. Hence M is indecomposable if and only if 0 and 1 are
the only idempotents in EndA (M). If e is an idempotent in EndA (M) and N
is a summand of Me then there must be an idempotent f in EndA (M) such
that e f = f e = e. Then e − f is idempotent and is orthogonal to f . We call
an idempotent primitive if it cannot be written as the sum of two orthogonal
non-zero idempotents. Thus primitive idempotents in EndA (M) correspond
to indecomposable summands of M .

12.1.1 Lemma. If e is an idempotent in the algebra A and the right ideal eA is
minimal, then e is primitive.

Proof. Suppose e = f + g where f and g are idempotents and f g = g f = 0.
Since f e = f we see that f A ≤ eA . Since f A contains f , it is not zero and
since g ( f A ) = 0, it is not equal to eA . Hence eA is not minimal.

As EndA (A ) ∼= Aop, it follows that summands of the regular module for A

correspond to idempotents in A op, and hence to idempotents in A itself. In
concrete terms, if e ∈A and e2 = e then A = eA ⊕ (1−e)A. Our next result will
be useful when we want to find idempotents in an algebra.

12.1.2 Lemma. Let I be a minimal right ideal of the algebra A . If I 2 6= 0 then
there is an idempotent e in A such that I = e A.

Proof. As I 2 6= 0, there is an element x in I such that xI 6= 0. We note that xI is
right ideal, as xI ⊆ I 2 ⊆ I and as I is minimal, xI = I . Because x ∈ I , there must
be an element e in I such that xe = x. Then xe2 = xe and x(e2 −e) = 0.

The set J of elements b in I such that xb = 0 is a right ideal contained in
I . Since it does not contain y , it is properly contained in I ; since I is minimal,
J = 0. Therefore ee −e = 0.

Finally, eI is a right ideal contained in I and is not zero, accordingly eI = I .

An element x in a ring is nilpotent if xn = 0 for some n. An ideal I is nilpo-
tent if I n = 0 for some n. Clearly each element of a nilpotent ideal is nilpotent,
but the converse is not always true. If I is a nilpotent right ideal then A I is a
nilpotent ideal, because

(A I )r =A (IA )r−1I ⊆ AI r .
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Thses comments will become significant when we characterize semisimple al-
gebras.

If M is a right ideal in A , you may show that

M ∩ann(M)

is a nilpotent right ideal in A .
As EndA op⊗A (A ) ∼= Z (A), we see that summands of A , viewed as a module

over A op ⊗A , correspond to idempotents in Z (A ); these are often called cen-
tral idempotents. Here submodules of A are ideals of A ; each ideal may be
viewed as an algebra, with the central idempotent determining the summand
as its identity element.

12.2 Primary Decomposition

Let T be an endomorphism of the vector space V , and suppose that the min-
imal polynomial of A is ψ(t ). We derive a direct sum decomposition of the T -
module V for each factorization of ψ into coprime factors.

Suppose
ψ= f g ,

where f and g are coprime. Then there are polynomials a and b such that

a f +bg = 1

and hence
a(T ) f (T )+b(T )g (T ) = I .

Multiply both sides of this by a(T ) f (T ). Then we find that

a(T ) f (T ) = (a(T ) f (T ))2 +a(T )b(T ) f (T )g (T );

since f g =ψ we have f (T )g (T ) = 0 and therefore E = a(T ) f (T ) is idempotent.
Similarly

b(T )g (T ) = I −a(T ) f (T )

is an idempotent, orthogonal to a(T ) f (T ). Hence EV and (I −E)V are comple-
mentary T -submodules of V . You may show that the minimal polynomial of
the restriction of T to EV is f (T ).
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More generally, if ψ factors into k pairwise coprime factor, we may express
V as the direct sum of k submodules, one for each factor. (This is easily proved
by induction on the number of factors.)

If our underlying field is algebraically closed, we may write

ψ(t ) =
k∏

i=1
(t −θi )mi

where θ1, . . . ,θk are the zeros of ψ, or equivalently, the eigenvalues of T . We
derive orthogonal idempotents E1, . . . ,Ek such that

E1 +·· ·+Ek = I

and V is the direct sum of submodules Ei V . This decomposition of V is called
the primary decomposition. The minimal polynomial of T �(Ei V ) is (t −θi )mi ;
the elements of Ei V are known as root vectors or generalized eigenvectors for
T , with eigenvalue θi . Over an algebraically closed field, the existence of the
primary decomposition can be paraphrased by the assertion that if T ∈ End(V ),
there is a basis of V that consists of root vectors for T .

If the minimal polynomial of T factors into linear terms over F and has
no repeated factors, then the summands in the primary decomposition are
eigenspaces for T . Thus V has a basis of eigenvectors for T in this case (or
equivalently T is diagonalizable).

12.3 Group Algebras

We apply Schur’s lemma to derive some properties of group algebras.
If M is a module over A , the action of A on M is given by a homomorphism,

ϕ say, from A into End. If a ∈A then ϕ(a) is a linear mapping and the function
that maps a in A to tr(ϕ(a)) is called a character of G . The homomorphismϕ is
called a representation of A .

If M is a module for the group algebra F[G], we use MG to denote the sub-
space of M consisting of the elements m such that mg = m for all g in G . This
is clearly a submodule of M .

12.3.1 Lemma. If M is a module over the group algebra F[G] determined by the
representation ϕ then

1

|G|
∑

g∈G
trϕ(g ) = dim MG .
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Proof. Define σ by

σ := 1

|G|
∑

g∈G
g .

Then σ2 = σ and hence M can be written as the direct sum of the subspaces
Mσ and M(1−σ). As m ∈ MG if and only if mσ= m, we see that Mσ= MG . As

gσ=σg =σ,

for all g in G , both Mσ and M(1 −σ) are submodules of M . Suppose that
n = dim M . The characteristic polynomial of σ (or equivalently, of ϕ(σ)) is
(t − 1)d t n−d , where d is the rank of ϕ(σ). Therefore this rank is equal to the
trace of ϕ(σ). As the rank of ϕ(σ) is the dimension of the range of ϕ(σ), the
lemma is proved.

12.3.2 Lemma. If ϕ and ψ are representations of G , corresponding to modules
M and N , then

1

|G|
∑

g∈G
trϕ(g ) trψ(g−1) = dimHomG (M , N ).

Proof. The mapping that sends g to ϕ(g )⊗ψ(g−1) is a homomorphism from A
into End(M ⊗N∗). Apply the previous lemma to this homomorphism.

Now we make use of Schur’s lemma. A representation of a group algebra
is irreducible if the corresponding module is simple. If M and N are simple
modules then HomA (M , N ) is zero if M 6∼= N . If M ∼= N then HomA (M , N ) is a
division ring containing F. If F is algebraically closed, F= HomA (M , N ) and so
HomA (M , N ) is 1-dimensional. Now Lemma 12.3.2 reduces to the orthogonal-
ity relation for irreducible characters of a finite group.

Furthermore, the element ϕ(g )⊗ψ(g−1) is an endomorphism of M ⊗ N∗,
and the sum ∑

g∈G
ϕ(g )⊗ψ(g−1) (12.3.1)

lies in HomA (N , M). Suppose F is algebraically closed and M and N are simple.
Then dimHomA (N , M) ≤ 1, with equality if and only if M and N are isomor-
phic. Hence we infer that the sum in (12.3.1) is zero if M 6∼= N , and equals cI if
M ∼= N . Since we have the trace of this sum, it is not too hard to show that

c = |G|
dim M

.
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(And it can be shown that this ratio must be an integer.) One consequence
of these deliberations is that, if M 6∼= N then the coordinate functions ϕi , j are
orthogonal to the coordinate functions ψk,`; if M ∼= N then ϕi , j and ϕk,` are
orthogonal unless i = k and j = `.

If M is simple and has dimension d , it follows that the space spanned by the
matrices ϕ(g ), for g in G , has dimension d 2. Therefore the algebra ϕ(A ) is the
algebra of all d ×d matrices over F. This result will be extended to semisimple
algebras in later sections.

12.4 Semisimple Modules

Next we offer a characterization of when a module M may be written as a direct
sum of some of its submodules. If M1, . . . , Mr are submodules of M , we use

r∑
i=1

Mr

to denote their sum—this is the submodule of M formed by those elements
which can be written as finite sum of elements from ∪i Mi .

12.4.1 Lemma. Let M1, . . . , Mr be submodules of M . Then the following asser-
tions are equivalent:

(a) M ∼=⊕r
i=1Mi ,

(b) M =∑
i Mi and Mi ∩∑

j 6=i M j = 0,

(c) M =∑
i Mi and Mi ∩∑

j<i M j = 0.

The key to the proof of this result is that if M = ∑
i Mi then there is a ho-

momorphism from ⊕i Mi onto M ; the conditions in (b) and (c) are sufficient
for this map to be injective. If M1 is a submodule of M , we say that a submod-
ule M2 is a complement to M1 if M1 +M2 = M and M1 ∩M2 = 0. Thus M2 is a
complement to M1 if and only if M ∼= M1 ⊕M2.

This brings us to the most important concept in this section. A module is
semisimple if it is a direct sum of simple modules. If M is a direct sum of a finite
number of simple modules then it is easy to write down a composition series
for it, the Jordan-Hölder theorem then implies that any two presentations of M
as a sum of simple modules differ only in the order of the terms.

It will not be clear yet that this concept is important; we begin by offering
some characterizations.
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12.4.2 Theorem. The following assertions about the module M are equivalent:

(a) M is semisimple,

(b) M is the direct sum of simple modules M1, . . . , Mr ,

(c) M is the sum of simple modules M1, . . . , Ms ,

(d) Every submodule of M has a complement,

(e) Every simple submodule of M has a complement.

12.4.3 Corollary. If M is semisimple and N ≤ M then N and M/N are semisim-
ple.

12.5 Semisimple Modules: Examples

A vector space of finite dimension over F has a basis, and tyhe vector space is
the direct sum of the 1-dimensional subspaces spanned by the elements of the
given basis. Thus a vector space, viewed as a module over F, is a sum of simple
modules; hence it is semisimple.

Another way of proving that a vector space V is a semisimple module is to
prove that each subspace is the range of an idempotent element of End(V ). We
outline the argument. Suppose that U is a subspace of V , with basis u1, . . . ,ur .
This can be extended to a basis u1, . . . ,un of V ; let v1, . . . , vn be the correspond-
ing dual basis. (So yT

i x j = δi , j .) If

P :=
r∑

i=1
xi yT

i

then P 2 = P and, since P yi = xi , the range of P is V .
Suppose T is a self-adjoint operator on the inner product space V , real or

complex. If T fixes a subspace U of V then its adjoint fixes U⊥; thus if T is
self-adjoint then V is a semisimple module for F[T ].

Continuing with this example, suppose U is a simple submodule of V . Since
T commutes with itself, T �U ∈ EndT (U ). As T is simple, EndT (U ) is a division
algebra. If F = C, then the only division algebra over F is C. If F = R, then the
division algebras over R are R, C and H; since the image of R[T ] in EndT (U ) is
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commutative, it must be isomorphic to R or C. Thus T acts on U as multiplica-
tion by a real or complex scalar. Since U is simple, U is 1-dimensional over the
appropriate field, or equivalently it is spanned by an eigenvector for T . Thus the
fact that T can be diagonalized rests on the observation that V is semisimple
and on the classification of the real and complex division algebras. As a bonus,
these arguments go through without change for normal operators, since in this
case the algebra generated by T and T ∗ is commutative and *-closed (and the
latter implies that V is semisimple).

Next we consider the case where A = F[G] is the group algebra of the finite
group G . We will prove that, if |G| is invertible in F, then the regular module over
A is semisimple. Assume that V denotes the regular module over the group al-
gebra A and U is a submodule of it. Then there is an idempotent endomor-
phism P of V with range equal to U . Suppose now that

P̂ := 1

|G|
∑

g∈G
g−1P g .

If u ∈ U then, because U is a submodule ug−1 ∈ U . Therefore ug−1P̂ = ug−1

and ug−1P̂ g = u. If u ∈ V then ug−1P̂ ∈ U and so ug−1P̂ g ∈ U . This shows
that the range of P̂ is U and that P̂ 2 = P̂ . If h ∈ G then a simple computation
yields that hP̂ = P̂h, which implies that P̂ ∈ EndA (V ). It follows that V (I − P̂ )
is a submodule of V complementary to U . Hence we have proved that V is
semisimple.

If |G| is not invertible in F, then V is not semisimple. For if

θ := ∑
g∈G

g

then θ2 = |G|θ = 0, but θ 6= 0. Suppose N is a simple submodule of V . Since
θ ∈ Z (A), we have

NθA = NA θ = Nθ

and hence Nθ is a submodule of N . If Nθ 6= 0 then Nθ must equal N , but now
we note that

0 = Nθ2 = Nθ = N .

If V is semisimple, it follows that V θ = 0; as V is the regular module we deduce
in turn that θ = 0. We are forced to conclude that V is semisimple if and only if
the characteristic of F is coprime with |G|.
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12.6 Indecomposable Modules

Even if a module is not semisimple, we may still present it as a direct sum of in-
decomposable modules. In this section we develop some relevant theory. (We
will not be using this in later sections.)

The endomorphism algebra of a simple module is a division ring. We start
by considering some properties of the endomorphism algebra of an indecom-
posable module. By the theory in Section 12.1, the only idempotents in such
an algebra are 0 and 1. This implies in turn (by Lemma 12.1.2) that all minimal
right ideals are nilpotent. To get further, we introduce the radical of an algebra.

We define the radical radA of the algebra A to be the set of elements a in
A such that M a = 0 for every simple module M . It is easy to see that radA is
an ideal in A .

If I and J are nilpotent ideals of A then a simple induction argument shows
that (I + J )r = 0 when r is large enough. Therefore I + J is nilpotent and so A

always contains a unique largest nilpotent ideal.

12.6.1 Theorem. The radical of A is equal to:

(a) the intersection of all maximal submodules of A ,

(b) the largest nilpotent ideal of A .

Proof. We first show that all nilpotent ideals of A lie in radA . Suppose M is a
simple module and J is a right ideal of A . Then M J is a submodule of M , so
either M J = 0 or M J = M . In the latter case M J r = M for all r ; consequently
if M is simple and J is nilpotent then M J = 0. Therefore radA contains all
nilpotent right ideals of A . We complete the proof of (b) by showing that radA

is nilpotent.
Suppose that B and C are submodules of A with B ≤ C and C /B simple.

Then radA acts trivially on C /B ; accordingly we have

C rad(A ) ⊆ B.

It follows that if A has a composition series of length r then A (radA )r = 0 and
so radA is nilpotent.

To prove (a), we note that if B is a maximal submodule of A then A /B is
simple, implying that

rad(A ) =A rad(A ) ⊆ B.
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Hence radA lies in each maximal submodule of A . To complete the argument,
let K be the intersection of all maximal submodules of A and suppose that
radA is properly contained in K . Then K /rad(A ) acts non-trivially on some
simple module M . Choose m in M such that mK 6= 0. Then mK is a non-zero
submodule of M and so mK = M . Choose x in K such that mx = −m. Then
m(1 + x) = 0, which implies that (1 + x)A is a proper submodule of A . But
x ∈ K and so x lies in every maximal submodule of A . This shows that there is a
maximal submodule of A that contains both x and 1+ x. Therefore it contains
1, a contradiction which forces us to conclude that K = radA .

12.6.2 Theorem. If M is an indecomposable Artinian A -module then every el-
ement of EndA (M) is invertible or nilpotent.

Proof. Let B equal EndA (M). We show first that if M is Noetherian and ϕ ∈B,
there is an integer n such that the intersection of the range and kernel of ϕn is
zero. For the modules ϕ−r (0) form an increasing chain of submodules of M . As
M is Noetherian, there is a least integer n such that

ϕ−n−1(0) =ϕ−n(0).

If y =ϕn(x) for some x in M and ϕn(y) = 0 then ϕ2n(x) = 0. Hence

x ∈ϕ−2n(0) =ϕ−n(0)

and therefore y = 0. (Note: this implies that if ϕ is surjective the it is injective.)
Next we show that if M is Artinian andϕ ∈B then there is an integer n such

that M is the sum of the kernel and range of ϕn . For consider the decreasing
sequence ϕr (M); as M is Artinian there is a least integer n such that

ϕn+1(M) =ϕn(M).

Then ϕ2n(M) = ϕn(M) and so, if y ∈ M there is an element z in M such that
ϕn(y) =ϕ2n(z). Now

ϕn(y −ϕn(z)) = 0,

whence y −ϕn(z) lies in the kernel of ϕn . (Note: this shows that ϕ is injective if
it is surjective.)

Finally we prove the theorem. If M is Artinian and ϕ ∈ EndA (M), there is
an integer m such that M is the direct sum of the range and kernel of ϕm . If
M is indecomposable we conclude that either M is the kernel of ϕm (and ϕ

is nilpotent) or M is the range of ϕm (and ϕ is a surjection, hence a bijection
too).
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Note that in the above we only need A to be a ring.

12.6.3 Corollary. Suppose M is a Noetherian module and a,b are endomor-
phisms of M . If ab is surjective then a is surjective.

Proof. If ab is surjective then b is surjective, and hence injective. If y ∈ M then
there is an element z in M such that yb = zab; thererore (y − za)b = 0 and thus
y = za, proving that a is surjective.

One consequence of this corollary is if a and b are elements of a Noetherian
ring and ab = 1 then ba = 1. Our next result is the analog of Schur’s lemma for
indecomposable modules.

12.6.4 Theorem. If A is an Artinian algebra and contains no non-trival idempo-
tents, then A/rad(A) is a division ring.

Proof. As a first step we prove that, if I is a nilpotent ideal and a ∈ A such that
a2 −a ∈ I , then there is an idempotent e in A such that e −a ∈ I .

Assume b = a2 −a and a′ := a +b −2ab. Then a and a′ commute, (a′)2 ∈ I 2

and
(a′)2 = a2 +2ab −4a2b = a +a′+2ab −4ab.

The right side above equals a′ modulo I 2. Now a simple induction argument
produces an idempotent e as required. (We describe this process as lifting an
idempotent mod I to an idempotent of A.)

Next we prove that all ideals in A are nilpotent. Assume that 0 and 1 are
the only idempotents in A. Then, by Lemma 12.1.2, any minimal right ideal is
nilpotent. Let I be a minimal non-nilpotent ideal of A. Then I is not a minimal
ideal, let J be an ideal of A maximal subject to lying in I . Then J is nilpotent
and I /J is a minimal ideal in A/J . If I /J is nilpotent then I is nilpotent. If
I /J is not nilpotent then it contains an idempotent, by the previous paragraph
we deduce that A contains a non-trivial idempotent. In either case we have a
contradiction.

Finally, suppose z ∈ A. If z A is a proper right ideal of A then, as we have just
seen, it must be nilpotent. Consequently, if z ∉ rad A then z A = A and z has a
right inverse. Because A is Artinian, it follows that z is invertible. Hence each
element of A/rad(A) is invertible and therefore it is a division ring.

We can now state and prove the Krull-Schmidt theorem.

12.6.5 Theorem. Let M be a A-module. Any two presentations of M as a sum
of indecomposable A-modules differ only in the order of the summands.



130 CHAPTER 12. SEMISIMPLE MODULES

Proof. Suppose
M ∼=⊕r

i=1Mi
∼=⊕s

j=1N j

are two presentations of M as a sum of indecomposable A-modules. Let π de-
note projection of M onto M1. Then there is an index j such that π(N j ) 6= 0, we
may assume without loss that j = 1. Let σi denote projection of M onto N1. All
these projections lie in EndA (M) and 1 =∑

i σi .
The restriction to M1 of the product σiπ lies in EndA (M1) and so either

it is invertible, or it is nilpotent and lies in rad(EndA (M1)). If σiπ�M1 lies in
rad(EndA (M1)) for all i then the sum of these maps, which is the restriction of
π to M1, also lies in rad(EndA (M1)). But π�M1 is an isomorphism, hence there
is an index j such that σ jπ�M1 is an isomorphism. We may assume without
loss that j = 1.

If σ1π�M1 is an isomorphism then σ1�M1 is surjective, by Corollary 12.6.3.
Therefore π�M1 must be injective and so, from the proof of Theorem 12.6.2, we
see that it must be an isomorphism. The kernel ofσ1π is the kernel ofσ1, as the
restriction of σ1π to M1 is injective, the kernel of σ1π is disjoint from its range.
Therefore

M ∼= M1 ⊕ker(σ1π) = M1 ⊕N2 ⊕·· ·⊕Ns

and the theorem follows by induction.
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Semisimple Algebras

13.1 Semisimple Algebras

An algebra is semisimple if its regular module is semisimple. We have seen that
the regular module of the group algebra F[G] is semisimple if |G| is invertible in
F, hence in this case the group algebra is semisimple. We begin by presenting
some alternative characterizations of semisimple algebras.

