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Preface

These notes provide an introduction to association schemes, along with some
related algebra. Their form and content has benefited from discussions with
Bill Martin and Ada Chan.
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Chapter 1

Schemes and Algebras

Our first three chapters provide an introduction to the basic theory of associ-
ation schemes and to some of their applications. In this chapter we introduce
association schemes and describe their structure.

1.1 Definitions and Examples

We try to motivate the definitions to come. Suppose X is a graph with vertex set
V and diameter d. For i = 1,...,d we define X; to be the graph with vertexset V,
where two vertices are adjacent in X; if they are at distance i in X. (So X = X;.)
Let A; denote the adjacency matrix of X;, set Ay equal to I and consider the
matrix algebra C[</] over C generated by Ay, ..., Ag.

If we identify the automorphism group of X with the set of permutation ma-
trices that commute with A;, then each automorphism of X lies in the commu-
tant of C[<f]. Thus, for example, if C[«/] = Mat,«,(C), then the automorphism
group of X must be the identity group. Since the matrices A, ..., Aq are lin-
early independent, C[«/] has dimension at least d + 1. This suggests that the
case where dim(C[«/]) = d + 1 should be interesting. In fact the dimension of
Cle/] is d + 1 if and only if the matrices Ay, ..., Az form an association scheme.

An association scheme with d classesis aset.of = {Ay,..., Az} of 01-matrices
such that

(a) Ap=1.

b) X4 Ai=].
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() Al.T € of for each i.
(d) AiAj = AjA,' € span(d).

Note that (b) implies that the matrices Ay, ..., A4 are linearly independent, and
(d) that the algebra they generate has dimension d + 1. Since J is the sum of the
A;, it commutes with each A;, which implies that all rows and columns of A;
have the same sum.

An association scheme is symmetric if each matrix in it is symmetric. We
view Aj,..., A4 as adjacency matrices of directed graphs X;,..., X;, with com-
mon vertex set V. We say two vertices u and v are i-related if uv is an arc in
X;.

1.1.1 Example. The Johnson scheme J(v, k). The vertex set of this scheme is
the set of all k-subsets of a fixed set of v elements. Two vertices @ and f are
i-related if |« N B| = k — i. This scheme has k classes.

1.1.2 Example. The Grassman scheme J4(v, k). The vertex set is the set of all
subspaces of dimension k of the vector space of dimension n over GF(q). Sub-
spaces a and S are i-related if dim(a N B) = k —i. This scheme has k classes.

1.1.3 Example. The Hamming scheme H(n, q). Let Q be an alphabet of g sym-
bols. The vertex set of H(n, q) is Q", the set of all words of length 7 over Q. Two
words are i-related if they differ in exactly i coordinate positions. This scheme
has 7 classes.

1.1.4 Example. The bilinear forms scheme. The vertices are the m x n matrices
over the field of g elements. Two matrices A and B are i-related if tk(A— B) = i.
The number of classes in this scheme is the minimum of m and n.

1.1.5 Example. The conjugacy classes of a finite group I'. Let the congugacy
classes of I" be Cy,...,C;, where Cy = {1}. The vertex set of this scheme consists
of the elements of T', and two group elements g and h are i-related if hg™! € C;.
This is our first example of a scheme that is not symmetric.

1.1.6 Example. Let Z be the complete graph on n? vertices. A parallel class
in Z is a subgraph isomorphic to nK,. Two parallel classes are orthogonal is
they are edge-disjoint. A partial spread is a set of pairwise orthogonal parallel
classes Cy,...,C;. Define A; to be the adjacency matrix of the i-parallel class,
set Ag = I as usual and define

!
Ati1 :]—ZAi-

i=1
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Then Ay,..., As41 is a symmetric association scheme. (These schemes corre-
spond to orthogonal arrays with index 1.)

1.2 Strongly Regular Graphs

The simplest association schemes are the schemes with one class. In this case
we have Ay = I and A, = J—-1I; the directed graph X is the complete graph itself.
We cannot think of anything intelligent to say about this situation, so we turn
to the next simplest case. These are the symmetric schemes with two classes,
and are equivalent to strongly-regular graphs.

Rather than offer the necessary definitions, we consider a classical example.
We consider graphs with diameter two and maximum degree k. If X is such a
graph and u € V(X), then u has at most k neighbours, and at most k(k — 1)
vertices lie at distance two from u. Therefore

V(X)) <1+k+k>—k=k>+1.

If equality holds then X is k-regular and its girth is at least five. This leads us to
study k-regular graphs on k? + 1 vertices with diameter two. Suppose X is such
a graph and let A be its adjacency matrix.
We claim that
A+ A-(k-DI=]. (1.2.1)

This is an easy consequence of the fact that the i j-entry of A? is the number of
walks of length two from i to j in X. The number of walks of length two that
start and finish at the same vertex is the valency of the vertex, and therefore
since X is regular, (A%); ; = k. The number of walks of length two that start at a
given vertex i and end at the adjacent vertex j is the number of triangles in X
that contain the edge i j. Therefore (A?);, j = 01in this case. Finally if i and j are
distinct and not adjacent in X then, since there are no 4-cycles in X and since
the diameter of X is two, (4%); ; = 1. Equation (1.2.1) follows from these facts.

We explain the connection with association schemes. The adjacency matrix
A of the complement X of X is J — I — A. From (1.2.1)

A=J—T—A=A>—kI.

Since A is thus a polynomial in A, it commutes with A. We also see that A?is a
linear combination of I, A and A. Since AJ = JA = kJ we can also show that AA
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and A° are linear combinations of I and A. We conclude that the matrices I , A
and A form a symmetric association scheme with two classes.

We can use (1.2.1) to obtain more information about our graphs. They key
is that we can compute the eigenvalues of A.

First note that the all-ones vector 1 is an eigenvector for 4; in fact

Al =kl

and so the corresponding eigenvalue of the valency k. Suppose A is an eigen-
value of A with eigenvector z. We may assume that z is orthogonal to 1, whence
Jz =0. Therefore

0=Jz=(A*+A-(k-1)Dz=A*+A-k+1)z
and so A is a zero of the quadratic polynomial
P +t—k+1.

Denote the roots of this by 8 and 7. Since 87 = 1 — k we may assume that
0 > 0> 1. Let mp and m; denote respectively the multiplicity of 8 and 7 as
an eigenvalue of A. Since X has k? + 1 vertices and k is an eigenvalue with mul-
tiplicity at least one, we have

1+mp+m;=k>+1. (1.2.2)
Also tr(A) = 0 and consequently

k+mpb+m;7=0. (1.2.3)
These two equations imply that

m _9k2+k
-1

(1.2.4)

The existence of this expression for the multiplicity of an eigenvalue is a
consequence of the fact that we are dealing with an association scheme. The
fact that its right side must be an integer provides a very useful constraint. The
ensuing calculations show how we may put it to work.

We distinguish two cases. First, suppose that 0 and 7 are irrational. We have

O=k+(mg—my)0+m;(0+7)=k—m;+ (mg—m;)0
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and since k — m; is an integer and 6 is irrational, it follows that my — m; = 0.
Then (1.2.3) yields that k = mg = m, and so (1.2.2) now yields that k? — 2k = 0.
The only useful solution to this is k = 2, when we see that X = Cs.

Thus we may assume that 6 and 7 are rational, and hence they are integers.
Since 6 and 7 are the roots of 2+ t — k + 1, we have

O-1)°2=1+4(k-1)=4k-3

and therefore 4k — 3 must be a perfect square. Since 4k — 3 is odd, we may as-
sume
4k—3=(2s+1)*

and therefore
k=s>+s+1.

From this it follows that 8 = s and 7 = —s — 1 and consequently

(2 +s+1)(s(s2+s+1)+1)
m‘[:
2s+1

Now
45> +4s+4=(2s+1)%>+3

and
853 +85%+85+8=252s+1)°+32s+1)+5= (45> +4s+3)(2s+1) +5.

Hence there is a polynomial p with integer coefficients such that

32m; =p(s) +

2s+1°

We conclude that m; is an integer if and only if 25 + 1 divides 15. This implies
that
se{l,2,7}

and so
ke{3,7,57}.

To summarise, we have shown that if there is a k-regular graph of diameter
two on k2 + 1 vertices, then kis 2, 3, 7 or 57 (and v is 5, 10, 50 or 3250). The case
k = 2 is realized by Cs. The case k = 3 is realized by the Petersen graph and the
case k = 7 by the famous Hoffman-Singleton graph. We do not know if there is
a graph with valency 57. This is an old and famous open question.
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1.3 The Bose-Mesner Algebra

The Bose-Mesner algebra of an association scheme «f = {Ay,..., Az} is the al-
gebra generated by the matrices Ay,..., Ag; equivalently it is the complex span
of these matrices. There is a second multiplication on the Bose-Mesner algebra
which will prove to be very important. We define the Schur product Ao B of two
matrices of the same order by

(AOB)l'yj = Ai,jBi,j-

This is a commutative and associative product with J as unit. Since the set
</ U0 spans the Bose-Mesner algebra, and since this set is closed under Schur
multiplication, it follows that the Bose-Mesner algebra is closed under Schur
multiplication. Hence it is an algebra with respect to Schur multiplication. The
Bose-Mesner algebra is also closed under complex conjugation and the trans-
pose map.

A coherent algebra is a matrix algebra over C that is Schur-closed, closed
under transpose and complex conjugation, and contains I and J. Any Bose-
Mesner algebra is a commutative coherent algebra. We will discuss coherent
algebras at greater length in Chapter 22, but we offer some simple observations
now.

1.3.1 Lemma. A commutative coherent algebra is the Bose-Mesner algebra of
an association scheme. O

Define the commutant of a set of matrices to be the set of all matrices that
commute with each element of the set.

1.3.2 Lemma. The commutant of a set of v x v permutation matrices is a coher-
ent algebra.

Proof. It suffices to show that the commutant of a single permutation matrix P
is a coherent algebra. The key point is then to show that the commutant of P is
Schur-closed.

Suppose M and N commute with P. Then

P(MoN)=(PM)o(PN)=(MP)o(NP)=(MoN)P

and therefore the commutant of P is Schur-closed. O
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A permutation group I" on a set V is generously transitive if, for each pair of
points u and v in V, there is an element y of I' such that

uy=vuv, vy=u.
Clearly a generously transitive permutation group is transitive.

1.3.3 Lemma. The commutant of a permutation group is the Bose-Mesner al-
gebra of a symmetric association scheme if and only if the group is generously
transitive.

Proof. Let I be a permutation group on V. The commutant of I' is a coherent
algebra, so we need only decide when it is commutative. We note I acts as a
group of permutations of V x V, and the orbits of I" form a partition of this set.
Each orbit is a directed graph, and the adjacency matrices of the orbits form a
basis for the commutant of I'.
The set
{y,v):veVy,

known as the diagonal of V' x V, is a union of orbits of I, and is a single orbit if
and only if T is transitive. Suppose u and v are distinct. Then uv and vu lie in
the same orbit if and only if there is an element of I" that swaps u and v.

Hence ifT is transitive, then it is generously transitive if and only if all matri-
ces in the commutant of I' are symmetric. Since the product of two symmetric
matrices A and B is symmetric if and only if AB = BA, the lemma follows. O

This lemma can be used to verify that the schemes J(v, k), J4(v, k), H(n, q)
and Mat,,« , (F) are symmetric, with the stated number of classes.

1.4 Idempotents
Let C[«/] be the Bose-Mesner algebra of the association scheme
o ={Ag,...,Ag}.

The matrices Ay,..., Az form a basis, each element of which is a Schur idem-
potent. In this section we identify a second basis, consisting of matrix idempo-
tents.

Two idempotents E and F are orthogonal if EF = 0. For example, if E is an
idempotent, then E and I — E are orthogonal idempotents. We define a partial
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ordering on the idempotents of a commutative algebra C[</]. Suppose E and
F are idempotents in C[<f/]. We write E < F if FE = E. This relation is reflexive,
antisymmetric and transitive; therefore it is a partial order. A minimal idempo-
tent is a minimal element of the set of non-zero idempotents. If E and F are
idempotents, then EF < E, F; it follows that if £ and F are minimal, then they
are orthogonal.

1.4.1 Theorem. Let 98 be a commutative matrix algebra with identity over an
algebraically closed field. Assume that if N € 8 and N*> = 0, then N = 0. Then
9 has a basis of pairwise orthogonal idempotents.

Proof. As a first step, we show that each element of 48 is a linear combination
of idempotents.
Suppose A € 98. Let y(¢) be the minimal polynomial of A and assume that

k
ZOES | (GO

i=1
If
w(t)
(t—6)m’
then the polynomials v, ...,y are coprime, and therefore there are polynomi-
als f1(1),..., fx (1) such that

vi(t):=

1 :Zfl-(t)wi(t).

Therefore
1=) fi(Ayi(A). (1.4.1)
i

If i # j, then v;(A)y ;(A) = 0 because v divides y;y ;. Hence if we multiply
both sides of (1.4.1) by f;(A)y;(A), we find that

fiAyi(A) = (fi(Ay;(A)°.

Thus f;(A)w;(A) is an idempotent, which we denote by E;. We note that E;E; =
0if i # j. Since v divides (¢ — ;)™ w;(t), we have

(A-0;D)"™E;=0.

Consequently
[((A-6;DE;]™ =0,
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and, given our hypothesis, it follows that (A—6;1) E; = 0. We may rewrite (1.4.1)
as
I=E;+--+Ej

and so
A=AE +---+ AE =0,E; +---+ 04 Ey.

This expresses A as a linear combination of idempotents.

We have shown that 28 is spanned by idempotents. The essential problem
that remains is to show that minimal idempotents exist. Suppose E and F are
distinct idempotents and E < F. Then

FI-E)=F-E#0

but E(I — E) = 0. Hence the column space of E must be a proper subspace of
the column space of F. Therefore if E, ..., E,, are distinct idempotents and

Ej<--<Ep

then m < n+ 1. We conclude that minimal idempotents exist.

Now we prove that each idempotent is a sum of minimal idempotents. Sup-
pose F is an idempotent and E is a minimal idempotent. If EF # 0, then EF < E
and therefore EF = E. This also shows that distinct minimal idempotents are
orthogonal. Let Fy be the sum of the distinct minimal idempotents E such that
E < F. Then Fj is an idempotent. If Fy # F then F — F is an idempotent and so
there is a minimal idempotent below it, which contradicts our choice of Fy. We
conclude that 48 is spanned by minimal idempotents. |

Suppose & is a Schur-closed algebra that contains J over some field. Then
1.4.1 implies that 28 has a basis of 01-matrices. Of course this can be proved
more directly (and with less effort).

A matrix N is nilpotent if N¥ = 0 for some k. Theorem 1.4.1 asserts that a
commutative matrix algebra with identity has a basis of orthogonal idempo-
tents if there are no non-zero nilpotent matrices in it. Since a non-zero lin-
ear combination of pairwise orthogonal idempotents cannot be nilpotent, this
condition is necessary too. A commutative algebra is semisimple if it contains
no non-zero nilpotent elements.

1.5 Idempotents for Association Schemes

We will apply the theory of the last section to Bose-Mesner algebras.
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1.5.1 Theorem. Suppose % is a commutative subalgebra of Mat,,(C) that is
closed under conjugate transpose and contains the identity. Then 98 has a basis
of matrix idempotents Ej, ..., E; such that

(a) E;Ej=6; E;.
(b) The columns of E; are eigenvectors for each matrix in C[</].
(© X% Ei=1I
(d) E} = E;. O
Proof. Suppose N € C[</] and N? = 0. Then
0= (N*)2N2 = (N* N)?

and hence
0= tr((N*N)z) =tr((N*N)*(N*N)).

If H:= N*N, then tr(H* H) = 0 if and only if H =0, so we deduce that N* N = 0.
But then tr(N*N) = 0 and therefore N = 0. Hence C[</] satisfies the hypothe-
ses of Theorem 1.4.1, and so it has a basis of pairwise orthogonal idempotents,
which we denote by Ey, ..., E;. Thus (a) is proved.

If Ae Cle/], then

A= Z aiEi
i
for suitable scalars a;. Since the idempotents E; are orthogonal,
AEr = arEr.

This shows that the columns of E, are eigenvectors for A, and the scalars a; are
eigenvalues of A. So (c) is proved.
Since I € C[</], it is a linear combination of E, ..., E;:

1= Z diEl'.
i

Since the scalars a; are eigenvalues for I, they must all equal 1. Hence (d) holds.

Finally we show that the idempotents E; are Hermitian. Since C[</] is closed
under transpose and complex conjugation, El* € Clef]. Therefore there are
scalars ay, ..., agz such that

E; :ZajEj
J
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and so
E’E; = fiE;.

Since tr(Elf" E;) > 0and tr(E;) > 0, itfollows that f; # 0. But El* is aminimal idem-
potent, and therefore f; = 0if j # i. This implies that E is a scalar multiple of
Ej, but tr(E;) = tr(E]), and therefore E; = E;. O

This theorem applies immediately to the Bose-Mesner algebra of an associ-
ation scheme. In this case % ] € 9; since this is an idempotent with rank one,
it must be minimal and therefore it is equal to one of the idempotents E;. It is
conventional to assume it is Ej.

If A; is Schur idempotent in &, so is Al.T. If E; is a matrix idempotent, so is

E]T (which is equal to E j)- We adopt the useful convention that
A=A

and

—rT_7

Note that vy = v; and mj = m;.

To give a better idea of the power of 1.4.1, we use it to derive one of the basic
results in linear algebra. A complex matrix A is normal if AA* = A* A. We adopt
the convention that the algebra generated by a set of matrices always contains
the identity.

1.5.2 Theorem. If A is normal, then A is unitarily similar to a diagonal matrix.

Proof. The algebra generated by A and A* is commutative and closed under
conjugate-transpose. Hence it has a basis of orthogonal idempotents Fi, ..., Fj.
Since each F; is Hermitian, the condition F;F; = 0 implies the column spaces
of F; and F; are orthogonal. If follows that there is an orthogonal basis of eigen-
vectors of A. |

Notes

There a number of useful references for association schemes. Bannai and Ito
[?], is the oldest of these, but carries its age well. It views the subject from a
group theoretic viewpoint. Bailey’s book [?] is more recent and views associa-
tion schemes from the viewpoint of design theory. Since this is the origin of the
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subject, this is a very natural approach. We note that Bailey restricts herself to
what we call symmetric association schemes; for design theory this is very nat-
ural. However it excludes the association schemes arising from the conjugacy
classes of a finite group and as the only real cost in allowing non-symmetric
schemes is the use of C rather than R, and we have happily chosen to pay it.

Brouwer, Cohen and Neumaier’s book on distance-regular graphs [?] offers
a lot of information on association schemes. Zieschang [?] allows his associ-
ation schemes to be infinite and/or non-commutative. For an algebraist this
can be very interesting, but the resulting theory does not seem to have much
contact with the combinatorial questions that we are interested in.

The classic source of information on association schemes (in the sense we
use the term) is Delsarte’s thesis [?]. A copy of this is available online at http:
//users.wpi.edu/ martin/RESEARCH/philips.pdf. One of Delsarte’s main
contributions was to demonstrate that the theory of association schemes pro-
vides an extremely useful framework for work in coding theory.


http://users.wpi.edu/~martin/RESEARCH/philips.pdf
http://users.wpi.edu/~martin/RESEARCH/philips.pdf

Chapter 2

Parameters

To each association scheme there are four associated families of parameters:
the eigenvalues,the dual eigenvalues, the intersection numbers and the Krein
parameters. We introduce these and present a few of their applications. We will
see that the algebraic structure of an association scheme is entirely determined
by its eigenvalues.

2.1 Eigenvalues

There are scalars p;(j) such that
d
Ai=) pi(NE, (i=0,...,d) (2.1.1)
r=0
and scalars g;(j) such that

14
Ej:;;)qj(rmr. (j=0,....d) (2.1.2)

The scalars p;(j) are called the eigenvalues of the scheme. Since they are eigen-
values of the 01-matrices A;, they are algebraic integers. Note that

A =pi0)J

and therefore p;(0) is equal to the common value of the row sums of A;. We
define
v := pi0),

13
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call vy,..., v, the valencies of the scheme. Because I = Y ; E;, we also have
po(i) =1foreachi.

The eigenvalues of Al.T are the numbers p,Tj), fori=0,1,...,d.

The scalars g;(j) are the dual eigenvalues of the scheme. Since

1
Ey = ;;Ai,

we have ¢y(i) = 1. The columns of E; are eigenvectors for each matrix in C[</],
and so its column space is an eigenspace for C[«/]. The dimension of this
eigenspace is the rank of E;. Since E; is an idempotent, all its eigenvalues are
equal to 1 and

rk(E;) = tr(E;).

The quantities tr(E;) are the multiplicities of the scheme. From refEA we have
1
tr(E) =~ Y qi(rte(Ay).
i

Now tr(A;) =0if r # 0 and tr(Ap) = v, so we find that
tr(E;) = q;(0).

We use m; to denote tr(E;).
The eigenmatrix of C[</] is the (d + 1) x (d + 1) matrix P given by

Pij=p;0).
The dual eigenmatrix Q is the (d + 1) x (d + 1) matrix Q given by
Qi,j =q;).

From 2.1.1 and 2.1.2, we have
PQ=vl.

One consequence of this is that the dual eigenvalues of C[«/] are determined
by the eigenvalues. As we proceed we will see that much of the structure of an
association scheme is determined by its eigenmatrix.
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2.2 Strongly Regular Graphs

A graph X is strongly regular if it is neither complete nor empty and there are
integers k, a and c such that:

(a) X isregular with valency k.
(b) Any two adjacent vertices have exactly a common neigbours.

(c) Any two distinct non-adjacent vertices have exactly c common neighbours.

If A is the adjacency matrix of X, these conditions are equivalent to the two
matrix equations

AJ=kJ, A*=kl+aA+c(-1-A).
It is usually better to write the second of these as
A*—(a-0)A-(k-ol=c].

A strongly regular graph on v vertices with parameters k, a and c as above is
called a (v, k; a, ¢) strongly regular graph.

It is straightforward to use the above matrix equations to show that if A is
the adjacency matrix of a strongly regular graph, then

LAJ-I-A

form an association scheme with two classes. Conversely, any association scheme
with two classes arises from a strongly regular graph.

Suppose A; is the adjacency matrix of a strongly regular graph X and < is
the corresponding association scheme, with matrix idempotents Ey, E; and E,.
If X is k-regular, then

Ap=Ey+E1+E,, A= kE0+9E1+TE2.

This equations determine two columns of the eigenmatrix P. Since A, = J—1—
A;, we also have

Ay=(v=-1-KEy—O+1)E; - (t+1)E,.

1 k£ v-1-k
P=|1 60 -0-1
1 7 —-1-1

Therefore
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from which we compute that

0-1 —-k-(v-171 k+W@®-1)0
0-1 v—k+Tt k—-v-0
0-1 T—k k-6

1

QZB—T

The entries in the first row of Q give the multiplicities of the eigenvalues of the
graph. One consequence of this is that the ratio

Ov-1)+k
-7

must be an integer. Constraints of this form play a major role in the theory of
distance-regular graphs.

2.3 Intersection Numbers

Suppose & is a scheme with d classes. Since C[</] is closed under multiplica-
tion, there are constants p; ;j(k) such that

d
AiAj =) pi k) Ay.
k=0

We call these the intersection numbers of the scheme. We see that

Pi,j(k) Ak = Ak o (AiAj),
from which it follows that the intersection numbers are non-negative integers.
We see also that

sum(Ago (A;A))) (AL AiA))

k) = . 2.3.1
pi,;i (k) o or 2.3.1)

We define the intersection matrices By, ..., B4 by
(Bi) j k= pi,j (k).

If 7 denotes the relation partition of V(&) with respect to v, then B; = A/mn.
Hence the matrices By, ..., B; generate a commutative algebra of (d+1) x (d+1)
matrices which is isomorphic to C[</] as an algebra. (However it is not Schur-
closed in general.)
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The intersection numbers are determined by the eigenvalues of the scheme.
The eigenvalue of A,{AiA j on the column space of E is

pi(€)p;l)prf)

whence 2.3.1 implies that

I .
pi,j(k)=—> mep;(O)p;()px(0).

Let Xj,..., X4 be the graphs of an association scheme. If X; has diameter s
then the matrices

0 s

Al LA

1

are linearly independent. (It might be easier to see that the first s+ 1 powers of
A;+1 are linearly independent.) Therefore the diameter of X; is bounded above
by d, the number of classes of the scheme.

An association scheme with d classes is metric with respect to the i-th re-
lation if the diameter of X; is d. If the scheme is metric with respect to the i-th
relation, then X; is said to be a distance-regular graph. The Johnson scheme,
the Grassman scheme, the Hamming scheme and the bilinear forms scheme
are all metric with respect to their first relation. A primitive strongly regular
graph is primitive with respect to each non-identity relation. An association
scheme may be metric with respect to more than one relation. The standard
example is the Johnson scheme J(2k + 1, k), which is metric with respect to A;
and Ay.

If o7 is metric with respect to A; and s < d, then (I+ A;)* is alinear combina-
tion of exactly s+ 1 distinct Schur idempotents. It is customary to assume i = 1,
and to order the Schur idempotents so that (I + A;)*® is a linear combination of
Ay, ..., As. With this convention, the intersection matrix B is tridiagonal.

2.4 Krein Parameters

We consider the parameters dual to the intersection numbers. Let <« be a scheme
on v vertices with d classes. Then there are constants ¢; ;(k) such that

14
EioEj=— Y qi,j(k)Ej. (2.4.1)
k=0
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We call these constants the Krein parameters of the scheme. We have
qi,j(k)Ex = VEL(E; o Ej)
and therefore

tr(Ex(E;oE;))  sum(EgoE;oE))
=v
my mi

qi,j(k) =v

Now

_ J —
EioE;oFE; = ﬁ Z q,(f)q](f)qk(f)Aé
/=0

which yields

mim; i pe@D)pe(j)pe(k)
: .

1 @ -
qi,j(k)=——> qi(O)q;O)qr(O)v, =
Vmyp p- = Ug

(Here the second equality is derived using 2.3.1). We see that the Krein param-
eters are determined by the eigenvalues of the scheme.

If M is a square matrix and p(t) a polynomial, we define the Schur polyno-
mial p o M to be the matrix with

(poM); j=pWM; ;).

We define the Schur diameter of a matrix M to be the least integer s such that
there is a polynomial p with degree s and p o M is invertible. (If A is the adja-
cency matrix of a directed graph, the diameter of the graph is the least integer s
such that there is a polynomial p of degree s and p o A is Schur invertible.)

2.4.1 Lemma. If E is a square matrix with Schur diameter s, the Schur powers

are linearly independent.

Proof. If E°"*V lies in the span U, of the first r Schur powers of E, then U,
is invariant under Schur multiplication by E,. Therefore U, contains all Schur
polynomials in E. If r < s, no Schur polynomial in E is invertible, which contra-
dicts our hypothesis. It follows that spaces Uy, ..., Us form a strictly increasing
sequence, and this implies the lemma. |
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Let o/ be an association scheme with d classes. If E; is a matrix idempotent
of o/ with Schur diameter s, then s < d. We say «f is cometric with respect to
E; if the Schur diameter of E; is d. The Johnson scheme, the Grassman scheme,
the Hamming scheme and the bilinear forms scheme are all cometric. A primi-
tive strongly regular graph is primitive with respect to each non-identity idem-
potent. If o/ is cometric with respect to the idempotent E, then it is conven-
tional to order the idempotents so that E°” is a linear combination of Ej,..., E;.

In the following we make use of the Kronecker product of matrices. What
we need is summarised in Section 4.1.

Examples show that the Krein parameters need not be non-negative inte-
gers, or even rational. We do have the following.

2.4.2 Theorem. The Krein parameters are non-negative real numbers.

Proof. From (2.4.1), we see that the Krein parameters are the eigenvalues of the
matrix vE; o Ej. The matrices E; and E; are positive semidefinite, and therefore
E; ® Ej is a positive semidefinite matrix. The matrix E; o E; is a principal sub-
matrix of this Kronecker product, and therefore it is positive semidefinite too.
Hence its eigenvalues are non-negative real numbers. |

We offer a second proof that the Krein parameters are non-negative real
numbers.

Let o/ be an association scheme on v vertices and let ey,..., e, denote the
standard basis for C”. Define 9 by

v
P]“:Ze,-oaei@e,-.
i=1

2.4.3 Lemma. Let «f be an association scheme. Then

1%
qi,j(k) = —I(E; ® Ej ® Ex) T ||,
mi

and q;,j(k) =0 ifand only if (E; ® E; ® Ex)J = 0.

Proof. We have
Sum(EiOEjOEk) :g*(Ei®Ej®Ek)g—.

Since E; ® E; ® E is idempotent and self-adjoint,
sum(E; o Ejo E) = ||(E; ® Ej ® Ep) T |I%.

Both claims of the lemma follow. O
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If g;,j (k) = 0, then Ex(E; o Ej) = 0 and therefore each column of Ey = EkT is
orthogonal to each column of E; o Ej. We will need the following strengthening
of this result.

2.4.4 Lemma. Let &/ be an association scheme on v vertices. If q;,j(k) = 0 and
x, y and z are three elements of C”, then Eyz is orthogonal to E;xo Ejy.

Proof. We have
T *(E; ®Ej SLE)(x®y®2z)= 1*(EixOEijEk/Z).

The right side is zero if and only if Ey z is orthogonal to E;xo E;y. The left side
is zero if gq;,j (k) = 0. |

Suppose & is cometric with respect to E;. A harmonic polynomial of de-
gree i is defined to be an element of the column space of E;. A polynomial
function of degree i is a linear combination of harmonic polynomials with de-
gree at most i. The previous result implies that if f is a polynomial with degree
1 and g is a polynomial with degree i, then f o g has degree at most i + 1. Note
that f o g is just the usual product of functions.

2.5 The Frame Quotient

Let «f be an association scheme with d classes on the vertex set v. Let e, be the
characteristic vector of the vertex u and let H be the matrix

H:=(Apey, Arey, -+, Ageu).

Then H is the characteristic matrix of the relation partition relative to the vertex
u, and an easy computation shows that the column space of V is A-invariant.
Hence there are (d + 1) x (d + 1) matrices By,..., B; such that

AH=HB,.
Since
d
ArAie, = Z pr,i(j)Ajeu;
j=0
we find that

(Br)i,j = pr,j(i)-
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The matrices B, are the intersection matrices of the scheme. They form an
algebra of (d + 1) x (d + 1) matrices isomorphic to the Bose-Mesner algebra of
</, because

d
B, B = Z Pr,s(1)B;.
i=0
There are also matrices Fy,...,F; such that E, H = HF, and

d
By =} pr(i)Fi.
i=0
Since E2 = E,, we have HF, = HF? and since the columns of H are linearly
independent, it follows that F; is an idempotent and

=) F,.
r
As tr(F;) is a positive integer, this implies that tr(F,) = 1 for all r. Therefore

tr(ByBy) =) pr(D)ps(i) = ) pr(i)ps(@) = (P"P)ps.

1

One consequence of this is that the entries of P* P are integers.

2.5.1 Theorem. Let P be the eigenmatrix of the association scheme </, let p
be a prime and let F denote GF(p). Then F[</] contains a non-zero nilpotent
matrix if and only if p divides

Ud+1 ﬁ Vi
ico Mi
Proof. Let G = P*P viewed as a matrix over F. Suppose M € F[</] and MH =
HN. By changing u if needed, we may assume that MH # 0. If M? = 0 then
HN? =0 and therefore N? = 0. Hence (B, N)? = 0 for each r and so

tr(B,N) =0

for all r. Since N is an F-linear combination of By,..., By, this implies that the
null space of G is not zero.

Suppose conversely that the null space of G is not zero. If Gx = 0 where x # 0
and

N:=) x:By,
r
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then tr(B.N) = 0 for all r. Therefore tr(N*) = 0 when k > 0, and so N is nilpo-
tent.

We conclude that F[</] contains a nilpotent element if and only if det(G) = 0
mod p. As we will see in Section 3.1,

P*D,,P=vD,

and therefore
det(P* P) =det(vD,)/ det(D,,).

The theorem follows immediately. O

The expression
d+1 ﬁ Vi
U _—
i=0 M
is known as the Frame quotient of the scheme. It is known that for each k and
any prime p,
(i : pXIimal < 14i - pFlowayl.
One consequence of the previous theorem is that F[«/] is semisimple if and only
if the Frame quotient is not divisible by p, the characteristic of F.
The Frame quotient of the Petersen graph is

18
1000— =900.
20

It is not a surprise that this quotient is a perfect square, since the following
simple observation holds.

2.5.2 Lemma. Ifthe eigenvalues of an association scheme are integers, the Frame
quotient is the square of an integer. ]

Notes

There is little to say about this section; our approach is straightforward and
fairly standard. We have not addressed the problem of determining the param-
eters of an association scheme. The actual approach taken will depend on how
the scheme is presented. If the scheme is the centralizer of a multiplicity free
permutation representation of a group, then it may be possible to use charac-
ter theory. In general though the problem is usually difficult for association
schemes with more than three classes.



Chapter 3

An Inner Product

Here we find that the Bose-Mesner algebra of an association scheme is an inner
product space. The inner product can be computed in two different ways, and
both the matrix and the Schur idempotents form orthogonal bases relative to it.
This leads immediately to one of the most important application of association
schemes, namely the linear programming method developed by Delsarte [?].

3.1 AnInner Product

There is one important property of Bose-Mesner algebras still to be discussed.
If M, N € Mat,,,»,,(C), we define

(M, N) :=tr(M*N).
As is well known, this is a complex inner product on Mat,,«,(C). Note that
(N, M) = (M, N).
If sum(M) denotes the sum of the entries of the matrix M, then
tr(M* N) = sum(M o N)

and therefore o
(M,N) =sum(Mo N).

It follows that the Bose-Mesner algebra of an association scheme & is an

inner product space. If
o ={Ao,...,Adq}

23
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then «/ is an orthogonal set: if i # j, then A; 0 Aj = 0 and therefore
(Aj, Aj) =sum(A;0A}) =0
Similarly if i # j, then E;E; =0 and
(E;,Ejy = tr(E} Ej) = tr(E;Ej) = 0.

We have

(Ai, Ej) =tr(A] Ej) = w(p:(NEj) = m;pi ()
and
(Aj, Ej) =sum(A; 0 Ej) = q; (i) v;.

Hence we have the important relation:

q;@ _ pi(j)
mj B Vi '

(3.1.1)

We express this last identity in matrix terms. Let D, be the (d +1) x (d + 1)
diagonal matrix with i-th diagonal entry equal to m; and let D, be the (d + 1) x
(d + 1) diagonal matrix with i-th diagonal entry equal to v;. Then 3.1.1 implies
that

QD;,ll — D;lp*
or equivalently that

Q=D,'P*Dy,
Since PQ = vl, it also follows that

vD, = P*D,,P.

3.2 Orthogonal Projection

Now suppose M € Mat,«,(C) and let M denote the orthogonal projection of M
onto C[</]. Then
Z (A M)
A Ay

since Ay, ..., Agq is an orthogonal ba31s for C[«/]. But we also have

<E],M>



3.3. LINEAR PROGRAMMING 25

This yields a new proof of the following important result, which I am ascribing
toJ.]. Seidel.

3.2.1 Theorem. If the matrices Ay, ..., A4 form an association scheme on v ver-
tices with idempotents Ey,..., E; and M € Mat,«,(C), then

(A;, M) d (E;j, M)

A=)

j=0

E;.
mi J
J

Proof. We note that
(Aj, A;) =sum(A; o A;) = sum(A;) = vv;

and
(Ej,Ej>:tI‘(Ej):mj. O
The way to view this result is that the first expression for M gives us its en-
tries, while the second gives us its eigenvalues. The set

{i:l<i<d, (M, A;)#0}
is called the degree set of M, and its size is the degree of M. The set
{i:1<i=<d, (M,E;)#0}

is called the dual degree set of M, and its size if the dual degree of M.

3.3 Linear Programming

Suppose «f is an association scheme with vertex set V and d classes. If C is a
subset of V, its degree set if the set of integers i such that some pair of distinct
vertices in C is i-related. (This usage is consistent with the usage introduced
at the end of the previous section.) The degree set of C is a subset of {1,...,d}.
If R<{1,...,d}, we call a subset C of V an R-clique if the degree set of C is
contained in R. If thedegree set of C is disjoint from R, we call it an R-coclique.
A clique in X; is an {i}-clique.

Suppose y is the characteristic vector of an R-clique in «f and M = yyT.
Then the projection M of M onto the Bose-Mesner algebra of < satisfies

(@ M:=0.
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(b) Ifi ¢ RU{0}, then Mo A; =0.

Since
- d TA' d TE
:Zy lyAi:Zy lyEl'
i=0 VUi i=0 i
we have -
—_~ C
tr(M) = y Yy = u
v v
and ’ )
C
sum(M) = y'Jy L
v v
Accordingly
sum(M\)
|C| =
tr(M)

We summarise our conclusions.

3.3.1 Theorem. Let of be an association scheme with d classes and let C be an
R-clique in it. Then

sum(M)
|C| < max ——,
M tr(M)
where M runs over the positive semidefinite matrices in C[</] such that Mo A; =
0ifi ¢ Ru{0}. O

We next derive a bound on the size of an R-coclique. Let N be a matrix in
Cl<f] such that

(@ N>=0.
(b) Ifi ¢ Ru{0},then No A; <0.
Assume

N:Za,-Ai :ZbiEi
i i

and let x be the characteristic vector of an R-coclique S. If i € R then x” A;x =0
and, if i ¢ RU {0}, then a;x” A;x < 0. Consequently

x"Nx=Y a;x" Ajx < apx" x = ag|S|
7
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and
b
x"Nx=Y bjx"Ejx = box" Egx = 282,
. v
j
Hence
a tr(N
5 < p %0 =, )
bo sum(N)

Thus we have the following. (Note that tr(N) = ayv and sum(N) = byv.)

3.3.2 Theorem. Let of be an association scheme with d classes and let S be an

R-coclique in it. Then

. tr(NV)
|S|<miny———
N sum(N)

where N runs over the set of positive semidefinite matrices in C[</] such that
NoA;<0ifi¢ Ru{0}.

From this theorem we also see that

v sum(N)
— >max———
|S| N tr(N)

where N runs over the set of positive semidefinite matrices in C[</] such that
No A; =0. Hence the same inequality holds when N runs over the smaller set
of positive semidefinite matrices in C[«/] such that No A; =0if i ¢ RU{0}. It
follows from Theorem 3.3.1 that if C is an R-clique, then

Yl
|S|

Thus we have proved that if C is an R-clique and S is an R-coclique in &/, then
ICIIS| < v. 3.3.1)

This inequality is due to Delsarte. We offer an alternative derivation of it in
Section 4.6.

If P is the matrix of eigenvalues of « and a = (ay, ..., a4), then the eigenval-
ues of the matrix M =} ; a; A; are the entries of the vector Pa. Since

tr(M) = vay, sum(M) = veOTPa,
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we see that |S| is bounded above by the value of the following linear program

maerTPa
ap=1,a;=0ifie R
Pa=0

a=0.

Alternatively, suppose b = (by,...,bg). Then the entries of the matrix N =
2.j b;Ej are the entries of the vector P~ 'b. Since PQ = vI and

sum(N) = by, tr(N) = el Qb,

we see that |S| is bounded above by the reciprocal of the value of the linear
program

mineOTQb
b=0
bo=1,e; Qb=<0ifieR.

In working with these linear programs, it can be useful to recall that Q =
D,'P*D,,. If in the last linear program we replace the constraints el.TQb <0by
eiTQb = 0, the resulting linear program is dual to the first.

3.4 Cliques and Cocliques

We use the theory of the previous section to derive some specific bounds. Let
&/ be an association scheme on v vertices with d classes.

Suppose first that C is a 1-clique, that is, a clique in the graph X; with ad-
jacency matrix A;. We seek to use Theorem 3.3.1 to obtain an upper bound on
|C|.If MeClef] and Mo A; =0ifi #0,1, then

M=al+bA,.
Hence
sum(M) av+bvv b
= =1+ v1—.
tr(M) av a

Here v, is the valency of X;, and want to choose a and b to maximise the last
term, subject to the condition that M = 0. Since our objective function depends
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only on the ratio b/a, we may assume b = +1. If b = —1, then the least eigen-
value of al — A; is a — v;, and we maximise our objective function by taking
a = v1. The value of the objective function is 2. If b = 1 and the least eigenvalue
of A, is 7, then the least eigenvalue of al + A; is a + T and we maximise our
objective function by taking a = —7. This gives a bound

1%
ICl<1- 2L,
T

This bound is never less than 2, and so it is the linear programming bound on a
1-clique.

3.4.1 Lemma. If X is a graph in an association scheme with valency k and least
eigenvalue 7, then

k
wX)<1--. O
T

By using Theorem 3.3.2, we can derive an upper bound on the size of a 1-
coclique in a union of classes from an association scheme. Suppose A is the
adjacency matrix of such a graph X with valency k, and that its least eigenvalue
istT.If N:=A—-711,then N >=0and

tr(N) = —-vrt, sum(N) = vk—-vt

By Theorem 3.3.2, this results in the bound

a(X) < Lk

T

This bound actually holds for all regular graphs. Note that here we did not need
to solve the linear program in Theorem 3.3.2, any matrix which satisfies the
conditions provides an upper bound.

We give an application of the inequality (3.3.1). Let &« be the Hamming
scheme H(n, q). Let B, denote the ball of radius e about the zero word in the
Hamming graph. Then

e (n .
Be:=1Bel=) |, |(g—D".
i=0\ !
Any two words in B, are at distance at most 2e. If R :={2e+1,...,n}, then B, is
an R-coclique, while an R-clique is a code with minimum distance 2e+ 1. So
(3.3.1) yields that
qn
ICl = —;
Pe
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in coding theory this is the sphere-packing bound.

Note that if C is an R-clique and D is an R-coclique, then |Cn D| < 1. Hence
if we could partition the vertex set V of «f into disjoint copies of an R-coclique
D, no code has more than one vertex in any cell of this partition and so we triv-
ially get the bound |C| < |V|/|D|. Suppose q is a prime power and the vertices of
the Hamming scheme H(n, g) are taken to be the vectorsin V(n, q). If D is an R-
coclique and a subspace, then the cosets of D partition the vertices of H(n, q)
into copies of D and therefore any S-clique contains at most q"/|D| vertices.
The above result enables us to derive the same bound, given only a single copy
of D. From a coding theorist’s viewpoint, association schemes provide a tool
which enables us to extend results about linear codes to the general case. This
crucial fact is due to Delsarte.

3.5 Feasible Automorphisms

Let o/ be an association scheme with d class on v vertices. Let P bea v x v
permutation matrix. Then P is an automorphism of & if it commutes with
each Schur idempotent A; or equivalently if it commutes with each matrix in
Cle].

We derive a necessary condition for P to be an automorphism, due to G.
Higman.

Let o denote the permutation associated with P. Define v;(o) to be the
number of vertices u in the scheme such that u is i-related to u. Then

v;(o) =sum(Po A;).

We compute the projection P of P onto C[</]:

d d
~ V(o) (BE;)
pP= Z : ) Aj = Z l E;.
i=0 VUi i=0 M
Therefore
d ,
~ vi(o) (PEj)
PEj=Y ~=pi(j)Ej = —
i=0 VUi j

and consequently

mi d ; :
<P,E]> = TJZ P (]) Ul'((f).

i=0 Vi
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We claim that if P is an automorphism, then (P, E;) must be an algebraic
integer. For since E; is idempotent and Hermitian, we may write it as

Ej=UU"
where U is a v x m; matrix such that U*U = I. Hence
(BEj)=tr(EjP)=tr(UU"P) = tr(U" PU).
If P commutes with E;, then
PUU* =UU*P
and therefore

PU=UWU"PU).

This implies that the characteristic polynomial of U*PU divides the charac-
teristic polynomial of P, and therefore tr(U* PU) is a sum of eigenvalues of P.
Hence it is an algebraic integer.

We apply this theory to the Petersen graph. Suppose o is an automorphism
of this graph which maps each vertex to an adjacent vertex. Thus

vo(o) =0, v1(o) =10, ve(o) =0.

The eigenvalues of the Petersen graph are —2, 1 and 3 with respective multi-
plicities 4, 5 and 1. If E; is the matrix idempotent associated to the eigenvalue
1 and A; is the adjacency matrix of the Petersen graph, then

5 1 4
(PE)y=—x=x10=—.
10 3 3
Since 4/3 is not an algebraic integer, we conclude that no automorphism of the

Petersen graph maps each vertex to an adjacent vertex.

Suppose H is a projection that commutes with C[</]. Then the above argu-
ment yields that

m; & pi(i
(H,Ej) = — Pil) i1 4y
1

is a non-negative integer. (The value of this observation is unclear, but in prin-
ciple it could be used to show that certain equitable partitions do not exist.)
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Notes

The observation that the Bose-Mesner algebra of an association scheme is an
inner product space is surprising useful, and allows a comparatively easy ap-
proach to thelinear programming method. Nonetheless the results in this chap-
ter are all standard. The linear programming method was developed in [?] by
Delsarte. The method developed in Section 3.5 is an unpublished idea of G.
Higman, and is used in [?] to show that a Moore graph of diameter two and
valency 57 cannot be vertex transitive.



Chapter 4

Products and Tensors

We show how to use the Kronecker product of matrices, or equivalently the ten-
sor product of algebras, to construct new association schemes from old.

4.1 Kronecker Products

If Aand B are matrices and A = (a;, ;), we define their Kronecker product A® B
to be the matrix we get by replacing a;,; with the matrix a; ;B, for all i and j.
(We have made use of this already in Section 2.4.) We summarise some of the
basic properties of this operation.

First it is linear in each variable and, for any scalar ¢

cA®B=A®cB.

We have
tr(A® B) = tr(A) tr(B)

and
AeB) T =ATeBT.

4.1.1 Lemma. If the matrix products AC and BD are defined, then
(A®B)(C® D)=AC®BD. |

One consequence of this is that if x and y are eigenvectors of A and B re-
spectively, then x ® y is an eigenvector of A® B. It follows that if A and B are
positive semidefinite, so is A® B. Note also that

A®B=(AxI)(I®B)=(I®B)(A®I).

33
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The Kronecker product also interacts nicely with the Schur product:

4.1.2 Lemma. If A and C are matrices of the same order and B and C are matri-
ces of the same order, then

(A® B)o(C® D) =(AoC)®(BoD). |
4.1.3 Lemma. There is a permutation matrix P such that P> = I and
P(A®B)P =Bo® A.

Proof. Assume A has m columns and B has n. Letey,...,e and fi,..., f, denote
the standard bases for F”” and " respectively. Then

and
fi®e, 1<ism,1<j<n

are two orderings of the standard basis for F”*"”*. Define P to be the matrix that
represents the linear mapping that takes e; ® f; to f; ® e;, for all i and j. Then
P is a permutation matrix and P? = I. Finally

(B® A)P(e; ® ;) = Be; ® Ae; = P(Ae; ® Bej),= P(A® B)(e; ® f}).

and as this holds for all i and j and as PT = P, the result follows. O

4.2 Tensor Products

The Kronecker product is a concrete realisation of the tensor product of vector
spaces, which we introduce now.

Roughly speaking, tensor products are a tool we use to avoid discussing bi-
linear functions. We recall that if V7, V, and W are vector spaces over a field,
then a map f from Vj x V; is bilinear if it is linear in each variable. Note here
that, although V x W is the underlying set of vectors for the vector space V; & V>,
the bilinear map S is not a linear map from V; & V,. (A good example of a bilin-
ear map is the determinant of a 2 x 2 real matrix, viewed as a function from the
two columns of the matrix to R. Thus here Vi, Vo = R? and W = R.) Although
bilinear maps are not linear maps, the set of bilinear maps from V; x V, to W is
a vector space.
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The solution to our avoidance problem is to construct a new vector space,
denoted V; ® V, and a canonical bilinear map

p:VixVo—=VieV,
so that for each bilinear map y from Vj x V, to W there is a linear map
g:VieV,—-W

such that y = go 8. Since f is determined by the three vector spaces Vi, V»
and W, we see that we can work with linear maps from V; ® V, to W in place
of bilinear maps from V; x V5. (Thus we have simplified the maps we need to
deal with by complicating our objects. This is not an uncommon practice in
mathematics, and the trade-off is usually worth it.)