13.1.1 Theorem. Let A be an Artinian algebra. The following assertions are
equivalent:

(a) A is semisimple,

(b) Every right ideal of A is of the form eA , where e is an idempotent,

(c) Every non-zero ideal contains a non-zero idempotent,

(d) A has no non-zero nilpotent ideals,

(e) A has no non-zero nilpotent right ideals.

Proof. Suppose A is semisimple. We prove (a) implies (b). Let N be a minimal
right ideal. Then N has a complement I and

A =A 2 = (I +N )2 = I 2 +N 2 ⊆ I +N 2.

Hence N 2 6= 0 and so, by Lemma 12.1.2, we see that N = eA for some idempo-
tent e. Now let I be a right ideal of A and let N be a minimal ideal contained in
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I . Then I = I1⊕N , where I1 is a right ideal contained in I . By induction I1 = f A

for some idempotent f , orthogonal to e. Consequently e+ f is idempotent and
generates I .

Clearly (b) implies (c). If (c) holds and I is an ideal in A then I contains a
non-zero idempotent e. We have

e = er ∈ I r ,

whence I is not nilpotent. Thus (d) holds. By our remarks at the end of Sec-
tion 12.1, if A contains a nilpotent right ideal it contains a nilpotent ideal. So
(d) implies (e). Finally it is not hard to see that (e) implies (b), and that (b) im-
plies (a).

13.1.2 Lemma. An algebra is semisimple if and only if it has a faithful semisim-
ple module.

Proof. Suppose M is a faithful semisimple module for A , and that it is the direct
sum of simple modules M1, . . . , Mr . If I is an ideal in A then for some i , we have
Mi I 6= 0. As Mi is simple, Mi I = Mi and therfore Mi I r = Mi for all r . So no ideal
of A is nilpotent. The converse is immediate.

By way of example let V be a vector space over F and suppose A = End(V ).
Then V is a faithful simple module for A and therefore A is semisimple. In this
case, it is less easy to prove directly that the regular module is semisimple.

An algebra is simple if it has no proper non-zero ideals. By the theorem
above a simple Artinian algebra is semisimple. But, apparently, the Weyl alge-
bra is Noetherian, simple and not semisimple. (So the terminology lacks per-
fection.)

The next result can be used to show that a given algebra is not semisimple;
it offers the advantage that it allows us to work with a commutative algebra.

13.1.3 Lemma. If A is semisimple then its center Z (A ) is semisimple.

Proof. We prove the contrapositive. Suppose that Z (A ) is not semisimple.
Then by Theorem 13.1.1 it contains a non-zero nilpotent ideal, N say. Since N
is central, NA is a non-zero ideal and is nilpotent. Therefore A is not semisim-
ple.

We remark that even if A is semisimple, the algebra A ⊗A op need not be
semisimple. It is if F is perfect, for example if F is finite or has characteristic
zero. (Look up separable algebras in D&K for details.)
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13.2 Simple Artinian Algebras

We characterize simple Artinian algebras. The canonical example is End(M),
where M is a finite-dimensional vector space over F. We verify that End(M) is
simple when M is a vector space over a field F.

13.2.1 Theorem. The algebra End(V ) is simple.

Proof. We identify End(V ) with Matn×n(F) Suppose N is a non-zero ideal in
Matn×n(F). If u, v, w, x ∈V , then uvT and w xT belong to Matn×n(F) and so

uvT N w xT ∈ N .

If vT Nu = 0 for all v and w , then vT N = 0 for all v . It follows that AN = 0 for all
A in Matn×n(F), and so N = 0. Thus for some v and w we have vT N w 6= 0 and
therefore

uvT N w xT = u(vT N w)xT

consists of scalar multiples of uxT . Since u and x are arbitrary we find that N
contains all matrices with rank one, and therefore N = Matn×n(F).

If e is an idempotent in e then eA e is readily seen to be an algebra with
identity element e. (Thus it is not a subalgebra of A , because it does not con-
tain 1 in general. However eA e + (1−e)A (1−e) is a subalgebra.)

13.2.2 Lemma. Let e be an idempotent in A . If A is simple, so is eA e.

Proof. Suppose that I is a non-zero ideal in eA e (which does not mean it is an
ideal in A). Then I = eIe and so

I = eA e I eA e = eA IA e.

Now A IA is a non-zero ideal in A , hence it equals A and therefore I = eA e.

The argument in the above proof actually shows that if I is an ideal in eA e
then I = e Je for some ideal J of A .

Our next result implies that any isomorphism between summands of the
regular module of A can be realized by left multiplication by elements of A .

13.2.3 Lemma. Let e and f be idempotents in the algebra A and suppose that
eA ∼= f A . Then there are elements a and b in A such that aeA = f A and
b f A = eA .
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Proof. Let ψ be an isomorphism from eA to f A . Then there are elements x
and y in A such that

ψ(e) = f x, ψ−1( f ) = e y.

Then
e =ψ−1( f x) =ψ−1( f · f x) =ψ−1( f ) f x = e y f x

and, similarly, f = f xe y . If

a := f xe, b := e y f ,

it follows that left multiplication by b is an isomorphism from eA to f A and
left multiplication by a is an isomorphism from f A to eA . As ab = e and ba =
f , these isomorphisms from an inverse pair.

13.2.4 Lemma. Let A be an algebra, let M be a simple submodule of A and let
I be the sum of all submodules of A isomorphic to M . Then I is an ideal.

Proof. Let M denote the set of all submodules of A isomorphic to M . Let e
be a primitive idempotent such that M = eA and let f be a second idempo-
tent. If f A ∼= eA then, by Lemma 13.2.3, there is an element a in A such that
f A = aeA . Consequently every simple submodule in M lies in the ideal A eA .
Clearly A eA is a sum of submodules of the form aeA , and by Corollary 11.5.2
these are all isomorphic to eA .

The proof of the next result is left as an exercise, it is a modest generalization
of the fact that

End(Rn) ∼= Matn×n(R).

13.2.5 Lemma. If M is an A -module, then EndA (M n) ∼= Matn×n(EndA (M)).

13.2.6 Theorem. Let A be a simple Artinian algebra over F. Then A ∼= Matn(D),
where D is a division ring over F.

Proof. If A is a division algebra we have nothing to do, so assume is not a divi-
sion algebra. Then it contains a non-zero element u which is not invertible and
therefore uA is proper non-zero right ideal. Since A is Artinian we conclude
that A contains a minimal right ideal eA , where e is a primitive idempotent.
Because A is simple it cannot contain a non-zer nilpotent ideal, and hence it
is semisimple. Now Lemma 13.2.4 implies that A is the sum of submodules
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isomorphic to e A therefore A is isomorphic to a direct sum of copies of e A.
Consequently

Aop ∼= EndA (A ) ∼= EndA ((eA )n) = Matn×n(EndA (eA )).

Since e A is simple, EndA (eA ) is a division ring by Schur’s lemma.

Lemma 13.2.4 implies that, if A is a simple Artinian algebra and M is a sim-
ple submodule of A then A is isomorphic to a direct sum of copies of M . It fol-
lows from the Jordan-Hölder theorem (Theorem 13.3.1) that a simple Artinian
algebra has a single isomorphism class of simple modules.

13.2.7 Corollary. If A is a simple Artinian algebra and M and N are modules
over A then M and N are isomorphic if and only if they have the same dimen-
sion.

13.2.8 Lemma. If A is semisimple, any simple A -module is isomorphic to a
submodule of A .

Proof. Let M be a non-zero simple A-module. As A is semisimple, it is a direct
sum of simple submodules and, as M 6= 0, it follows that there is a simple sub-
module I such that M I 6= 0. Hence there is an element m of M such that mI 6= 0.
Then mI is a non-zero submodule of M and therefore mI = M . Consequently
M ∼= I .

We conclude with some exercises. If e is an idempotent in A and M is an
A -module, show that

HomA (eA , M) ∼= Me.

(This is an isomorphism of vector spaces.) Consequently, if e and f are idem-
potents then

HomA (eA , f A ) ∼= f A e.

Show further that HomA (eA ,eA ) and (eA e)op are isomorphic as algebras.

13.3 Composition Series

Let M be a module over A. A chain of submodules of M :

M = M0 ≥ M1 ≥ ·· · ≥ Mr = 0
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is a composition series of length r if each quotient Mi /Mi+1 is simple and not
zero. Thus a module has positive length, and its length is one if and only if it is
simple. If A = F then the length of M is just its dimension over F.

The following result is known as the Jordan-Hölder theorem. The proof is
an exercise in the use of the isomorphism theorems.

13.3.1 Theorem. Let M be a module over A that is Artinian and Noetherian.
Then M has a composition series; further any two such series have the same
length and the number of times a given simple module occurs in a series is
independent of the choice of series.

13.3.2 Corollary. Let M be a module over A with finite length. If N is a sub-
module of M , the sum of the lengths of M/N and N is the length of M .

A module M is Noetherian and Artinian if and only it has a composition
series of finite length. It can be shown that any Artinian module is Noetherian.
Essentially all the modules we discuss will be Artinian, because they will be
vector spaces of finite dimension.

13.3.3 Lemma. Let A be a semisimple algebra over F and let M be a simple A -
module such that EndA (M) ∼= F. Then the multiplicity of M in a composition
series for A is dim M .

Proof. Suppose e is an idempotent in A and ψ ∈ HomA (eA , M). If ψ(e) = m
then

m =ψ(e) =ψ(e2) =ψ(e)e = me

and
ψ(ea) =ψ(e)a = mea.

Therefore ψ(eA ) = meA .
Now assume that e is a primitive idempotent. Then eA is a simple submod-

ule of A and, if ψ 6= 0 then meA is submodule of M isomorphic to eA . As this
holds for all m in M such that meA 6= 0, we see that MeA is the sum of sub-
modules isomorphic to eA . Since A is semisimple, M is too, and we conclude
that MeA is isomorphic to (eA )r , for some integer r . Consequently

HomA (eA , M) = HomA (eA , (eA )r )

and, as Me ∼= HomA (eA , M), we infer that

dim(Me) = r dimEndA (eA ).

Applying this to the regular module, we find that the multiplicity of eA as a
composition factor in A is dim(A e)/dim(EndA (eA )), as required.
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One canonical application of this result is to the group ring A = C[G]. In
this case A is semisimple and, if V is a simple A -module then EndA (V ) ∼= C.
It follows immediately that |G|, the dimension of A , is equal to the sum of the
squares of the dimensions of the distinct simple A -modules.

By way of example, suppose G is the symmetric group on three symbols.
We see that A is either the sum of six pairwise non-isomorphic 1-dimensional
modules, or two 1-dimensional modules and two 2-dimensional modules. But
each element of A acts on a 1-dimensional module as a scalar, and so in the
first case each element of A can be represented in its action on the regular
module as a diagonal matrix. This implies that A is commutative, but it is not.
Therefore the second alternative holds.

13.4 Semisimple Artinian Algebras

We now derive the fundamental theorem on the structure of semisimple Ar-
tinian algebras: Wedderburn’s theorem.

13.4.1 Theorem. A semisimple Artinian algebra is isomorphic to a direct sum
of matrix algebras over division rings.

Proof. Suppose A is semisimple and Artinian. Then there are primitive idem-
potents e1, . . . ,en such that

A ∼=⊕i ei A .

Define two idempotents e and f in A to be equivalent if eA ∼= f A. Let [ei ] de-
note the set of idempotents e j ( j = 1, . . . ,n) that are equivalent to ei . We define

I := ∑
e j∈[ei ]

e j A .

We show that I is an ideal in A . Suppose K = aeA 6= 0. Then by Corol-
lary 11.5.2 it is isomorphic to ei A . If K is not contained in I then K ∩ I is a
proper submodule of K , hence K ∩ I = 0. Thus, if I is the direct sum of m copies
of ei A then K + I is isomorphic to the direct sum of m+1 copies of ei A . By the
Jordan-Hölder theorem, all composition series for A contain the same number
of copies of the simple module ei A and, by our definition of I , this number is
m. We conclude that K ⊆ I . It follows that I is an ideal in A .

Next we prove I is a minimal ideal. Suppose J is a non-zero ideal of A con-
tained in I . By the Jordan-Hölder theorem, J must contain a submodule N iso-
morphic to ei A . By Lemma 13.2.3 we have ei A = aN for some a in A , whence
ei A ≤ J and J = I .
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Now define
J := ∑

e j 6∈[ei ]
e j A .

Then because it is a sum of ideals, J is an ideal in A . Since I ∩ J = 0 we see that
I is a summand of A , viewed as a module over A op ⊗A and hence I = f A for
some central idempotent f . Consequently it is an algebra (with identity f ). As
J I = I J = 0, each ideal of I is an ideal of A and therefore I is a simple algebra.

It follows that, if A is semisimple, there are primitive central idempotents
f1, . . . , fr such that A is the direct sum of the algebras fi A . (Since fi is cen-
tral fi A = A fi A .) The above proof shows that if eA is a simple submodule
of A , then A eA is a summand of A , and hence A eA = gA for some central
idempotent g . It follows that if f is primitive and central, then f A is a simple
algebra. We conclude the decomposition of a semisimple Artinian algebra A

into simple subalgebras can be computed by first determining the decomposi-
tion of Z (A ) into simple algebras. In practice this is less useful than it appears,
because it is usually not easy to determine the center of A .

A semisimple Artinian algebra is said to be split if it is isomorphic to a di-
rect sum of full matrix algebras over its underlying field. The cheapest way of
arranging this is to have the underlying field algebraically closed. An algebra is
split if the minimal polynomial of each element is linear.

13.4.2 Corollary. A split commutative semisimple algebra has a basis of idem-
potents.

13.5 Representations

The theory we have developed is very powerful, but even so does not go quite
far enough. The issue is that in practice we will not be working just with an
algebra, but rather an algebra A and a module M on which it acts. Our module
M will be semisimple and faithful, and so A will be semisimple. Consequently
M decomposes as a sum of simple submodules and A decomposes into a sum
of matrix algebras, the problem is to decide how these two decompositions fit
together.

Suppose A is a semisimple Artinian algebra and M is module for A . Let
e1, . . . ,er be central primitive idempotents in A such that

A =⊕r
i=1ei A
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is the decomposition of A into simple algebras. Then Mei is a submodule of
M and if x ∈ Mei ∩Me j , then since x ∈ Mei we have x = xei and so if i 6= j ,

xe j = xei e j = 0.

Hence M is the direct sum of the submodules Mei . Now Mei is a module for the
simple Artinian algebra ei A , and therefore it is isomorphic to the direct sum of
copies of some simple module Ni . Note that Ni is a simple module for A too.
Since N j is annihilated by ei and Ni is not, Ni and N j are not isomorphic as
A -modules.

13.6 Centralizers

Suppose M is a vector space over F and A is a subalgebra of End(M); equiv-
alently let M be a faithful A -module. Assume B = EndA (M). Thus B is the
centralizer of A in End(M) and M is a left B-module. Our goal is to further
study the relation between A and B. We have already seen that the idempo-
tents in B determine the summands of M (viewed as an A -module). If

C := EndB(M)

then A is contained in C and M is a right C -module. As B ≤ EndC (M), the
idempotents of B determine summands of M , viewed as C -module. Thus any
summand of M relative to A is a summand relative to C .

13.6.1 Lemma. Suppose that M is a faithful semisimple A -module, B = EndA (M)
and C = EndB(M). If x1, . . . , xm are elements of M and c ∈ C then there is an
element a in A such that, for all i ,

xi a = xi c

Proof. As M is semisimple, so is M n . Hence

N = (x1, . . . , xm)A

is a summand of M n . Suppose

B′ := EndA (M n), C ′ := EndB′(M n).

Then N is a C ′-module. As C imbeds isomorphically in C ′ via the diagonal
map c 7→ (c, . . . ,c), we obtain

(x1, . . . , xm)A = N = NC = (x1, . . . , xm)AC = (x1, . . . , xm)C .

This implies the statement of the lemma.
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13.6.2 Corollary. If M is a finite dimensional faithful semisimple A -module
and B = EndA (M) then EndB(M) ∼=A .

Note that this corollary implies that if M is faithful and semisimple and
EndA (M) ∼= F then A ∼= EndF(M). The following result is from Goodman and
Wallach [?, Section 3.3]

13.6.3 Theorem. If A is a semisimple subalgebra of Matn×n(C), then

A ∼=⊕k
i=1(Imi ⊗Matdi×di (C))

and
EndA (Cn) ∼=⊕k

i=1(Matmi×mi (C)⊗ Idi ).

We note some consequences.

13.6.4 Theorem. Let V be a vector space over an algebraically closed field. Any
proper subalgebra of End(V ) fixes a non-zero proper subspace of V .

Proof. Suppose A is a subalgebra of End(V ). If A does not fix a proper sub-
space of V , then V is a simple module for A . Hence EndA (V ) ∼= C, and there-
fore by Corollary 13.6.2, it follows that A ∼= End(V ).

13.6.5 Corollary. If V is a vector space over an algebraically closed field F and
A is a commutative subalgebra of End(V ), there is a basis of V with respect to
which A is triangular.

Proof. Suppose dim(V ) = d . We have to show that there are submodules

V0 ≤V1 ≤ ·· · ≤Vd

where dim(Vi ) = i (and so V0 = 0 and Vd =V ).
We first prove that a commutative subalgebra must fix some subspace of

dimension one. Assume dim(V ) ≥ 2. Then End(V ) is not commutative and so
A is a proper subalgebra. By the theorem it fixes a non-zero proper subspace
U of V . If dim(U ) > 1, then A acts as a commutative algebra on U and so by
induction we may assume that dim(U ) = 1. (Hence U is spanned by a common
eigenvector for A .)

Now A acts as a commutative algebra on the quotient module V /U and by
induction again we V /U contains a chain of submodules

W0 ≤ ·· · ≤Wd−1.

Together with U we get the required chain of submodules in V .
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13.7 Trace

A trace on an algebra A is a linear map τ from A to F such that τ(ab) = τ(ba)
for all a,b in A . Thus a trace is an element of the dual vector space A ∗. If
a ∈A , then the map

τa : x 7→ τ(ax)

is also in A ∗, and the map
a → τa

is a linear map from A to A ∗. We say that τ is non-degenerate if this second
map is an injection. There is a second way of looking at this. The map that
takes (a,b) in A ×A to τ(ab) is a symmetric bilinear form on A and τ is non-
degenerate if and only if this form is non-degenerate. You might also show that
τ is non-degenerate if and only if its kernel does not contain a right ideal of A .

A bilinear form 〈a,b〉 is associative if

〈a, xb〉 = 〈ax,b〉

for all a,b, x in A .
We leave the proof of the following result as an exercise.

13.7.1 Lemma. A bilinear form 〈a,b〉 arises from a trace if and only if it is sym-
metric and associative.

If a1, . . . , ad is a basis for A , we say that b1, . . . ,bd is a dual basis if

〈ai ,b j 〉 = δi , j .

If c ∈A then
c =∑

i
〈c,bi 〉ai ;

thus a dual basis provides a cheap way of expressing elements of A as linear
combinations of the basis vectors. If A admits a non-degenerate symmetric
bilinear form then each basis has a dual basis. If a dual basis exists, it is unique.

13.8 Maschke

13.8.1 Lemma. Let A be an algebra with a non-degenerate trace tr, let a1, . . . , ad

be a basis for A and let a∗
1 , . . . , a∗

d be its dual basis. If M and N are modules over
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A and ϕ ∈ Hom(M , N ) and
[ϕ] :=∑

i
aiϕa∗

i

then [ϕ] ∈ HomA (M , N ). Further, [ϕ] is independent of the basis.

Proof. For c in A we have

c[ϕ] =∑
i

caiϕa∗
i

=∑
i

∑
j
〈cai , a∗

j 〉a jϕa∗
i

=∑
j

a jϕ
∑

i
〈cai , a∗

j 〉a∗
i

Now
〈cai , a∗

j 〉 = 〈a∗
j ,cai 〉 = 〈a∗

j c, ai 〉
and so the last sum equals∑

j
a jϕ

∑
i
〈a∗

j c, ai 〉a∗
i =∑

j
a jϕa∗

j c = [ϕ]c.

Therefore [ϕ] ∈ HomA (M , N ).
Now suppose b1, . . . ,bd is a second basis for A with dual basis b∗

1 , . . . ,b∗
d .

Then
ai =

∑
j
〈ai ,b∗

j 〉b j

and, since b1, . . . ,bd is a dual basis to b∗
1 , . . . ,b∗

d ,

a∗
k =∑

`

〈a∗
k ,b`〉b∗

`

Hence

δi ,k = 〈ai , a∗
k 〉 =

∑
j ,`
〈ai ,b∗

j 〉〈a∗
k ,b`〉〈b j ,b∗

`〉

=∑
j
〈ai ,b∗

j 〉〈a∗
k ,b j 〉.

Now
bi =

∑
j
〈bi , a∗

j 〉a j , b∗
i =∑

`

〈b∗
i , a`〉a∗

`
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and consequently ∑
i

biϕb∗
i = ∑

i , j ,`
〈bi , a∗

j 〉〈b∗
i , a`〉a jϕa∗

`

=∑
j ,`
δ j ,`a jϕa∗

`

= [ϕ].

Therefore the value of [ϕ] is independent of the choice of basis.

Our next result is a version of Maschke’s theorem; its form follows Halverson
and Ram [].

13.8.2 Theorem. If the trace map on the regular module for A is non-degenerate,
then any finite-dimensional A -module is semisimple.

Proof. We show that if M and N are A -modules and M ≤ N , then M has a
complement.

Since M is a subspace of N , there is an idempotent p such that N p = M and
y p = y for all y in M . If p ∈ End(N ) we define

[p] :=∑
i

ai pa∗
i

and we show that [p] ∈ HomA (M , N ) and [p] is an idempotent such that N [p] =
M . By Lemma 13.8.1, we know that [p] ∈ HomA (M , N ).

But first we consider the case where p = 1. Here we have

tr([1]b) =∑
i

tr(ai a∗
i b) =∑

i
〈bai , a∗

i 〉 = tr(b)

and accordingly
tr(([1]−1)b) = 0

for all b. Since the trace is non-degenerate, this implies that [1] = 1.
Suppose x ∈ N . For all i ,

xai pa∗
i ∈ M

and hence
x[p] =∑

i
x ai pa∗

i ∈ M .

So N [p] ≤ M . Now if y ∈ M , then for all i

y a∗
i p = y a∗

i
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and hence
y[p] =∑

i
y ai pa∗

i =∑
i

y ai a∗
i = y[1] = y.

Next we observe that

[1−p] = [1]− [p] = 1− [p]

is an idempotent in HomA (M , N ) that is orthogonal to [p]. It follows that N (1−
[p]) is a complement to M in N . We conclude that N is semisimple.

We work out the trace for the group algebra F[G]. If x ∈ F[G] and g ∈G , then
we use

〈g , x〉
to denote the coefficient of g in x. Then the trace tr(x) of x is given by∑

g∈G
〈g , xg 〉.

Since
〈g , xg 〉 = 〈1, x〉

it follows that
tr(x) = |G|〈1, x〉.

Now if g ∈G , then
tr(g x) = |G|〈1, g x〉 = |G|〈g−1, x〉

It follows that if |G| 6= 0 in F, then tr(g x) = 0 for all g in G if and only if x = 0.
Thus our trace is non-degenerate if |G| 6= 0, and this case F[G] is semisimple.
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Division Algebras

Among other things, we prove that finite division rings are fields.

14.1 Central Simple Algebras

An algebra A over a field F is central simple if is simple and Z (A ) = F. By way of
example, Matn×n(F) is central simple but C, viewed as an algebra over R, is not.
The centre of a simple algebra is always a field. To see this, suppose z ∈ Z (A ).
Then zA =A z is a 2-sided ideal in A and so equals A . Thus left multiplication
by z is a surjection on A . Next, the set

{a ∈A : za = 0}

is also a 2-sided ideal in A . Thus, if z 6= 0, then left multiplication by z is in-
jective. It follows that left multiplication by z is an isomorphism, hence z is
invertible.

14.1.1 Lemma. If A and B are algebras then Z (A ⊗B) ∼= Z (A )⊗Z (B).

Proof. Suppose that x = ∑
i ai ⊗bi ∈ A ⊗B. It is an easy exercise to show that,

if this representation of x has as few non-zero terms as possible then the ele-
ments ai are linearly independent, as are the elements bi . Suppose then that
x ∈ Z (A ⊗B) and that

x =∑
i

ai ⊗bi ,

where the bi are linearly independent. Then, for any z in A , x(z ⊗1) = (z ⊗1)x
and consequently ∑

i
(ai z − zai )⊗bi = 0.
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Since the bi ’s are linearly independent, this implies that ai z−zai = 0 for all z in
A , and for all i . Thus ai ∈ Z (A ) and x ∈ Z (A )⊗B.

Now assume that (14.1) holds with ai ∈ Z (A ) for all i and that the bi ’s are
linearly independent. If y ∈B then x commutes with 1⊗ y and therefore

ybi −bi y = 0

for all i . This shows that bi ∈ Z (B) and x ∈ Z (A )⊗ Z (B). It is evident that
Z (A )⊗Z (B) ⊆ Z (A ⊗B), so we are finished.

If A is an algebra over Rwith Z (A ) ∼=C then

Z (A ×A ) ∼=C⊗C∼=C⊕C.

Hence Z (A ⊗A ) is not a field.

14.1.2 Lemma. An algebra A is central simple over F if and only if A op ⊗A ∼=
End(A).

Proof. If A op ⊗A ∼= End(A) then, by the previous lemma,

F∼= Z (End(A)) ∼= Z (A op ⊗A ) ∼= Z (A op)⊗Z (A )

and therefore Z (A ) ∼= F. If I is proper non-zero ideal of A then A op ⊗ I is a
proper non-zero ideal of A op ⊗A . Since End(A) is simple we deduce that A is
simple.

For the converse note first that, if A is simple, then it is a simple module for
A op ⊗A . We also have

EndA op⊗A (A ) ∼= Z (A ) ∼= F.

We show next that A is a faithful module. If xay = 0 for all a in A then
xA y = 0 and thus xA yA = 0. Therefore the ideal A yA is a proper ideal and
so must be the zero ideal. Hence y = 0, and A is faithful.

It folllows now from Corollary 13.6.2 that A op ⊗A coincides with the cen-
tralizer in End(A) of EndA op⊗A (A ). As the latter is the centre of End(A), the
lemma is proved.

14.1.3 Lemma. If A is a central simple algebra over F and B is an algebra over
F then the ideals of A ⊗B are all of the form A ⊗ I , for some ideal I of B.
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Proof. Let a1, . . . , an be a basis for A and let Tk be the element of End(A) that
maps a` to δk,`. By the previous lemma there are elements xi in A such that,
for any u in A we have

Tk (u) =∑
i

xi uai .

Each element of A ⊗B can be written in the form
∑

i ai ⊗bi , for suitable bi .
Then we have(∑

j
x j ⊗1

)(∑
i

ai ⊗bi

)(∑
j

a j ⊗1

)
=∑

i , j
x j ai a j ⊗bi = 1⊗bk .

This shows that any ideal that contains
∑

i ai ⊗bi must contain 1⊗b j for all j .
Hence, if J is an ideal in A ⊗B and

I := {b ∈B : 1⊗b ∈ J },

then J =A ⊗ I .

The next result is the Noether-Skolem theorem.

14.1.4 Theorem. Let A be a central simple algebra and let B be a simple al-
gebra over F. If f and g are homomorphisms from B into A , then there is an
element a in A such that a−1 f (b)a = g (b), for all b in B.

Proof. If h is a homomorphism from B into A then we define an action of
A ⊗Bop on A by

a ⊗b : x 7→ h(b)xa.

Thus A is a module for A ⊗Bop, which we denote by A h .
As B is simple and A is central simple, A ⊗Bop is simple. Since A f and

A g are modules for this simple algebra and have the same dimension, they are
isomorphic. Let ψ be an isomorphism from A f to A g . Then for all b in B and
a, x in A ,

ψ( f (b)xa) = g (b)ψ(x)a.

If b = 1 this yields ψ(xa) =ψ(x)a, now setting x equal to 1 we see that ψ(a) =
ψ(1)a for all a in A . On the other hand if we put a and x equal to 1 here then
we find that ψ( f (b)) = g (b)ψ(1). As f (b) ∈A , we also have

ψ( f (b)) =ψ(1 f (b)) =ψ(1) f (b).

Therefore g (b)ψ(1) = ψ(1) f (b). Since ψ is an isomorphism, ψ(1) must be in-
vertible, and thus the proof is complete.
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14.2 Factors

We have
Matmn×mn(F) = Matm×m(F)⊗Matn×n(F)

and so I ⊗Matn×n(F) is a subalgebra of Matmn×mn(F). Our next result general-
izes this.

14.2.1 Theorem. Let A be a central simple algebra and let B be a subalgebra
of A . If B is simple then CA (B) is simple and

dim(A ) = dim(B)dim(CA (B));

if B is central simple then
A ∼=B⊗CA (B).

Proof. Our constraints on A and B imply that Bop ⊗A is simple, let P be a
minimal right ideal in it. Then

D := EndBop⊗A (P )

is a division ring and Bop ⊗A ∼= Matn×n(D). Hence

dim(B)dim(A ) = n2 dim(D).

We show next that CA (B) ∼= EndBop⊗A (A ). Ifψ ∈ EndBop⊗A (A ) then for all
b in B and x, a in A , we have

ψ(bxa) = bψ(x)a.

Setting b equal to 1 here yieldsψ(xa) =ψ(x)a, whenceψ(a) =ψ(1)a for all a in
A . Setting a equal to 1 and noting that b ∈A we also find that

bψ(1) =ψ(b ·1) =ψ(1 ·b) =ψ(1)b.

It follows that the map ψ 7→ ψ(1) is an isomorphism from EndBop⊗A (A ) to
CA (B).

As A is a finite dimensional module over Bop⊗A , it is isomorphic to P k for
some k and therefore

CA (B) ∼= EndBop⊗A (A ) ∼= Matk×k (D).
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Consequently CA (B) is simple with dimension k2 dim(D) and, as

dim(A ) = k dim(P ) = kn dim(D)

it follows that

dim(B)dim(CA (B)) = dim(A ).

Let x1, . . . , xr be a linearly independent subset of B and suppose y1, . . . , yr

lie in CA (B). We will show that if

r∑
i=1

xi yi = 0,

then yi = 0 for all i . Given this it follows easily that if b1, . . . ,br is a basis for B

and c1, . . . ,cs is a basis for CA (B) then the r s products bi c j are linearly inde-
pendent. This implies that BCA (B) spans A and hence B⊗CA (B) ∼=A .

To prove our claim we note that, since B is central simple, B⊗Bop ∼= EndF(B).
So there are elements v j k , w j k in B such that∑

k
v j k xi w j k = δi j I

and therefore ∑
k

v j k xi yi w j k =∑
k

v j k xi w j k yi = y j ,

which is all we require.

It follows from the the first part of this theorem that, if B is simple then
CA (B) is simple and hence that CA (CA (B)) has the same dimension as B. As
CA (CA (B)) contains B this provides a second proof of the double centralizer
theorem, at least when B is simple.

14.3 Finite Division Algebras

If F is a division algebra, let F∗ denote F \0, viewed as a multiplicative group.
We have another important result, again due to Wedderburn.

14.3.1 Theorem. A finite division ring is a field.
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Proof. Let D be a finite division ring. Its centre is a field, which we denote by F .
If x ∈ D \F then x and F generate a commutative subalgebra of D , necessarily
a field. We assume by way of contradiction that D 6= F . It follows that there is a
maximal subfield E of D such that D > E > F .

If x ∈ CD (E) then E and x together generate a commutative subalgebra of
D , which is necessarily a field. Hence E =CD (E). Since E is simple,

dim(E)dim(CD (E)) = (dim(E))2 = dim(D),

and we have shown that all maximal subfields of D have the same order. Hence
they are all isomorphic and, by the Noether-Skolem theorem, it follows that
they are all conjugate.

Suppose m = |D∗ : E∗|. If x and y are elements of D∗ in the same coset
of E∗ then x−1E x = y−1E y , whence E∗ has at most m distinct conjugates in
D∗. If |F | = q then |D∗| = q`−1 and |E∗| = qk −1 for some ` and k, and (q`−
1)/(qk −1) = m. Hence the number of elements of D in a conjugate of E is at
most m(qk −2)+1, but

m(qk −2)+1 < m(qk −1) = q`−1.

As every element of D lies in a maximal subfield, this is impossible.

The argument in the above proof implies that the dimension of a finite-
dimensional division ring is a perfect square. Thus the quaternions have di-
mension four over R, for example.

We add a few comments related to the quaternions. The norm of quaternion
h = a +bi + c j +d j is

(a2 +b2 + c2 +d 2)1/2.

We call h pure if a = 0, and will use the Noether-Skolem theorem to show that all
pure quaternions of norm 1 are conjugate. As we may identify the pure quater-
nions of norm 1 with the unit sphere inR3, it follows that we have an action ofH
on this sphere. (In fact H acts as a group of orthogonal transformations, which
is not hard to see.)

If p = bi + c j +dk is a pure quaternion, then

p2 =−(b2 + c2 +d 2).

Thus if p is a pure quaternion with norm 1 then p2 =−1. On the other hand, if
a ∈R and p is a pure quaternion then

(a +p)2 = a2 +p2 +2ap;
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hence (a +p)2 is real if and only if ap = 0. Thus the solutions in H to the equa-
tion t 2 +1 = 0 are the pure quaternions of norm 1.

If p2 = q2 =−1 then {1, p} and {1, q} are isomorphic subalgebras ofH, where
the isomorphism maps p to q . So, by the Noether-Skolem theorem, there must
be an element a of H such that a−1pa = q . This shows that all pure quaternions
are conjugate inH.

14.4 Real Algebra

The following comes from; S. H. Kulkarni, A very simple and elementary proof
of a theorem of Ingelstam, American Math. Monthly, 111 (1), 2004, 54–58.

The norm condition in the statement of the following theorem holds if we
have

‖x y‖ ≤ ‖x‖‖y‖
for all x and y .

14.4.1 Theorem. Let A be a real algebra (with unit). Assume A is an inner prod-
uct space such that ‖I‖ = 1 and ‖a2‖ ≤ ‖a‖2 for all a. Then A is isomorphic to
R, C orH.

Proof. First we show that if x ∈ I⊥ and ‖x‖ = 1, then x2 =−1.
If t ∈R, then

‖t I +x‖2 = ‖t I‖2 +‖x‖2 +2〈x, I 〉 = t 2 +1.

By our norm condition,
‖(t I +x)2‖ ≤ ‖t I +x‖2

and therefore

(t 2 +1)2 ≥ ‖(t I +x)2‖2 = 〈t 2I +2t x +x2, t 2I +2t x +x2〉
= t 4 +2t 2〈I , x2〉+4t 2 +4t〈x, x2〉+〈x2, x2〉

This implies that, for all real t

2t 2(1+〈I , x2〉)+4t〈x, x2〉+‖x2‖2 −1 ≤ 0.

Hence the coefficient of t 2 in this quadratic must be non-negative and therefore

〈I , x2〉 ≤−1.
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By Cauchy-Schwarz,

〈I , x2〉2 ≤ ‖I‖2‖x2‖2 = ‖x2‖2 ≤ ‖x‖4 = 1,

whence 〈I , x2〉 ≥ −1. Hence equality holds in the Cauchy-Schwarz inequality,
and therefore x2 = uI for some real number u. Therefore x2 =−1.

Next we show that if x and y are orthogonal elements of norm 1 in I⊥, then
x y =−y x. We have x2 = y2 =−1. If

z := 1p
2

(x + y)

then ‖z‖ = 1. Since z ∈ I⊥ it follows that

−1 = z2 = 1

2
(x2 + y2 +x y + y x) =−1+ 1

2
(x y + y x).

Therefore x y + y x = 0.
This brings us to the proof of the theorem. If I⊥ = {0}, then A is spanned by

I and consequently A ∼= R. Assume I⊥ 6= {0} and let x be a vector of norm 1 in
I⊥. Then x2 =−1; if dim(A) = 2 it follows that A ∼=C.

We assume that dim(A) ≥ 3 and that {I , x, y} is an orthonormal set in A. Let
z = x y . Then

z2 = x y x y =−y xx y = y2 =−1.

Similarly
y z = z, z y =−x, zx = y, xz =−y.

If a,b,c,d ∈R and u = aI +bx + c y +d z, then

(aI +bx + c y +d z)(aI −bx − c y −d z) = (a2 +b2 + c2 +d 2)I .

Hence u = 0 if and only if a = b = c = d = 0, and therefore {I , x, y, z} are linearly
independent and their span is isomorphic toH.

Thus the theorem holds in dim(A) ≤ 4, and otherwise there is an orthonor-
mal set {I , x, y, z,u}. Then u2 =−1 and

xu +ux = yu +uy = zu +uz = 0.

Consequently
uz = ux y −xuy = x yu = zu =−uz

and uz = 0. But
(uz)2 = uzuz =−uzzu = u2 =−1,

a contradiction.
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Work

15.1 Classical Parameters

A distance-regular graph of diameter d has classical parameters if there are
scalars q , α, β such that

bi = ([d ]− [i ])(β−α[i ]),

ci = [i ](1+α[i −1]).

Here

[i ] := q i −1

q −1
.

We have
ai = [i ](β−1+α([d ]− [i ]− [i −1])), i = 1, . . . ,d

and
k = [d ]β, c2 = (1+q)(1+α), a1 = (β−1+α([d ]−1)).

15.1.1 Theorem. If X is a distance-regular graph with classical parameters (d , q,α,β),
with d ≥ 3. Then

α= c2

q +1
−1, β= k

[d ]
.

and q is an integer, not 0 or −1. Further, one of the following holds:

(a) ai = a1ci for i = 2, . . . ,d and q =−a1 −1.

(b) ai 6= a1ci for some i , and

q = a2c3 − c2a3

a1c3 −a3
.
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Proof. If q = 0, then [2] = [1] and b2 = 0. If q = −1, then [i ] = 0 when i is even
and c2 = 0.

Next we observe that

ai = [i ](a1 −α([i ]+ [i −1]−1))

and therefore

ai −a1ci = [i ](a1 −α([i ]+ [i −1]−1))−a1[i ](1+α[i −1])

= [i ](a1 −α([i ]+ [i −1]−1)−a1 −a1α[i −1])

=−α[i ](([i ]+ [i −1]−1)+a1[i −1])

=−α[i ]((q +1)[i −1]+a1[i −1])

=−α[i ][i −1](q +1+a1).

In particular
a2 −a1c2 =−α(q +1)(q +1+a1) (15.1.1)

and thus

ai −a1ci =
[

i

2

]
(a2 −a1c2).

Therefore a2 − a1c2 divides ai − a1ci and consequently [i ][i − 1] is an integer,
from which it follows that q is an algebraic integer. Next

c3 = [3](1+α[2]), c2 −q = [2](1+α)−q = 1+α[2],

implying that c3 = [3](c2 −q). Now

c3(a2−a1c2) = (c2−q)[3](a2−a1c2) = (c2−q)

[
3

2

]
(a2−a1c2) = (c2−q)(a3−a1c3)

and therefore

q(a1c3 −a3) = c3(a2 −a1c2)− c2(a3 −a1c3) = c3a2 − c2a3.

So if a2 −a1c2 6= 0, then

q = c3a2 − c2a3

a1c3 −a3
;

since this is rational q must be an integer.
Finally assume that a2 − a1c2 = 0. Then ai = a1ci for i = 2, . . . ,d and, from

eq:a2a1c2, q +1+α= 0.
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Adjacency Algebras

16.1 Extending the Adjacency Algebra

Suppose V is an inner product space and A is a subalgebra of End(V ) that is
closed under taking adjoints (i.e., closed under transposes in the real case). If
U is a submodule of V , then U⊥ is also a submodule. We see immediately that
V is an orthogonal direct sum of irreducible modules (andA is semisimple). In
this context we could refer to A as a C∗-algebra, or as a finite-dimensional Von
Neumann algebra. (Our preference is for the latter.)

In this section we study a special class of self-adjoint algebras. Let X be a
graph on v vertices with adjacency matrix A, let h be a nonzero vector in Rv

and let H denote the matrix hhT . We study the algebraA= 〈A, H〉 generated by
A and H .

Suppose U is an irreducible module for this algebra. If u is a vector in U
such that Hu 6= 0, then

Hu = (hT u)h ∈U

and therefore h ∈ U . Accordingly U contains the A-module generated by h;
since U is irreducible it follows that U is generated by h. We call the module
generated by h the standard module forA.

Now suppose T is an A-module such that T ∩U = 0. If v ∈ T and H v 6= 0,
then h ∈ T , a contradiction. Therefore H v = 0 and, since T is a module, H Ar v =
0 for all r . Since A is symmetric, it follows that 〈Ar h, v〉 = 0 for all r and therefore
T ≤U⊥.