The construction of V; ® V5 is a two-stage process—we derive it as a quotient
ofalarger vector space. Let U denote the vector space of all functions with finite
support from V) x V5 to the underlying field. Less formally we may identify U
as the set of (finite) linear combinations

Zdi(xi,yi)

where (x;, y;) € V1 x V5. Next we introduce the subspace Uy of U spanned by all
linear combinations of the following vectors:

(X1 + X2, ¥) — (x1, ) — (x2, )
(X, y1 +y2) —(x, 1) — (x,¥2)
(ax,y)—a(x,y)
(x,ay)—a(x,y).

Finally we define V; ® V5 to be the quotient space U/ Uy; the canonical bilinear
map f is defined by
Blx,y)=x®y.

The problem left is to prove that each bilinear map from V; x V;, can be ex-
pressed uniquely as a composition of a linear map from V; ® V, to W. We leave
this to the reader—there are lots of places where you can look it up! We note
that the Kronecker product of F”* and F™ is isomorphic to F”" ® F” (and in turn
this isomorphic to F”"). In particular if V and W have finite dimension, then

dim(Ve W) =dim(V)dim(W).
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Having introduced tensor products of vector spaces, we turn to algebras.
Suppose V) and V; are vector spaces and A; € End(V;). We define A; ® A, by
decreeing that if x; € V;, then

(A1 ® A))(x1 ® X2) := A1 X1 ® Ax X».

It remains to be checked that this product satisfies the rules we gave for the
Kronecker product (you may do this) and hence that the span of the products
A; ® Ay is an algebra. It is isomorphic as a vector space to End(V;) ® End(V5).

Tensor products may be generalised. We could attempt to work with vec-
tor space with infinite dimension or, in place of vector spaces, we could use
modules. In both cases the subject becomes much more more subtle—for ex-
ample the tensor product of the Z-modules Z, and Z3 is the zero module. But
even the case of tensor products of finite dimensional vector spaces there can
be surprises.

We offer some exercises. The complex numbers are an algebra over the re-
als, show that Matg 4 (R) ® C = Mat;.4(C). Show that the tensor product of F[x]
with itself is isomorphic to the ring of polynomials in two non-commuting vari-
ables F[x, yI.

Suppose V is a finite dimensional vector space with dual space V*. If

x®feVeV®
then we can define an associated mapping from V to itself by
(x® f)(v):= f(v)x, veV.

Here f(v) is a scalar, and it is easy to verify that x® f € End(V). Do this, and
also show that

Ve V*ZEnd(V).

If V =F", with elements viewed as column vectors and we identify V* with
F" viewed as row vectors, then we may identify x ® f with the matrix xy” for
suitable y. The isomorphism above is then equivalent to the observation that
every matrix can be written as a sum of rank-one matrices.) If V = F" we are
prepared to identify V* with V, then we can identify V ® V with the space of
n x n matrices.
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4.3 Tensor Powers

We consider constructions of association schemes that make use of the tensor
product.

4.3.1 Lemma. If A,,...,A; and By, ..., B, are two association schemes with d
and e classes respectively, then the matrices

Aij®Bj, 0<i<d,0<j<e

form an association scheme with de + d + e classes, and that the Bose-Mesner
algebra of this product is the tensor product of the Bose-Mesner algebras of its
factors.

Proof. This is not hard to verify directly. Alternatively let the two schemes be de-
noted by «f and 28 respectively. It follows from Lemma 4.1.1 and Lemma 4.1.2
that the tensor product

Clef] ® C[%]

is closed under matrix and Schur multiplication. Since it contains J and is
transpose-closed, we deduce that it is the Bose-Mesner algebra of a scheme.
The dimension of this algebra is (d + 1)(e + 1) and hence this product scheme
has the stated number of classes. O

Similarly we have a power construction:

4.3.2 Lemma. If <f is an association scheme with d classes, then C[<«/]1®F is the
Bose-Mesner algebra of an association scheme with (d +1)* — 1 classes. |

It is not hard to construct new association schemes with a large number
of classes, hence the previous two constructions are not as useful as we might
hope. However there is an interesting construction based on the tensor power,
which we develop now.

Suppose V is a vector space. We define an action of Sym(k) on V®* by
declaring that if

X1 ® - ® Xj

and o € Sym(k), then

O:X1® QX — X1g ® ** ® Xig-
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It follows that o induces a linear map from V®F to itself (which we will denote
byo. Ifes,..., es is a basis for V, then the products
e;

[ ®--®e,

form a basis for V®¥. Since o permutes the elements of this basis, the matrix
representing o is a permutation matrix.

Note that some elements of V=¥ are left fixed by the action of Sym(k). As
examples we have the diagonal terms

e;i®---®e;

and, when k =2, the sum
e1®ert+er®e;

is fixed by Sym(2). We define the k-th symmetric power of V to be the sub-
space of V®* formed by the vectors that are fixed by each element of Sym(k). If

dim(V) = d, then its k-th symmetric power has dimension (** ).

4.3.3 Theorem. If &/ is an association scheme with d classes, then the k-th sym-
d+k

metric power of C[</] is an association scheme with ( i ) —1 classes.

Proof. The k-th symmetric power of C[«/] is the centralizer of a set of permuta-
tion matrices, and therefore it is Schur-closed by Lemma 22. It is closed under
matrix multiplication and transpose and contains I and /, and it is commu-
tative since C[«/] is. Therefore it is the Bose-Mesner algebra of an association
scheme. ]

We call the scheme produced by this construction the k-th symmetric power
of «/, and we denote it by H(k, </).

We note the proof of the previous theorem theorem also yields that a sym-
metric power of a coherent algebra is again a coherent algebra, and this power
is homogeneous if the input is.

4.4 Generalized Hamming Schemes

In this section we offer an alternative, more concrete, construction of the sym-
metric power and consider some examples.

Suppose «f is an association scheme with Schur idempotents Ay, ..., Az and
vertex set V. If u and v are two elements of V", let h(u, v) be the vector of length
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d +1 whose i-th entry h;(u, v) is the number of coordinates j such that u; and
vj are i-related. The entries of h(u, v) sum to n; conversely any non-negative
vector of length n whose entries sum to 7 is equal to h(u, v) for some u and v.
If a is a non-negative vector of length d + 1 and 17 a = n, define A, to be the
01-matrix with rows and columns indexed by V" and with (A4),,, = 1 if and
only if h(u, v) = a. This set of matrices forms the k-th symmetric power of «f.
If o/ is the scheme with one class on g vertices, then H(n, <) is the Hamming
scheme H(n, q).

By way of a more particular example, suppose I, A; and A, form an associ-
ation scheme with two classes, i.e., the association scheme of a strongly regular
graph. The Schur idempotents of « ® of are the nine matrices

I, I®A1) A1®I»
I® A, Aol, A;®A),
As® A, A1®A;, Ay®A).

The Schur idempotents of H(2,</) are

I, I®AI+A1®1, I®A+A®I,
Al ® A+ Ar® A, A1 ® A, Ar® As.

4.5 A Tensor Identity

We use A ® B to denote the Kronecker product of two matrices A and B. We
offer a more exalted version of Seidel’s identity, due to Koppinen.

4.5.1 Theorem. Let of be an association scheme with d classes. Then
d d

1
Z—A,@AT Y —E;®F;.
i=0 VVi i=0 Mi

Proof. Suppose that V is an inner product space and uy, ..., uy and vy, ..., vy are
two orthogonal bases for a subspace U of V. If

k
R

ul,u>

and

k
=) Vv
=1 (vi, v
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and x € V, then Rx and Sx are both the orthogonal projection of x onto U. So
Rx = Sx for all x and therefore R = S. Since

xy*=xey",
we thus have
k 1 k
u;®u: = V;®U;. (4.5.1)
,-:Zi (wiugy ,:Zl (vi,vi) !

Now let vec : Mat,;, <, (C) — C™" be the linear map given by

Ae1
vec(A) =
Aey,

If M € Mat,, ,(C), let M" denote the linear map from Mat,, ,(C) to C given by
M (X) :=tr(M* X).

Note that
M (X) = vec(M)* vec(X).

Then (4.5.1) yields that

d 1 d 1
Y —A;0Al=) —E;®E
i=0 VUi i=0 Mi
Consequently
d 1 d 1 _
Y —A;evec(A)' =Y —E;®vec(E)”
i=0 VVi i=0 Mi
and therefore
d 1 d 1 _
Z —A;®A; = Z —E;®E;.
i=o VVi i=0 Mi

Let I denote the identity map on Mat,,(C) and 7 the transpose map. If we
apply I ® T to both sides of this identity, the result follows. |

We let £ denote either of the two sums in the statement of Theorem 4.5.1.
Since E; ® E| is self-adjoint, we have #* = % and therefore we also have

d 1
H =)

Al ® A;.
i=0 VVi
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4.6 Applications

We present three applications of our tensor identity.
First, suppose X € Mat,«,(C) and T : C[«/] ® C[«/] — C[«/] is the linear
mappping given by
T(Ce® D) =tr(DX)C.

Therefore
d d

1 1
T(#)=) —tr(AT X)A; = ) —tr(E; X)E;.
i—o VVi i=0 Mi

This shows that Theorem 3.2.1 is a consequence of Theorem 4.5.1.

An association scheme «f with d classes is pseudocyclic if its valencies vy, ..., vg4
are all equal and its multiplicities m; are all equal. If we denote the common
value of these parameters by m, then v = dm+1. Koppinen’s identity yields that

1 1 d ®2 1 d ®2
H==I+—) A?*=Ej+—) E*.
v vm ;=5 m;=

Here
d 2
®
> A
i=1

is the adjacency matrix of a regular graph. The previous equality shows that it
has exactly three eigenvalues (vm — m, v — m and —m), and therefore it is the
adjacency matrix of a strongly regular graph.

The simplest example of a pseudocyclic scheme is the scheme with d classes
associated to the odd cycle Cy44;. (In this case the strongly regular graph is

L(K>q+41,2d+1)-)
We offer another proof of the inequality (3.3.1).
4.6.1 Theorem. Let «f be an association scheme with d classes on v vertices

and let R be a subset of {1,...,d}. If C is an R-clique and D is an R-coclique,
then |C||D| < v.

Proof. Let C be an R-clique and D an R-coclique, with characteristic vectors y
and z respectively. Let S be the subset C x D of V x V, with characteristic vector
x. Then x=y®zand

xT(A,- ® Aj)x= yTAiszA,-z =0
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if i #0. So
d 1 _
xX= Z —xT(Ej ®Ej)x.
j=0 1]

1
A;i®A;

eefs

i 4

The matrices E; are positive-semidefinite, and therefore so are the matrices E; ®
E;. Consequently each term in the last sum is non-negative, and thus
|SI?

|S| = xx! > xT(EO Q Ey)x = —
v

Therefore |S| < v. O

Notes

Bailey [?] also offers a detailed treatment of constructions based on tensor prod-
ucts. Delsarte [?, ?2?] introduced what we called the generalised Hamming
schemes, calling them ?22. We will see that this viewpoint leads to an elegant
approach to the computation of the matrix of eigenvalues for the Hamming
scheme. Koppinen’s identity appears in [?]. Its applications in Section 4.6 are
new, although the results themselves are not. (In particular the pseudocyclic
schemes we present were first found by [?].)



Chapter 5

Subschemes and Partitions

If a subspace of the Bose-Mesner algebra of an association scheme </ contains
I and J and is closed under Schur and matrix multiplication, it must be the
Bose-Mesner algebra of an association scheme, 28 say. We say that 28 is a sub-
scheme of «/. In this chapter we study subschemes and some related matters.

5.1 Equitable Partitions

Let V be set of size v and let & be a partition of V with k cells. Then 7 is a set,
each element of which is a subset of V. The characteristic matrix of n is the
v x k matrix whose columns are the characteristic vectors of the cells of 7. The
column space of 7 is the space of functions on V that are constant on the cells
of ; we denote this space by F ().

If % is an algebra of matrices with rows and columns indexed by V, we say
that a partition 7 of V is equitable relative to 28 if F(m) is 98-invariant. The
algebras of interest to us will be generated by adjacency matrices of graphs.
Suppose A is the adjacency matrix of a graph X and x is a partition of V(X)
with characteristic matrix H. Then F(r) is A-invariant if and only if there is a
k x k matrix B such that

AH = HB. (5.1.1)

We call B the quotient of A relative to 7, and denote it by A/z. If the cells of
m are Cy,...,Cy, then 5.1.1 holds if and only if for each i and j, the number of
neighbours in C; of vertex in C; is determined by i and j (and is equal to B; ;).
Note that H” H is diagonal and invertible, whence

B=H"H 'HT AH.

43
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Hence B is determined by A and H.

We consider two classes of examples. Let A be the adjacency matrix of a
graph X. A partition 7 of V(X) is an equitable partition of X ifitis A-invariant. A
subspace that contains 1 is J-invariant, and so if 7 is A-invariant, it is invariant
under the algebra generated by A and J. (The latter algebra is often the algebra
of all matrices.) An orbit partition of a graph X is a partition whose cells are
the orbits of some group of automorphisms of X. Any orbit partition of a graph
X is equitable, but not all equitable partitions of a graph are orbit partitions.
For example, X is regular if and only if the partition with V(X) as its only cell is
equitable.

Our second class of examples concerns association schemes. If «f is an as-
sociation scheme with vertex set V, we call a partition 7 of V an equitable par-
tition of the scheme if it is equitable relative to the Bose-Mesner algebra C[</].
Suppose v € V and let C; denote the set of vertices w such that v is i-related to
w. Then , = {Cy,...,Cq} is a partition of V(X) which is an equitable partition
of the scheme. We call it the relation partition with respect to v. The quotient
matrix A;/m, is independent of v.

A subspace of FV is equal to F(r) for some 7 if and only if it is closed under
Schur multiplication and contains the vector 1. The following result is not too
hard to verify.

5.1.1 Lemma. If 7 and o are partitions of V, then
Fm)nF(o)=F( Vo). O

(Here mvo denotes the join of 7 and o in the lattice of partitions of V.) From
this lemma, we see that if 7 and o are equitable partitions relative to 98, then
7V o is also equitable.

If p(?) is a polynomial, then 5.1.1 implies that p(A)H = Hp(B). Conse-
quently we have a homomorphism from the algebra of polynomials in A to the
algebra of polynomials in B. It follows that the minimal polynomial of B divides
the minimal polynomial of A, but something a little stronger is true.

5.1.2 Lemma. Suppose A, B and H are matrices such that AH = HB. If the
columns of H are linearly independent, the characteristic polynomial of B di-
vides the characteristic polynomial of A.

Proof. Assume Ais vx v andlet x1,..., x, be a basis for F” such that x,..., x; are
the columns of H in order. Then relative to this basis, the matrix representing
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B %
0 A

det(tI— A) =det(tl — B)det(tI— Ay). a

A has the form

where A is square. Therefore

We give one of the standard applications of this result. Let X be a graph. A
perfect 1-code in X is a subset C of V(X) such that:

(a) Any two vertices in C are at distance at least three.
(b) Any vertex not in C is adjacent to exactly one vertex in C.

Suppose C is a perfect 1-code in X, and let 7 be the partition with cells C; = C
and G, = V(X)\C. If X is regular with valency k, this is an equitable partition of
X, with quotient matrix
0 k
B= (1 k- 1)'

Both rows of this matrix sum to k, so k is an eigenvalue for B. Since tr(B) = k—1
it follows that —1 is an eigenvalue for B. We conclude that if a regular graph X
contains a perfect 1-code, then —1 must be an eigenvalue of A.

Note that if X is k-regular and has v vertices, then a perfect 1-codes has size
v/ (k+1). Thus we have a second necessary condition: k + 1 must divide v.

Let 7 be a partition with characteristic matrix H and suppose D is the non-
negative diagonal matrix such that D?> = H” H. Then all columns of HD~! have
length 1, and so the columns of this matrix form an orthonormal set. We call
HD™! the normalized characteristic matrix of 7, for some purposes it is more
useful than H. If G = HD™! then GG represents orthogonal projection onto
F(m). We note that F(xr) is A-invariant if and only if A and G commute. (This
is a special case of a general fact from linear algebra: if E is idempotent, then
col(E) is A-invariant if and only if EA = AE.)

5.2 Subschemes and Partitions

Suppose € and 2 are association schemes on the same vertex set. We say
that € is a subscheme of & is the Bose-Mesner algebra of € is a subspace of
the Bose-Mesner algebra of 2. To give a very simple example, the association
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scheme of the complete graph on v vertices is a subscheme of any scheme on
v vertices. We will meet more examples soon.

We admit that what we call a subscheme is often (more often?) called a
fusion scheme and, to make it worse, the term subscheme is used for another
concept.

5.2.1 Lemma. Let of; and </, be association schemes. If «f; is a subscheme of
<o, then each Schur idempotent of /) is a sum of Schur idempotents of <f,.

Proof. Suppose o) = {Ay,..., Ag}. If of) is a subscheme of o, then A; must be
a linear combination of Schur idempotents of «; since A; is a 01-matrix, the
coefficients in this linear combination must be 0 or 1. O

Let &« be an association scheme with d classes, and let = be a partition of
{0,1,...,d} with cells {Cy,..., C.}. Define M; to be sum of the matrices in the set

{A,:1reCil.

The matrices M; are Schur idempotents, but not minimal Schur idempotents.
We call them the Schur idempotents corresponding to the cells of . We wish to
characterise the partitions 7 such that the matrices M; are the minimal Schur
idempotents of a subscheme of /. We note three necessary conditions:

(@) Since some M; must be the identity matrix, some cell of 7 must equal {0}.
(b) The set of matrices M; is transpose-closed.
(c) The algebra generated by the matrices M; must have dimension |r].

It is not hard to see that together these three conditions are also sufficient.
There is a direct way to determine the dimension of the algebra, which we dis-
cuss next.

5.2.2 Theorem. Let </ be an association scheme with d classes and eigenmatrix
P. Let n be a partition of {0,1,...,d} with cells {Cy,...,C,} and with character-
istic matrix S. Assume that the set of Schur idempotents corresponding to 7 is
transpose-closed and contains I. Then the dimension of the algebra they gen-
erate is equal to the number of distinct rows of PS.

Proof. Let Ey,...,E;z be the minimal matrix idempotents of «/. Let M,,..., M,
be the Schur idempotents corresponding to the cells of 7, and let .4 be the
algebra they generate. Then .4 is commutative and closed under transposes
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and complex conjugation. We apply the theory of Sections 1.4 and 1.5. From
this it follows that .# has a basis of pairwise orthogonal idempotents Fj,..., F.
Each of these idempotents lies in C[</], and hence F; is the sum of the E, such
that E, < F;.

Let m;(j) denote the eigenvalue of M; associated to the idempotent E; of
<. Then

m;(i) = (PS);,;.
If E, < F;, then M E, = m;(D)E,.

Suppose F; and F; are distinct idempotents of .#. If m; , = m;  for all i,
then F;, + F; together with the idempotents F; with i ¢ {r, s} spans .. Therefore
for each r and s, there is a matrix M; such that m; (r) # m;(s).

We conclude that E, and E; are summands of the same idempotent F; if and
only if rows r and s of PS are equal. The theorem follows. |

The Schur idempotents corresponding to 7 are linearly independent, so we
see that the dimension of the algebra they generate is at least || = e + 1.

5.2.3 Corollary. Let « be an association scheme with d classes and eigenma-
trix P. Let m be a partition of {0,1,...,d} with cells {Cy,...,C,} and with char-
acteristic matrix S. Assume that the set {My, ..., M} of Schur idempotents cor-
responding to 7 is transpose-closed and contains I. Then {My,..., M,} are the
minimal Schur idempotents of a subscheme of &/ if and only if PS has exactly
e+ 1 distinct rows. O

Let P be an m x n matrix and let o be a partition of its columns with char-
acteristic matrix S. Define two rows of P to be equivalent if the corresponding
rows of PS are equal, and let p be the partition of the rows of P with the equiv-
alence classes of this relation as its cells. We say that p is the partition induced
byo.

5.2.4 Lemma. Let P be an m x n matrix, let o be a partition of its columns and
let p be the partition of its rows induced by o. If the columns of P are linearly
independent, then |p| = |o|.

Proof. If the columns of P are linearly independent, then PSx = 0 if and only if
Sx = 0. But the columns of S are linearly independent and so Sx = 0 if and only
if x = 0. Hence the columns of PS are linearly independent. Therefore

lo| =1k(PS).

Since the number of distinct rows of PS is an upper bound on its rank, the
lemma follows. o
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We call a partition o of the columns of a matrix tight if |0 *| = |o]|.
Suppose o is a partition of the columns of M, with induced partition p. Let
S and R respectively denote the characteristic matrices of o and 7. Then each
column of PS is a linear combination of the columns of R, and so there is a
matrix M; such that
MS =RM,.

Here M has order |p| x |o|; if the columns of M are linearly independent, then
so are the columns of M;.

Let P be the eigenmatrix of an association scheme <« with d classes. If ¢ is
a tight partition of the columns of P, then

PS=RP,

where R is the characteristic matrix of ¢ *. In this case P is invertible, and so P;
is invertible. If Q is the dual eigenmatrix of «/, then QP = vI and we have

vSP; ' =QR.

This implies that o* is a tight partition of the columns of Q, with induced par-
tition equal to o.

If the Schur idempotents associated with the cells of o form a subscheme of
&/, then P is the matrix of eigenvalues of the subscheme.

5.3 Primitivity

An association scheme with d classes is primitive if each of its graphs X, ..., X4
is connected. (Although these graphs may directed, they are finite and all ver-
tices have the same in- and out-valency, hence the strong weak components
coincide.) An association scheme that is not primitive is imprimitive.

In the binary Hamming scheme H(n, 2) we see that X;, consists of 2n-1 dis-
joint edges. The graph X is the n-cube, which is bipartite, and so the graphs
X,; are all disconnected.

The imprimitive strongly regular graphs are the graphs mK,, (where m, n >
1) and their complements. Product schemes are imprimitive in all non-trivial
cases.

Suppose & = {Ay,..., A4} is an association scheme with vertex set V and
let V; be a subset of V. The principal submatrices of Ay, ..., Az with rows and
columns indexed by V; generate a matrix algebra with dimension at least s + 1,
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where s is the degree of V;. If the dimension is s+1, it is the Bose-Mesner algebra
of an association scheme with s classes.

5.3.1 Lemma. Suppose X is the graph of a minimal Schur idempotent in the
association scheme «f. If X is not connected, then the restriction of </ to a
component of X is an association scheme whose parameters are independent
of the choice of components. The partition whose cells are the components of
X1 is equitable.

Proof. Suppose that X; is not connected and let o be the partition whose cells
are the components of X;. We prove that SST € C[«/], which implies that o is
equitable.

If u and v are i-related vertices in the same component of X, they are
joined by a walk, each arc of which lies in Xj. It follows that any pair of i-
related vertices in < lie in the same component of X;. Consequently the graph
on V(&) with two vertices adjacent if and only if they lie in the same compo-
nent of X is the edge-disjoint union of graphs from «/. Since SS” — I is the
adjacency matrix of this graph, our claim is proved.