We can summarize our discussion with the following pile of words.

155
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16.1.1 Theorem. Let X be a graph on v vertices with adjacency matrix A, let h
be a nonzero vector in Rv and let H denote the matrix hhT . Finally, letA be the
algebra generated by A and H . Then Rv is the direct sum of the standard mod-
ule U and a set of 1-dimensional subspaces, each spanned by an eigenvector
for A orthogonal to h. If m = dim(U ), then dim(A) = m2 −m + v and A is the
direct sum of End(U ) and v −m copies of R.

Here End(U ) is isomorphic to the full algebra of m ×m real matrices. This
follows from the general theory, but we can offer a direct argument.

16.1.2 Lemma. If the standard module U for A has dimension m and is gener-
ated by h, then the m2 matrices

Ai hhT A j , (0 ≤ i , j ≤ m −1)

are linearly independent.

Proof. First we show that the vectors Ai h for i = 0, . . . ,m − 1 are linearly in-
dependent. If the are not, then they span an A-invariant subspace of U with
dimension less than m. Since

H Ai h = (hT Ai h)h

this subspace is H-invariant and so it is an A=module. As U is irreducible, we
conclude that our set of vectors is linearly independent.

To complete the proof, we need to show that if the vectors u1, . . . ,um are
linearly independent elements of U , then

ui uT
j , (0 ≤ i , j < m)

are linearly independent (elements of End(U )). We leave this as an exercise.

16.2 Some Applications

Our main application of the theory in the previous section is to the case where
the vector h is the characteristic vector of a subset of V (X ), perhaps V (X ) itself.

16.2.1 Lemma. Suppose h is the characteristic vector of the subset S of V (X ).
The permutation matrices that commute with A and hhT are the automor-
phisms of X that fix S as a set.
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16.2.2 Corollary. Let X be a graph on v vertices and let S be a subset of V (X )
with characteristic vector h. If the standard module for 〈A,hhT 〉 has dimension
v , then 〈A,hhT 〉 is the algebra of all v ×v matrices, and the only automorphism
of X that fixes S is the identity.

The standard module has dimension v if and only if the vectors Ai h for i ≥ 0
span Rv .

16.2.3 Corollary. If the vectors Ai 1 span Rv , then Aut(X ) is trivial.

16.2.4 Corollary. Let er be the r -th standard basis vector for Rv . If the vectors
Ai er span Rv , then the stabilizer in Aut(X ) of the r -th vertex of X is trivial.

Some writes define the main eigenvalues of A to be those eigenvalues θ
such that there is an eigenvector z for θ which is not orthogonal to 1. The num-
ber of main eigenvalues equal the dimension of the standard module generated
by 1. (Here H = J .) We can extend this to the general case.

16.2.5 Lemma. Let A be a symmetric matrix with spectral decomposition A =∑
θEθ. Then the dimension of the standard module relative to h is equal to the

number of eigenvalues θ such that hT Eθh 6= 0.

Proof. The non-zero vectors of the form Eθh form a basis for U . Since E 2
θ
= Eθ =

E T
θ

, we have

hT Eθh = hT E 2
θh = hT E T

θ Eθh = ‖Eθh‖2.

Hence hT Eθh = 0 if and only if Eθh = 0.

16.3 Cospectral Awful Graphs

16.3.1 Theorem. Suppose X is an awful graph with adjacency matrix A and Y
is a graph with adjacency matrix B . If tr(Ar J ) = tr(B r J ) for all non-negative
integers r , then X and Y are cospectral with cospectral complements.

Proof. The n2 matrices Ar J As , where 0 ≤ r, s < n form a basis for M = Matn×n(R).
Therefore there is a unique linear mappingΨ from M to itself such that

Ψ(Ar J As) = B r JB s .
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Now

tr(A j J Ai Ar J As) = tr(A j+s J Ai+r J )

= 1T A j+s1 1Ai+r 1

= tr(A j+s J ) tr(Ai+r J ).

The last line here is equal to tr(B j+s J ) tr(B i+r J ) and so we deduce that, for all r
and s,

〈Ai J A j , Ar J As〉 = 〈B i JB j ,B r JB s〉.
The matrices Ar J As are linearly independent and therefore their Gram matrix
(with respect to the trace inner product) must be invertible. Consequently the
Gram matrix of the matrices B r JB s is invertible, and therefore these matrices
are linearly independent. This implies thatΨ is invertible, since it maps a basis
of M to a basis.

We now show thatΨ is a homomorphism. First we observe that

Ai J A j Ak J A` = (1T A j+k 1) Ai J A`. (16.3.1)

It follows that to prove thatΨ is a homomorphism, it is enough to show that

Ψ(Ai J A j Ak J A`) =Ψ(Ai J A j )Ψ(Ak J A`).

Using (16.3.1) we find that

Ψ(Ai J A j Ak J A`) = 1T A j+k 1Ψ(Ai J A`)

= 1T B j+k 1B i JB`

= B i JB j B k JB`.

It follows that Ψ is an automorphism of Matv×v (R) and, by the Noether-
Skolem theorem (Theorem 14.1.4), this implies there is an invertible matrix L
such that

Ψ(M) = L−1ML,

for all matrices M . Since

Φ(A)B i JB j =Φ(A)Φ(Ai J A j ) =Φ(Ai+1 J A j ) = B i+1 JB j = B B i JB j

and the matrices B i JB j form a basis, it follows thatΦ(A) = B . Hence we deduce
that A and B are cospectral and, since Ψ(J ) = J , we also see that J − I − A and
J − I −B are cospectral.
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We offer two further proofs of this result. For the first, let M be the n ×n
matrix with the vectors

1, A1, . . . , An−11

as its columns and let N be the corresponding matrix based on B . Then

M T M = N T N ,

from which it follows that there is an orthogonal matrix Q such that QM = N .
Thus we have

Q Ar 1 = B r 1,

from which it follows that Q1 = 1 and so

Q Ar QT 1 = B r 1

for all r . Now

B r B s1 = B r+s1

=Q Ar+sQT 1

=Q Ar QT Q As1

=Q Ar QT B s1

and since the vectors B s1 for s = 0, . . . ,n − 1 form a basis it follows that B r =
Q Ar QT and, in particular, B =Q AQT .

Our third and final proof uses spectral decomposition and walk generating
functions. The generating function all walks in X is∑

r≥0
(1T Ar 1)t r = ∑

r≥0
tr(Ar J ) t r .

Assuming that A has the spectral decomposition

A =∑
θ

θEθ,

we deduce that we have the following expression for our generating function as
a rational function: ∑

r≥0
tr(Ar J ) =∑

θ

1T Eθ1

1− tθ
.
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The number of poles in this rational function is equal to the number of eigen-
values θ such that 1T Eθ1 6= 0. Since the matrices Eθ are symmetric and idem-
potent, 1T Eθ1 6= 0 if and only if Eθ1 6= 0 and therefore the number of poles of the
generating function is equal o the dimension of the cyclic A-module generated
by 1. If X is 1-full, it follows that the numerator of our rational function is:∏

θ

(1− tθ) = t n det(t−1I − A).

We conclude that if X is 1-full, then its spectrum is determined by the generat-
ing function for all walks in X .

Hence if the assumptions of theorem hold, then X and Y are cospectral
and, since their generating function for all walks are equal, it follows from [?]
that their complements are also cospectral.

16.4 Modules and Walks

Let A be the adjacency matrix of a graph X . Then the entries of the powers of
A count walks in X . In particular if u and v respectively are the characteristic
vectors of subsets S and T of V (X ), then

uT Ak v

is the number of walks of length k in X that start at a vertex in S and end at a
vertex in T . We relate properties of the sequence (uT Ak v)k≥0 to properties of
the cyclic A-module 〈v〉A generated by v .

If v is a vector in Fn and A ∈ Matd×d (F), then the minimal polynomial of A
relative to v is the monic polynomial ψ of least degree such that ψ(A)v = 0.

16.4.1 Lemma. If v and w are vectors in Fn and A ∈ Matd×d (F), then the cyclic
A-modules generated by v and w are isomorphic if and only if the minimal
polynomials of A relative to v and w are equal.

Proof. Exercise.

If (ai )i≥0 is a sequence, the Hankel matrix Hn of order n is the n ×n matrix
such that,

(Hn)i , j = ai+ j−2.

The Hankel matrix H is the infinite matrix whose leading n×n submatrix is Hn

(for all n).
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16.4.2 Lemma. If A is self-adjoint, the sequence 〈u, Ai u〉 determines the iso-
morphism class of the module 〈u〉A.

Proof. The first k +1 rows of H are linearly independent if and only if there are
scalars a0, . . . , ak such that for all non-negative r ,

k∑
i=0

ai 〈u, Ai+r u〉 = 0

Since A is self-adjoint the left side here is equal to

〈u,
k∑

i=0
ai Ai+r u〉 = 〈Ar u, p(A)u〉

where p(t ) is a polynomial with degree k. If U := 〈u〉A, this shows that p(A)u ∈
U⊥. Since p(A)u ∈U , we have

p(A)u ∈U ∩U⊥ = 0

and therefore p(A)u = 0. It follows that we can read off the minimal polynomial
of A relative to u from the Hankel matrix, and therefore this minimal polyno-
mial is determined by the sequence.

16.5 An Inner Product on Polynomials

Suppose V is an inner product space and A is a self-adjoint element of End(V ).
We develop a connection between cyclic A-submodules of V and sequences of
orthogonal polynomials.

Suppose V is an inner product space, v ∈ V and A is a self-adjoint element
of End(V ). We set ourselves the innocent goal of finding an orthogonal basis for
the cyclic A-module U generated by v . This is straightforward, if dim(U ) = d
then

v, Ad , . . . , Ad−1v

is a basis for U and, using Gram-Schmidt, we can convert this basis to an or-
thogonal basis. The fun starts when we notice that each element of U can be
written uniquely in the form p(A)v , where p is a real polynomial with degree
less than d . So the elements of the orthogonal basis we compute can be written
as

p0(A)v, . . . , pd−1(A)v
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where p0, . . . , pd−1 are real polynomials. If we apply Gram-Schmidt in the ob-
vious way and do not normalize the elements of the orthogonal basis we pro-
duce, then these polynomials will be monic and pi will have degree i . We want
to determine these polynomials without being forced to use Gram-Schmidt ex-
plicitly.

We introduce some machinery. If p, q ∈R[t ], define

[p, q] := 〈p(A)v, q(A)v〉.

This is a bilinear form onR[t ] and since A is self-adjoint, this form is symmetric.
Let ψ denote the minimal polynomial of A relative to v . Since dim(U ) = d , we
see that deg(ψ) = d . If p has degree less than d , then p(A)v 6= 0, whence

[p, p] = 〈p(A)v, p(A)v〉 > 0.

So our form is positive definite on the space of polynomials of degree less than
d , and thus is an inner product on this space. In fact we prefer to say that we
have an inner product on the quotient ring R[t ]/(ψ) (which is a real algebra of
dimension d).

16.6 Spectral Decomposition

To get further we need another description of our inner product. Since A is
self-adjoint, it has a spectral decomposition

A =∑
θ

θEθ,

where θ runs over the distinct eigenvalues of A, and matrices Eθ are pairwise
orthogonal projections. If p is a polynomial then

p(A) =∑
θ

p(θ)Eθ

and therefore
p(A)v =∑

θ

p(θ)Eθv.

16.6.1 Lemma. If A is a self-adjoint operator with spectral decomposition A =∑
θ θEθ, then the dimension of the cyclic A-module generated by v is equal to

the number of eigenvalues θ of A such that vT Eθv 6= 0.
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Proof. Assume U = 〈v〉A. If θ 6= τ, then EθEτ = 0 and therefore the vectors Eθv
and Eτv are orthogonal. Hence the nonzero vectors Eθv form a linearly inde-
pendent set, and so they are a basis for U . To complete the proof we observe
that

vT Eθv = vT E 2
θv = vT E T

θ Eθv = 〈Eθv,Eθv〉,
which shows that Eθv 6= 0 if and only if vT Eθv 6= 0.

It also follows that if ψ is the minimal polynomial of A relative to v , then

ψ(t ) = ∏
θ:Eθv 6=0

(t −θ).

For the next result, note that the idempotents Eθ are positive semidefinite,
and therefore xT Eθx ≥ 0 for any vector x.

16.6.2 Lemma. If A is a self-adjoint operator with spectral decomposition A =∑
θ θEθ, then

[p, q] =∑
θ

p(θ)q(θ) vT Eθv.

Proof. We have

p(A)v =∑
θ

p(θ)Eθv, q(A)v =∑
θ

q(θ)Eθv,

and the result is immediate.

It follows from this that if p is non-negative on on the set of zeros ofψ, then
[1, p] ≥ 0.

16.7 Orthogonal Polynomials

If A is self-adjoint and v generates a cyclic A-module of dimension d , then
Gram-Schmidt applied to the sequence

v, Av, . . . , Ad−1v

gives rise to an orthogonal basis of the form

p0(A)v, p1(A)v, . . . , pd−1(A)v
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where pi is a monic polynomial of degree i . Since these vectors are orthogonal,
if i 6= j , then

[pi , p j ] = 0.

Thus our polynomials are orthogonal with respect to this inner product. We use
this derive a recurrence for these polynomials.

Since any polynomial of degree at most i is a linear combination of po , . . . , pi ,
we see that deg(q) < j then

[p j , q] = 0.

Note also that, since pi is monic,

t i = pi (t )+ r (t ),

where deg(r ) < i and therefore

[pi , t i ] = [pi , pi ].

We extend our sequence of polynomials defining pd to be ψ.

16.7.1 Theorem. Suppose A is a self-adjoint operator on the inner product space
V and v ∈V . Then for i = 0, . . . ,d −1, the orthogonal polynomials pi satisfy the
recurrence

t pi (t ) = pi+1(t )+ai pi (t )+bi pi−1(t )

where

ai = [t pi , pi ]

[pi , pi ]
, bi = [pi , pi ]

[pi−1, pi−1]
.

Proof. We first show that the pi can be defined by a three-term recurrence as
shown, and then we determine the coefficients ai and bi .

If j < i −1, then pi (t ) and t p j (t ) are orthogonal and therefore

0 = [pi , t p j ] = [t pi , p j ].

If j < i +1, then p j and t pi are orthogonal and so [t pi , p j ] = 0 in this case too.
It follows that t pi is a linear combination of pi+1, pi and pi−1.

Suppose
t pi (t ) = ci pi+1(t )+ai pi (t )+bi pi−1(t ).

Since pi and pi+1 are monic we have ci = 1. To determine ai we take the inner
product of each side with pi , and obtain the given expression for ai . If we next
take the inner product of each side with pi−1 we find that

bi = [t pi , pi−1]

[pi−1, pi−1]
.
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However [t pi , pi−1] = [pi , t pi−1] and since pi and pi−1 are monic,

[pi , t pi−1] = [pi , pi ].

We now have

Api (A)v = pi+1(A)v +ai pi (A)v +bi pi−1(A)v,

whence the matrix representing the action of A relative to the basis

p0(A)v, . . . , pd−1(A)v

is tridiagonal: 
a0 1
b1 a1 1

. . . . . . . . .
bd−2 ad−2 1

bd−1 ad−1


If we denote the characteristic polynomial of the leading i × i submatrix of this
by qi , then we find that

t qi = qi+1 +ai qi +bi qi−1,

whence pi = qi and pd =ψ.

16.7.2 Lemma. The zeros of pi are real and distinct.

Proof. Suppose pi (t ) = f (t )g (t ), where g is nonnegative on the zeros of ψ. We
show that this implies that g is a constant polynomial, and then deduce the
claims of the lemma from this.

Suppose pi = f g where g is nonnegative and deg( f ) < i . Then

0 = [pi , f ] =∑
θ

pi (θ) f (θ) vT Eθv =∑
θ

f (θ)2g (θ) vT Eθv.

Since both f 2 and g are nonnegative on the zeros ofψ, this implies that f (θ)g (θ) =
0 for all θ and so deg(pi ) ≥ deg(ψ). Hence we conclude that we cannot have a
factorization of pi as described.

If pi had a repeated root θ, then it would have non-negative factor (t −θ)2;
if it had a complex root a +bi then, since pi is a real polynomial it would also
have a −bi as a root, and hence would have the nonnegative quadratic

(t −a)2 +b2

as a factor.
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16.8 Distance-Regular Graphs

We present an application of the theory from the previous sections. Suppose X
is a distance-regular graph with distance matrices A0, . . . , Ad , where A0 = I . Let
A = A1 and consider the cyclic A-module generated by e1 (the first vector in the
standard basis for Rn).

Our first observation is that pr (A)e1 is a non-zero scalar multiple of Ar e1.
To prove this, we note that Ar is a polynomial in A1 with degree r and thus

Ar e1 = qr (A)e1

where deg(qr (t )) = r . There is a nonzero constant γ such that

[qr , qs] = 〈qr (A1), qs(A1)〉 = γ〈Ar e1, Ase1〉 = 0

Hence the polynomials qi are orthogonal with respect to our inner product on
polynomials, and therefore each qi is a non-zero multiple of pi .

It follows that the cyclic module generated by e1 is the space of real func-
tions on V (X ) that are constant on the cells of the distance partition with re-
spect to the vertex 1. Hence the matrix representing A1 relative to the orthog-
onal vectors pr (A)e1 is the transpose of the intersection matrix. Equivalently
this transpose is equal to the adjacency matrix of the quotient of X relative to
the distance partition.

16.9 Locally Distance-Regular Graphs

The theorem in this section is due to Godsil and Shawe-Taylor [] (with a differ-
ent proof).

If u is a vertex in X , let δu denote the distance partition of X relative to u.
Then X is distance regular if

(a) For each vertex u, the partition δu is equitable, and

(b) The quotient X /δu is the same for each vertex.

Let us say a graph is locally distance regular if (a) holds. We aim to characterize
locally distance-regular graphs.

If u ∈ V (X ), then eu will denote the characteristic vector of u viewed as a
subset of V (X ).
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16.9.1 Lemma. Let u be a vertex in X with valency ku . If δu is equitable and
v ∼ u, then

〈eu , Ar ev〉 = 1

ku
〈eu , Ar+1eu〉.

Proof. Let A = A(X ) and let U be the cyclic A-module generated by eu . Let zi

denote the characteristic vector of the i -th cell of δv . Then the vectors z0, . . . , zr

form an orthogonal basis for U . If w ∈Rn , then the projection of w on U is

ŵ =∑
i

〈w, zi 〉
〈zi , zi 〉

zi .

In particular, if v ∈V (X ) and d := dist(u, v), then

v̂ = 1

〈zd , zd 〉
zd .

Note that z0 = eu and z1 = Aeu , and so if v ∼ u then

v̂ = 1

ku
Aeu .

Therefore
〈ev −k−1

u Aeu , Ar u〉 = 0

for all r and thus

〈ev , Ar u〉 = 1

ku
〈Aeu , Ar eu〉 = 1

ku
〈eu , Ar+1eu〉.

16.9.2 Corollary. If u ∼ v and δu and δv are equitable and r ≥ 1, then

〈eu , Ar eu〉
ku

= 〈ev , Ar ev〉
kv

.

We see that if u and v have the same valency, then

〈eu , Ar eu〉 = 〈ev , Ar ev〉
for all r and so the cyclic modules generated by eu and ev are isomorphic. This
implies that the quotients of X relative to the corresponding distance partitions
are isomorphic.

16.9.3 Theorem. If X is locally distance regular, then either X is distance-regular
or X is bipartite and semiregular.
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Proof. Suppose v, w ∼ u and assume v has exactly a neighbors in common with
u. Then v has exactly kv −1− a neighbors at distance two from u. Since δu is
distance regular each neighbor of u has exactly kv −1−a neighbors at distance
two from u. Since the number of neighbors of w at distance two from u must
be kw −1−a, we conclude that kv = kw .

A standard argument yields that X is either regular or bipartite and semireg-
ular, and in the first case we see that X is distance-regular. (In the second case
you may show that the halved graphs of X are distance-regular.)

16.10 Coherent Algebras

A coherent algebra is a matrix algebra that contains I and J and is closed under
Schur multiplication and transpose. The span of I and J provides a trivial ex-
ample. A commutative coherent algebra is the same thing as the Bose-Mesner
algebra of an association scheme (although this is not trivial). The coherent al-
gebra generated by a set of matrices is the smallest coherent algebra that con-
tains the given set. The coherent algebra of a graph X on v vertices is the co-
herent algebra generated by A(X ).

16.10.1 Theorem. A coherent algebra has a unique basis of 01-matrices. If this
basis is formed by the matrices A = {A0, . . . , Ad } then:

(a)
∑

i Ai = J .

(b) Some subset of A sums to I .

(c) Ai ◦ A j = δi , j Ai .

(d) There are scalars pi , j (r ) such that Ai A j =∑
r pi , j (r )Ar .

(e) AT
i ∈A for each i .

(f) All non-zero rows and columns of Ai have the same sum.

We saw in Section 1.3 that the centralizer of a set of permutation matrices is
a coherent algebra. Association schemes provide an overlapping class of exam-
ples.

The basis of 01-matrices of a coherent algebra is known as a coherent con-
figuration. Their basic theory was laid out by D. Higman []. Coherent config-
urations generalize association schemes in two ways. First, the identity matrix
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might not be an element of the 01-basis and, second, the coherent algebra need
not be commutative. A coherent algebra is homogeneous if I belongs to its ba-
sis. The commutant of a permutation group is homogeneous if and only if the
the group is transitive.

16.10.2 Lemma. A commutative coherent algebra is homogeneous.

Proof. If C is commutative, then each matrix in it commutes with J . Hence any
diagonal matrix in C must be a multiple of I .

16.10.3 Lemma. If C is a homogenous coherent algebra, then any graph whose
adjacency matrix lies in C is walk regular.

Proof. If M ∈C , then the diagonal of M k is constant.

If a coherent algebra is not homogeneous, then its diagonal elements deter-
mine a partition of its vertex set, and this partition is equitable.

If D is a diagonal matrix in a coherent configuration with coherent algebra
C , then the subspace DC D of C is an algebra with identity D . It is Schur closed,
and hence it it gives rise to a homogeneous coherent configuration.
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Chapter 17

Line Digraphs

17.1 Line Digraphs

We now decide to view an edge i j in X as a pair of directed arcs (i , j ) and ( j , i ).
(So all our graphs are directed.) The line digraph LD(X ) of a directed graph X
has the arcs of X as its vertices, and

(i j ,k`)

is an arc in the line digraph if i j and k` are arcs in X and j = k. Generally
the line digraph is a directed graph. The out-valency in LD(X ) of the arc i j is
equal to the out-valency of j in X . Our eventual concern will be with a weighted
adjacency matrix for LD(X ).

We begin with two incidence matrices Di and Do , with rows indexed by the
vertices of X and columns by its arcs. If u is a vertex and e an arc of X , then
Du,e = 1 if u is the initial vertex of e, while (Do)u,e = 1 if e ends on u. Both DT

i
and DT

0 are the characteristic matrices of partitions of the arcs set of X .

17.1.1 Lemma. If Di and Do are the vertex-arc incidence matrices of the graph
X , then Di DT

o is the adjacency matrix of X and DT
o Di is the adjacency matrix of

its line digraph.

From this we see that A(X ) and A(LD(X )) have the same non-zero eigenval-
ues, with the same multiplicities.

Let P be the permutation matrix corresponding to the permutation of the
arc set of X that maps each arc to its reversal. Then P 2 = I and

Di = DoP, Do = Di P.

171
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It follows that
A(LD(X )) = DT

i Do = DT
i Di P = PDT

o Do

whence
PA(LD(X ))P = A(LD(X ))T .

Note also that A(LD X )−P is a 01-matrix, since for each arc uv there is an arc
in LD(X ) from uv to vu.

We now turn to weighted matrices. Let D̂o and D̂i denote the matrices we
get from Do and Di by scaling each row so that it is a unit vector. We have

D̂oP = D̂i

and
D̂oD̂T

o = I .

From the latter it follows that

(D̂T
o D̂o)2 = D̂T

o D̂oD̂T
o D̂o = D̂T

o D̂o ;

thus D̂T
o D̂o is symmetric and idempotent, and represents orthogonal projec-

tion onto the column space of D̂T
o . Also

D̂T
o D̂i 1 = D̂T

o D̂oP1 = D̂T
o = 1,

from which we see that D̂T
o D̂i is the transition matrix of the Markov chain formed

by the obvious random walk on LD(X ).
The matrix D̂T

i D̂o is a weighted adjacency matrix for LD(X ). Let ∆ denote
the diagonal matrix whose diagonal entries are the valencies of the vertices of
X . Then the matrix

∆−1/2 A∆−1/2

is the normalized adjacency matrix of X , which we denote by Â. We observe
that

D̂i D̂T
o = D̂oD̂T

i = Â.

So D̂T
i D̂o and Â have the same non-zero eigenvalues with the same multiplici-

ties.
Why we would we consider using the normalized adjacency matrix of X ?

Assume X has no isolated vertices, which means ∆ is invertible. We have

det(t I − Â) = det(∆)−1 det(t∆− A) = det(t I −∆−1 A).

Here ∆−1 A is a non-negative matrix with each row sum equal to 1—it is the
transition matrix for the obvious random walk on X . The eigenvalues of Â are
the eigenvalues of this transition matrix, and hence govern the behavior of this
random walk.
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17.2 Quantum Walks

A random walk on a (possibly directed) graph is represented by a non-negative
square matrix whose rows sum to 1. One way of constructing such a matrix is
to choose a unitary matrix U , and then take

U ◦U

as our transition matrix. Since quantum physicists prefer unitary operations,
they like this approach. A quantum random walk of length n based on U is
determined by

U n ◦U n .

The problem is to find natural constructions of unitary matrices with given un-
derlying directed graph. For line digraphs there is an easy way to do this.

Suppose M is an orthogonal projection, that is, M = M T = M 2. Then

(2M − I )2 = 4M 2 −4M + I = 4M −4M + I = I

and, since 2M−I is symmetric, 2M−I is orthogonal. So referring to the previous
section we see that

2D̂T
o D̂o − I

is orthogonal. Since the permutation matrix P is orthogonal, so is the product

(2D̂T
o D̂o − I )P = 2D̂T

o D̂i −P.

Thus we have a quantum walk associated with each graph.
Emms et al [] determine the eigenvalues of 2D̂T

o D̂i −P . We will do this in a
different way.

17.3 Eigenvalues of Quantum Walks

Let U be given by
U := 2D̂T

o D̂i −P.

We will determine the eigenvalues of U , but before we do this we show that the
answer will be simpler than you might expect.

The matrix U is the product of 2D̂T
o D̂o − I and P , and these two matrices are

involutions—their squares are the identity matrix.
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17.3.1 Theorem. Let P and Q be v × v matrices such that P 2 =Q2 = I . If z is an
eigenvector for PQ, then the subspace spanned by {z,P z,Qz} has dimension at
most two, and is invariant under the algebra 〈P,Q〉.

Proof. Suppose z 6= 0 and PQz = θz. Since (PQ)−1 =QP ,

QP z = θ−1z

and therefore

P {z,P z,Qz} = {P z, z,θz}, Q{z,P z,Qz} = {Qz,θ−1z, z}.

This proves that the span of z, P z and Qz is 〈P,Q〉-invariant. The image of this
subspace under P is spanned by z and P z, and so its dimension is at most two.
Since P is invertible it follows that z, P z and Qz are linearly dependent.

If the involutions P and Q here are orthogonal, then the orthogonal com-
plement of a 〈P,Q〉-invariant subspace is 〈P,Q〉-invariant. Hence:

17.3.2 Corollary. If P and Q are orthogonal involutions of order v × v , there is
a basis of Rn with respect to which P and Q are block diagonal, and each block
has order at most two.

We turn to details.

17.3.3 Theorem. Let X be a graph with v vertices and let U be the orthogonal
matrix representing the quantum walk on LD(X ). Then Rn is the direct sum of
the orthogonal subspaces

colD̂T
i +colD̂T

o , ker(Do)∩ker(Di ).

The first subspace decomposes into an orthogonal direct sum of the space spanned
by the constant vectors and 2-dimensional subspaces C (λ), where λ runs over
the eigenvalues of Â. The eigenvalues of U on C (λ) are λ±

p
λ2 −1. The second

subspace is the direct sum of two subspaces K1 and K−1; we have U�K1 = I and
U �K−1 =−I . The eigenvalues 1 and −1 have equal multiplicity.

Proof. We have

U D̂T
i = 2D̂T

o D̂i D̂T
i −PD̂T

i = 2D̂T
o − D̂T

o = D̂T
o (17.3.1)
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and
U D̂T

o = 2D̂T
o D̂i D̂T

o −PD̂T
o = 2D̂T

o Â− D̂T
i . (17.3.2)

Consequently
U 2D̂T

i = 2U D̂T
i Â− D̂T

i .

Suppose z is an eigenvector for A with eigenvalue λ, and y := D̂T
i z. Then

U 2 y =U 2D̂T
i z = 2U D̂T

i Az − D̂T
i z = 2λU y − y

and so
(U 2 −2λU + I )y = 0. (17.3.3)

It follows from Equations (17.3.1) and (17.3.2) that the subspace sum

colD̂T
i +colD̂T

o

is U -invariant and consequently its orthogonal complement

ker(Do)∩ker(Di )

is also U -invariant. These subspaces are also P-invariant, and since U = 2D̂T
o D̂i−

P , the restrictions of U and P to ker(Do)∩ker(Di ) are equal and so the eigen-
values of U on this subspace are ±1.

Equation (17.3.3) shows that y and U y span a U -invariant subspace. If this
subspace is 1-dimensional, then y is an eigenvector for U and

y ∈ colD̂T
i ∩colD̂T

o .

Therefore y is constant on arcs with a given initial vertex, and constant on arcs
with a given final vertex. It follows that y is constant on the arcs in a given
component of X , and its eigenvalue is 1.

If y and U y span a 2-dimensional space, then the minimal polynomial on
this subspace is t 2 −2λt +1 and the eigenvalues of U on this subspace are

λ±
√
λ2 −1.

Also
U y =U D̂T

i z = D̂T
o z

and therefore y and U y both lie in colD̂T
i +colD̂T

o .
Since the trace of U on a subspace C (λ) is zero and

tr(U ) = tr(2D̂T
o D̂i −P ) = 2tr(D̂T

o D̂i ) = 2tr(D̂i D̂T
o ) = 2tr(Â) = 0,

it follows that 1 and −1 have equal multiplicity.
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Chapter 18

Lie Algebras

We study Lie algebras because they force themselves on us when we study the
Terwilliger algebra of the binary Hamming scheme. As we will see, there are
other combinatorial applications. Additionally we will work with the univer-
sal enveloping algebra of a Lie algebra, which provides a useful example of an
infinite dimensional algebra.

18.1 Basics

A Lie algebra over a field F is a vector space with a multiplication [a,b] such that

(a) [b, a] =−[a,b].

(b) For all a, b and c, we have the Jacobi identity :

[a, [b,c]]+ [b, [c, a]]+ [c, [a,b]] = 0.

The only fields we will use in this context are R and C, whence we see that
[a, a] = 0 for all a. We call [a,b] the Lie bracket or commutator of a and b,
and we abbreviate [a, [b,c]] to [a,b,c]. A Lie algebra is abelian if [a,b] = 0 for all
a and b.

Note that a Lie algebra is not and algebra in the sense we have used elsewhere—
the multiplication is not even associative in general.

We offer examples:

(a) g l (n,F), the Lie algebra of all n ×n matrices over F, where

[A,B ] := AB −B A.

177
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(b) The real skew symmetric matrices of order n ×n form a Lie algebra over R.

(c) R3 with the cross product. We will use a ∧b to denote the cross product.

(d) A derivation of a commutative algebra A over F is a map δ : A → F such
that

δ( f g ) = δ( f )g + f δ(g ).

You may check that the product of two derivations is not in general a deriva-
tion, but their Lie bracket is, and further the set of derivations of A is a Lie
algebra. By way of a more specific example take A to be the polynomial ring
F[x1, . . . , xd ] and note that, for each i , partial differentiation with respect to
xi is a derivation.

The construction in (a) can be usefully generalized: if A is an algebra over
F, then the multiplication

[a,b] := ab −ba

gives us a Lie algebra. Thus if V is a vector space, then End(V ) is a Lie algebra
under this operation. For fixed a in A , the map from A to itself given by

x : 7→ [a, x]

is a derivation (as you should check).
A subspace of a Lie algebra L is subalgebra if it is closed under the Lie

bracket. You could check that the subspace of skew symmetric matrices is a
subalgbra of g l (n,F). A subspace U of L is an ideal if [a,u] ∈U , for all u in U .
The subspace of strictly upper triangular matrices is an ideal in the Lie algebra
formed by the set of all upper triangular matrices.

If L is a Lie algebra and S,T are subsets of L , then we define [S,T ] to be
the subspace of L spanned by the set

{[x, y] : x ∈ S, y ∈ T }.

In particular the subspace [L ,L ] is a subalgebra of L , called the commutator
subalgebra.

For example, suppose L = g l (V ). Then for any A and B in L , we have

tr[A,B ] = tr(AB)− tr(B A) = 0.

So the commutator of g l (V ) consists of matrices with zero trace. It can be
shown that it contains all matrices with zero trace. It is known as the special
linear Lie algebra and is denoted by sl (V ). You may show that sl (V ) is equal to
its commutator subalgebra.
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18.2 Enveloping Algebras

The construction of the Lie algebra g l (V ) from the algebra End(V ) can be gen-
eralized: if A is an algebra and a,b ∈L , we can define their Lie bracket by

[a,b] := ab −ba.

This leads us to ask which Lie algebras arise in this way, and the answer is that
they all do. Let us denote the Lie algebra we get from A by LieA . The uni-
versal enveloping algebra of L is essentially the smallest algebra U such that
L = LieU . Of course the adjective ‘universal’ indicates that a category theorist
has escaped. What we should say is that U is defined by the condition that if
ψ : L → LieA for some algebra A , thenψ can be factored into a Lie homomor-
phism from L to LieU and a Lie homomorphism from LieU to LieA induced
by an algebra homomorphism from U to A .

We consider a particular example, using the the Lie algebra sl (2,R). The
elements of this are the 2×2 matrices of trace zero, which form a vector space
of dimension three, with basis

X =
(
0 1
0 0

)
, Y =

(
0 0
0 1

)
, H =

(
1 0
0 −1

)
.

We note that
[X ,Y ] = H

and that
[H , X ] = 2X , [H ,Y ] =−2Y .

The universal enveloping algebra of sl (2,F) is the quotient of the free polyno-
mial algebra in variables X , Y modulo the relations

X Y −Y X −H = 0, H X −X H −2H = 0, HY −Y H +2Y = 0.

Note that this is an infinite-dimensional algebra—it can be shown that the ele-
ments X k Y `H m form a basis.

18.3 Posets

A poset is ranked if all elements covered by an element have the same height.
If P is ranked then the i -th level number is the number of elements with height
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i . Thus the poset formed by the subsets of {1, . . . ,n}, ordered by inclusion, is
ranked and the i -th level number of

(n
i

)
. If P is ranked with height d and the

i -th level number is wi , we say that P is rank symmetric if wi = wd−i for all i ,
and we say P is unimodal if the sequence of level numbers is unimodal. The
lattice of subsets of {1, . . . ,n} is rank symmetric and unimodal.

An antichain in a poset P is set of elements such that no two are compa-
rable. (Equivalently it is a coclique in the comparability graph of P .) The el-
ements of given height in a poset form an antichain, and we say P is Sperner
if the maximum size of an antichain is equal to the maximum level number.
More generally we call P strongly Sperner if the maximum size of a subset that
does not contain a chain of length k+1 is equal to the sum of the k largest level
numbers. A Peck poset is a ranked poset that is rank symmetric, unimodal and
strongly Sperner. The lattice of subsets of a finite set is Peck.

We use P to denote the the vector space RP . We can represent subsets of P
by their characteristic vectors, which belong to P. If a ∈ P we will often denote
the characteristic vector of a by a. The subspace of P spanned by the (charac-
teristic vectors of) the elements of height i will be denoted by P(i ).

Suppose P is a finite ranked poset. An element of End(P) is a raising oper-
ator if for each element a of P , the support of Ra is a subset of the elements of
P that cover a. Similarly we define lowering operators. If R is a raising operator
then RT is lowering. Both raising and lowering operators are nilpotent: if P has
height d and R is a raising operator, then Rd+1 = 0.

The following result is due to Stanley and Griggs.

18.3.1 Theorem. Let P be a rank-symmetric poset with height h. Then P is Peck
if and only if there is an order-raising operator R such that the mappings

Rh−i �P(i ) :P(i ) →P(h − i ), i = 0, . . . ,
⌊h

2

⌋
are invertible.

Using the above result, Proctor showed the following.

18.3.2 Theorem. A ranked poset is Peck if and only if it has raising and lowering
operators R and L such that the Lie algebra generated by R and L is isomorphic
to sl (2,C).

We derive an important consequence of these results.
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18.3.3 Corollary. If P1 and P2 are Peck posets, then so is P1 ×P2.

Proof. If 1 and P2 are Peck then the vector spaces P1 and P2 are modules for
sl (2,C). Now

CP1×P2 =P1 ⊗P2

and therefore CP1×P2 is a module for sl (2,C). We conclude that P1×P2 is Peck.

If U and V are modules for an algebra A then U ⊗V is a module for A ×A ,
but it is not in general a module for A . However it is module for A when A is
an enveloping algebra of a Lie algebra (and when A is a group algebra).

18.4 Representations of Lie Algebras

A linear mapψ from a Lie algebra L1 to a Lie algebra L2 is a homomorphism if

ψ([a,b]) = [ψ(a),ψ(b)].

A representation of a Lie algebra L is a homomorphism into g l (n,F). More
generally ψ could be a homomorphism into End(V ) for some vector space V ;
in this case we may say that V is a module over L . A subspace of V that is
invariant under the operators inψ(L ) is a submodule. (Calling V a module for
L is a courtesy, since modules are defined over rings—if we wish to be precise,
it is a module for the enveloping algebra.)

If L is a Lie algebra and A ∈L , we define the adjoint map adA by

adA(X ) := [A, X ].

This is a linear map, and is a derivation of the enveloping algebra. By Jacobi’s
identity

adA([X ,Y ]) = [A, [X ,Y ]] =−[X , [Y , A]]− [Y , [A, X ]]

= [X , [A,Y ]]+ [[A, X ],Y ].

We also have, by appeal to Jacobi

(adX adY −adY adX )(Z ) = [X , [Y , Z ]]− [Y , [X , Z ]]

= [X , [Y , Z ]]+ [Y , [Z , X ]]

= [[X ,Y ], Z ]

= ad[X ,Y ](Z ),
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which shows that adA is a homomorphism from L into the Lie algebra End(L).
An element A of L is ad-nilpotent if adA is nilpotent. We observe that

adA(X ) = [A, X ],

(adA)2(X ) = [A, [A, X ]],

(adA)3(X ) = [A, [A, [A, X ]]]

and in general, (adA)k+1(X ) = [A, (adA)k (X )]. If A ∈ g l (n,F), then we may repre-
sent the linear map adA by

A⊗ I − I ⊗ A.

It follows that if Ak = 0, then (adA)2k = 0. In particular if A in g l (V ) is nilpotent
then adA is nilpotent. Thus we have the fortunate conclusion that nilpotent
elements of g l (V ) are ad-nilpotent.

18.5 Bilinear Forms

Suppose ψ is a representation of the Lie algebra L in End(V ). A bilinear form
β on V is invariant if

β(ψ(X )u, v)+β(u,ψ(X )v) = 0

for all u and v from V . By way of example, if V is L itself then

β(X ,Y ) := tr(adX adY )

is a symmetric bilinear form, known as the Killing form. We check that it is
invariant.

β([A, X ],Y ) = tr(ad[A,X ] adY )

= tr([adX ,adY ]adY )

= tr(adA adX adY −adX adA adY )

Similarly
β(X , [A,Y ]) = tr(adX adA adY −adX adY adA)

from which we see that β is invariant. (Thus the adjoint of adX relative to the
Killing form is −adX .)
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Suppose L is a Lie algebra with a non-degenerate invariant bilinear form.
If X1, . . . , Xd is a basis for L , there is a dual basis Y1, . . . ,Yd such that

β(Xi ,Y j ) = δi , j .

The Casimir element of the universal enveloping algebra is defined to be

d∑
i=1

Xi Yi .

18.5.1 Theorem. Let L be a Lie algebra with a non-degenerate invariant bilin-
ear form β. Then the Casimir element is independent of the choice of basis for
L , and lies in the center of the universal enveloping algebra.

Proof. Let X1, . . . , Xd be a basis for L with dual basis Y1, . . . ,Yd and let ∆ be the
Casimir element defined using this pair of bases. Let U1, . . . ,Ud and V1, . . . ,Vd

be a second pair of dual bases. Then there are scalars ρi , j and σi , j such that

Ui =
∑
k
ρi ,k Xk ,

V j =
∑
`

σ j ,`Y`.