If SST € Cle#], then SST commutes with J, and therefore the cells of ¢ all
have the same size, which we denote by c. Since SS T e Cl«], Seidel’s identity
yields

ssT, A> <SST E,)

Since SST is a Schur idempotent, the non-zero coefficients in the first sum are
all equal to 1. Hence A; o (SS7) is either 0 or A;. Since %SST is a matrix idempo-
tent, the non-zero coefficients in the second sum are all equal to c.
If
D :={i:A;o(SST) #0},

then since
(8ST)? = ¢SS7,

it follows that if i and j belong to 2 and p; (k) # 0, then k € 2. Therefore the
span of the set
{A;: i€}

is closed under multiplication. Each of these matrices is block diagonal, with
blocks of size c. The matrices we get by taking the r-th block of A; for each i
in 2 form an association scheme, and the r association schemes we get in this
way all have the same parameters. |
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Suppose
&:={j: (S, )T E;#0}.

Since SS” is a Schur idempotent, it follows that if i and j belong to & and
qi,j(k) #0, then k € &. So the span of the set

{Ej:jeD)

is closed under the Schur product.
If j € & then

Cc
E]' :Fj®;]y/c.

Hence the F;’s are a set of pairwise orthogonal idempotents and

Y Fi=1

je&

It follows that the matrices F; (for j € &) form an association scheme whose
vertices are the cells of 0.

5.4 Simple Subsets

Let of ={Ay,..., Aq} be an association scheme with vertex set V and let C be a
subset of V with characteristic vector x. We will work with the cyclic subspace
generated by x, which is the subspace generated by the vectors

Agx, A1X,...,Agx.

We view this as a space of functions on V, and denote it by 2(C).
The vectors
Eyx,Eix,...,Egx

form a second basis for &; since these vectors are orthogonal it follows that
dim(2) is equal to the number of non-zero vectors in this set. If s* denotes the
dual degree of C, then we have

dim(@(C)) =1+ s".
If u € V, we define its profile relative to C to be the vector

(eLTton,...,eLfAdx)
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The i-th entry of this is the number of vertices v in C such that u is i-related to
v. We can partition the vertices of C by their profiles, and we call it the partition
induced by C. Any element of 2(C) is constant on the cells of this partition,
and therefore if 7(C) is the partition induced by C,

dim(2(C)) < |x(O)].

We call C a simple subset of V if equality holds.

Let F(rr) denote the space of functions on V that are constant on the cells
of . This space has dimension || and contains & (7). This immediately yields
the following.

5.4.1 Lemma. Let C be a subset of the vertices of the association scheme <f
with induced partition . Then C is simple if and only if 2(C) = F (). O

Note also that F(r) is Cl«/]-invariant if and only if 7 is equitable. Hence
the partition induced by a simple subset is equitable. (The converse is false,
although examples are not trivial to find.)

5.4.2 Example. 1f C is a linear code in H(n, q), then the profile of u relative to C
is the distance distribution of the coset C + e;, of C.

5.4.3 Example. If C is just a single vertex u of o/, then
eg Eje, >0

for j =0,1,...,d and so the dual degree of {u} is d. The partition of V induced
by u is just its relation partition, which has d + 1 cells. So {u} is simple.

5.4.4 Example. Suppose & is imprimitive, and that C is the vertex set of a con-
nected component of A;.

5.5 Completely Regular Subsets

Suppose the association scheme & is metric with respect to A;. If V is the
vertex set of &« and C ¢ V (&), we define C; to be the subset of V consisting of
the vertices that are at distance i (in X;) from C. Thus Cy = C. The sets C; form
a partition of V which we call the distance partition. The maximum distance of
a vertex from C is the covering radius of C. The covering radius of C is ¢ if and
only if its distance partition has exactly ¢+ 1 cells. If the distance partition of C
is equitable, we say C is completely regular. The canonical example is a perfect
code in the Hamming scheme.
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5.5.1 Lemma. If &/ is a metric association scheme and C is a completely regular
subset of V (&), then C is simple.

Proof.

5.5.2 Lemma. If o/ is a metric association scheme and C is a completely regular
subset of V («/) with covering radius t and dual degree s, then t < s.

Translation drgs correspond to cr codes in Hamming scheme.
0 =26 — 1 implies cr.

Lloyd’s theorem.

Examples.

Do quotients schemes a la Godsil and Martin
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Translation Schemes

Suppose I' is an abelian group of order v. The conjugacy class scheme on I’ is
a scheme with v — 1 classes, and each minimal Schur idempotent is a permu-
tation matrix. Many interesting schemes arise as subschemes of these; they are
known as translation schemes.

6.1 Characters

Let I' be a finite abelian group. A character of I' is a homomorphism from I
into the multiplicative group formed by the non-zero complex numbers. The
set of all characters of I' is denoted by I', and is called the character group of I'.
Ify eI'* and g €T, then g* for some integer k. Therefore

v =y =y@"
whence we see that ¥(g) is a k-root of unity. It follows that
w(Eg ) =y(®.

The trivial character is the map that sends each element of " to 1. If ¢ and ¥
are characters, we define the map ¢v by

Py (8) =y (g).

Using this definition it follows that I'* is an abelian group. If w e T'*, then ¢! =
.

53
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To give an example, suppose I' = Z,,. Let 0 be an n-th root of unity in C and
let g be a generator for I'. Then the map

gk ¥

is readily seen to be a character of I'. Thus each n-th root of unity determines
a character of I', and these characters form a subgroup of I'* with order n. For
further progress, we need the following.

6.1.1 Lemma. Ify is a non-trivial character of the finite abelian group T', then

Y v(g) =0.

ger’

Proof. If a € G then

Y=Y vag =v@) vg,

gerl’ gerl’ gerl’

whence we see that if w(a) # 1, then }. y(g) = 0. O
If ScT and v e T'*, we define

w(S) =) w(g.
ges

The previous result thus states that if y is not trivial, then ¢(I') = 0.

6.1.2 Corollary. If ¢ and v are characters of T, then

— |ITl, ifp=vy;
Y 0@E = o=w
gel 0, otherwise.
Proof. Apply the lemma to the product . |

We define the sum in this corollary to be the inner product of ¢ and y; we
see that distinct characters are orthogonal. It follows that the elements of I'*
are linearly independent elements of the vector space C® of complex-valued
functions of I'. Since this space has dimension |T'|, we conclude that

IT* <IT1.
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We can now show that I'* and I" are isomorphic abelian groups. We saw above
that Z;, contains a subgroup isomorphic to I', and therefore

7527,

A finite abelian group is the direct product of cyclic groups. If A and B are finite
abelian groups then we may assume inductively that

(AxB)* = A" x BY,

and so our claim follows.

Let I be a finite abelian group of order n. A character table of I is the n x n
matrix with i j-entry equal to the value of the i-character on the j-th element
of I'. By 6.1.2,

HH" =nl.

Also B
HoH=].

For example, the character table of Z7 may be taken to be the Kronecker
product of n copies of
1 1
b )

For another example, let I" be Z,, and suppose 7 is a primitive n-th root of unity.
The matrix P with rows and columns indexed by I and with

P;j=n"

is a character table for I'. Since this is symmetric, any finite abelian group has a
symmetric character table.

6.2 Translation Graphs

Let G be a group and suppose C < G. The Cayley graph X(C) is the graph with
vertex set G and arc set
{(g,h):hg tecC).

Define
Cl=(ct:ceq
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and call C inverse-closed if C = C™!. Then X(C) is a directed graph if and only
if C is not inverse-closed, and it will contain loops if 1 € C. We do not insist that
Cayley graphs be undirected, but we do insist that they do not have loops.

If a € G, let p, be the map that sends x in G to xa. Then p, is a permutation
of G and an automorphism of X(C). Hence G acts as a regular group of auto-
morphisms of X(C). Conversely, if G acts as a regular group of automorphisms
of a graph X, we may choose a vertex v in X and define C to be the set of ele-
ments g of G such that (v, gv) is an arc in X. Then X is isomorphic to the Cayley
graph X (C).

We define a translation graph to be a Cayley graph for an abelian group.
One advantage of translation graphs is that their eigenvalues and eigenvectors
are more accessible, as we show now.

Suppose I' is an abelian group of order v. Each character of G can be ex-
tended to a function on the subsets of I as follows. Suppose ¥ e IT'* and ST
Then

w(S) =) w(g.
ges
6.2.1 Lemma. Let X be a Cayley graph for the abelian group T, relative to the
subset C. Each character y of T is an eigenvector for A(X) with eigenvalue

w(C).

Proof. A function ¥ on V(X) is an eigenvector if there is a complex number A
such that

Mp(@) =) wh
h~g

Since

Y wh) =) wicg) =w(g) ) v =yEy),

h~g ceC ceC

we see that v is an eigenvector with eigenvalue v (C).

6.3 Translation Schemes and their Duals

Let I be a finite abelian group of order v. Each element of I gives rise to a per-
mutation of '—the permutation corresponding to a maps g in I to ga. Hence
for each element g in I we have a permutation matrix P(g); the map g— P(g)
is a group homomorphism. Therefore

P(@)P(h)=P(WP(g), PghH=prg’.
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We have P(1) = I and ¥4 P(g) = J. Hence the matrices P(g) form an association
scheme with v — 1 classes. (This is in fact the conjugacy class scheme on I', but
the description we have just presented may be more transparent.) We call it the
abelian group scheme onT.

6.3.1 Lemma. Let «f be an association scheme with v vertices. Then «f has v—1
classes if and only if it is the association scheme of an abelian group.

Proof. Suppose <f has v vertices and v classes Ag,...,A,—1. Since )} ; A; = J,
we have v; = 1 for each i. It follows that A; is a permutation matrix, and that
together they form an abelian group of order v. |

We define a translation scheme to be a subscheme of an abelian group
scheme. The Hamming schemes and the bilinear forms schemes are transla-
tion schemes.

6.3.2 Example. Let[F be a finite field of order g and suppose K is a subgroup of
F*, the multiplicative group of F. The cyclotomic scheme has the elements of
[ as its vertices, and (u, v) is i-related if and only if v — u lies in the i-th coset of
K. Hence if k = |K], this scheme has (g — 1)/ k classes each of valency k. This
scheme is symmetric if and only if —1 € K. It is a translation scheme relative to
the additive group of F. If g = p” for some prime n, then the scheme is linear if
and only if K contains GF(p)*.

Let «/ be a subscheme of the scheme coming from the abelian group I'.
Then T acts by right multiplication as a group of permutations on itself, and
thus T acts transitively on the vertices of «¢. In particular, I' < Aut(X;) for i =
1,...,d and therefore each X; is a Cayley graph for I relative to a subset C;. The
sets C; partition I'\ 1 and are closed under inverses, that is, for each i we have
C;!=Cjforsome j.

The matrix of eigenvalues P of an abelian group scheme is the character
table of the group. Thus the columns of P are indexed by the elements of the
group, the rows by the characters and the i j-entry is the value of the i-th char-
acter on the j element. Assume 7 is a partition Cy, ..., Cg of I' such that Cy = {1}
and the set of cells is inverse-closed. Let S be the characteristic matrix of 7.
Then by Theorem 5.2.2, the dimension of the algebra generated by the matri-
ces A; = A(X(C;)) is equal to the number of distinct rows of PS. Further, by
Corollary 5.2.3, is this dimension is e + 1, then e = d and equality holds if and
only if Ay, ..., Az form an association scheme.

If equality holds then 7 determines a partition of I'* into d+1 cells, Dy, ..., D4
say. It is not hard to show that one of these cells consists of the trivial charac-
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ter, and that the set of cells in inverse-closed. Hence we obtain an association
scheme on I'*. We call this scheme the dual of the scheme determined by 7.
Thus translation schemes come in dual pairs.

6.4 Linear Graphs

Let V be the vector space of dimension n over the field F of order q. Then
V is an abelian group of order g¢" and in this case the characters of V can be
constructed from the characters of the additive group of the underlying field,
as follows. If ¢ is a non-trivial character of the additive group of F and a € V,
define the map ¢, from V to C by

Pa(x) =@(a’ x).

Then ¢, is a character of V and, as a runs over the elements of V, we obtain
all characters of V. The kernel of ¢, consists of the set of vectors x such that
a® x = 0, which we denote by at.

A Cayley graph X (C) for the vector space V is linear if 0 ¢ C and C is closed
under multiplication by the non-zero elements of F. (If C satisfies these condi-
tions, we say it is linear subset of V.) If C is linear and a € V, there is a simple
expression for ¢,(C) which we derive now.

Let F* denote the set of non-zero elements of F. If a’ x # 0, then the set

Nalx: A eF*}
consists of the distinct non-zero elements of F. Hence

Y A=Y pha’x) =-1.
A€F* AeF*

If a” x = 0, this sum equals g — 1, and so we conclude that
(C) = ——(glCna*l-IC)
Pa = q-1 q .

We note that if 1 € F*, then (Aa)* = at, and s0 ¢4(C) = ¢4 (C) if A € F*.

6.4.1 Example. Let V be the vector space of dimension four over Z, and sup-
pose
C={ei, ez e3,e4,€1+e2+e3+ ey}
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Over Z, any subset that does not contain 0 is linear. If @ = 0 then a* = V and
@a(C)=5.1f a=e; then
Cna’ ={ey,e3, e4}

and so
Pa(C)=2x3-5=1.

If a=e; + e+ e3+ ey we find that
@0a(C)=2x1-5=-3.

You may check that these are all the eigenvalues of X(C); hence it is strongly
regular. (This is the Clebsch graph. It is an interesting exercise to show that the
vertices at distance two from 0 induce a copy of the Petersen graph.)

6.5 Geometry, Codes and Graphs

Let V be the vector space of dimension d over the finite field GF(q). The 1-
dimensional subspaces of V are the points of the projective space PG(d — 1, q).
Suppose Q < PG(d —1,q). We can represent the set QO by the columns of a
d x |Q2] matrix M whose columns are homogeneous coordinate vectors for the
elements of Q. We call the row space of M the code of Q. The kernel of M is the
dual code of Q2. We will usually denote the code of Q2 by C(€2), or by C. The dual
code of Cis Ct.

If Q< PG(d -1, q), then (QQ) denotes the smallest projective subspace that
contains Q. The dimension of Q is the projective dimension of (Q); the rank
rk(Q) is the dimension of the subspace of V' corresponding to the projective
subspace (Q)). (The rank is one greater than the projective dimension.) We
note that rk(Q2) is equal to the dimension of its code.

Using the machinery we have just defined, we can translate geometric ques-
tions about Q into questions about its code. However there is also a translation
into graph theory. Suppose M is a matrix representing Q. Let X (Q2) denote the
Cayley graph for the additive group of V with the non-zero scalar multiples of
the columns of M as its connection set. Thus X is a Cayley graph on g vertices,
with valency (g — 1)|Q]. It is connected if and only rk(M) = d, and this holds if
and only if rk(QQ) = d.

If Cis a subspace of V, its coset graph is the graph with the cosets of C as its
vertices, and the number of edges joining two cosets C; and C, is equal to the
number of vectors in C, at Hamming distance one from a given vector in C;.
This definition allows a coset graph to have loops as well as multiple edges.
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6.5.1 Lemma. The coset graph of a code C is simple if and only if the minimum
distance of C is at least three. O

Note that the columns of M are distinct, and so the dual code of Q2 has min-
imum distance at least three. (A code with minimum distance at least three is
often called a projective code.)

6.5.2 Lemma. IfQ < PG(d - 1, q), then X (Q) is the coset graph of the dual code
of Q). i

There is also a direct geometric description of X (Q). View PG(d—1, q) as the
hyperplane at infinity of the affine geometry AG(d, q). The vertices of AG(d, q)
are the elements of V and its subspaces are the cosets of the linear subspaces
of V. Construct a graph with vertex set V by defining two distinct points to be
adjacent if the unique line through them meets the hyperplane at infinity in a
point of Q; this graph is X (Q).

We will see that there are many interesting connections between the prop-
erties of Q, its code C and its graph X (Q2). Before we can develop these, we need
information about the eigenvalues and eigenvectors of X.

Let tr denote the trace map from the field F of order ¢ to its prime field (of
order p). If 0 is a complex primitive p-th root of 1, then the map

X — Htr(aTx)

is a character of the additive group of V, which we denote by y,. If a€ V, then
at:={x:a’x=0}.
Usually we will view a* as a subset of PG(d - 1, q).

6.5.3 Lemma. If Q < PG(d — 1, q) and v, is as above, then vy, is an eigenvector
for X(Q) with eigenvalue q|Qn a*| - |Q)|.

Proof. The connection set € of X(Q) consists of the vectors

X,

where y varies over the non-zero elements of F and x varies over the columns
of M. Then
X tr(yaTx)



6.6. LANGUAGE 61

is a linear map from F to GF(p). It is onto, and so takes each possible value
exactly g/ p times as y varies over F. Since the sum of the distinct powers of 0 is

Z€ero,
Z Htr(}/(lTx):{_l’ x#o;
yeF\0 qg-1, x=0.
Therefore v ,(€) :qIQnaLI—IQI. O

Geometrically |Qna is the number of points of Q that lie on the hyperplane
of PG(d — 1, q) with coordinate vector a’. If y # 0, then

qgQnat|=qlQn(ya)*|,

whence we see that each hyperplane gives rise to g — 1 eigenvectors for X (Q),
all with the same eigenvalue.

6.6 Language

In this section we develop a set of dictionaries, allowing us to translate between
the languages of finite geometry, coding theory and graph theory.

We assume that Q is a subset of PG(d — 1, g) with rank d and size m, repre-
sented by a matrix M. We denote the code of Q by C and its graph by X.

Suppose H is a hyperplane in PG(d — 1, q), with coordinate vector h’. The
elements of QN k' index the zero entries of h” M. If wt(x) denote the weight of
the code word x, then

QN KT = m-wt(h" M).

Thus a hyperplane of PG(d — 1, q) that intersects Q in exactly i points deter-
mines g — 1 code words of weight m — i, and g — 1 eigenvectors of X with eigen-
value qi — m. In particular, the eigenvalues of X and their multiplicities are
determined by the weight enumerator of the code of Q.

6.6.1 Lemma. Let Q be a set of m points in PG(d — 1, q) and let T be the least
eigenvalue of X(Q). Then T = —m, and equality holds if and only if the code of
Q contains a word of weight n. O

6.6.2 Theorem. Let Q2 be a set of n points in PG(d—1, q) with code C Then X(£2)
is g-colourable if and only if C* contains a word of weight n.
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Proof. If there is no word of weight n in C*, then the least eigenvalue of X(Q) is
greater than —n. The valency of X(Q) is n(q — 1) and so the ratio bound yields

that
Xy VXl

nig-1 —
+ 0 q

a(X(Q)) <

Hence y(X(Q)) > g.

Conversely, let M be a matrix that represents Q and suppose a’ M is a word
of weight 7 in the code of Q. If x and y are vertices of X(Q) and a’ x = a” y, then
a’ (x — y) = 0 and therefore x and y are not adjacent in X(Q). Hence the map
x— a’ x is a proper colouring of X(Q) using the elements of F. O
6.6.3 Corollary. Let Q) be a set of points in PG(d — 1, q). To determine the least
eigenvalue of X (Q)) from Q is NP-hard.

Proof. Take M to be the incidence matrix of an orientation of a graph Y. If
a’ M has no zero entries, the vector a determines a proper colouring of ¥ with
q colours. If g = 3, then Y is 3-colourable if and only if the code over GF(3)
generated by M contains a word of weight n. Hence X (M) is 3-colourable if and
onlyif Y is 3-colourable. Since it is NP-hard to decide if a graph is 3-colourable,
we are done. O

We also see that it is NP-hard to decide if the adjacency matrix of a Cayley
graph for Zg is invertible (over R).

The connection between eigenvalues of the coset graph and the weight dis-
tribution of the code appears to be folk-lore. Some information appears in De-
lorme and Solé (European J. Comb. 12 (1991)) [***but I have not checked this
yet***] .

The covering radius of a code C is the least integer r such that every word is
at distance at most r from a word of C.

6.6.4 Lemma. The covering radius of C*(Q) is equal to the diameter of X. O

A cap in projective space is a set of points such that no three are collinear.
6.6.5 Lemma. Suppose Q) < PG(d — 1, q). Then the following are equivalent:
(a) Qisacap.

(b) The minimum distance of C* is at least four.

(c) X(Q) is triangle-free. O
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Duality

7.1 The Discrete Fourier Transform

The set 6, of n x n circulants over F is closed under matrix and Schur multipli-
cation and contains I and J, the units for these multiplications. (Thus it is the
Bose-Mesner algebra of the association scheme of the cyclic group of order n.)
We introduce an important endomorphism of this algebra.

Let E be an extension field of F that contains a primitive n-th root of unity.
Equivalently, E is a splitting field for " — 1. Let 8 be a fixed n-th root of unity in
E. If M = p(R), define

n-1
OM) =Y p@O"HR'.
i=0

Thus 0 is an endomorphism, a linear operator on 6,. We call it a duality map.
7.1.1 Lemma. If M € 6,, then ©*(M) = nM".
Proof. It is enough to show that ®?(R*) = nR”. We have

O*(RH =Y 0" er) =Y 6 oR
. ~
_ Z(Zej(Hk))Ri.
i

J

The inner sum is zero unless i = —k, when it is . Therefore ®*(R¥) = R™* and

since R~! = RT, the result follows. O

63
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7.1.2Theorem. If M, N € 6, then ®(MN) = ©(M)oB(N) and ®(MoN) = %@(M)@(N).

Proof. We have
O(pRIG(R) = Y pO)qO"R = (3 pO)R')o (¥ qO)R),
i i i
which is the first claim. The second follows from this and the previous lemma. &

7.1.3 Theorem. If M” =¥, u; R?, then MO(R’) = u; O(RY).
Proof. We have
MOR) = v 'e?M)e(RY)

=0OM")oRY

= O(uR)

= 1;O(R"). 0

It follows from this that the entries of ©®(M) are eigenvalues of M, and the

columns of ®(R;) are eigenvectors for all circulants.

Define the weight of a circulant to be the number of non-zero entries in a
column.

7.1.4 Lemma. Ifdeg(q(t)) = ¢, then ©(q(R)) has weight at least n— ¢.

Proof. If deg(q(1)) = ¢, then at most ¢ distinct powers of 8 are zeros of g and so
O(g(R)) has at most ¢ zero entries in any column. O

The following result is the BCH-bound.

7.1.5 Theorem. If M = ¢(R) and ¢(t) vanishes on k consecutive powers of 0,
the minimum distance of the column space of M is at least k + 1.

Proof. Suppose M = p(R). If p(#) has k consecutive powers of 0 as zeros, then
©(M) has k cyclically consecutive zeros in its first column. Hence there is an
integer s such that last k entries in R°©(M) are zero, and therefore there is a
polynomial g(¢) with degree at most n—1 — k such that

RO(M) = q(R).

Consequently
0(q(R)) = B(R®) 0 ©*(M)
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has weight at least k + 1. Since ©(R®) = ©(R)°* has no zero entries and ©?(M) =
M7, it follows that M has weight at least k + 1.

If g(t) is a polynomial, then g(R)M = g(R)p(R) and g(t)p(t) vanishes on
k consecutive powers of 6. Therefore g(R) M has weight at least k + 1, for any
polynomial g. This implies that the minimum weight of the column space of M
is atleast k+1. |

M is diagonalisable if and only n-1 # 0 in [F.
The subset {0,3,4,9,11} in Z5; is a cyclic difference set for a projective plane
of order four. Hence if
y@ =1+ +tt+ 0+ ¢!
then N = p(R) is the incidence matrix of a plane of order four. Since deg(p) =
11, we see that rk(N) = 10 over Z,. We can check though that v divides #*! - 1:
in fact

(t-DyOy ) =r*"-1
and consequently rk(N) = 10.

7.2 The Hadamard Transform

In the previous we worked with a duality related to the cyclic group. Here we
introduce an analogous duality map related to the elementary abelian group
Z}. It may help to view this as the additive group of a vector space of dimension
nover Z».