We have ∑
i

Ui Vi =
∑

i ,k,`
ρi ,kσi ,`Xi Yi (18.5.1)

Since β(Xi ,Y j ) = δi , j , we have

δi , j =β(Ui ,V j ) =∑
k
ρi ,kσ j ,k

So if we define matrices R and S by R := (ρi , j ) and S := (σi , j ) then RST = 0.
Consequently SRT = 0 and therefore

δk,` =
∑

i
ρi ,kσi ,`.

Hence (18.5.1) implies that
∑

i Ui Vi =∆.
We now prove ∆ lies is central. Suppose A ∈ L . There are scalars αi , j and

βi , j such that
[A, Xi ] =∑

j
αi , j X j
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and
[A,Yi ] =∑

j
βi , j Y j

Since β is invariant,

0 =β([A, Xi ],Y j )+β(Xi , [A,Y j ]) =αi , j +β j ,i .

This implies that∑
i

[A, Xi ]Yi =
∑
i , j
αi , j X j Yi =−∑

i , j
β j ,i X j Yi =−∑

i
Xi [A,Yi ].

Now we compute that

A∆=∑
i

AXi Yi =
∑

i
[A, Xi ]Yi +

∑
i

Xi AYi

and
∆A =∑

i
Xi Yi A =−∑

i
Xi [A,Yi ]+∑

i
Xi AYi ,

whence we conclude that A∆=∆A.

18.5.2 Lemma. If ∆ is the Casimir element of the Lie algebra L and ϕ is a rep-
resentation of L , then tr(ϕ(∆)) = dim(ϕ(L )).

18.6 An Example

We compute the Casimir element for sl (2,C), relative to the form

β(X ,Y ) := tr(adX adY ).

Recall that X , H and Y form a basis, where

X =
(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
0 1

)
,

and
[X ,Y ] = H , [H , X ] = 2X , [H ,Y ] =−2Y .



18.7. IRREDUCIBLE MODULES 185

It follows that

adX =
0 −2 0

0 0 1
0 0 0

 , adY =
 0 0 0
−1 0 0
0 2 0

 , adH =
2 0 0

0 0 0
0 0 −2

 .

If

A =
(

a b
c −a

)
,

then

adA =
2a −2b 0
−c 0 b
0 2c −2a


and now it is easy verify that if

β(A, X ) =β(A, H) =β(A,Y ) = 0,

then A = 0. Therefore β is nondegenerate.
Next we calculate that

β(X ,Y ) =β(Y , X ) = 4, β(H , H) = 8

and all other inner products are zero. So the dual basis to (X , H ,Y ) is(1

4
Y ,

1

4
X ,

1

8
H

)
and the Casimir element is

∆ := 1

4
(X Y +Y X + 1

2
H 2).

Using the fact that
[A,BC ] = [A,B ]C +B [A,C ],

it is not hard to verify directly that ∆ is central.

18.7 Irreducible Modules

We construct a family of irreducible modules for sl (2,C), by constructing irre-
ducible modules for its enveloping algebra.
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18.7.1 Lemma. Let U denote the enveloping algebra of sl (2,C), with generators
X , Y and H , and suppose V is a module for U with finite dimension. If v is an
eigenvector for H in its action on V , then there are integers k and ` such that
X k v = 0 and Y `v = 0.

Proof. Suppose H v =λv . Recalling that [H , X ] = 2X , we have

H X v = (X H +2X )v =λX v +2X v = (λ+2)X v.

Hence if X v 6= 0 and λ is an eigenvalue of H , then λ+2 is also an eigenvalue of
H . A similar calculation shows that if Y v 6= 0, then Y v is an eigenvector for H
with eigenvalue λ−2.

Note that X Y v is an eigenvector for H with eigenvalue λ, consistent with
the fact that H and X Y commute.

If V is a module for U , an element v of V has weight λ if H v = λv . If H v =
λv and also X v = 0, we say that v is a highest weight vector of weight λ. The
eigenspaces of H are often called weight spaces. We have seen that every finite-
dimensional module for U must contain a highest weight vector; the following
theorem completely specifies the structure of the cyclic U -module generated
by a highest weight vector.

18.7.2 Theorem. Suppose V is a module for U and v is a highest weight vector
in V with eigenvalue λ. Let d be the least non-negative integer such that Y d v =
0. Then λ= d−1, the cyclic U -module generated by v is simple and the vectors

v,Y v, . . . ,Y d−1v

form a basis for it. Further, for k = 0,1, . . . ,d −1,

HY k v = (d −1−2k)Y k v, X Y k v = k(d −k)Y k−1.

Proof. The adjoint map adH is a derivation of U whence

[H ,Y k ] = [H ,Y ]Y k−1 +Y [H ,Y k−1]

and a trivial induction yields that

[H ,Y k ] =−2kY k .

If H v =λv , we have

HY k v = [H ,Y k ]v +Y k H v =−2kY k v +λY k v = (λ−2k)Y k v.
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Let d be the least integer such that Y d v = 0. Then the vector space V1 spanned
by the vectors

v,Y v, . . . ,Y d−1v

has dimension d , and these vectors for a basis for it. Since these vectors are all
eigenvectors for H , we see that V1 is invariant under both Y and H . We prove
that it is X -invariant.

We have
[X ,Y k ] = [X ,Y ]Y k−1 +Y [X ,Y k−1]

Since X v = 0, it follows that

X Y k v = [X ,Y k ]v = HY k−1v +Y [X ,Y k−1]v

and so by induction we have

X Y k v = HY k−1v +Y HY k−2v +·· ·+Y k−1H v.

Since the vectors Y k v are eigenvectors for H , this implies that X Y k v = ck Y k−1v ,
for some constant ck and therefore V1 is a module for U . We have

ck = (λ+2−2k)+ (λ+4−2k)+·· ·+λ= kλ− (k2 −k) = k(λ−k +1).

We see that cd is the sum of the eigenvalues of H on V1 and so cd = tr(H). As
H = X Y −Y X we have tr(H) = 0, and therefore λ= d −1.

It remains to prove that V is simple. Suppose V1 is a non-zero submodule of
V . Then V1 contains a highest weight vector u, and since u is an eigenvector for
H it must be a non-zero scalar multiple of one of the vectors Y i v . Since X u = 0,
we see see that u is a non-zero scalar multiple of v . Hence the cyclic module
generate by u is equal to V and therefore V1 =V .

This result implies that the U module generated by a highest weight vector
v is determined by its dimension (or by the eigenvalue of v). Also note that any
simple module is isomorphic to one of the modules described in this theorem,
since any module contains a highest weight vector.

18.7.3 Corollary. If C is the Casimir element of sl (2,C), then C Y k v = (d 2 −
1)Y k v .

Proof. From above we have

X Y Y k v = (k +1)(d −k −1)Y k v

Y X Y k v = k(d −k)Y k v

H Y k v = (d −1−2k)Y k v

and the claim follows easily from these.
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18.8 Semisimple Elements

We derive two useful identities that hold in the enveloping algebra of sl (2,C).
We define

Hk := H +kI

and we define Hk;r recursively by Hk;0 = I and

Hk;i+1 := Hk;i Hk−i+1.

18.8.1 Lemma. We have

X mY n =
m∧n∑
r=0

r !

(
m

r

)(
n

r

)
Y n−r X m−r Hn−m;r

Proof. First prove by induction that if n ≥ 1, then

X nY = Y X n +nX n−1Hn−1 (18.8.1)

and then, by a second induction, derive the lemma.

18.8.2 Lemma. In a finite dimensional representation of U (sl (2,C)), if X k = 0
then

k−1∏
r=−k+1

(H − r I ) = 0.

Proof. We do not give a complete proof, but offer a generous hint and leave the
details as an exercise.

Suppose V is a finite-dimensional representation for U . The idea is to prove
that, if X k = 0, then for i = 1, . . . ,k we have

X k−i Hk−1;2i−1 = 0.

Setting i = k in this yields the result.
For convenience we prove the above claim in the case k = 4. We have the

following equations:

X 4Y = Y X 4 +4X 3H3;1 (18.8.2)

X 4Y 2 = Y 2X 4 +8Y X 3H2;1 +12X 2H2;2 (18.8.3)

X 4Y 3 = Y 3X 4 +12Y 2X 3H1;1 +36Y X 2H1;2 +24X H1;3 (18.8.4)

X 4Y 4 = Y 4X 4 +16Y 3X 3H0;1 +72Y 2X 2H0;2 +216Y X H0;3 +24H0;4 (18.8.5)



18.8. SEMISIMPLE ELEMENTS 189

Since X 4 = 0 we see that (18.8.2) implies

X 3H3;1 = 0.

Now multiply (18.8.3) on the right by H3; since X Hi = Hi−2X , we get

0 = 8Y X 3H3H2 +12X 2H1H2H3

and since Y X 3H3 = 0, we deduce that

X 2H3;3 = 0.

Next multiply (18.8.4) on the right by H2H3 and deduce that since

Y X 2H1;2H2H3 = Y X 2H0H1H2H3 = Y X 2H3;3H0 = 0,

that

X H3;5 = 0.

Finally multiply (18.8.5) on the right by H1;3 to deduce that

H3;7 = 0.

Recall that H , X Y and Y X all commute.

18.8.3 Lemma. If 1 ≤ k ≤ n, then

X nY k =
(k−1∏

i=0
(Y X + (n − i )H−n+i+1)

)
X n−k

Proof. From (18.8.1) we have

X nY = Y X n +nX n−1Hn−1 = Y X n +nH−n+1X n−1 = (Y X +nH−n+1)X n−1

and use induction on k.

18.8.4 Theorem. In a finite-dimensional representation of U (sl (2,C))), the im-
ages of H , X Y and Y X are semisimple.
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Proof. Since H and X Y commute and Y X = X Y −H , it is enough to show that
H and Y X are semisimple. By Lemma 18.7.1, there is an integer k such that
X k = 0. From Lemma 18.8.2 it follows that H is semimple, and so the underlying
vector space V is a direct sum of eigenspaces of H . Suppose Vλ is one of these
eigenspaces, where λ is the eigenvalue of H .

By Lemma 18.8.3 we have

0 = X k Y k = (Y X +k(H − (k −1)I ) · · · (Y X +H)

and if z ∈Vλ, then

0 = (Y X +k(λ− (k −1)I ) · · · (Y X +λ)z.

Hence the minimal polynomial of Y X on Vλ has only simple zeros, and there-
fore Y X is semisimple on Vλ. We conclude that Y X must be semisimple.

18.9 Semisimple Modules

18.9.1 Theorem. Any finite dimensional module for U (sl (2,C)) is semisimple.

Proof. Let U denote U (sl (2,C)), let M be a finite-dimensional U -module, and
let C be the Casimir element of U . Since C is central and semisimple, M is the
direct sum of eigenspaces of C , and so to prove the theorem it will suffice if we
show that any eigenspace for C semisimple.

Hence we assume that M itself is an eigenspace for C . Since H also is semisim-
ple, M is the direct sum of weight spaces Mσ and, if N ≤ M , then N is the direct
sum of its weight space Nσ, where

Nσ = N ∩Mσ.

We have
dim(Mσ) = dim(Nσ)+dim(Mσ/Nσ).

Note that M/N is a U -module and

(M/N )σ = Mσ/Nσ.

Next assume we have the composition series for M :

0 = M0 < M1 < ·· · < Mr = M .
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Then

dim(Mσ) =
r∑

i=1
dim(Mi /Mi−1)σ

but Mi /Mi−1 is a simple U -module and consequently dim(Mi /Mi−1)σ = 1. We
conclude that dim(Mσ) = r and that dim(M) is r times the number of eigen-
values of H . The cyclic U -submodule of M generated by a non-zero element
is simple and, since all non-zero elements of M are eigenvectors for C with the
same eigenvalue, all these simple modules have the same dimension.

Choose a basis x1, . . . , xd for M . Then

M = x1U +·· ·+xdU .

where each submodule xi U contains a simple submodule Si (say). (We do not
assume that this is a direct sum.) Since dim(Mσ) = r , we have d = r . Since
x1, . . . , xr is a basis, the sum

S1 +·· ·+Sr

is direct and therefore dim(M) is bounded below by r times the number of
eigenvalues of H . But we saw that equality holds, and therefore M is a direct
sum of simple modules as required.

This proof follows Jantzen [?].
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Chapter 19

Terwilliger Algebras

Let A be an association scheme with d classes and let π be an equitable parti-
tion of its vertex set with e classes. Define the diagonal 01-matrix Fi by setting
(Fi )u,u = 1 if u lies in the i -th class of π. Then the matrices Fi are symmetric
idempotents and ∑

i
Fi = I .

We will study the algebra generated by A together with the matrices Fi .
If u is a vertex in the scheme and the i -th cell of π consists of the vertices

x such that (u, x) lies in the i -th relation, the algebra we get is the Terwilliger
algebra of the scheme relative to the vertex u.

19.1 Modules

Our basic task is to determine the irreducible modules of the Terwilliger alge-
bra. Suppose A is an association scheme with d classes A0, . . . , Ad and vertex
set V , and assume |V | = v . Let T denote the Terwilliger algebra of this scheme
and suppose W is an irreducible T-module. Since W is invariant under A , it
must have basis that consists of eigenvectors for A . Similarly it must have basis
that consists of eigenvectors for the matrices Fi , that is, vectors whose supports
are subsets of the cells of the partition π.

The subspace spanned by the characteristic vectors of the cells of π is T-
invariant and has dimension equal to |π|, the number of cells of π. We call it the
standard module It is a cyclic T-module, generated by 1. You may prove that it
is irreducible.

193
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This may seem an encouraging start to determining the irreducible mod-
ules for the Terwilliger algebra, but unfortunately further progress will require
much more effort. Since T is transpose-closed, Rv decomposes into an orthog-
onal sum of irreducible T-modules. Hence if W is irreducible and is not the
standard module, we may assume that it is orthogonal to it. Thus each element
of W will be orthogonal to the vectors Fi 1—it sums to zero on the cells of π.

19.1.1 Lemma. If W is an irreducible module for an algebra B and f is an idem-
potent in B, then W f is an irreducible module for f B f .

Proof. We may assume dim(W ) ≥ 2, or there is nothing to prove. Since

W f f B f =W f B f ≤W f ,

we see that W f is a module for f B f .

Suppose U is an f B f -submodule of W f . Each element of U can be written
as w f where w ∈ W and as f 2 = f , it follows that U f =U . Since U f B is a B-
submodule of W , it is either zero or equal to W . If it is equal to W , then

U =U f B f =W f

and therefore W f is irreducible for f B f .

To complete the proof, we show that U f B cannot be zero. The key is to
note that the set

{u ∈W : uB = 0}

is a B-submodule of W . Since W is simple and not zero, it follows that this set
must be the zero module. Consequently U f B cannot be zero.

Note that f B f is a subspace of B and is closed under multiplication, but
fails to be a subalgebra because it does not contain I (in general). However

f B f + (I − f )B(I − f )

is a subalgebra of B.

When we want to use Lemma 19.1.1, we will have two possible sources of
idempotents: the matrices Fi and the principal matrix idempotents E j .
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19.2 Thinness

Let T be the Terwilliger algebra for an association scheme A and let W be a
T-submodule of Rv . We say that W is thin if for each i we have

dim(Fi W ) ≤ 1.

We also say that W is dual thin if for each j ,

dim(E j W ) ≤ 1.

We generalise the concept of thinness. Suppose B is an algebra. We say that a
set of idempotents F1, . . . ,Fr is a resolution of the identity if they are pairwise
orthogonal (Fi F j = 0 when i 6= j ) and∑

i
Fi = I .

A module W for B is thin relative to the resolution F1, . . . ,Fr if dim(Fi W ) ≤ 1
for all i .

Being thin is not easy, but it is a desirable property that holds in many inter-
esting cases.

19.2.1 Lemma. If A is an association scheme then the standard modules are
thin and dual thin,

Proof. Exercise.

19.2.2 Theorem. If the algebra B is self-adjoint, then it is thin relative to the
resolution F1, . . . ,Fr if and only if the subalgebra

F1BF1 +·· ·+Fr BFr

is commutative.

19.2.3 Lemma. Suppose T is the Terwilliger algebra of an association scheme
relative to some vertex. If each matrix in

F0TF0 +·· ·+FeTFe

is symmetric, or if Aut(X )1 is generously transitive on each cell of π, then T is
thin.

Proof. For the first, two symmetric matrices commute if and only if their prod-
uct is symmetric. The second condition implies that each FiTFi is the Bose-
Mesner algebra of a symmetric association scheme.
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19.3 Jaeger Algebras

We define some endomorphisms of Matv×v (C). If A is a v × v matrix define the
operators X A and YA on Matv×v (C) by

X A(M) := AM , YA(M) = M A∗

and if B is a v × v matrix, then we define ∆B by

∆B (M) := B ◦M .

Note that

YA(YB (M)) = MB∗A∗ = M(AB)∗ = YAB (M),

which explains the A∗ in the definition of YA. Also X A and YB commute, for any
A and B .

If A is an association scheme, we define J2 to be the algebra generated by
the matrices X A for A in C[A ]. We define J3(A ) to be the algebra generated by
the operators

X A, ∆B , A,B ∈C[A ].

We obtain J4(A ) by adjoining the right multiplication operators YA as well
The vector space Matv×v (C) is a module M for J3, and the subspace of ma-

trices with all but the i -th column zero is a submodule, which we denote by
M(i ). We see that M is the direct sum of the modules M(i ).

Our first result shows that J3(A ) is a kind of global Terwilliger algebra.

19.3.1 Lemma. The algebra generated by the restriction to M(i ) of the oper-
ators in J3 is isomorphic to the Terwilliger algebra of A relative to the i -th
vertex.

Proof. We have

X A(ei eT
j ) = (Aei )eT

j

and

∆B (ei eT
j ) = (Bi , j ei )eT

j .

So X A is represented on M( j ) by the matrix A, and ∆B by the diagonal matrix
formed from the vector Be j .
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We say that a J3-submodule U of Matv×v (C) is thin if the subspaces ∆Ai

are 1-dimensional, and say that it is dual thin if the subspaces XE j U are 1-
dimensional.

19.3.2 Lemma. If A is metric then a thin submodule of Matv×v (C) is dual thin,
if A is cometric then a dual thin submodule of Matv×v (C) is thin.

Proof. Suppose A is metric relative to the Schur idempotent A1. If C is a v × v
matrix, then

(A1(Ai ◦C ))◦ A j = 0

if |i − j | > 1. Hence if M is submodule of Matv×v (C), then

A1(Ai ◦M) ≤ Ai−1 ◦M + Ai ◦M + Ai+1 ◦M . (19.3.1)

Now let r denote the least positive integer such that Ar ◦M 6= 0, and let d be
the greatest positive integer such that Ar+d−1 ◦M 6= 0. From (19.3.1) it follows
that if r ≤ i ≤ r +d −1 then Ai ◦M 6= 0. We also see that M is generated by the
subspace Ad ◦M as an X A1 -module. In other terms,

M = 〈A1〉(Ad ◦M).

If E j is a matrix idempotent, then

E j M = E j 〈A1〉(Ar ◦M) = E j (Ar ◦M)

If M is thin, then dim(Ar ◦ M) = 1 and therefore dim(E j M) ≤ 1 for all j .
Therefore M is dual thin.

Suppose A is cometric relative to E1 and let s be the least integer such that
Es M 6= 0. Then each column of a matrix in E j M lies in col(E j ), and so if C ∈ M ,
then each column of E1 ◦ (Ei M) is the Schur product of a column of E1 with a
vector in col(Ei ). Hence by ??? we have

E1 ◦ (Ei M) ≤ Ei−1M +Ei M +Ei+1M .

Given this, it is easy to prove the second part of the theorem.
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Chapter 20

Strongly Regular Graphs

20.1 Strongly Regular Graphs

We apply the theory at hand to strongly regular graphs. Assume X is strongly
regular with adjacency matrix A, and suppose that A has the partitioned form

A =
0 1T 0

1 B1 N T

0 N B2


Thus B1 is the adjacency matrix of the neighborhood of the vertex 1 in X , and
B2 is the adjacency matrix of the subgraph induced by the vertices at distance
two from 1.

20.1.1 Theorem. If X is a strongly regular graph and T is its Terwilliger algebra
relative to some vertex, then an irrreducibleT-module lies in one of the follow-
ing classes:

(a) The standard module, with dimension three.

(b) Modules with dimension two, parameterized by eigenvectors w of B1 such
that N w is an eigenvector for B2.