When working with the cyclic group we used circulant matrices, which are
linear combinations of the powers of R, where R is a cyclic permutation matrix.
We introduce the analagous matrices for Z3. First define a matrix P

0 1
p- (1 0) |
If ue Z,, define A, to be the Kronecker product

Ay:=P"g...® P!,

Then Ag = I,
AyAy = Aysy

(and in particular A2 = I). It follows that the map

u— Ay
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is a group isomorphism. A simple induction argument on 7 yields that
Y Au=].
u

(Partition the sum over the vectors u such that u; = 0 and the vectors u with
uy = 1.)
It follows that the matrices in

o ={A, ueZy}

are linearly independent. Define [F[</] to be vector space over F spanned by the
matrices in «f. (For our purposes here, F = R will suffice.)
If uez,, define the function vy, : Z, — {—1,1} by

Yu) = D"
Define a duality map O on F[</] by setting

O(A)) =) Yuw)Ay
v

and extend O to F[</] by linearity. We have at once that

o) =].
Then
O(ANO(AY) =) Y wu(X)W, (1) AcAy

x y

— Z(_l)uTx+vaAx+y
xy

— (_1)(u—v)Tx(_1)vT(x+y)Ax
x,xZ;’-y "

Since

x 0, otherwise

Z(_l)(u_v)Tx:{zn) u= v;

we conclude that
O(A)O(Ay) = 6u,v2n®(Au)-
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Consequently, for all M and N in F[</],
O(M)O(N)=2""0(Mo N).
We also have ©(A,) o 0O(A,) = O(A,+,), whence ®(A,A,)) =O(A,)oBO(A,) and
O(MN) =0(M)oB(N).
Next
AU = Ay () Ay = X (=D A
_ (_l)vTuZ(_l)vT(u+W)Au+w
w
=vu(V)O(Ay)

which shows that the columns of ®(A,) are eigenvectors for A,,. Moreover, we
see that the entries of @(M) are the eigenvalues of M.
We leave the proof of the next result as an exercise.

7.2.1 Theorem. If M € F[</], then ®*(M) = 2" M. O

Since ©(I) = J, it follows that ®(J) = 2" 1. The proof of Theorem 7.1.3 is easily
modified to yield our next result.

7.2.2 Theorem. If M € F[</], then the entries of ©(M) are the eigenvalues of
M. |

7.2.3 Lemma. If M € [F[</], then tr(®(M)) = sum(M).

Proof. Let p denote the sum of a row of M. We have

To®(M) =2""0(I) o O(M)
=2""0O()M)
=2""0(JM)
=2""0(pJ)
=pl

Therefore tr(®(M)) = sum(M). O
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7.3 Two Matrix Duals

Let C be a linear code of length n and let a; denote the number of words in C
of weight i. The weight enumerator W¢(x, y) is the polynomial

n . .
We(x,y) = Z aix"7'y'.
i=0

It is a surprising fact that W1 can be obtained from Wc¢(x, y), and in a simple
way.
If C is a linear binary code of length 7, define the matrix Ac by

AC = Z Au.

ueC

7.3.1 Lemma. If C is a binary linear code, then ©(Ac) = |C|Ac..

Proof. If f is a basis for C, then

[Tu+Aw=Ac.
uep

and accordingly ©(Ac) is the Schur product of the matrices
O+ Ay =]+06(Ay),

where u runs over . Now

J+O(A) =Y (1+(-D"""4,=2 Y A,

veul

and therefore the Schur product of the matrices J + ©(A4,) is zl‘BlAcL, as re-
quired. ]

-}

If M is a matrix M®" denotes the Kronecker product of n copies of M.

Let K be the matrix

7.3.2 Lemma. We have

an—wt(u)ywt(u)Au — (xI+ ylo®n.

u



7.4. MACWILLIAMS THEOREM 69

Proof. Let ey, ..., e, denote the standard basis for Z}. If u € 77, then
u= Z u;e;.
i

Then
Ay=K"®---@ K"

and so x" "W yWtW) 4 is the Kronecker product of the n terms x!~%i y“ K% for
i =1,...,n. This implies the lemma. O

7.3.3 Lemma. We have ®(M ® N) = O(M) ® O(N).

Proof. The entries of ©(M) ® O(N) are the products of the entries of (M) and
O(N), and these are the eigenvalues of M and N. The products of the eigen-
values of M and N are the eigenvalues of M ® N, and these are the entries of
O(M ® N). [We have neglected some bookkeeping, you are welcome to supply
it. :-)] O

7.3.4 Corollary. We have
9(; xn—wt(u)th(u)Au) - ;(H )W (e y Wi 4
Proof. We have ©(I) = J. Since K = J — I,
OK)=6()-6U)=2I-].
Therefore
OxI+yK)=xJ+2yl-y]J=x-yU-D+x+yI=x+y) [+ (x-yK.

We now obtain the result by applying Lemmas 7.3.2 and 7.3.3. |

7.4 MacWilliams Theorem

We apply the results from the previous section to derive MacWilliams theorem,
a fundamental result in Coding Theory.

7.4.1 Theorem. Let C be a binary linear code of length n. Then

1
Wer(x,y) = EWC(x+y,x— V).
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Proof. Set M equal to ¥, x"" W@ yWt@ 4 Then the diagonal entries of AL M
are each equal to W1 (x, y), whence

tr(Ace M) =2"Wei(x, y).
Using Lemma 7.2.3, we have

tr(AcL M) = 27" tr(@%(AcL M)

=2""sum(®(ApL M)

=27"sum(O(A;L) 0cO(M))

=27"C*|sum(Ac o O(M))

=|C|! sum(Ac o ©(M)).
Since the row sum of Ac o ®(M) is W¢(x + ¥, x — y), the last term above is equal
to 2"|C|"'W¢(x + y, x — y), and so the theorem is proved. |

By way of example, suppose C is the code of the plane of order four. Our
computations in Section ?? yield that the weight enumerator of C is
2 +21x1%y° +210x13 8 +280x12 1% + 280x° 12 + 21048 13 + 21x° 10 + 2L,

Using MacWilliams theorem, we find the weight enumerator of the dual is

1 +168x1° % +210x12 8 +1008x' ! 10 + 280x% y'% + 360x7 y!* + 21 x° 16,

7.4.2 Theorem. The length of a doubly even binary self-dual code is divisible by
8.

Proof. If C is self-dual with length #n, then |C| = 22 and

_ X+y x—-y
Welx,y) =272 We(x+y,x—y) = We | —=, —=|.

y =S 22

Therefore Wc(x, y) is invariant under the substitution represented by the ma-

trix

L
2\l 1)
Since C is doubly even, it is also invariant when we replace y by iy (with i? =
—1). Equivalently it is invariant under the substitution represented by

)
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We find that .
3 1+1
(to)’ = —1.

V2
Hence if 0 := (1 + i)/v/2, the substitution

x—0x, y—0y
leaves W (x, y) invariant. But
Wc(0x,0y) =0"Wc(x,y)

and as 0 is a primitive 8-th root of unity, this implies that 8 | n. O

7.5 Projective Planes

We use the theory at hand to prove that there is no projective plane of order n,
where n = 6 modulo 8.

We work with linear codes over GF(2). A code is even if all its word have
even weight, and it is doubly even if all words have weight divisible by four.
If C is a binary code of length n, the extended code by adding an (n + 1)-th
coordinate to each code word, such that the weight of the extended code word
is even. (Thus we are adding a parity check; the operation is trivial if C is even.)

7.5.1 Theorem. Let N be the incidence matrix of a projective plane with order
n and let C be the linear code spanned by the rows of N over GF(2). Then the
extended code is self-dual and doubly even.

Proof. Let N be the incidence matrix of our projective plane. Let N; denote the
matrix we get by adding a final column equal to 1 to N. Since n is even and
since equal row of N has weight n + 1, the rows of N; have even weight. One
consequence is that each word in row(N) has even weight.
Further
NN"=nI+]J
and hence
NiN{ =(nI+))+J=0 mod2.

It follows that the code generated by the rows of N is self-orthogonal. As n =2
modulo four, each row of N; has weight divisible by four, whence it follows that
all code words in row(V;) have weight divisible by four.
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Each row of N; has length n? + n + 2, and it remains for us to show that
1 >
rk(N7) = E(n +n+2).

Since 1 lies in col(IN) over GF(2), we see that N; and N have the same rank. We
will therefore compute rk(V).

Let v=n?+n+1andlet Hbea parity check matrix for C—in other words,
H is a binary matrix with linearly independent rows such that NH” = 0 and

rk(N) +rk(H) = v.

(Or to put it yet another way, the rows of H are a basis for ker(XN).) Permuting
columns of N and H if needed, we may assume that H has the form

(IrK)
where r =1k(H). Let H; be given by
(I K
Hl_( ; 1)

Now view N and H; as 01-matrices over Q.
Since det(H;) = 1, we have

det(N) = det(NH).

Since NHT = 0 modulo two, each entry in the first r columns of N HIT is even,
and therefore 2" divides det(IN). Now

NNT =nI+7J,
from which it follows that
det(N) = (n+ 1)n"+H72,

As both n+1 and n/2 are odd, we conclude that r < n(n + 1)/2. This implies
that

1
tkiN)=v-r= E(n2+n+2);
since rk(/V;) = rk(/V) and since row(1V) is self-orthogonal,
tk(N}) = (n? + n+2)/2. u|

If n = 6 modulo eight, then n? + n+ 2 = 4 modulo eight. Consequently by
Theorem 7.4.2, there is no binary doubly even self-dual code of this length.
Thus we have the following result.
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7.5.2 Corollary. If n = 6 modulo eight, there is no projective plane of order n.

This condition is weaker than the Bruck-Ryser-Chowla theorem, but cer-
tainly easier to use.

7.6 Duality

We say an association scheme « is formally self-dual if Q = P.
Ifi €{0,1,...,d}, we define i to be the element of i € {0, 1,...,d} such that

A;r = Al. Werecall that p;(k) = p; (k7).

7.6.1 Theorem. Let o/ be an association scheme on v vertices such that Q = P
and let®© be the linear mapping from C[</] to itself such that ©(A;) = X ; pi (j) A;.
Then:

(@ O(A;) = vE;.

(b) ©()=7],8()=vl.

(c) O(MN)=0(M)o0O(N) forall M and N in C[</].

(d) ©(MoN)= %@(M)G)(N) forall M and N in C[</].

(e) If A is a subscheme of &, then ©(2) is also a subscheme.

Proof. Since p;(j) = q;(j), we have

d — —_—
O(A) =) qi(j)Aj = VE,.

j=0
In particular, (1) = J.
Next
OWE)) =) qi()O(4)) = kap,-(kmk = qui(j)pj(kT)Az.
J J I
Since QP = vl, it follows that
O(WE;) = vA!.

Hence
e*(M) = vMT (7.6.1)
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for all M in C[</]. (Note that ©(J) = v1.)
Since the entries of ©(A;) are the eigenvalues of A;, we see that ©(A; A;) =
©(A;)o0O(A;) and hence

O(MN) =0(M)oB(N), (7.6.2)
for all M and N in C[«/].
Finally
— 1
O(AjocAj) = 5,',]' vE; = ;@(Ai)G)(Aj).
and thus .
O(MoN) = ;@(M)@(N). (7.6.3)
for all M and N in C[«/]. a

If © is a map satisfying the conditions of this theorem, we call it a duality
map. The matrix representing O relative to the basis Ay, ..., Az is P.

Suppose «f is the scheme of the cyclic group of order v. If 8 is a primitive
v-th root of 1 then we may assume that

Py ;= 9U-DU-D, (7.6.4)

It is easy to verify that PP = vI, so this scheme is formally self-dual. The map
O is essentially the discrete Fourier transform. We may take 6 from any field F
that contains a primitive v-th root of 1, and thus we may define ® on F[</].

It seems reasonable to define an association scheme on v vertices to be self-
dual if there is an endomorphism © of Mat;«,(C) such that ©(A;) = UE for
i=0,1,...,d.

If o/ and 28 are schemes and the matrix of eigenvalues of 28 is the complex
conjugate of the matrix of dual eigenvalues of </, we say that </ and 28 are for-
mally dual. In this case we can define a map © as above, and a slightly modified
version of Theorem 7.6.1 still holds. If © is induced by an endomorphism of
Mat,«,(C), we say the pair of schemes is dual.

De Caen observed that if of and 28 are dual, then the product scheme <« ®
A is self-dual. Hence we may choose to view self-duality as the fundamental
concept.

Each translation scheme is either self-dual or has a distinct dual translation
scheme. The only known examples of dual pairs of non-isomorphic schemes
arise in this way. The Higman-Sims scheme is self-dual and is not a translation
scheme.
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7.7 Duality and Type Il Matrices

Consider symmetric formally self-dual schemes. Then P is real and P? = vI,
whence it follows that the eigenvalues of P (or ©) are ++/v. If we know tr(P), we
can compute the multiplicities of these eigenvalues. If M € C[</] then

O UM +0(M)) = VvOM)+vM =+ v(/vM+0(M).

Thus we have an eigenvector for ® with eigenvalue /v. Similarly /v M — (M)
is an eigenvector for © with eigenvalue —/v.

7.7.1 Theorem. Let © be a duality map on the symmetric association scheme
</ on v vertices, and let M be an eigenvector for ® with eigenvalue \/v. The
following assertions are equivalent:

(@ e =yovM .
(b) OM) = /oM.
(¢) vM~' = M) (and M is a type II matrix).
Proof. Assume ©(M) = /vM. Then we have
J=0)=0MM H=0(M)o®M ™) =vrvMoOM™).

Hence M) = \/vO(M™'). Now M is type II if and only if vM~! = M) and so
(a) and (c) are equivalent.
Next
OMOM) =ve(Mo M) = v0() = v*I

and therefore
v 32emMm Ty =ML

Hence (b) and (c) are equivalent. O

The matrix of eigenvalues of the scheme of an abelian group I can be taken
to be the Kronecker product of matrices of the form given by (7.6.4). Hence
these schemes are also formally self-dual. Perhaps the most interesting case
is when I' = ZJ". In this case a matrix M is a bent function if both M and
v12@(M) are +1-matrices. Note that if M is a +1-matrix, then it is type II if
and only if v~1/2©(M) is a +1-matrix. Hence bent functions are the +1-matrices
which are eigenvectors for ©.
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7.8 Difference Sets

Let «f denote an association scheme on v vertices. A difference set in < is
01-matrix A such that

AAT =nI+AJ

for some positive integers n and A. Hence A is an incidence matrix for a sym-
metric design. It is easy to verify that if A is a difference set then so is /- A, and
thus we may assume Ao I =0 is we like. If k is the row sum of A, then n= k- A.
Consider the case where A is a difference set and A= A”. Then the squares
of the eigenvalues of A are Av + n and n. If k denotes the row sum of A, then k
is an eigenvalue of A and
K =Av-1+k;

the remaining eigenvalues of A are +/n. If tr(A) = 0, there are positive integers
aand bsuchthatl+a+ b= v and

k+avn—-bvn=tr(A)=0.

Accordingly

from which it follows that k — A is a perfect square. Since A has exactly three
distinct eigenvalues, it is the adjacency matrix of a strongly regular graph with
a=c.

The case where A is not symmetric is more complex. Since A lies in the
Bose-Mesner algebra of the scheme, AA” = AT A and therefore A is normal. A
normal matrix is symmetric if and only if its eigenvalues are real, consequently
some eigenvalues of A are complex. The valency aside, all eigenvalues of A have
absolute value v k— A. The matrix A is still an incidence matrix of a symmetric
design.

Suppose A is a 01-matrix in &« with each row summing to k. Since A is
normal, A= LDL* where L is unitary. Hence

AT = A*=LDL*

and thus if Az = 0z, then ATz = 0z and AATz = 1012z. If the valency k is a
simple eigenvalue of A and its remaining eigenvalues each have absolute value
Vk— 2, then AAT — (k— A)I has rank one. It follows that A is a difference set.



7.8. DIFFERENCE SETS 77

Classical difference sets arise as difference sets in the association scheme of
an abelian group I'. In this case we can view the first row of A as the character-
istic function of a subset S of ', and the eigenvalues are the complex numbers

v(S)+ ) v(g.

gel’
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Chapter 8

Type-II Matrices

In this chapter we present one of the more unusual constructions of associa-
tion schemes. Its main weakness is that the actual examples is provides can
readily be obtained by other methods. But it is closely connected to Vaughan
Jones’s construction of link invariants, and provides an interesting viewpoint
on duality.

8.1 Type-II Matrices

If Mo N = J we say that N is the Schur inverse of M, and denote it M. A
type-II matrix is a Schur invertible n x n matrix W over C such that

wwOT = nr,
This condition implies that W~! exists and

wOT =pw 1,

[

is a symmetric type-II matrix. If w is a primitive cube root of unity then

We consider some examples. First

1 1 o
w 1 1
l w 1

79



80 CHAPTER 8. TYPE-II MATRICES

is also type II. For any complex number ¢, the matrix

1 1 1 1
1 1 -1 -1
W= 1 -1 t -t
1 -1 -t ¢

is type II. Next we have the Potts models: if W is n x n and
W=(-1I+],
then

WwOT = (t-DI+ D -DI+])
=(QR-t—tHI+m-2+t+1YH]J,

whence it follows that W is type Il whenever 2 — 1 — t~1 =n,i.e., whenever t is a
root of the quadratic
2+ (n-2)t+1.

As the first example suggests, any Hadamard matrix is a type-1I matrix, and
itis not unreasonable to view type-II matrices as a generalization of Hadamard
matrices.

The Kronecker product of two type-II matrices is a type-II matrix; this pro-
vides another easy way to increase the supply of examples. Recall that a mono-
mial matrix is the product of a permutation matrix and a diagonal matrix. It is
straighforward to verify that if W is type-1I and M and N are invertible mono-
mial matrices, then MW N is type II. We say W' is equivalent to W if W' =
MW N, where M and N are invertible monomial matrices.

The transpose W7 is also type II, as is W™, but these may not be equivalent
to W. It would be a useful exercise to prove that any 2 x 2 type-II matrix is
equivalent to the first example above, any 3 x 3 type-II matrix is equivalent to
the second, and any 4 x 4 type-II matrix is equivalent to a matrix in the third
family.

Type-II matrices play a role in the study of von Neumann algebras, but in-
terest there is focussed on those that are unitary. The next result is easy to verify.

8.1.1 Lemma. For an n x n matrix, any two of the following statements imply
the third:
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(a) W is a type-1I matrix.
(b) n~Y2W is unitary.

(c)|W; jl=1foralliand j. O
We say a type-1I matrix is flat if all its entries have the same absolute value.

The character table of an abelian group is a flat type-II matrix. A flat real type-II
matrix is a Hadamard matrix.

Nomura [?] has shown that there are exactly three equivalence classes of
5 x 5 type-II matrices. One class is represented by the character table of the
cyclic group of order five, the other two have representatives of the form al + ]
(so here W is not equivalent to W). Haagerup [?] has shown that if n is not
prime, there are infinitely many equivalence classes of unitary type-II matrices
of order n.

8.2 Two Algebras

Let W be a Schur-invertible 7 x n matrix. We define .4}y to be the set of matrices
for which all the vectors

We,-OW(_)ej, l1<i,j<n

are eigenvectors. Clearly this set of matrices is closed under multiplication and
contains the identity. Thus it is a matrix algebra, known as the Nomura algebra.
Note also that

If M € Ay, we define O (M) to be n x n matrix with i j-entry equal to the
eigenvalue of M on We; o W e;. We have

Ow()=].
We also see that if M and N belong to Ay, then
Ow (MN) = 0w (M) o O (N).
It follows that the image of A} under O is Schur-closed and contains J.

8.2.1 Lemma. The matrix W is type Il if and only if ] € Ny . |
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Let W be a type-II matrix, with rows and columns indexed by the set Q,
where |Q| = n. We define two families of vectors in C", as follows.

Yop:=Wego W(_)eb, Y; pi= Wle,o W(_)Teb

Suppose

We verify easily that
FiFj=6,;F;

which shows that the F;’s form an orthogonal set of n idempotents. We note
that rk(F;) = 1 and tr(F;) = 1. As the F;’s commute it follows that ) ; F; is an
idempotent matrix with trace equal to n; hence

Y Fi=1.
i
8.2.2 Lemma. If M € Ay then
M=) (©(M)),,iF;.
i
Proof. We have .
MF; = ;MYu,iY,,Tu = (©(M))y,iFi.
Summing this over i in Q, recalling that }_; F; = I, we get

M=) (O(M))y,F;.
i

The following critical result is due to Nomura [2].
8.2.3 Theorem. If M € Ay then
Ow (MY, = nM;Y; .
Hence Oy (M) € Nyt and Oy, 1 (@ (M) = nMT € Ny

Proof. We have

1 w(r,u) w(s,i) 3 l w(r,u) w(s,i)

(Fi)r,s = . = -
nw(ri) wis,u) nw(su) w(ri)
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Therefore, by 8.2.2,

1 w(ruw w(s,1i)
ns = nws, )Z( (M) w(r, i)
and so
nM;s(Yy )y = O©M)Y] )y
This implies the theorem. -

8.2.4 Corollary. If W is a type-II matrix, then Ay and Ay, are Bose-Mesner
algebras of association schemes. O

Another consequence of the previous theorem is that ®y, and ©y,r are bi-
jections.

8.2.5 Lemma. If W is real then all matrices in Ay are symmetric.

Proof. If W is real then the eigenvectors Y, ;, are real. Hence the Schur idem-
potents of the scheme have only real eigenvalues. Since Ay is closed under
transposes and is a commutative algebra, the Schur idempotents are real nor-
mal matrices. A real normal matrix is symmetric if and only if its eigenvalues
are real. O

If W is a type-1I matrix with algebra .4}y then W determines a spin model if
and only if some type-II matrix equivalent to W lies in Ajy. As any type-II ma-
trix equivalent to W has the same algebra, we may concentrate on the matrices
W that lie in their algebra. If W € A}y then its diagonal must be constant, and
all its row and column sums are equal.

8.3 Eigenspaces

The algebra A4}y determines a scheme consisting of n x n matrices. We describe
how we can determine the eigenmatrix of the scheme. Let us say that vectors
Yap and Y, s overlap if YaTb Y, s #0.

8.3.1 Lemma. If Y, , and Y}, . overlap then (B(M)),,, = (O(M))p,c.
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Proof. As the vectors Y, ; for fixed u form a basis, Y}, . lies in their span. In fact
1
Ve =—3 (Vi Y0 Yui-
i

So
1 T
©MD)peYpe=MYpe=— 2 (YY) (OM))y,i Yo
i

Multiply both sides of this by Y/, to get

1
O©M))p,c Y, Yo, = ;(YJ,M Yb,0)OM),aYg y Vi
= Yajju Yb,c (G)(M)) u,a-

If YaTyu Yy, # 0, this implies that (©(M)),, = (O(M))p,c. O

We define a graph with vertex set Q). Define i and j to be adjacent if there
are b and c such that Y, . overlaps both Y;,; and Y, ;. Note u is adjacent to
itself, and to no other vertex. Any matrix )_ F;, where i ranges over the vertices
in a component of this graph, is a matrix idempotent of the scheme belonging
to Aw. (The key point is that this sum lies in Ayy.)

We have the following observation, due to Jaeger et al [?2].

8.3.2 Lemma. Let W be a Hadamard matrix of order n. If Ay is non-trivial,
then n is divisible by eight.

Proof. Let w; denote We;. Normalize W so that w; =1 and assume 1, i, j and
k are distinct. Then

(w1 + wi)o(wy +wj)o(wy +wyj)

is the Schur product of three vectors with entries 0, +2. The sum of the entries
of this vector is

1, w?3> +(1, wiz o(w;+ wj+ wg))

1L, wyo(wjowj+ w;owi+ w;jowg))+ (1, w;ow;o wg)

Since W is a Hadamard matrix, the second and third terms here are zero, whence
we deduce that, modulo 8,

n+(l,wijow;jowy) =0

and therefore, if n is not divisible by 8, then w; cannot be orthogonal to w; o
Wi. |



Chapter 9

Galois Theory

We are going to use Galois theory to establish a correspondence between cer-
tain subfields of L and subschemes of <. This may be viewed as an extension
of work of Bridges and Mena [bm2] and of Hou [xdh].

9.1 Bose-Mesner Automorphisms

Let «/ be an association scheme with Bose-Mesner algebra C[<«/]. A linear map
M — MY on C[«/] is an algebra automorphism if for all M and N in C[«/]:

(aA) (MN)Y = MY NV,
(b) (MoN)Y =MV o NV,

It follows immediately that ¢ maps Schur idempotents to Schur idempotents
and matrix idempotents to matrix idempotents. Using this, we will prove:

(c) v isinvertible.
We have Jo J = J and therefore
JVo ¥ =Jv.
Hence J¥ is a 01-matrix. We also have J?> = vJ and so
un?=J";

85
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it follows that /¥ = J. Consequently
— — L4
J=]"=3 A7,
1

from which we see that ¢ permutes the Schur idempotents. Therefore it maps
a basis of C[</] to a basis of C[</], and therefore it is invertible. We also see that
w must permute the set of matrix idempotents.
Since
sum((A;Aj) o 1) =tr((A; A))D) = tr(A; A)) = (A}, A},

we find that (A;Aj)o I #0ifand only if A; = A7. Hence
(d) (M"Y =MY)*.

This completes our list of properties of an algebra automorphism.

The transpose map is an algebra automorphism, which is non-trivial if «f is
not symmetric.

We are going to use algebra automorphisms to construct subschemes. If
is an algebra automorphism, the fixed-point space of v is the set of matrices
in C[«/] that are fixed by w. This is evidently a subspace of C[</], as the name
implies.

9.1.1 Lemma. The fixed-point space of an algebra automorphism of an associ-
ation scheme is the Bose-Mesner algebra of a subscheme.

Proof. The fixed-point space is closed under multiplication, Schur multiplica-
tion and contains I and J. ]

By way of example, consider the transpose map acting on «f. Its fixed-point
space is spanned by those Schur idempotents that are symmetric, together with
the matrices

A+ Al

where A; is not symmetric. By the lemma, these matrices are the Schur idem-
potents of a symmetric subscheme of <.

9.2 Galois

Let «f be an association scheme. The splitting field of </ is the extension [ of
the rationals generated by the eigenvalues of the scheme. The Krein field is the
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extension of the rationals generated by the Krein parameters. From the relation
between the dual eigenvalues and the eigenvalues we see that the splitting field
is also generated by the dual eigenvalues. From our expression for the Krein
parameters in terms of the eigenvalues, the Krein field is a subfield of F.

Let o be an association scheme with splitting field L, and Krein field K. Let
I' be the Galois group of L/Q and let H be the Galois group of L/K. (So H is a
subgroup of I'.)

If o €T and M € L[</], define M? to be matrix obtained by applying o to
each entry of M. This gives the entry-wise action of I'. This is not an L-linear
map.

We define a second action of I on L[</]. Suppose T € I’ and M € L[</]. Then
M=} ;a;E; and we define Mt by

M :ZajE]T-.
J

This is an L-linear map.

9.2.1 Theorem. Let «/ be an association scheme with splitting field L and Krein
field K. If T is an element of the Galois group of L/Q, then 7 is an algebra auto-
morphism if and only if T fixes each element of K.

Proof. There are a number of steps to the argument.
IfMelLle/] and M = Y. ja;E; then, since E]* = Ej, we have

(M) =Y a}E} = (M)*
j

Next, if M and N belong to L[«/] and o €T, then
(MN)° = M*N°, (MoN)? =M%0oN°.

It follows from this that, if A; € o/, then AY € o/ and similarly E;’ is a principal
idempotent for each j. (Note, however that this entry wise action is linear over
@, but not over L.)

Since (E;)"(E;)" = (E;E;)", we have

(MN)® = M* N,
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We show that ¥ commutes with Schur multiplication if and only if T € H. On the
one hand,

P | .1
(EioE)" ==Y qij(NE; =—)_qi;(NE}
VS VS
while, on the other

P 1
EZOE;:EZOE;:(EIOE])T:;qu,](r)TEZ
r

Comparing these two equations yields that
(EioEj)" = E] o E]

forall i and j, if and only if 7 fixes each Krein parameter.
From this we see that 7 is an algebra automorphism of &/ if and only if 7
fixes each element of K. O

Using related, but distinct, actions of the Galois group of L/K, Munemasa
[mune] proved that H lies in the centre of I'. (Similar results appear in [dbg,
cogal.) Since the argument is short, we present a version of it here. If o € I then
E;’ is a principal idempotent. Therefore

. 1 '
E?'T — EO'T — ;Zq](l)O'TAl
i

and similarly,

. 1 )
E]T.U = ETU = ;Z qj(l)TUAl‘.
l
Noting that A? = A; and that 7 is linear, we also have

ot To

=) q;()7 A7 =Y q;(DA;
i i

(Z ;i) A;
i

As the first term here equals E}’f and the second equals E]Tf“, we conclude that
q](l)UT — 6]] (i)TU.

Since the dual eigenvalues generate L, this implies that 0 and T commute, for
all o inT and all 7 in H. Therefore H lies in the centre of I'.
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9.2.2 Theorem. Let &/ be an association scheme with splitting field L and Krein
field K and let H be the Galois group of L/ K. Let F be a subfield of L that con-
tains K and let Hr be the corresponding subgroup of H. Then the matrices in
L[</] with eigenvalues and entries in F are the Bose-Mesner algebra over F of
the subscheme fixed by the elements 7, for T in Hf.

Proof. Let Hy denote the group formed by the mappings *, for 7 in Hg. Let &
denote the set of matrices in L[] with eigenvalues and entries in F. If M €
Ll«/]and M =) ; a; E; then

L1 -1

f170 _ T .

M=) a E;.
i

This shows that a 01-matrix in L[</] is fixed by 7 if and only if its eigenvalues
are fixed by 7; thus a 01-matrix lies in % if and only if it is fixed by H.
Clearly & is a transpose-closed algebra. Suppose M and N belong to % and

M:ZaiEi, N:ZbiEi-
i i

Then
MONZZ(Zib]’EiOEj
i,

and, as the eigenvalues of E;o E| lie in F, it follows that the eigenvalues of Mo N,
along with its entries, lie in F. Therefore % is Schur-closed. This implies that
& is spanned by 01-matrices.

Consequently & is the span over F of the 01-matrices in L[«/] with eigen-
values in F. This completes the proof. ]

If F is a subfield of L that contains K, we use <« / F to denote the subscheme
of «/ corresponding to F.

9.3 Applications

An association scheme «f is metric if its elements Ay,..., Az can be ordered so
that A; is polynomial of degree i in A;, fori =0,1,...,d.

9.3.1 Lemma. Let &/ be a symmetric association scheme with splitting field L
and Krein field K. If &/ is metric then [L: K] < 2.
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Proof. Suppose that Ay, ..., Az are the minimal Schur idempotents of «/, and
that 7 is metric relative to A;. Let 7 be an element of the Galois group H of
L/K. Then Af is a minimal Schur idempotent for <, and it follows that <f is
metric relative to A{A. By [ben: Theorem 4.2.12] we know that < is metric with
respect to at most two of its classes. As each A; is a rational polynomial in A;,
any element of H which fixes A; must fix each A; and therefore |H| < 2. O

If o/ has the property that the valencies v; are all distinct then each minimal
Schur idempotent must be fixed under the eigenvalue action of an element of
L/K; hence for schemes with this property L and K must coincide.

Let G be a finite group of order v. We may view the complex group algebra
C[G] as an algebra of v x v matrices, with permutation matrices representing
the elements of G. Then centre of C[G] is then an association scheme. The ma-
trices in this scheme correspond to the conjugacy classes of G and the principal
idempotent to the irreducible characters of G. For these schemes the Krein pa-
rameters are known to be rationals. If G has exponent m then the splitting field
L is the extension of @ by a primitive m-th root of unity. Each subfield of L
thus determines a subscheme. In particular, if some character of G is not ra-
tional valued then the rational matrices with rational eigenvalues are the Bose-
Mesner algebra over Q of a proper subscheme.

When G is abelian we can say more. If we view the elements of G as v x v
permutation matrices then G itself is an association scheme. Bridges and Mena
[bm2] proved that, if &/ = G then </ /Q has dimension equal to the number of
cyclic subgroups of G. They also determined the minimal Schur idempotents
of &/ /Q: if g € G, let [g] denote the set of elements & of G; the corresponding
sum in the Bose-Mesner algebra C[G] is a 01-matrix and can be shown to have
rational eigenvalues.

We present one application, proved independently by R. A. Liebler (private
communication).

9.3.2 Lemma. A regular abelian group of automorphisms of the n-cube has ex-
ponent dividing 4.

Proof. Let G be an abelian group acting regularly on the n-cube Q,, and sup-
pose that G has exponent 2", where m = 3. Let g be an element of G with order
2™, Then [g] consists of all powers gi, where i is odd and less than 2™. This
implies that [g] is the adjacency matrix of the graph formed by 2"~ vertex dis-
joint copies of Kym-1 ym-1.
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Let «f be the association scheme formed by the elements of G. As the eigen-
values of Q, are integers, its adjacency matrix belongs to </ /Q. Therefore it is
a sum of matrices [g], where g ranges over a generating set for G. At least one
element of this generating set must have order 2" and, consequently Q,, must
contain an induced subgraph isomorphic to Ky 4.

We complete our argument by showing that K3 3 cannot be an induced sub-
graph of Q,,. This proof is by induction on n. The crucial property of K3 3 is that
we cannot disconnect it by deleting the edges of a matching. For all match-
ings in K3 3 lie in a matching of size three, all 3-matchings in K3 3 are equivalent
under its automorphism group and K33 with a 3-matching deleted is Cs, the
cycle on six vertices. The n-cube on the other hand is the Cartesian product of
K> with Q;_1, hence we may delete a perfect matching from Q,,, obtaining two
disjoint copies of Q. as a result. So any induced K3 3 in Q, must be contained
in one of these copies of Q,_1, and hence our claim follows. i

The abelian group Z} acts regularly on Q>,, since Q2 is isomorphic to the
Cartesian product of n copies of C4. Thus the hypothesis of the lemma cannot
be weakened.

We explain briefly why the last result is of interest. Any abelian group of
exponent dividing four and order 4" acts a regular group of automorphisms of
the Hamming scheme H(2n,2). Hence we can identify its vertices with the ele-
ments of the group Z%, or with the elements of Z%”. An additive code over Z, is
a subset which forms a subgroup of Z/, a linear binary code is a subset which
is a subgroup of Z%”. A code can be additive over Z4 but not over Z,. In [hkcss]
it is shown that the Kerdock codes, which are non-linear binary codes, are ad-
ditive codes over Z4. Thus the above result indicates one obstacle to extending
the results in [hkcss] to codes over Z,» when m = 3.

9.4 Multipliers

Let G be an abelian group with elements gj,..., g,, where g is the identity el-
ement, and let Ag denote the n x n permutation matrix corresponding to the
element g of G. The eigenvalues of Ag are all the complex m-th roots of unity;
hence if G has exponent m then the splitting field L of o/ is Q extended by a
primitive m-th root of unity. (This is true for all finite groups, abelian or not,
but is much harder to prove.)

Let L be the splitting field of the association scheme ¢, let I" be the Galois
group of L/Q and let a be a primitive m-th root of unity. If t € T, then there is
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an integer #(7), coprime to m, such that
a’=a'".

Thus we may view ¢ as a map from I' into Z},, the group of units of the integers
mod m, and this mapping is an isomorphism. (For the missing details see, e.g.,
[frotay: §VI.1].)

Let o/ be the association scheme of the abelian group G. If reT"and A €
Ll</], let AT denote the image of A under the eigenvalue action of 7, which we
introduced in 9.2. If g € G and ¢ = £(7) then

(A" = (A" = Ay,

consequently we may view I as acting as a group of automorphisms of G. (By
[ser: §13.1], two elements of G are conjugate under this action if and only if they
generate the same cyclic subgroup of G.)

9.4.1 Theorem. Let «/ be the association scheme formed by the elements of
the abelian group G, where G has exponent m. If t is an integer coprime to m,
then the map A — AW permutes the Schur idempotents of « and fixes each
subscheme in it.

Proof. The first claim follows from 9.2, where we proved that the Schur idem-
potents of «f are permuted among themselves under the eigenvalue action of
I'. The remaining claim requires some work though.

It is enough to prove that each subscheme is fixed if ¢ is prime. So assume
t is prime and that 7 € I such that ¢ = #(r). Suppose that By,...,B; are the
minimal Schur idempotents of a subscheme 28 of «/. For each B; there is a
subset C; of G such that

Bi=) A,

geC;

As the matrices Ag commute it follows that, modulo ¢,

Bl= ) A,=B.L (9.4.1)
geC;

The right side here is a 01-matrix, because it is the image of B; under 7. On the
other hand, there are integers b;(j) such that

B;:Zb,-(j)Bj
J
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and therefore we see that B is equal to the sum of the matrices B j» as j ranges
over the set
{j:bi(j)=1, mod t}.

Accordingly B! € 2. O
We note one consequence of the above proof or, more precisely, of (9.4.1).

9.4.2 Corollary. Let o« be the association scheme formed by the elements of the
abelian group G, where G has exponent m. Let L be the splitting field of </, and
letT be the Galois group of L/Q. IfT contains an element of prime order p then
AP) = AP modulo p. O

This corollary implies that every subalgebra of the group ring Z,[G] is fixed
by the map A— AP); thus it is a slight strengthening of [Land: Prop. 4.7].

An association scheme 2 is called a translation scheme if there an abelian
group, G say, acting as a regular group of automorphisms on it. It is not hard to
show that a translation scheme is the same thing as a subscheme of the scheme
formed by the elements of G. In [BCN: Thm 11.1.10], Brouwer et al. use 9.4.1
to show that every metric translation scheme arises from a completely regular
linear code in a Hamming scheme. We make a diversion, to show that it im-
plies the standard multiplier theorem in design theory. (For background and
terminology, see Lander’s book [Land].)

Let D be the incidence matrix of a symmetric (v, k, 1)-design 2. This design
is determined by a difference set in the abelian group G if and only if D be-
longs to the Bose-Mesner algebra of the association scheme <« formed by the
elements of G. (This is not how a design theorist would express it!) A Schur
idempotent D in C[</] is the incidence matrix of a symmetric (v, k, A)-design if
and only if

D'D=nI+AJ,

where n := k- A. Let L be the splitting field of «/ and suppose that the Galois
group of L/Q) contains an element 7 of prime order p. We find that

DTD? =DT'DPID=nDP L+ AP~ = AkP"] (mod n).

Now assume that p divides n. Then, modulo p we have that D = D'P and
kP! =1; whence
D'DP =1J (mod n). 9.4.2)

As the map A — AP preserves Schur multiplication, D’ is the incidence ma-
trix of a design. If S is a block in this design and p > A then (9.4.2) implies
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that S meets each block of 2 in at least A points. By a nice result of Lander
[Land: Lemma 5.2], it follows that S must belong to 2, and so D differs from
D by a permutation of its columns.

The points of 2 can be taken to be the elements of G, then 7 is permutation
of the points of G and we have just shown that this permutation is an automor-
phism of G. Thus we have proved that p is a multiplier.

9.4.3 Lemma. Let </ be a primitive subscheme of the association scheme formed
by the elements of the abelian group G, and let p be a prime that divides |G|.
Then, for each minimal Schur idempotent A; of </, there is an integer c¢; such
that A? = ¢;1, mod p.

Proof. If C; € G such

Ai= ) Ag
geC;

then, modulo p, we have

p_
Al = Z Agp.
geCi

The coefficient of Ay, in the right side of this expression is equal to
{geCi:gP=nil,
which we denote by n;,. We also have integers a;(j) such that

A} =3 ai(j)A;.
J

Consequently

Y. mpAp= ), ai(DA; (9.4.3)
h:np 20 Jj:ai ()20

The elements & in the index set of the sum on the left of (9.4.3) all lie in the
subgroup formed by the p-th powers of elements of G. Therefore

> An

h:np#0

is the adjacency matrix of a disconnected graph. Since (9.4.3) implies that this
sum belongs to C[</], it follows that < is imprimitive if

Z Agp

g8eC;

is not a scalar matrix, mod p. |
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9.4.4 Theorem. Let «/ be a primitive translation scheme relative to the abelian
group G. If, for some prime p, the Sylow p-subgroup of G is cyclic then G has
prime order.

Proof. If &/ is primitive then so is «//Q. If «//Q has only one class then G has
prime order. Hence we can assume that «f = «//(Q and that it has at least two
classes. Let Ay,..., Az be the Schur idempotents of «/. As &/ is a translation
scheme, it is a subscheme of the scheme formed by the elements of G, there are
subsets Cy, ..., Cy; such that Cy = {1} and

Aj= ) Ag.
geC;
The sets C; partition the elements of G.
Let U be the subgroup of G formed by the elements of order dividing p.
Since the Sylow p-subgroup of G is cyclic, |U| = p.
Because «f is primitive, for each index i there is a constant ¢; such that Af =
¢;I, modulo p. But, modulo p,

geC;
and, therefore, the number of elements g in C; such that g” = h is divisible by
pwhen h#1.If x,ye G and
xP=yP=nh

then (xy~1)? =1 and so xy~! € U. This implies that the set of elements g in C;
such that g” = h is a union of cosets of U, and consequently the set C;\U is also
a union of cosets of U. We also see that |C; nU| must be congruent to ¢; modulo
p and, as |U| = p, this implies that |C; "N U| = c;.

Next, /=) ; A; and, as p divides |G|, modulo p we have

0=JP = (ZA,-)pEZA?EZCiI.

Since Ay = I, we have ¢y = 1 and therefore, mod p

d
2.ci
i=1

Let I' be the Galois group of the splitting field of the association scheme
belonging to G. Then, under the eigenvalue action of I', each minimal idempo-
tent A; of of is fixed. This implies that each set C; is fixed by I'. As remarked just

p-1. (9.4.4)
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before the statement of 9.4.1, two elements of G are conjugate under I' if and
only if they generate the same subgroup of G. In particular, the non-identity
elements of U must form a single conjugacy class. This implies that, if i # 0,
then ¢; is equal to 0 or p — 1. From (9.4.4) we conclude that one of the sets C;
contains U\1 and that the remaining sets C; are all disjoint from U. In each
case the set C;\ U is a union of cosets of U.

Suppose that C;nU = @ if i # j. Then it follows that there are 01-matrices
By,...,Bg such thatif i # j, then

Ai:Bi®]p

and
Aj=Bj®Js+1®(Jp—1Ip).

If we assume By = I then By,...,B; form a translation scheme relative to the
quotient group G/U. Hence };»; B; = ] — B; and, therefore,

Y Ai=]-A;.
i#]
This implies that I ® (J, — I)) € o/, and so & is imprimitive. |

The argument in the last part of the proof actually implies that G/U x U acts
as a group of automorphisms of «/. It follows inductively that if the Sylow p-
subgroup P of G is cyclic and Q is any abelian group such that |Q| = |P|, then
G/PxQ acts as group of automorphisms of «/. The result itself is best attributed
to Wielandt, see Theorem 25.4 in [Wiel].
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Chapter 10

A Bestiary

10.1 Cyclic Schemes

Let P be the permutation matrix representing a cycle of length n. Thus, if
el1,..., ey is the standard basis, then Pe; = e;;; (Where the subscripts are com-
puted modulo n. If we define A; := Pifori=0,1,...,n—1, then the matrices A;
form an association scheme with n — 1 classes, which we are calling the cyclic
scheme.

Let 0 denote a primitive n-th root of unity, and let u; denote the column
vector in C”* with j-th entry equal to 8Y~DU=D Then

(uj,uj) =nb; ;

and ‘
Pu,- = B’ui.

It follows that each vector u; spans an eigenspace of the cyclic scheme. The
matrix representing orthogonal projection onto the span of u; is

The matrices Ey, ..., E,— are the principal idempotents of our scheme. We note
that

n(E)ys = gUi-D(r=1)g=(i-D(s=1) _ gli-D)(r—s)
Further
_pip. _plip.
AEj=P'E; =6/ Ej,

99
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whence, if V' denotes the matrix of eigenvalues, we have
i-1)(j-1
Vi,j —gUi-DG-1

Thus the columns of the matrix of eigenvalues are the eigenvectors of the scheme;
this happens because each eigenspace is 1-dimensional. Note that V = V* and
that V is a type Il matrix. This shows that the cyclic scheme is contained in the
Nomura algebra of V. Since the dimension of a scheme consisting of n x n ma-
trices is at most n, we deduce that the cyclic scheme is the Nomura algebra of
V.

Let n be an integer. If n is even, let n) be a primitive 2n-th root of unity; if n
is odd let it be a primitive n-th root of unity. Let W be the n x n matrix given by

W =00 i jez,.

Then W) = W and

WwOT, = ¥ pla=*=b=i?

i€eZy,

_ a’-b*-2(a-b)i
=21

i€Zy,
_ . a*-p? —2(a-b)i
=" Y
i€z,

= naa’b.

This shows that W is a type II matrix. Since W is a circulant, it lies in the No-
mura algebra of V. On the other hand

_ _ N2 _(h_1\2 2_12 _ AN
(Weaow( )eb)l:’l](a 1) (b i) :n(l b n 2(a b)l’

whence Ay = Ay. Hence W € Ay and therefore it determines a spin model.

10.2 Paley Graphs

Let F be a field of order g, where g = 1 modulo 4. Let X denote the graph with
the elements of [ as its vertices, where elements x and y of F are adjacent if and
only if x — y is a square in F. We call X the Paley graph of order g.

Recall that, if F has odd order g, then the number of non-zero squares in F
is (g —1)/2, and that —1 is a square in F if and only if g = 1 modulo 4. Further,
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each element of F is the sum of two squares. It follows that X is a connected
regular graph with valency (g —1)/2. It is easy to verify that, if a € F, then the
map 7, that sends x to x + a is an automorphism of X. The maps 7, form a
regular subgroup of Aut(X). If s is a non-zero square in F then the map p; that
sends x to sx is an automorphism of X that fixes 0. The maps 7, and p; together
generate a group of order () which acts arc-transitively on X (and on X). It is
not too difficult to use this group to show that X is strongly regular; we will use
another approach though.

We first construct eigenvectors for X. Let ¢ be an additive character of F
and let S denote the set of non-zero squares in F. Then v is a function on the
vertices of X. Since

Yww =Y va+s)=yw@) vs),
X~a

seS seS

We deduce that v is an eigenvector of X with eigenvalue

2 Y.

seS

If v is the trivial character, then this eigenvalue is the valency (g —1)/2 of X.

To get the remaining eigenvalues, note that if ¥ is a non-trivial additive
character and a is a non-zero element of F, then the composition y oy, is again
an additive character, and all additive characters arise in this way. We use v, to
denote v o u,. If a is a non-zero square in [ then

Y wals) =) wlas)=) y(s.

seS seS seS

If a is not a square then, since }_ g ¥ (x) = 0, we have

Y wal)=d wlas)=) w(s)=—-1-Y y(s).

seS seS s¢S seS

It follows that there is a real number 6 such that 8 and —1 —0 are eigenvalues of
X, both with multiplicity (g —1)/2.
If A= A(X) then

qg-1 2 qg-1 s q4-1 , (q—l)z
_— A :——1— ,
q 5 tr(A°) 5 ( 0 + 5 0° + 5

whence 1
q:202+29+1+7
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and so 0 is a zero of

2 q-1

rr+t———.
4

Thus )
6 = 5(—1i \/ﬁ)

1 q-1 q-1
12 12
P:Q: 1 AV “1-vq

2 2
LV S
2 z -

A strongly regular graph on ¢ vertices with valency (g —1)/2 and remain-
ing eigenvalues (-1 + +,/q)/2 and (-1 - +,/q)/2 is called a conference graph.
The product of the two eigenvalues other than the valency is (1 — q)/4, so if a
conference graph exists then g = 1 modulo 4. In fact ¢ must be the sum of two
squares (and thus there is no conference graph on 21 vertices, for example).
The complement of a conference graph is a conference graph.