(c) Modules with dimension one, arising from an eigenvector of B1 in ker(N T )
or from an eigenvector of B2 in ker(N ). Each of these modules is an eigenspace
for A.

199
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Proof. Suppose W is an irreducible T-module. We assume that W is not the
standard module, and hence it lies in the orthogonal complement to the stan-
dard module. In particular F0W = 0.

First we consider the case where F1W = 0. In this case if x ∈W , then supp(x)
is a subset of the vertices at distance two from 1. Since0 1T 0

1 B1 N T

0 N B2

 0
0
w

=
 0

N T w
B2w


we conclude that if

x =
 0

0
w

 ∈W,

then N T w = 0 and  0
0

B2w

 ∈W.

Since the span W2 of the vectors B r
2 w is B2-invariant and since B2 is symmetric,

there is an eigenvector v for B2 contained in W2. Hence the vector0
0
v


spans a 1-dimensional T-invariant subspace.

Similarly if F2W E = 0, then dim(W ) = 1, and W is spanned by an eigenvec-
tor for B1 that lies in ker(N ).

So we assume that neither F1W nor F2W are zero. If

x =
0

u
v

 ∈W,

then 0
u
0

= F1x ∈W
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and so

A

0
u
0

=
 0

B1u
Nu

 ∈W.

Accordingly the vectors  0
B r

1 u
0


all lie in W and so there is an eigenvector w for B1 such that

z :=
 0

w
0

 ∈W.

If we assume that B1w =λw , then

Az = A

 0
w
0

=
 0
λw
N w

 ∈W

The matrices I , A and J form a basis for the algebra of polynomials in A, and so
the vectors

z, Az, J z

span the cyclic A-module generated by z. Since J z = 0, this module is spanned
by z and Az. It follows that that the span of z and Az contains an eigenvector
for A, necessarily of the form  0

w
βN w

 ,

for some scalar β. If the eigenvalue for this eigenvector is θ, then

θ

 0
w

βN w

= A

 0
w

βN w

=
 0

B1w +βN T N w
N w +βB2N w

=
 0
λw +βN T N w
N w +βB2N w


whence we see that w is an eigenvector for N T N and N w is an eigenvector for
B2. Consequently the span of the vectors 0

w
0

 ,

 0
0

N w
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is T-invariant; since these vectors are contained in W and since W is irre-
ducible, they must be a basis for W .

20.1.2 Corollary. The Terwilliger algebra of a strongly regular graph is thin and
dual thin.

Proof. It follows from our work above that an irreducible T-module is thin We
prove that an irreducible T-module is dual thin. Cases (a) and (c) are easy, so
we turn to case (b). Suppose w 6= 0 and

x =
 0

w
0

 ∈W.

Then E0x = 0. If E1x = 0, then x = E2x and so x is an eigenvector for A and thus
generates a proper submodule of W . We conclude that neither E1x nor E2x can
be zero, and hence W is dual thin.

20.2 Local Eigenvalues

We apply the theory built up in the previous section to get information about
local eigenvalues of strongly regular graphs.

Assume X is a strongly regular graph with parameters (v,k, a,c) and adja-
cency matrix partitioned as in the previous section. We assume that the eigen-
values of X are

k, θ, τ

where θ ≥ 0 and τ< 0. We denote the multiplicities of θ and τ by m(θ) and m(τ).
We use δ to denote a − c and recall that

A2 = δA+ (k − c)I + c J .

Since T is thin, the matrices

F1 AF1, F1 AF2 AF1

commute and therefore the matrices

B1, N T N
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also commute. Hence we can decompose each eigenspace of B1 into the sub-
space of eigenvectors in ker(N T N ) and the subspace of eigenvectors orthog-
onal to ker(N T N ) or, equivalently, eigenvectors in ker N and eigenvectors in
col(N T )).

If w is an eigenvector for B in ker(N ) then 0
w
0


is an eigenvector for A (with eigenvalue θ or τ) and spans a 1-dimensional irre-
ducible T-module.

Now suppose w is an eigenvector for B1 with eigenvalue λ in 1⊥∩ ker(N ).
We have

F2 A2F1 = N B1 +B2N = δN + c J

and consequently

δN w = (δN + c J )w = (N B1 +B2N )w = (λI +B2)N w.

Therefore N w is an eigenvector for B2 with eigenvalue δ−λ, and the vectors 0
w
0

 ,

 0
0

N w


span an irreducible T-module with dimension two. It is possible to show in
a similar fashion that if z is an eigenvector for B2 with eigenvalue µ in 1⊥ ∩
ker(N T ), then

B1N T z = (δ−µ)N T z

and the vectors  0
N T z

0

 ,

0
0
z


span an irreducible T-module with dimension two.

We note one further constraint. Since

F1 A2F1 = J +B 2
1 +N T N = δB1 + (k − c)I + c J

we have
B 2

1 −δB1 − (k − c)I =−N T N + (c −1)J
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and so if B w =λw and J w = 0, then

(λ2 −δλ− (k − c)) =−N T N w.

Thus w is an eigenvalue for N T N , and since this matrix is positive semidefinite,
it follows that

λ2 −δλ− (k − c) ≤ 0,

or equivalently that
τ≤λ≤ θ.

For later use, note that

t 2 −δt − (k − c) = (t −θ)(t −τ).

A local eigenvalue of a strongly regular graph s an eigenvalue of B1 or B2 not
equal to θ or τ.

20.2.1 Lemma. If X is a triangle-free strongly regular graph with parameters
(v,k;0,c), then the eigenvalues of B2 are its valency k − c and a subset of θ, τ
and −c.

It follows that the second neighborhood of a vertex in a triangle-free strongly
regular graph is walk regular.

20.3 Dimensions

We determine the dimension of the Terwilliger algebra of a strongly regular
graph. Most the work has already been done, the main task left is to determine
the isomorphism classes of the irreducible T-modules.

We deal with the easy cases first. The standard module is the only module
with dimension three, and so nothing more need to be said. Two 1-dimensional
modules U and V are isomorphic if either both F1U and F1V are non-zero, or
both F2U and F2V are non-zero.

So consider the 2-dimensional T-module spanned by the vectors 0
w
0

 ,

 0
0

N w
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where B1w =λw . Relative to this basis, F1 and F2 are represented by the matri-
ces (

1 0
0 0

)
,

(
0 0
0 1

)
.

We have

A

 0
w
0

=
 0
λw
N w


and

A

 0
0

N w

=
 0

N N T N w
B2NW

=
 0
−(λ−θ)(λ−τ)w

(δ−λ)N w

 .

and therefore the matrix representing A is(
λ −(λ−θ)(λ−τ)
1 δ−λ

)
.

It follows that this module is determined by the eigenvalue λ. We also see that
the structure of the Terwilliger algebra is determined by the eigenvalues of X
and the eigenvalues of its first and second neighborhoods.

20.3.1 Theorem. Let X be a strongly regular graph with v vertices. Let s denote
the sum of the number of eigenvalues of B1 in {θ,τ} plus and the number of
eigenvalues of B2 in {θ,τ}, and let r denote the number of eigenvalues of B1 not
in this set. Then dim(T) = 9+4r + s and dim(Z (T)) = 1+ r + s.

It is clear that 0 ≤ s ≤ 4 but in fact s must be positive if X is not a conference
graph. For

k +`= mθ+mτ

and if k > ` and mθ > mτ, then A has an eigenvector with eigenvalue θ sup-
ported on the neighborhood of a vertex. Similar conclusions hold if we reverse
one or both of these inequalities.

By way of example we consider the strongly regular graph L(Kn), where n ≥
5. Its parameters are ((

n

2

)
,2n −4;n −2,4

)
and its eigenvalues are

2n −4, n −4, −2.
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The neighborhood of a vertex is isomorphic to K2 äKn−2, whence its eigenval-
ues are

n −2, n −4, 0, −2

and the second neighborhood is isomorphic to L(Kn−2), with eigenvalues

2n −8, n −6, −2.

Thus there are two non-local eigenvalues in the neighborhood, one non-local
eigenvalue in the second neighborhood and one local eigenvalue. It follows
that the Terwilliger algebra has dimension

9+3+4 = 16

while its centre has dimension five.
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Hamming Schemes

21.1 The Binary Hamming Scheme

The Hamming scheme H(d ,2) is a metric and cometric association scheme.
The matrix A = A1 is the adjacency matrix of the d-cube, and its eigenvalues
are the integers

d −2i , i = 0, . . . ,d

with respective multiplicities (
d

i

)
.

The automorphism group of the Hamming scheme is vertex-transitive, and so
the Terwilliger algebra is the same for each vertex.

We can write
A = R +L

where L = RT and R is the natural raising operator on the lattice of subsets of
{1, . . . ,d}. (So L is the natural lowering operator.)

21.1.1 Theorem. The Terwilliger algebra of the binary Hamming scheme is a
quotient of the enveloping algebra U (sl (2,C)).

Proof. View the vertices of the Hamming scheme as subsets of {1, . . . ,d}. Define

H = RL−LR.

We note that
Rα,β = 1

207
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if and only if α ⊆ β and |β| = |α| + 1. Further Hα,β = 0 if |α| 6= |β| and, if |α| =
|β| = i , then

Hα,β = d −2i .

It follows that

H =
d∑

i=0
(d −2i )Fi

and hence the the algebra of all polynomials in H is the equal to the algebra
generated by the diagonal matrices Fi .

Since
[R,L] = H , [H ,R] = 2R, [H ,L] =−2L

the algebra generated by R, L and H is a homomorphic image of U (sl (2,C)).
To complete the proof we must show that R and L generate the Terwilliger

algebra of H(n,d). But since the scheme is metric, each element of the Bose-
Mesner algebra is a polynomial in A and since the algebra generated by H con-
tains each Fi , we conclude that R and L generate the Terwilliger algebra.

21.2 Modules

With what we know about the representation theory of sl (2,C), it is easy to de-
termine the irreducible T-modules for the binary Hamming scheme H(d ,2). If
u is a vertex of H(d ,2) with Hamming weight i , then the vectors

v,Rv, . . . ,Rd−2i v

are a basis for an irreducible module of dimension d − 2i + 1. If u and v are
binary vectors then the irreducible modules they generate are isomorphic if
and only if u and v have the same Hamming weight.

21.2.1 Lemma. We have

dim(T(H(d ,2))) = 1

6
(d +1)(d +2)(d +3).

Proof. If 0 ≤ 2i ≤ d , then our Terwilliger algebra has one isomorphism class of
irreducible module with dimension d −2i +1, whence

dim(T(H(d ,2))) = ∑
i≤d/2

(d −2i +1)2 = 1

6
(d +1)(d +2)(d +3).
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21.2.2 Lemma. The Terwilliger algebra of the Hamming scheme is thin and dual
thin.

Proof. If v has Hamming weight i , then the Hamming weight of each vector
in supp(R j v) is i + j . Hence Fi+ j R j v = R j v , and therefore the R-module gen-
erated by v is thin. Since the Hamming schemes are metric, it follows from
Lemma 19.3.2 that this module is also dual thin.
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Chapter 22

Spin

22.1 Braids

The braid group on n strands Bn is the group generated by elements

σ1, . . . ,σn−1

subject to the relations:

σiσ j =σ jσi , if |i − j | ≥ 2

σiσ jσi =σ jσiσ j , if |i − j | = 1.

[braids, closure]
The map that takes σi to the transposition (i i +1) in the symmetric group

Sym(n) extends to a homomorphism from Bn . (Its kernel consists of the pure
braids.)

The Temperley-Lieb algebra T Ln(β) contains a homomorphic image of the
Braid group.

22.2 Nomura Algebras

Let A and B be v × v matrices and suppose B is Schur invertible. The Nomura
algebra NA,B consists of all v × v matrices for which all the vectors

Aei ◦Be
(−)

j

211
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are eigenvectors. If M ∈ NA,B , we define ΘA,B (M) to be the v × v matrix with
i j -entry equal to eigenvalue of M associated to Aei ◦Be j . Thus I ∈ NA,B and
ΘA,B = J .

If M , N ∈NA,B , then

ΘA,B (M N ) =ΘA,B (M)◦ΘA,B (N ).

Thus NA,B is an algebra under matrix multiplication, and the image of NA,B

underΘA,B is an algebra under Schur multiplication. We note that

NA,B =NB ,A

while
ΘB ,A(M) =ΘA,B (M)T .

22.2.1 Lemma. If A is invertible and B is Schur invertible, thenΘA,B is injective
and NA,B is a commutative algebra.

A v × v matrix W is a type-II matrix if it is Schur invertible and

W W (−)T = v I .

Hadamard matrices provide one class of examples. If W is a type-II matrix, then
W is invertible and

W −1 = 1

v
W (−)T .

22.2.2 Lemma. The matrix W is a type-II matrix if and only if J ∈NW,W (−) .

The Nomura algebra NW,W (−) will play an important role in our work and so
we will denote it by NW . We also writeΘW forΘW,W (−) .

22.3 Braids

Let A, B and C be v × v matrices. We define endomorphisms X A, ∆B and YC of
the vector space Matn×n(C) by

X A(M) := AM , ∆B (M) := B ◦M , YC (M) := MC T .

(We could instead use respectively A ⊗ I , DB and I ⊗C , where DB is a diagonal
matrix with the entries of B as its diagonal entries and all three matrices are
viewed as elements of End(Matv×v (C)).)
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22.3.1 Lemma. Suppose A,B ∈ Matv×v (C). Then R ∈ NA,B and ΘA,B (R) = S if
and only

XR∆B X A =∆B X A∆S .

We see that A ∈NA,B andΘA,B (A) = B if and only if

X A∆B X A =∆B X A∆B ;

we call this the braid relation. [If A is invertible and B is Schur invertible and
A ∈NA,B , does it follow thatΘA,B (A) = B?]

We note the following result, which we call the exchange identity.

22.3.2 Theorem. Let A, B , C , Q, R, S be v × v matrices. Then

X A∆B XC =∆Q XR∆S

if and only if
X A∆C XB =∆R XQ∆ST .

Proof. Apply each of the four products to the matrix ei eT
j .

The bilinear form tr(M N T ) on Matv×v (C) is non-degenerate and hence al-
lows to define the adjoint of elements of End(Matv×v (C)). We denote the adjoint
by transpose and observe that

(X A)T = X AT , (∆B )T ) =∆B .

Thus the braid relation implies that

X AT∆B X AT =∆B X AT∆B .

22.4 Jones Pairs

We say that v×v matrices A and B form a one-sided Jones pair if A is invertible,
B is Schur invertible and A ∈ NA,B . They form a Jones pair if (A,B T ) is also a
one-sided Jones pair.

22.4.1 Lemma. If (A,B) is a one-sided Jones pair, so are each of the following:

(a) (AT ,B).
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(b) (A−1,B (−)).

(c) (D−1 AD,B), where D is diagonal and invertible.

(d) (A,BP ), where P is a permutation matrix.

(e) (λA,λB), for any non-zero complex number λ.

22.4.2 Lemma. The matrices A and B form a one-sided Jones pair if and only if
for all i and j we have

A(Aei ◦Be j ) = Bi , j (Aei ◦Be j ).

22.4.3 Corollary. Let (A,B) be a pair of v×v matrices and let D j be the diagonal
matrix formed from the j -th column of B . Then (A,B) is a one-side Jones pair
if and only if, for j = 1, . . . , v ,

AD j A = D j AD j .

22.4.4 Lemma. If (A,B) is a one-sided Jones pair, then each column of B sums
to tr(A).

Proof. From the previous result we have

A−1D j A = D j AD−1
j

whence A and D j are similar and tr(A) = tr(D j ). Therefore each column of B
sums to tr(A).

We say a Jones pair (A,B) is invertible if A is Schur invertible and B is in-
vertible.

22.4.5 Theorem. Suppose (A,B) is a one-sided Jones pair and B is invertible,
then A and B are type-II matrices and the diagonal of A is constant.

Proof. If A ∈NA,B then A−1 ∈NA,B and so

ΘB ,A(A−1) = B (−)T .

This implies that
X A−1∆A XB =∆A XB∆B (−)T (22.4.1)
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and taking the transpose of this, we get

XB T∆A X A−T =∆B (−)T XB T∆A.

If we apply the right side to I we get B T (A ◦ A−T ), if we apply the left side to I
the result is

B (−)T ◦ (B T (A ◦ I )) = J (A ◦ I )

and hence
B T (A ◦ A−T ) = J (A ◦ I ).

Since B is invertible and its row sums are all equal t some constant β, this im-
plies that

A ◦ A−T = B−T J (A ◦ I ) =βJ (A ◦ I ).

The sum of the entries in the i -th column of A ◦ A−T is∑
r

(A−1)r,i (AT )r,i =
∑

r
(A−1)r,i Ai ,r = 1

and therefore all columns of J (A ◦ I ) must be equal. It follows that v A ◦ A−T = J
and so A is a type-II matrix with constant diagonal.

To complete the proof we multiply each side of (22.4.1) on the left by ∆A(−)

and on the right by XB−1 to obtain

∆A(−) X A−1∆A = XB∆B (−)T XB−1 .

Taking inverses on both sides yields

∆A(−) X A∆A = XB∆B T XB−1

and applying each side to I gives

A(−) ◦ (A(A ◦ I )) = B(B T ◦B−1).

Since the diagonal of A is constant, the left side here is equal to a J for some a
and so

B T ◦B−1 = aB−1 J

Arguing as before, the sum of a row of B T ◦B−1 is 1. Therefore B−1 J is a multiple
of J ; from this we see that B is a type-II matrix.
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22.4.6 Lemma. If (A,B) is Jones pair and A is Schur invertible, then B is invert-
ible.

Proof. Apply both sides of (22.4.1) to J ; this yields

A−1(A ◦ (B J )) = A ◦ (BB (−)T ).

Since (A,B T ) is a Jones pair the row sums of B equal tr(A) and so the left side
here is equal to tr(A)I . As A is Schur invertible it follows that BB (−)T is diagonal.
However the diagonal entries of BB (−)T are all equal and so it is a scalar matrix.
We conclude that B is type II and invertible.

22.5 Gauge Equivalence

If D is an invertible diagonal matrix we say that D−1 JD is a dual permutation
matrix. The Schur inverse of a dual permutation matrix is a dual permutation
matrix.

22.5.1 Lemma. If A, C and M are Schur invertible and X A∆M = ∆M XC , then
C (−) ◦ A is a dual permutation matrix. If B , C and M are invertible and ∆B XM =
XM∆C , then C B−1 is a permutation matrix.

22.5.2 Corollary. If (A,B) and (C ,B) are one-sided Jones pairs, then C = D−1 AD
where D is invertible and diagonal.

22.5.3 Corollary. If (A,B) and (A,C ) are one-sided Jones pairs, then C = BP
where P is a permutation matrix.

22.6 Nomura Algebras of Type-II matrices

A type-II matrix W is called a spin model if (W,W (−)) is a Jones pair. If W ∈NW ,
then (W,W (−)) need not be a Jones pair, because the columns of W (−) might not
sum to tr(A). If σ denotes the sum of a column of W (−) and we choose γ so that

γ2 tr(W ) =σ

then γW is a spin model.
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22.6.1 Theorem. Let A be a v×v type-II matrix. ThenΘA is a bijection from NA

to NAT and ΘAT is a bijection from NAT to NA. If R ∈ NA then ΘAT (ΘA(R)) =
vRT .

Proof. Suppose R ∈NA andΘA(R) = S. Then

XR∆A(−) X A =∆A(−) X A∆S

and the transpose of this is

X AT∆A(−) XRT =∆S X AT∆A(−)

and applying the exchange identity to this yields

X AT∆RT X A(−) =∆AT XS∆A(−)T .

If we multiply both sides of this on the left by ∆A(−)T and on the right by X A(−)−1

we get
XS∆A(−)T X A(−)−1 =∆A(−)T X AT∆RT .

Since A(−)−1 = 1
v AT , this yields

XS∆A(−)T X AT =∆A(−)T X AT∆vRT

whence S ∈NAT andΘAT (S) = vRT .
AsΘAT (ΘA(R)) = vRT , we see thatΘA andΘAT are bijections.

This proof shows that the composite map

1

v
ΘATΘA

is the transpose map on NA. Hence 1
vΘAΘAT is the transpose map on NAT . In

factΘA andΘAT commute with the transpose.

22.6.2 Corollary. If A is a type-II matrix and R ∈NA, then RT ∈NA andΘA(RT ) =
ΘA(R)T .

Proof. If R ∈NA then vRT =ΘAT (ΘA(R) ∈NA and

ΘA(vRT ) =ΘA(ΘAT (ΘA(R))) = vΘA(R)T .
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22.6.3 Corollary. If A is a v × v type-II matrix and M , N ∈NA, then

ΘA(M ◦N ) = 1

v
ΘA(M)Θ(N ).