10.3 Quasisymmetric Designs

Let %8 be the set of blocks of a 2-(v, k, 1) design. The block graph X of this design
has vertex set v, and two blocks are adjacent if and only if they have exactly one
point in common. This is a regular graph with valency

k(u—l_l)_ k(v—k).

k-1 k-1
Let N be the incidence matrix of a 2-(v, k, 1) design. Then
NN =Ky
k-1
and

NTN=kI+AX),
where X is the block graph of the design. Since N” N is positive semidefinite,
sois kI + A(X). Hence the least eigenvalue of X is at least —k.
The above expressions for NN and N7 N imply that X is strongly regular,
as we demonstrate now. The key fact is that NNT and NN have the same
non-zero eigenvalues, with the same multiplicities. The eigenvalues of

v—k
k-1

I+]
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are
v—k vk-k
+v=
k-1 k-1
and
v—k
k-1’

with respective multiplicities 1 and v — 1. It follows that these are eigenvalues
of kI+ A(X), with the same multiplicities. Hence the eigenvalues of A(X) are

k(v-k) v-k*
: , —k 10.3.1
k-1 k-1 ( )
with respective multiplicities 1, v — 1 and
viv-1)  v-1+k-k*

-v= 10.3.2
k-1 " k-1 (10.3.2)
The first of these eigenvalues is the valency of X and, since it is simple, X must
be connected. (This is easy to prove directly.)
If X is the block graph of a 2-(v, k, 1) design then —k is an eigenvalue of X.
Since the multiplicity of an eigenvalue is non-negative, (10.3.2) implies that

v=k’—k+1.

If equality holds, —k has multiplicity zero and, from (10.3.1), the valency of X is
k? — k—hence X is complete. (Of course, if equality holds then our block set is
the set of lines of the projective plane of order k —1.)

If v > k? — k+1, then X is a connected regular graph with exactly three dis-
tinct eigenvalues and is therefore strongly regular. Its eigenmatrices are

1 kw=k (v—k)(v—k*+k-1)

k—1 k(k—1)
P = 1 v—Kk? _ v—k*+k-1
k-1 k-1
1 -k k-1
and )
v(v—k“+k—1)
1 v—1 B T
Q=11 w-Dw-k _ vw-k*+k-1)
k(v—k) k(v-k)
1 =Dk v(k=1)
v—k v—k

If N is the incidence matrix of a 2-(v, k, A1) design then N1 =r1 and

NNl = =M)I+2A].
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Here r is, as usual, the number of blocks that contain a given point. So

and thusif v > k, then r > A and consequently NN is invertible and has exactly
two eigenvalues. Consequently we can determine the eigenvalues and their
multiplicities for NTN.

We say that a 2-design is quasisymmetric if there are distinct integers @ and
P such that the size of the intersection of any two distinct blocks is a or . If
N is the incidence matrix of a quasisymmetric design, then there are square
matrices A; and A, such that

NTN=kI+aA; + BA,.

Itis not hard to show that A; and A are the adjacency matrices of complemen-
tary regular graphs with exactly three eigenvalues. Hence each quasisymmetric
design gives rise to a strongly regular graph. Note that a 2-(v, k, 1) design is qua-
sisymmetric, witha =0 and = 1.

10.4 Partial Spreads

Let Z be a complete graph on n? vertices. A parallel class in Z is a spanning
subgraph isomorphic to nK,,. We say two parallel classes S; and S, are orthog-
onal if they have no edges in common. If A; denotes the adjacency matrix of
A;, then S; and S, are orthogonal if and only if

A1+ DA+ D) =].
It is also not difficult to verify that
(A; + D = n(A; + D).
A partial spread is a set of pairwise orthogonal parallel classes.
Now suppose that S,..., S, is a partial spread of size r. The graph X formed

by the union of (the edges in) the parallel classes is a regular graph with valency
r(n—1); we show that it is strongly regular. Let A be the adjacency matrix of X.
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Then
r 2 r
A+rD*= Y (Ai+D| =Y (Ai+D*+ ) (Ai+ D(A; + D)
i=1 i=1 i#]
=n)y (Ai+D+r(r-1J

i=1
=nA+nrl+r(r-1)J

and therefore
A>—n=-2nA-mr-rdI=rr-1]J.

This shows that A is strongly regular, with parameters
(%, r(n=1); r(r=3)+n, r(r-1)).

If r =1 then X = nK,,, which is a trivial strongly regular graph, and if r = 2 then
X is L(Ky,,). When r = 3, the graph X is best known as a Latin square graph.
The eigenmatrices are

1 rn-1) (n+l1-r)(n-1)
P=Q=|1 n-r -l1-n+r
1 -r r—1

Now set r = —s and n = —m. Then, if m < s(s + 3), there could be a strongly
regular graph with parameters

(m?, stm+1); s(s+3)—m, s(s+1)).
and eigenmatrices

1 sim+1) (m-1-s)(m+1)
P=Q=|1 -m+s -1+m-s
1 S -s—1

In fact, strongly regular graphs with these parameters do exist in some cases,
and are said to be of negative Latin square type.

Two especially interesting cases occur when m = s(s+3) and s =1 or 2. The
corresponding parameter vectors are

(16, 5; 0, 2), (100, 22; 0, 6).

The first is associated to the Clebsch graph, the second to the Higman-Sims
graph. The vertices at distance two from a given vertex in the Clebsch graph
form a triangle-free graph on 10 vertices with valency 5 — 2 = 3. Given this hint,
it is not hard to construct the Clebsch graph from the Petersen graph.
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A partial spread contains at most n + 1 parallel classes, and a spread is a
partial spread with exactly n + 1 classes. If Aj,..., A4 are the corresponding
matrices and Ag = I, then Ay,..., A,4+1 is an association scheme. We have

1 1
(A1+I—;])(A2+I—;]) =J-2]J+J]=0,

whence we see that the matrices A; + I — % J together with n=2J form the com-
plete set of principal idempotents. Next, if i # j, then

AA+T-17) = —(a;41- 1))
e n’ ! n
and
1 1
Ai(A,-+I—;]) =(n- 1)(Aj+1—z])
Hence the eigenmatrices are the (n +2) x (n +2) matrices

(1 m-D1
P_Q_(l nI—])'

If 7 denotes a partition of {1,...,n + 1}, the matrices
YA
ieC
where C runs over the cells of 7, form a subscheme. Each class in this sub-
scheme is strongly regular. It follows that the n + 1 parallel classes form an
amorphic association scheme. Note that spreads correspond to affine planes.

Hence examples are only known when 7 is a prime power; further if n > 4 and
is a prime power, but not a prime, there are at least two different spreads in K2.

10.5 Covers of Complete Bipartite Graphs

We consider distance-regular 2-fold covers of the complete graph K, ,.
Suppose V (K}, ;) is the disjoint union of the sets

A:{al;---»an}» B:{bly---)bl’l}

and that each vertex in A is adjacent to each vertex in B. We construct a new
graph as follows. Let H be a Hadamard matrix of order n. The vertices of the
new graph X (H) are the elements of

(AUuB) x{—1,1}
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and (ay, i) is adjacent to (by, j) if and only if H, ;i = j. We see that X (H) is a reg-
ular bipartite graph on 4n vertices with valency n. If H and H' are monomially
equivalent, then X (H) and X (H') are isomorphic.

10.5.1 Lemma. Let H be an n x n Hadamard matrix. The number of vertices at
distance two from a fixed vertex in X(H) is2n — 2. O

Since X (H) is bipartite with 2n vertices in each colour class, it follows that
there is a unique vertex at distance four from each vertex. Hence X(H) is an-
tipodal, with diameter four.

The matrix of eigenvalues is

1 n 2n—2 n 1

1 vn 0 -vn -1
P=|1 0 -2 0 1.

1 —vn 0 vn -1

1

-n 2n-2 -n 1
If H = Hy — H; where Hy and H) are non-negative and Hyo H; =0, then

0 H0®IZ+H1®(]2—IZ)

M=\ e+ H @ (- I) 0

Note that

nl=(Hy— Hy)(Hy— H)" = (HyH] + HyH) - (HyH{ + H H])

and
nj = (Hy+ Hy)(Hy+ H))" = (HyH] + HyH]) + (HyH{ + H1 H}),
whence
T T_ 1N T T_ N
HyHy + Hy H; _E(]”)’ HyH{ + Hy H] —E(]—I).
Note that

Ar=Un-1)® 2, As=1,®(J2—1)

and that Ag = Al A4.
This scheme is formally self-dual.
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10.6 Groups

Let I be a finite group of order v with conjugacy classes Cy,...,C;. Using the
regular permutation representation of I', we may view each element of I" as a
v x v permutation matrix and define A; to be the sum of the matrices in the
i-th conjugacy class. The matrices Ay, ..., Az form an association scheme (and
its Bose-Mesner algebra is isomorphic to the centre of the group algebra of I').
The matrix of eigenvalues of this scheme is determined by the character table
of I'. Since group theorists have determined the character tables of many finite
groups, it is useful to be able to translate the information in these tables into
the language of association schemes. We show how to do this.

First we must explain what the character table is, which will take some time.
A representation of I of degree d over [F is a homomorphism of I into the group
of d x d matrices over F. If ¢ is a representation of I" then tr(¢(g)) is a function
from T to F that is constant on the elements in a conjugacy class of I'. Such
functions are called characters of I'. We will only use representations of I' over
C here.

The sum of two characters is a character of I'; a character is irreducible if
it cannot be written as a sum of two non-zero characters. The number of irre-
ducible characters is equal to the number of conjugacy classes of I'. The char-
acter table of T is the complex matrix with i j-entry equal to the value of the i-th
character of I' on an element in the j-th conjugacy class. What we have called
the character table of an abelian group is a character table in the sense we are
using here.

If v is a character of T', let M,, denote the v x v matrix such that

(My) g = Mu/(g‘lh).
|Gl
10.6.1 Theorem. Let I' be a finite group. The matrices My, where y runs over
the distinct irreducible characters of T', are the principal idempotents of the
conjugacy class scheme ofT. ]

We offer some comments that go some way towards a proof of this theorem.
Suppose C is a conjugacy class of I'. Let X(C) be the Cayley graph for I' with
connection set C. (Thus g and h are adjacent in X(C) if and only if hg™! € C.)
Let Ac denote the adjacency matrix of X(C). If N; is the v x v matrix with gh-
entry (g~ h), then the gh-entry of AcNy, is equal to

Y wa'w=Y wgltch.

{x:xg~1C} ceC
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Assume that v is the trace of the irreducible representation V. Then

Y wgleh =) wichg™hH =) t(¥(chg™).

ceC ceC ceC
Since ¥ is a homomorphism, ¥ (chg™!) = ¥(c)¥ (hg™!) and consequently

Y tr(P(chg ™) =tr(P(C)¥(hg ™)),
ceC

where W (C) denotes the sum of the values of ¥ over the elements of C. Since
¥ is irreducible, W(C) is a scalar matrix and so there is a constant A¢ such that
Y (C) = A1 It follows that

(AcNy)gn=tr(Ac¥(hg™") = Acy(hg™") = Acy (g ' h).

This shows that each column of Ny, is an eigenvector for Ac with eigenvalue
Ac.
If c € C, then tr(®(C)) = |C|w(c) and therefore

LSl

thus we have the eigenvalues of the matrices Ac in terms of character values.
Since the distinct irreducible characters are pairwise orthogonal,

NyN, =0

if ¥ and p are distinct irreducible characters of I'.

This result has several consequences. First, it provides an explicit formula
for the dual eigenvalues: if yy,..., ¥, are the distinct irreducible characters of
I', then

qi()=viDyi(g),

where g is any element in the j-th conjugacy class of I'. Now
. Vi ———
pi(j) = ;jqj(z)

Since My, is a projection, the eigenvalues of

LSy
w Y
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are 0 and u% Since the entries of this matrix are values of characters of T', they
are algebraic integers. Therefore its eigenvalues are algebraic integers. Conse-

quently the rational number
G

w(1)

must be an integer and therefore (1) divides I'.
[show Krein parameters are rational; give char table for Alt(5) and its ratio-

nal subscheme]



Chapter 11

Algebra and Modules

11.1 Algebras

Aring &/ is an algebra over the commutative ring R if there is a homomorphism
v from R into the centre of A. Any ring & is an algebra over Z, because the
subring of < generated by 1 is homomorphic image of Z. We will mainly be
interested in the case where R is a field, in which case the algebra is a vector
space over R.

We offer some examples:

(@) Thering of polynomials F[x;,..., x,] over the field F, in the commuting vari-
ables xi,..., x;.

(b) Theringofall nxn matrices over the field F. (We will denote this by Mat,,«, (F).)
(c) The group algebra F[G] of a finite group G.

(d) The set of all linear mappings of F[x] to itself is an algebra over F. If M
denotes multiplication by x and D denotes differentiation with respect to
x, then M and D generate a subalgebra. We note that DM — MD = I, from
which it follows the algebra generated by D and M is spanned by elements
of the form M'"D?. It is possible to show that these elements are linearly
independent, whence we see that this algebra has infinite dimension over
[.

(e) The ring of polynomials over F in non-commuting variables xi,...,x, is
again an algebra over F. Its main use to us will arise from the fact that many
interesting algebras are best presented as its quotients:

111
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(i) The quantum plane is generated by variables x, y and g subject to the
relations
yx—qxy=0, xq-qx=0, yq-qy=0.
(ii) The Weyl algebra is the quotient of the non-commuting algebra gen-

erated by variables x and d, subject to the relation dx — xd = 1. (The
algebra in (d) generated by D and M is a quotient of this.)

(iii) The enveloping algebra of the Lie algebra sl(2,F), generated by ele-
ments x, y and & subject to:

xy—-yx=h, hx-xh=2x, hy-yh=-2y.

(iv) The Hecke algebra: this is generated by elements T3,...,T, and g,
where g commutes with each T; and we have the additional relations

TiTjZTjTi, |i—j|>1
and
T;iTis1Ti = Tin TiTin, T7=(q-DTi+ql.

There is one problem that arises when we define an algebra as a quotient,
as in (e) above, namely that the algebra might be the trivial algebra (with 0 and
1 as its only elements). This does not happen in the examples above.

11.2 Division Algebras

A division algebra is an algebra where each non-zero element is invertible. Ex-
amples include any field. Division algebras provide basic building blocks for
algebras.

11.2.1 Lemma. If 9 is a division algebra over an algebraically closed field T,
then? =FT.

Proof. Suppose a € 2 and let ¥(t) be the minimal polynomial for right multi-
plication by a. If we have a factorization

V=v91V:

then v, (a)y»(a) =0. SInce & is a division algebra either y,(a) = 0 or y»(a) = 0.
Hence one of y; and v, is constant and therefore v is irreducible. Since F is
algebraically closed, ¥ must be linear and therefore A € F. |
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By considering division algebras over R, we arrive at a very important exam-
ple, the quaternions, which we denote by H.

11.2.2 Theorem. The only finite dimensional division algebras over the reals
are the reals, the complex numbers and the quaternions.

Proof. Suppose 2 is a real division algebra. We first prove that if d € 2 \R, then
R[d] = C.

Let ¥ be the minimal polynomial over R for right multiplication by d. As
above it must be irreducible. Since an irreducible real polynomial has degree at
most two and since d ¢ R, we conclude that v is quadratic, say

w()=t*+at+b.

Since v is irreducible, a* —4b < 0 and as ¥(d) = 0 we have
1 1
(d+=-a)*—-a*+b=0.
2 4

Therefore
2d+a)* _

4b - a?
since 4b — a® > 0, it follows that R[d] contains an element i such that i = -1,
and so R[d] =C.
Next we show that if i, j are both square roots of -1 in 2 and i # +j, then i
and j do not commute. For suppose i j = ji. Then

)

(i) =ijij=i*j*=(-1)*=1

and so ij = +1. Hence j = +i.

If dimg(2) = 2, then 2 = C. Assume that dim(2) > 2 and let i be a square
root of —1in 2. Let C denote the subalgebra R[i]. We prove that the centralizer
of Cin 9 is Citself. Suppose d € 2\C. Then R[d] = R[j] where j2 = -1 and so
d commutes with i if and only if j does. Butif ji =ij then j = +i and so d € C.
We conclude that d and i do not commute.

Next let T denote the operation of conjugation by i on &; then

T(d):=-idi

forall d in 9. Then
T?(d) = (i) (-)di*=d
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and so T? = I. The minimal polynomial of T is #* — 1 and since this has simple
roots T is diagonalizable, with eigenvalues 1 and—1. If Td = d, then id = di, so
d lies in the centralizer of C,that is, d € C. If Td = —d, then id = —di, we say
that d and i anticommute. Since T is diagonalizable its eigenvectors span and
accordingly each element of 2 can be written as a+ b, where a commutes with
i and b anticommutes with i.

Suppose w € ¥ and T(w) = —w. If we have T(x) = —x, then

Txw)=TxXT(w)=(-x)(-w) =xw
and therefore, if U = ker(T + I), then
Uweker(T-1)=C.

Since 2 is a division algebra, right multiplication by w is injective, and therefore
dim(ker(T+1)) < 2. As w? € ker(T—1I), we see that Cw < U and so Uw = C. Since
2 is the direct sum of the eigenspaces ker(7T—I) and ker(T +1), we conclude that
dim(2) = 4.

We leave the rest of the proof as an exercise, but offer that if dim(2) = 4,
then 2 must contains elements i and j such that

i=j*=-1, ji=—ij.

The rest should not be too difficult. O

The above proof is based on the one in Farenick [], which he ascribes to 2?22.
If we set k equal to i j, then

kK =i(ji)j=—-ij?=-1.

Similarly

ki=iji=-i*j=j, ik=i*j=-].
and

jk=jij=-ij*=i, kj=ij*=-i.
As

(a+bi+cj+dk)(a—bi—cj—dk) =a*— (bi+cj+dk)*=a*+b*+c*+d?

the elements 1, i, j and k are linearly independent over R.



11.3. MAPS AND MODULES 115

11.3 Maps and Modules

If o/ and 28 are algebras over R, then an algebra homomorphism from «f to
2 is a ring homomorphism from «/ to %8 that commutes with the respective
maps ¥ 4 and ¥ g from R into the centres of « and 28. If R is a field, an algebra
homomorphism is a ring homomorphism that is also an R-linear map from «/
to %.

We will generally use ‘map’ and ‘homomorphism’ as synonyms for ‘algebra
homomorphism’. Unless explicitly stated otherwise any module is Artinian and
Noetherian (in fact an Artinian module must be Noetherian).

If o/ is an algebra over R, then a module for «f consists of an R-module, M
say, and a homomorphism from « in End(M) (which is also an algebra over
R). It is conventional to avoid explicit mention of the homomorphism; thus if
xim M and a € &/, then the image of x under the action of a is denoted by xa.
When v is a module homomorphism, we may also use xy to denote the image
of x under y. (The reasons for placing a and v on the right are given in the
next section.) When R is a field, any module for </ will be a vector space over
R. In the absence of an explicit warning, modules over algebras will have finite
dimension.

If M and N are R-modules, then Hom(M, N) is the set of all homomor-
phisms from M to N. If M = N, we write End(M) in place of Hom(M, M). If
there is a homomorphism p from the algebra 28 to the algebra «# and M is a
module over «f, then it is also a module over 28: the composite of the homo-
morphism from 28 to &/ with the homomorphism from </ into End(M) makes
M into a £8-module. For example suppose V is a vector space and A € End(V).
Then V is a module for the algebra F[A] of all polynomials in A. This algebra is
a homomorphic image of the polynomial ring F[¢], where the homomorphism
maps t to A. So V is also a module for F[t]—if v € V then vt := v A.

If M and N are also «f-modules then Hom 4 (M, N) denotes the set of ho-
momorphisms from M to N that commute with the action of «/. Thus if ¥ €
Hom(M, N), then 3 € Hom 4 (M, N) if

uwya=uay
forall uin M and all a in «/. Both Hom(M, N) and Hom 4 (M, N) are R-modules,
but only Hom4 (M, N) is an </ -module in general.

Any algebra </ can be viewed as a module over itself. The mapping from «/
to End(«/) assigns to a in the linear mapping p, given by

Xpgq:=Xa.
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This gives the regular module for «/. We note that its submodules correspond
to the right ideals of of. We will make great use of the regular module of an
algebra.

In cases where «f is generated by some subset S, we might write Homg (M, N)
or Endg(M) rather than Hom., (M, N) or End (M). The opportunity to do this
will arise when «f is F[A], the algebra of polynomials over [ in the operator A,
or when it is F[G], the group algebra of the group G.

11.4 Opposites

We use </ °P to denote the algebra with the same set of elements as A, and mul-
tiplication * defined by
a*b:=ba,

for all a and b. We call it the opposite algebra of A. We say that M is a left
module over A if it is a right module over «/°P. By way of example, if a € of we
define the element 1, of End(</) by

XA, = ax.

Then A A, maps x to bax and therefore A 1), = Ap,. Thus we have a homo-
morphism of «/°P into End(«/).

The point here is that to compute the image of x under w¢, we first apply v,
then ¢. Effectively we are viewing ¥ and ¢ as operations, and as customary we
apply the leftmost operation first. It we take this approach, then right modules
are more natural than left modules.

An algebra «f is a module over the tensor product «/°P ® /. Here if

a®be AP of
and x € o/, then
a®b:x— axb.

Note that
axb = xAqapp = XppAy;

here p, and 1, commute because a(xb) = (ax)b. The submodules of < corre-
spond to the ideals of <.

11.4.1 Lemma. If </ is an algebra, then End (/) = o/ °P.
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Proof. If y € Endy (/) and m = 1y, then
xpu=1x)p=>_0Au)x=mx.
Thus p= A1, € AP, O
We use Z (/) to denote the centre of .
11.4.2Lemma. If B = o/°P ® of, then End g (of) = Z(A).

Proof. Exercise. a
The («/°P ® of)-submodules of «f are its ideals.

11.5 Schur’s Lemma

A module is simple if it has no non-zero proper subodules. If M is a module
over an algebra and M has dimension one (as a vector space) then M is sim-
ple. More generally any if M is a module over and algebra and N is a non-zero
submodule with the least possible dimension, then N is simple. Thus simple
modules are not hard to find.

Despite its brevity, the next result will prove to be extremely powerful.

11.5.1 Lemma. If M and N are simple modules over <, then Hom (M, N) is a
division ring if M and N are isomorphic, and is zero otherwise.

Proof. Suppose x € Hom (M, N). The kernel and range of x are submodules
of M. If x # 0 then the kernel of x must zero, consequently x is injective. Now
it follows that x must be surjective. Therefore either x = 0 or x is invertible; we
conclude that Hom/ (M, N) is a division ring. O

This result provides the reason why we need information about division al-
gebras. If &7 is an algebra over F then any division ring D obtained by appeal to
Schur’s lemma will have F in its centre.

11.5.2 Corollary. If e/ is a simple submodule of «f and a € «/, then ae<f is
either zero or isomorphic to e<f .

Proof. The subset
{xeeod :ax =0}

is a submodule of e«f and, since e« is simple, it is either zero or equal to e</.
In the latter case ae</ =0, in the former left multiplication by a is injective and
is therefore an isomorphism. |
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If M is an «/-module and mim M, then m</ is a submodule of M We say M
is cyclic if there is an element m in M such that m<«/ = M. A simple module is
automatically cyclic. If M is an «/-module, then the set

ann(M) :={a€ o : Ma =0}

is called the annihilator of M. It is a submodule of &« and, if M is cyclic you
may show that «//ann(M) = M. (Note that «//ann(M) is a module, and not a
quotient algebra.) You might also show that M is simple if and only if ann(M)
is a maximal proper submodule of «/.



Chapter 12

Semisimple Modules

12.1 Summands and Idempotents

One of our basic tasks will be to express a module for an algebra as a direct sum
of simple modules. You will have already had experience with this, when you
found bases of eigenvectors for linear mappings in a linear algebra course. For
suppose A is asymmetric real vx v matrix. Then V = R” is a module for the alge-
bra R[A] of all polynomials in A. Any eigenvector for A spans a 1-dimensional
subspace invariant under A, and hence its span is a simple module for R[A].
Now a set of vectors xi, ..., X, is linearlyindependent if and only if V is the direct
sum of the 1-dimensional subspaces (x;). In other words, A is diagonalizable if
and only if V is the direct sum of v simple R[A]-modules.