22.6.4 Corollary. If A is a type-II matrix then its Nomura algebra is closed un-
der matrix multiplication, Schur multiplication, transpose and complex conju-
gation.

Proof. We know that NA is closed under matrix multiplication and that

ΘA(M N ) =ΘA(M)◦ΘA(N ),

from which it follows that the image of ΘA is Schur-closed. Therefore NAT is
Schur-closed. Swapping A and AT , we deduce that NA is Schur-closed.

We saw above that NA is closed under transpose. Since it is Schur-closed it
has a basis consisting of 01-matrices, and the complex span of these matrices
is closed under complex conjugation.

This corollary asserts that NA is the Bose-Mesner algebra of an association
scheme.

22.7 Spin Models

By definition, W is a spin model if (W,W (−)) is a one-sided Jones pair.

22.7.1 Lemma. If A is a type-II matrix and (A, A(−)) is a one-sided Jones pair,
then it is a Jones pair.

Proof. Since (A, A(−)) is a one-sided Jones pair, we have

X A∆A(−) X A =∆A(−) X A∆A(−)

and taking the transpose of this yields

X AT∆A(−) X AT =∆A(−) X AT∆A(−) .

Using the exchange identity we obtain

X AT∆AT X A(−) =∆AT X A(−)∆A(−)T
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and inverting both sides yields

X A(−)−1∆A(−)T X A−T =∆AT X A(−)−1∆A(−)T .

If we multiply on the left by ∆A(−)T and on the right by X AT , the result is

∆A(−)T X A(−)−1∆A(−)T = X A(−)−1∆A(−)T X AT .

We observe that A(−)−1 = 1
v AT , whence the last equation yields

∆A(−)T X AT∆A(−)T = X AT∆A(−)T X AT

and therefore (AT , A(−)T ) is a one-sided Jones pair. From the transpose of this
we see that (A, A(−)T ) is one-sided Jones pair, and thus it follows that (A, A(−)) is
a Jones pair.

22.7.2 Theorem. If A is spin model, then NA =NAT andΘA =ΘAT .

Proof. We use gauge equivalence. If (A, A(−)) and A, A(−)T are one-sided Jones
pairs, there is a permutation matrix P such that A(−)T = A(−)P , and conse-
quently

NA,A(−)T =NA,A(−)P =NA,A(−)

Now A ∈NA if and only if

AT ∈NAT ,A(−) =NAT ,A(−)T .

Since NA is closed under transposes, the result holds.
Suppose R ∈NA andΘA(R) = S then

XR∆A(−) X A =∆A(−) X A∆S

and if R ∈NAT andΘAT = T then

XR∆A(−)T X AT =∆A(−)T X AT∆T .

Consequently

(∆A(−)T X AT∆T )−1∆A(−) X A∆S = X A−T∆AT ◦A(−) X A.

The left side here equals

∆T (−) X A−T∆AT∆A(−) X A∆S =∆T (−) (X A−T∆AT ◦A(−) X A)∆S
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If we define
Ξ := X A−T∆AT ◦A(−) X A

then
Ξ∆S =∆TΞ. (22.7.1)

We compute Ξ(M), for any v × v matrix M . Note that

Ξ(M) = A−T (AT ◦ A−1 ◦ (AM))

Since (A, A(−)) and (AT , A(−)T ) are both one-sided Jones pairs, there is an invert-
ible diagonal matrix C such that AT =C−1 AC . Therefore

AT ◦ A−1 = (C−1 AC )◦ A−1 =C−1 JC

and so

AT ◦ A−1 ◦ (AM) = (C−1 JC )◦ (AM) =C−1 AMC = AT C−1MC

and consequently

Ξ(M) = A−T (AT ◦ A−1 ◦ (AM)) =C−1MC .

Now apply each side of (22.7.1) to M ; we get

T ◦ (C−1MC ) =C−1(S ◦M)C = S◦)C−1MC ).

We conclude that S = T .



Chapter 23

Abelian Spin

We study spin models in the Bose-Mesner algebras of abelian groups, aka trans-
lation schemes.

23.1 Schemes

Suppose W is a type-II matrix. Its Nomura algebra is the Bose-Mesner algebra
of an association scheme A ; thus NW =C[A ]. We assume A has d classes and
therefore dim(NW ) = d +1. Let E0, . . . ,Ed denote the principal idempotents of
the scheme. Since E 2

i = Ei we see that ΘW (Ei ) must be a Schur idempotent in
NW T and since

d∑
i=0

Ei = I

we have
d∑

i=0
ΘW (Ei ) = J ,

whence it follows that the Schur idempotentsΘW (Ei ) are linearly independent.
Thus they are the principal Schur idempotents of the scheme determined by
W T .

A similar argument shows that if A0, . . . , Ad are the principal Schur idempo-
tents of the scheme determined by W , then the matrices

1

v
ΘW (Ai )

are the principal idempotents of the scheme determined by W T .

221
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Now we specialize to the case where W is a spin model. The eigenvalues
pi ( j ) of the scheme are defined implicitly by

Ai =
d∑

i=0
pi ( j )E j .

Since NW = NW T , we see that ΘW maps C[A ] to itself and the matrix which
represents relative to the basis formed by E0, . . . ,Ed has i j -entry equal to p j (i ).
It is traditionally denoted by P . It is invertible and we follow tradition further
and set Q equal to vP−1. We have

E j = 1

v

d∑
i=0

q j (i )Ai

where q j (i ) =Q j ,i . Since

ΘW T (Ai ) = vE T
i = vE i

we see that Q is the matrix that represents ΘW T relative to the basis A0, . . . , Ad .
Therefore P−1QP is the matrix representing ΘW T relative to E0, . . . ,Ed . Since
NW T =NW , the operatorsΘW andΘW T commute. Therefore

Θ−1
W ΘW TΘW =ΘW T

and therefore P−1QP =Q.

23.1.1 Theorem. If W is a spin model then P =Q.

Proof. We haveΘW =ΘW T .

23.2 Coordinate Matrices

Let W be a spin model, let A denote the associated set of principal Schur idem-
potents and let E be the set of principal matrix idempotents. Since W ∈ NW ,
there are scalars λ0, . . . ,λd (the eigenvalues of W ) such that

W =
d∑

i=0
λi Ei .

Let L be the diagonal matrix with Li ,i =λi . If M is an endomorphism of a vector
space with basis β we use [M ]β to denote the matrix representing M relative to
β. Let T represent the transpose map.
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23.2.1 Lemma. We have [XW ]E = L and [∆W ]A = L−1.

Proof. The first claim is immediate from the definition of the coefficients wi .
For the the second note that

λi Ai =ΘW (W Ei ) =ΘW (W )◦ Ai =W (−) ◦ Ai

and consequently
W (−) ◦ Ai =λi Ai

as required.

The last equation above implies that

W =
d∑

i=0
λ−1

i Ai .

Therefore

λr Er =W Er =
d∑

i=0
λ−1

i Ai Er =
( d∑

i=0
λ−1

i pi (r )
)
Er

and hence
L1 = PL−11.

We see that diagonal matrices L such that L1 = P−11 correspond to the type-II
matrices in C[A ].

23.2.2 Lemma. We have [XW ]A = PLP−1 and [∆W ]E = P−1L−1P .

Proof. The matrix of eigenvalues P represents the change-of-basis map from E

to A and therefore
[∆W ]E = P−1L−1P.

The second claim follows similarly.

The transpose map is an endomorphism of Matv×v (C) that maps NW to
itself, which we denote by T . Both [T ]E and [T ]A are permutation matrices.
Since

Θ(M T ) =Θ(M)T ,

we see that T andΘ commute, and consequently [T ]E = [T ]A . Note that

Θ2 = vT. (23.2.1)
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23.3 Duality

Suppose W is a spin model and A is the corresponding association scheme.
Then ΘW maps C[A ] to itself and swaps matrix with Schur multiplication. (If
A is the scheme of the cyclic group, then ΘW is better known as the discrete
Fourier transform.) We will derive various expressions forΘW .

We begin with the observation that W T ∈NW andΘW (W T ) =W (−)T . Hence

XW T∆W (−) XW =∆W (−) XW∆W (−)T (23.3.1)

Denote either side of this identity byΛ and note thatΛT =Λ.

23.3.1 Theorem. If R ∈NW andΘW (R) = S, thenΛ−1XRΛ=∆S andΛ−1∆STΛ=
XR .

Proof. Since R commutes with W T , we have

Λ−1XRΛ= XW −1∆W XW −T XR XW T∆W (−) XW

= XW −1∆W XR∆W (−) XW

=∆S .

Next

Λ−1∆STΛ=∆W T XW −1∆W∆ST∆W (−) XW∆W (−)T

=∆W T XW −1∆ST XW∆W (−)T .

As R ∈NW T andΘW =ΘW T , we have

XR∆W −1 XW T =∆W −1 XW T∆S

and therefore by the exchange identity

XR∆W T XW −1 =∆W T XW −1∆ST .

It follows that

Λ−1∆STΛ= XR∆W T XW −1 XW∆W (−)T = XR .

23.3.2 Corollary. If R ∈NW , thenΛ−2XRΛ
2 = XRT andΛ−2∆SΛ

2 =∆ST .
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Proof. First
∆S = (∆S)T = (Λ−1XRΛ)T =ΛXRTΛ−1

and therefore
Λ−2XRΛ

2 =Λ−1∆SΛ= XRT .

Second
Λ−2∆STΛ2 =Λ−1XRΛ=∆S

and so taking transposes we get

Λ2∆STΛ
−2 =∆S ,

which yields our second claim.

You may also show that Λ−2XRTΛ2 = XR and Λ−2∆STΛ2 = ∆S , from which
we get the following.

23.3.3 Corollary. If W is a spin model, then the mapΛ4 commutes with XR and
∆S for all R,S in NW .

It is worth noting that we are dealing here with several algebras. First we
have Matv×v (C) and its subalgebra NW = C[A ], which is the Bose-Mesner al-
gebra of A . Then inside the algebra End(Matv×v (C)) we have the algebra gen-
erated by all operators

XR , ∆R , R ∈NW =NW T .

This may be viewed as an extended version of the Terwilliger algebra of A (and
is not commutative). We will call it the Jaeger algebra and denote it by J3. The
map given by conjugation by Λ is an endomorphism of Matv×v (C) which fixes
J3.

Suppose (A,B) is a 1-sided Jones pair and define

K := X A∆B X A =∆B X A∆B .

Then
K 2 = (X A∆B X A)2 = (X A∆B )3

from which it follows thatΛ commutes with X A and ∆B . It is easy to verify that

K −1X AK =∆B
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and consequently that
K −1∆B K = X A.

Specializing to the case where A is type II and B = A(−), we see that conjugation
by K is a linear map that fixes the algebra generated by X A and ∆A(−) . This is, in
general, a subalgebra of the Jaeger algebra.

23.4 Modular Invariance

We combine the work from the previous two sections.

23.4.1 Lemma. If W is a spin model with δ = Wi ,i and M ∈ NW , then Θ(M) =
vδΛ−1(M).

Proof. If R ∈NW andΘ(R) = S, thenΛ−1XRΛ=∆S and therefore

S =∆S(J ) =Λ−1XRΛ(J ).

Here
Λ(J ) =∆W (−) XW∆W (−)T (J ) =∆W (−)W W (−)T = vW (−) ◦ I .

If δ :=Wi ,i , then it follows that

S =Λ−1XR (δv I ) = δvΛ−1(R).

The next result is known as the modular invariance property for the pair
(P,L).

23.4.2 Theorem. Let W be a spin model with association scheme A and δ =
Wi ,i , let P be the matrix of eigenvalues of A and let L be the diagonal matrix of
eigenvalues of W . Then (PL)3 = v

δ I .

Proof. From the previous lemma,

Θ= vδΛ−1vδXW T∆W (−) XW .

If F is the matrix that represents transpose, then we have

[XW ]E = L, [∆W (−) ]E = P−1LP, [XW T ]E = F LF.

Since [Θ]E = P , we have
P = vδF LF P−1LPL
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and so

I = vδ(P−1F )L(F P−1)LPL.

AsΘ2 = vT we have P 2 = vF and so

P−1F = F P−1 1

v
P

from which we infer that

I = vδv−2(PL)3.

23.5 The Cyclic Group

The index set of the matrices in this section start at 0.
Choose the complex number θ so that θ2 is a primitive v-th root of unity.

(Thus is v is odd then θ has order v , but if v is even then its order is 2v .) Define
the v × v matrix W by

Wi , j = θ(i− j )2
.

Let S denote the diagonal matrix with Si ,i = θi 2
. Then

θ(i− j )2 = θi 2
θ−2i jθ j 2

and therefore if V is the Vandermonde matrix given by

Vi , j = (θ−2)i j

then

W = SV S.

23.5.1 Theorem. The matrix W is a spin model.

Proof. First

(W W (−)T )i , j =
∑

r
θ(i−r )2

θ−( j−r )2 = θi 2− j 2 ∑
r
θ2( j−i )r .

The last sum equal v if i = j and is otherwise zero. Therefore W W (−)T = v I and
so W is a type-II matrix.
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The matrix W lies in the Bose-Mesner algebra of the cyclic group of order v ,
equivalently it is a circulant. If ζa is the column vector with i -entry θ2ai then ζa

is an eigenvector for all circulants of order v × v . Now

(W er ◦W e(−)T
s )i = θ(i−r )2

θ−(i−s)2 = θr 2−s2
θ−2i (r−s),

whence
W er ◦W e(−)T

s = θr 2−s2
ζr−s .

This implies that W ∈NW , and therefore we conclude that W is a spin model.



Bibliography

229



Index

R-clique, 25
R-coclique, 25
i -related, 2
k-th symmetric power, 38

abelian, 177
ad-nilpotent, 182
adjoint map, 181
algebra, 111
algebra automorphism, 85
American Math. Monthly, 151
annihilator, 118
antichain, 180
association scheme, 1
associative, 141

bent function, 75
bilinear, 34
bilinear forms scheme, 2
Bose-Mesner algebra, 6
braid group on n strands, 211
braid relation, 213

cap, 62
Casimir element, 183
Cayley graph, 55
central, 121
character, 122
character table, 108
characters, 108
classical parameters, 153

code, 59
coherent algebra, 6, 168
coherent configuration, 168
cometric, 19
commutant, 6
commutator, 177
commutator subalgebra, 178
complement, 124
composition series, 136
coset graph, 59
covering radius, 62
cyclic, 118

degree, 25
degree set, 25
derivation, 178
difference set, 76
dimension, 59
distance-regular graph, 17
division algebra, 112
doubly even, 71
dual, 58, 74
dual basis, 141
dual code, 59
dual degree, 25
dual degree set, 25
dual eigenvalues, 14
dual permutation matrix, 216
dual thin, 195, 197
duality map, 63, 74

230



INDEX 231

eigenmatrix, 14
eigenvalues, 13
enveloping algebra, 112
equivalent, 80
even, 71
exchange identity, 213
extended code, 71

flat, 81
formally dual, 74
formally self-dual, 73
Frame quotient, 22

generalized eigenvectors, 122
generously transitive, 7
Grassman scheme, 2

Hamming scheme, 2
Hankel matrix, 160
harmonic polynomial, 20
Hecke algebra, 112
highest weight vector, 186
homogeneous, 169
homomorphism, 181

ideal, 178
idempotent, 119
indecomposable, 120
intersection matrices, 16, 21
intersection numbers, 16
invariant, 182
invertible, 214
irreducible, 108, 123

Jacobi identity, 177
Jaeger algebra, 225
Johnson scheme, 2
Jones pair, 213

Killing form, 182

Krein parameters, 18
Kronecker product, 33

length, 136
level number, 179
Lie algebra, 177
Lie bracket, 177
line digraph, 171
local eigenvalue, 204
locally distance regular, 166
lowering operators, 180

main eigenvalues, 157
metric, 17
minimal polynomial of A relative to v ,

160
modular invariance property, 226
module, 181
monomial matrix, 80
multiplicities, 14

nilpotent, 120
Nomura algebra, 211
normal, 11
normalized, 172

one-sided Jones pair, 213
opposite, 116
orthogonal, 7, 119

parallel class, 2
partial spread, 2
Peck poset, 180
polynomial function, 20
Potts models, 80
primary decomposition, 122
primitive, 120
projective code, 60
pseudocyclic, 41



232 INDEX

pure, 150
pure braids, 211

quantum plane, 112
quaternions, 113

radical, 127
raising operator, 180
rank, 59
rank symmetric, 180
ranked, 179
regular module, 116
representation, 181
representation of Γ of degree d , 108
resolution of the identity, 195
root vectors, 122

Schur diameter, 18
Schur inverse, 79
self-dual, 74
semisimple, 9, 124, 131
simple, 117, 132
Sperner, 180
sphere-packing bound, 30
spin model, 216
split, 138
standard module, 155, 193
strongly regular, 15
strongly Sperner, 180
submodule, 181
subscheme, 43
symmetric, 2

Terwilliger algebra, 193
thin, 195, 197
thin relative to the resolution, 195
trace, 141
translation graph, 56
type-II matrix, 79, 212

unimodal, 180
universal enveloping algebra, 179

valencies, 14

weight, 64, 186
weight enumerator, 68
weight spaces, 186
Weyl algebra, 112


	Preface
	Schemes and Algebras
	Definitions and Examples
	Strongly Regular Graphs
	The Bose-Mesner Algebra
	Idempotents
	Idempotents for Association Schemes

	Parameters
	Eigenvalues
	Strongly Regular Graphs
	Intersection Numbers
	Krein Parameters
	The Frame Quotient

	An Inner Product
	An Inner Product
	Orthogonal Projection
	Linear Programming
	Cliques and Cocliques
	Feasible Automorphisms

	Products and Tensors
	Kronecker Products
	Tensor Products
	Tensor Powers
	Generalized Hamming Schemes
	A Tensor Identity
	Applications

	Subschemes and Partitions
	Equitable Partitions
	Subschemes and Partitions
	Primitivity
	Simple Subsets
	Completely Regular Subsets

	Translation Schemes
	Characters
	Translation Graphs
	Translation Schemes and their Duals
	Linear Graphs
	Geometry, Codes and Graphs
	Language

	Duality
	The Discrete Fourier Transform
	The Hadamard Transform
	Two Matrix Duals
	MacWilliams Theorem
	Projective Planes
	Duality
	Duality and Type II Matrices
	Difference Sets

	Type-II Matrices
	Type-II Matrices
	Two Algebras
	Eigenspaces

	Galois Theory
	Bose-Mesner Automorphisms
	Galois
	Applications
	Multipliers

	A Bestiary
	Cyclic Schemes
	Paley Graphs
	Quasisymmetric Designs
	Partial Spreads
	Covers of Complete Bipartite Graphs
	Groups

	Algebra and Modules
	Algebras
	Division Algebras
	Maps and Modules
	Opposites
	Schur's Lemma

	Semisimple Modules
	Summands and Idempotents
	Primary Decomposition
	Group Algebras
	Semisimple Modules
	Semisimple Modules: Examples
	Indecomposable Modules

	Semisimple Algebras
	Semisimple Algebras
	Simple Artinian Algebras
	Composition Series
	Semisimple Artinian Algebras
	Representations
	Centralizers
	Trace
	Maschke

	Division Algebras
	Central Simple Algebras
	Factors
	Finite Division Algebras
	Real Algebra

	Work
	Classical Parameters

	Adjacency Algebras
	Extending the Adjacency Algebra
	Some Applications
	Cospectral Awful Graphs
	Modules and Walks
	An Inner Product on Polynomials
	Spectral Decomposition
	Orthogonal Polynomials
	Distance-Regular Graphs
	Locally Distance-Regular Graphs
	Coherent Algebras

	Line Digraphs
	Line Digraphs
	Quantum Walks
	Eigenvalues of Quantum Walks

	Lie Algebras
	Basics
	Enveloping Algebras
	Posets
	Representations of Lie Algebras
	Bilinear Forms
	An Example
	Irreducible Modules
	Semisimple Elements
	Semisimple Modules

	Terwilliger Algebras
	Modules
	Thinness
	Jaeger Algebras

	Strongly Regular Graphs
	Strongly Regular Graphs
	Local Eigenvalues
	Dimensions

	Hamming Schemes
	The Binary Hamming Scheme
	Modules

	Spin
	Braids
	Nomura Algebras
	Braids
	Jones Pairs
	Gauge Equivalence
	Nomura Algebras of Type-II matrices
	Spin Models

	Abelian Spin
	Schemes
	Coordinate Matrices
	Duality
	Modular Invariance
	The Cyclic Group