An element e in a ring «f is idempotent if e? = e. Two idempotents e and f
are orthogonal if ef = fe=0. If e is an idempotent then 1 — e is an idempotent
orthogonal to e. Idempotents provide an approach to direct sum decomposi-
tions of modules.

Suppose M is a module over «f and M = M; & M. If m € M then there are
unique elements m; in M; and my in M, such that m = m; + my. It follows that
the maps e; given by

e . m—m;

are endomorphisms of M. Since M; is a submodule of M, it follows that m;a €
M;, for all a in A. Therefore

m;ae; = m;ad=m;e;a,

from which it follows that ae; = e;a, for all a. Consequently e; € End ., (M). As

119
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m;e; = m;, we have e? = e;. Also e; + e, = 1. Conversely, each idempotent e
distinct from 0 and 1 in End.,/ (M) determines a direct sum decomposition of
M with summands Me and M(1 - e).

A module M is indecomposable if it cannot be expressed as a direct sum
of proper submodules. Hence M is indecomposable if and only if 0 and 1 are
the only idempotents in End./ (M). If e is an idempotent in End.,/ (M) and N
is a summand of Me then there must be an idempotent f in End. (M) such
that ef = fe = e. Then e— f is idempotent and is orthogonal to f. We call
an idempotent primitive if it cannot be written as the sum of two orthogonal
non-zero idempotents. Thus primitive idempotents in End. (M) correspond
to indecomposable summands of M.

12.1.1 Lemma. If e is an idempotent in the algebra </ and the right ideal e<{ is
minimal, then e is primitive.

Proof. Suppose e = f + g where f and g are idempotents and fg = gf = 0.
Since fe = f we see that fof < e</. Since f</ contains f, it is not zero and
since g(f</) =0, itis not equal to e</. Hence e« is not minimal. O

As Endy (of) = A°P, it follows that summands of the regular module for </
correspond to idempotents in «/°P, and hence to idempotents in < itself. In
concrete terms, if e € of and e® = e then of = e/ & (1 — e) A. Our next result will
be useful when we want to find idempotents in an algebra.

12.1.2 Lemma. Let I be a minimal right ideal of the algebra «¢. If I* # 0 then
there is an idempotent e in &/ such that I = eA.

Proof. As I? # 0, there is an element x in I such that xI # 0. We note that xI is
right ideal, as xI < I? I and as I is minimal, xI = I. Because x € I, there must
be an element e in I such that xe = x. Then xe? = xe and x(e®* — e) = 0.

The set J of elements b in I such that xb = 0 is a right ideal contained in
I. Since it does not contain y, it is properly contained in [; since I is minimal,
J = 0. Therefore e — e = 0.

Finally, el is arightideal contained in I and is not zero, accordingly e/ = I.0

An element x in a ring is nilpotent if x" = 0 for some n. An ideal I is nilpo-
tent if I" = 0 for some n. Clearly each element of a nilpotent ideal is nilpotent,
but the converse is not always true. If I is a nilpotent right ideal then /I is a
nilpotent ideal, because

(AN =ofUt) IS Al
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Thses comments will become significant when we characterize semisimple al-
gebras.
If M is aright ideal in o/, you may show that

M nann(M)

is a nilpotent right ideal in <.

As Endovg s (of) = Z(A), we see that summands of <7, viewed as a module
over o/ °P ® o/, correspond to idempotents in Z(</); these are often called cen-
tral idempotents. Here submodules of o are ideals of «; each ideal may be
viewed as an algebra, with the central idempotent determining the summand
as its identity element.

12.2 Primary Decomposition

Let T be an endomorphism of the vector space V, and suppose that the min-
imal polynomial of A is y(f). We derive a direct sum decomposition of the T-
module V for each factorization of ¥ into coprime factors.

Suppose

v=rg

where f and g are coprime. Then there are polynomials a and b such that
af +bg=1
and hence
a(T)f(T)+b(T)g(T) =I.
Multiply both sides of this by a(T) f(T). Then we find that

a(T) f(T) = (a(T) f(T))* + a(T)b(T) f (T) g(T);

since fg =vw we have f(T)g(T) =0 and therefore E = a(T) f(T) is idempotent.
Similarly
b(Tg(T)=1-a(T)f(T)

is an idempotent, orthogonal to a(T) f(T). Hence EV and (I — E)V are comple-
mentary 7-submodules of V. You may show that the minimal polynomial of
the restriction of T to EV is f(T).
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More generally, if ¥ factors into k pairwise coprime factor, we may express
V as the direct sum of k submodules, one for each factor. (This is easily proved
by induction on the number of factors.)

If our underlying field is algebraically closed, we may write

k
y() =[]-0)™
i=1
where 04, ...,0 are the zeros of v, or equivalently, the eigenvalues of T. We
derive orthogonal idempotents Ej, ..., E; such that

Ey+-+Ec=1

and V is the direct sum of submodules E; V. This decomposition of V is called
the primary decomposition. The minimal polynomial of T [(E;V) is (t — 6;)"™;
the elements of E;V are known as root vectors or generalized eigenvectors for
T, with eigenvalue 8;. Over an algebraically closed field, the existence of the
primary decomposition can be paraphrased by the assertion that if 7 € End(V),
there is a basis of V that consists of root vectors for T.

If the minimal polynomial of T factors into linear terms over F and has
no repeated factors, then the summands in the primary decomposition are
eigenspaces for T. Thus V has a basis of eigenvectors for T in this case (or
equivalently T is diagonalizable).

12.3 Group Algebras

We apply Schur’s lemma to derive some properties of group algebras.

If M is amodule over &, the action of &« on M is given by a homomorphism,
@ say, from Ainto End. If a € &/ then ¢(a) is a linear mapping and the function
that maps a in A to tr(¢(a)) is called a character of G. The homomorphism ¢ is
called a representation of <.

If M is a module for the group algebra F[G], we use M G to denote the sub-
space of M consisting of the elements m such that mg = m for all g in G. This
is clearly a submodule of M.

12.3.1 Lemma. If M is a module over the group algebraF|G] determined by the
representation ¢ then
1
— Y trep(g) = dim M©.
Gl &%
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Proof. Define o by
1
0:=— .
Gl &8
Then 02 = o and hence M can be written as the direct sum of the subspaces
Mo and M(1 - o). As m € M© if and only if mo = m, we see that Mo = M. As

go=0g=o0,

for all g in G, both Mo and M(1 — o) are submodules of M. Suppose that
n = dim M. The characteristic polynomial of o (or equivalently, of ¢(0)) is
(t—1)9¢t"9, where d is the rank of ¢(c). Therefore this rank is equal to the
trace of (o). As the rank of (o) is the dimension of the range of ¢(o), the
lemma is proved. O

12.3.2 Lemma. If ¢ and v are representations of G, corresponding to modules
M and N, then
1
— Y tre(g)ry(g~") = dimHomg(M, N).
|G geG

Proof. The mapping that sends g to ¢(g) ® w(g™!) is a homomorphism from A
into End(M ® N*). Apply the previous lemma to this homomorphism. O

Now we make use of Schur’s lemma. A representation of a group algebra
is irreducible if the corresponding module is simple. If M and N are simple
modules then Hom (M, N) is zero if M Z N. If M = N then Hom (M, N) is a
division ring containing F. If F is algebraically closed, F = Hom, (M, N) and so
Homg/ (M, N) is 1-dimensional. Now Lemma 12.3.2 reduces to the orthogonal-
ity relation for irreducible characters of a finite group.

Furthermore, the element ¢(g) ® w(g~!) is an endomorphism of M ® N*,
and the sum

Y p@ewig™h (12.3.1)
G
g€

lies in Hom,, (N, M). Suppose F is algebraically closed and M and N are simple.
Then dimHom,, (N, M) < 1, with equality if and only if M and N are isomor-
phic. Hence we infer that the sum in (12.3.1) is zero if M Z N, and equals c[ if
M = N. Since we have the trace of this sum, it is not too hard to show that

. |G|
dimM’
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(And it can be shown that this ratio must be an integer.) One consequence
of these deliberations is that, if M Z N then the coordinate functions ¢; ; are
orthogonal to the coordinate functions ¥y ¢; if M = N then ¢; ; and ¢y ¢ are
orthogonal unless i = kand j =¢.

If M is simple and has dimension d, it follows that the space spanned by the
matrices ¢(g), for g in G, has dimension d?. Therefore the algebra ¢ (<) is the
algebra of all d x d matrices over F. This result will be extended to semisimple
algebras in later sections.

12.4 Semisimple Modules

Next we offer a characterization of when a module M may be written as a direct
sum of some of its submodules. If M, ..., M, are submodules of M, we use

;
¥ M,
i=1

to denote their sum—this is the submodule of M formed by those elements
which can be written as finite sum of elements from uU; M;.

12.4.1 Lemma. Let My,..., M, be submodules of M. Then the following asser-
tions are equivalent:

(a) M=o;_ M,
(b) M:ZiMj aHdMiﬂZj?gl’Mj:O,
() M=} ;M;and M;n} j<; M;=0. .

The key to the proof of this result is that if M = Y ; M; then there is a ho-
momorphism from &; M; onto M; the conditions in (b) and (c) are sufficient
for this map to be injective. If M) is a submodule of M, we say that a submod-
ule M, is a complement to M, if My + My = M and M; N M, = 0. Thus M, is a
complement to M, if and only if M = M; & M>.

This brings us to the most important concept in this section. A module is
semisimple if it is a direct sum of simple modules. If M is a direct sum of a finite
number of simple modules then it is easy to write down a composition series
for it, the Jordan-Holder theorem then implies that any two presentations of M
as a sum of simple modules differ only in the order of the terms.

It will not be clear yet that this concept is important; we begin by offering
some characterizations.
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12.4.2 Theorem. The following assertions about the module M are equivalent:
(a) M is semisimple,

(b) M is the direct sum of simple modules My, ..., M,

(c) M is the sum of simple modules M, ..., Mj,

(d) Every submodule of M has a complement,

(e) Every simple submodule of M has a complement. |

12.4.3 Corollary. If M is semisimple and N < M then N and M/ N are semisim-
ple. O

12,5 Semisimple Modules: Examples

A vector space of finite dimension over F has a basis, and tyhe vector space is
the direct sum of the 1-dimensional subspaces spanned by the elements of the
given basis. Thus a vector space, viewed as a module over [, is a sum of simple
modules; hence it is semisimple.

Another way of proving that a vector space V is a semisimple module is to
prove that each subspace is the range of an idempotent element of End(V). We
outline the argument. Suppose that U is a subspace of V, with basis u;,..., u;.
This can be extended to a basis uy,...,u, of V;let vy,..., v, be the correspond-
ing dual basis. (So ylfij =6;,) 1t

-
P:= inyiT
i=1

then P2 = P and, since P Vi =x;, therange of Pis V.

Suppose T is a self-adjoint operator on the inner product space V, real or
complex. If T fixes a subspace U of V then its adjoint fixes U*; thus if T is
self-adjoint then V is a semisimple module for F[T].

Continuing with this example, suppose U is a simple submodule of V. Since
T commutes with itself, T|U € End(U). As T is simple, End(U) is a division
algebra. If F = C, then the only division algebra over F is C. If F = R, then the
division algebras over R are R, C and H; since the image of R[T] in End7(U) is
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commutative, it must be isomorphic to R or C. Thus T acts on U as multiplica-
tion by a real or complex scalar. Since U is simple, U is 1-dimensional over the
appropriate field, or equivalently it is spanned by an eigenvector for T. Thus the
fact that T can be diagonalized rests on the observation that V is semisimple
and on the classification of the real and complex division algebras. As a bonus,
these arguments go through without change for normal operators, since in this
case the algebra generated by T and T is commutative and *-closed (and the
latter implies that V' is semisimple).

Next we consider the case where « = F[G] is the group algebra of the finite
group G. We will prove that, if |G| is invertible in [, then the regular module over
A is semisimple. Assume that V denotes the regular module over the group al-
gebra o/ and U is a submodule of it. Then there is an idempotent endomor-
phism P of V with range equal to U. Suppose now that

~ 1
pP:=— “1pg.
|G|g;Gg g

If u € U then, because U is a submodule ug~' € U. Therefore ug™'P = ug™!
and ug 'Pg = u. If ue V then ug™'P € U and so ug~'Pg € U. This shows
that the range of P is U and that P?> = P. If h € G then a simple computation
yields that hP = Ph, which implies that P € End .« (V). It follows that V(I — P)
is a submodule of V complementary to U. Hence we have proved that V is
semisimple.

If |G| is not invertible in [, then V is not semisimple. For if

0:=> g

geG

then 62 = |G|O = 0, but 6 # 0. Suppose N is a simple submodule of V. Since
0 € Z(A), we have

NO« = N0 =NO

and hence N6 is a submodule of N. If N6 # 0 then Nf must equal N, but now
we note that

0=NO*=N6O=N.

If V is semisimple, it follows that VO = 0; as V is the regular module we deduce
in turn that 8 = 0. We are forced to conclude that V is semisimple if and only if
the characteristic of F is coprime with |G].
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12.6 Indecomposable Modules

Even if a module is not semisimple, we may still present it as a direct sum of in-
decomposable modules. In this section we develop some relevant theory. (We
will not be using this in later sections.)

The endomorphism algebra of a simple module is a division ring. We start
by considering some properties of the endomorphism algebra of an indecom-
posable module. By the theory in Section 12.1, the only idempotents in such
an algebra are 0 and 1. This implies in turn (by Lemma 12.1.2) that all minimal
right ideals are nilpotent. To get further, we introduce the radical of an algebra.

We define the radical rad </ of the algebra «f to be the set of elements a in
&/ such that Ma = 0 for every simple module M. It is easy to see that rad.«f is
an ideal in «.

If I and J are nilpotent ideals of o/ then a simple induction argument shows
that (I + J)" = 0 when r is large enough. Therefore I + J is nilpotent and so </
always contains a unique largest nilpotent ideal.

12.6.1 Theorem. The radical of &/ is equal to:
(a) the intersection of all maximal submodules of «/,
(b) the largest nilpotent ideal of < .

Proof. We first show that all nilpotent ideals of < lie in rad «/. Suppose M is a
simple module and J is a right ideal of «/. Then M/ is a submodule of M, so
either MJ =0 or MJ = M. In the latter case MJ" = M for all r; consequently
if M is simple and J is nilpotent then MJ = 0. Therefore rad«/ contains all
nilpotent right ideals of «#. We complete the proof of (b) by showing that rad </
is nilpotent.

Suppose that B and C are submodules of «f with B < C and C/B simple.
Then rad &/ acts trivially on C/B; accordingly we have

Crad(«/) < B.

It follows that if </ has a composition series of length r then < (rad /)" = 0 and
so rad .« is nilpotent.
To prove (a), we note that if B is a maximal submodule of «/ then «//B is
simple, implying that
rad(«f/) = «/rad(«/) < B.
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Hence rad «f lies in each maximal submodule of «/. To complete the argument,
let K be the intersection of all maximal submodules of </ and suppose that
rad o/ is properly contained in K. Then K/rad(«/) acts non-trivially on some
simple module M. Choose m in M such that mK # 0. Then mK is a non-zero
submodule of M and so mK = M. Choose x in K such that mx = —m. Then
m(1+ x) = 0, which implies that (1 + x)<«/ is a proper submodule of «/. But
x € K and so x lies in every maximal submodule of «/. This shows that there is a
maximal submodule of «f that contains both x and 1 + x. Therefore it contains
1, a contradiction which forces us to conclude that K =rad <¢. O

12.6.2 Theorem. If M is an indecomposable Artinian </ -module then every el-
ement of End, (M) is invertible or nilpotent.

Proof. Let 98 equal End, (M). We show first that if M is Noetherian and ¢ € %,
there is an integer n such that the intersection of the range and kernel of ¢" is
zero. For the modules ¢~ (0) form an increasing chain of submodules of M. As
M is Noetherian, there is a least integer n such that

"0 =" (0).
If y = ¢"(x) for some x in M and ¢"(y) = 0 then ¢?"*(x) = 0. Hence
x €@ 2"(0) = ¢ " (0)

and therefore y = 0. (Note: this implies that if ¢ is surjective the it is injective.)

Next we show that if M is Artinian and ¢ € 28 then there is an integer 7 such
that M is the sum of the kernel and range of ¢". For consider the decreasing
sequence ¢’ (M); as M is Artinian there is a least integer n such that

Then ¢?"(M) = ¢"(M) and so, if y € M there is an element z in M such that
©"(y) = p*"(z). Now

¢"(y—¢"(2) =0,
whence y — ¢"(z) lies in the kernel of ¢". (Note: this shows that ¢ is injective if
it is surjective.)

Finally we prove the theorem. If M is Artinian and ¢ € End/ (M), there is
an integer m such that M is the direct sum of the range and kernel of ¢". If
M is indecomposable we conclude that either M is the kernel of ¢ (and ¢
is nilpotent) or M is the range of ¢ (and ¢ is a surjection, hence a bijection
too). O
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Note that in the above we only need </ to be a ring.

12.6.3 Corollary. Suppose M is a Noetherian module and a,b are endomor-
phisms of M. If ab is surjective then a is surjective.

Proof. If ab is surjective then b is surjective, and hence injective. If y € M then
there is an element z in M such that yb = zab; thererore (y — za) b = 0 and thus
¥y = za, proving that a is surjective. |

One consequence of this corollary is if a and b are elements of a Noetherian
ring and ab = 1 then ba = 1. Our next result is the analog of Schur’s lemma for
indecomposable modules.

12.6.4 Theorem. If A is an Artinian algebra and contains no non-trival idempo-
tents, then A/ rad(A) is a division ring.

Proof. As a first step we prove that, if I is a nilpotent ideal and a € A such that
a? — a € I, then there is an idempotent ein Asuch thate—ac I.

Assume b = a?—aand a' := a+b—2ab. Then a and @' commute, (a')? € I?
and

(@)?=a*+2ab-4a’b=a+d +2ab-4ab.

The right side above equals a’ modulo I?. Now a simple induction argument
produces an idempotent e as required. (We describe this process as lifting an
idempotent mod I to an idempotent of A.)

Next we prove that all ideals in A are nilpotent. Assume that 0 and 1 are
the only idempotents in A. Then, by Lemma 12.1.2, any minimal right ideal is
nilpotent. Let I be a minimal non-nilpotent ideal of A. Then I is not a minimal
ideal, let J be an ideal of A maximal subject to lying in I. Then J is nilpotent
and I/] is a minimal ideal in A/J. If I/] is nilpotent then I is nilpotent. If
I/] is not nilpotent then it contains an idempotent, by the previous paragraph
we deduce that A contains a non-trivial idempotent. In either case we have a
contradiction.

Finally, suppose z € A. If zA is a proper right ideal of A then, as we have just
seen, it must be nilpotent. Consequently, if z ¢ rad A then zA = A and z has a
right inverse. Because A is Artinian, it follows that z is invertible. Hence each
element of A/rad(A) is invertible and therefore it is a division ring. |

We can now state and prove the Krull-Schmidt theorem.

12.6.5 Theorem. Let M be a A-module. Any two presentations of M as a sum
of indecomposable A-modules differ only in the order of the summands.
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Proof. Suppose

M= GB;ZIMi = EB;-lej
are two presentations of M as a sum of indecomposable A-modules. Let 7 de-
note projection of M onto M;. Then there is an index j such that 7(N;) # 0, we
may assume without loss that j = 1. Let o; denote projection of M onto N;. All
these projections lie in End /(M) and 1 =} ; 0;.

The restriction to M; of the product o;n lies in End(M;) and so either
it is invertible, or it is nilpotent and lies in rad(End, (M;)). If o;7 | M, lies in
rad(End,, (M,)) for all i then the sum of these maps, which is the restriction of
7 to My, also lies in rad(End, (M;)). But 7 | M is an isomorphism, hence there
is an index j such that o ;[ M; is an isomorphism. We may assume without
loss that j = 1.

If oym | M, is an isomorphism then o, [ M is surjective, by Corollary 12.6.3.
Therefore [ M) must be injective and so, from the proof of Theorem 12.6.2, we
see that it must be an isomorphism. The kernel of ;7 is the kernel of 01, as the
restriction of 017 to M, is injective, the kernel of o7 is disjoint from its range.
Therefore

M=zM eker(o1mr) =M ® N, &--- & N;

and the theorem follows by induction. O



Chapter 13

Semisimple Algebras

13.1 Semisimple Algebras

An algebra is semisimple if its regular module is semisimple. We have seen that
the regular module of the group algebra F[G] is semisimple if |G| is invertible in
[, hence in this case the group algebra is semisimple. We begin by presenting
some alternative characterizations of semisimple algebras.

13.1.1 Theorem. Let </ be an Artinian algebra. The following assertions are
equivalent:

(a) < is semisimple,

(b) Every right ideal of </ is of the form e/, where e is an idempotent,
(c) Every non-zero ideal contains a non-zero idempotent,

(d) </ has no non-zero nilpotent ideals,

(e) </ has no non-zero nilpotent right ideals.

Proof. Suppose & is semisimple. We prove (a) implies (b). Let N be a minimal
rightideal. Then N has a complement I and

A=od?=I+N?=1°+ N> I+ N>

Hence N? # 0 and so, by Lemma 12.1.2, we see that N = esf for some idempo-
tent e. Now let I be a right ideal of o« and let N be a minimal ideal contained in

131
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I. Then I = I; ® N, where I; is aright ideal contained in /. By induction I) = f</
for some idempotent f, orthogonal to e. Consequently e+ f is idempotent and
generates I.

Clearly (b) implies (c). If (c) holds and I is an ideal in « then I contains a
non-zero idempotent e. We have

e=e eI,

whence I is not nilpotent. Thus (d) holds. By our remarks at the end of Sec-
tion 12.1, if o/ contains a nilpotent right ideal it contains a nilpotent ideal. So
(d) implies (e). Finally it is not hard to see that (e) implies (b), and that (b) im-
plies (a). O

13.1.2 Lemma. An algebra is semisimple if and only if it has a faithful semisim-
ple module.

Proof. Suppose M is a faithful semisimple module for «/, and that it is the direct
sum of simple modules Mj,..., M,. If [ is an ideal in «/ then for some i, we have
M;I #0. As M; is simple, M;I = M; and therfore M;I" = M; for all r. So no ideal
of &/ is nilpotent. The converse is immediate. O

By way of example let V be a vector space over [ and suppose «/ = End(V).
Then V is a faithful simple module for «f and therefore «f is semisimple. In this
case, it is less easy to prove directly that the regular module is semisimple.

An algebra is simple if it has no proper non-zero ideals. By the theorem
above a simple Artinian algebra is semisimple. But, apparently, the Weyl alge-
bra is Noetherian, simple and not semisimple. (So the terminology lacks per-
fection.)

The next result can be used to show that a given algebra is not semisimple;
it offers the advantage that it allows us to work with a commutative algebra.

13.1.3 Lemma. If «f is semisimple then its center Z(<f) is semisimple.

Proof. We prove the contrapositive. Suppose that Z(«/) is not semisimple.
Then by Theorem 13.1.1 it contains a non-zero nilpotent ideal, N say. Since N
is central, N« is a non-zero ideal and is nilpotent. Therefore </ is not semisim-
ple. O

We remark that even if o is semisimple, the algebra </ ® o/°P need not be
semisimple. It is if F is perfect, for example if F is finite or has characteristic
zero. (Look up separable algebras in D&K for details.)
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13.2 Simple Artinian Algebras

We characterize simple Artinian algebras. The canonical example is End(M),
where M is a finite-dimensional vector space over F. We verify that End(M) is
simple when M is a vector space over a field F.

13.2.1 Theorem. The algebra End(V) is simple.

Proof. We identify End(V) with Mat,.,(F) Suppose N is a non-zero ideal in
Mat,,x ,(F). If u, v, w, x € V, then uv” and wx” belong to Mat,,,(F) and so

uv’ Nwx™ € N.

If vI Nu=0forall v and w, then vT N = 0 for all v. It follows that AN = 0 for all
A in Mat,,x,(F), and so N = 0. Thus for some v and w we have v' Nw # 0 and
therefore

uv Nwx" = u(vTNw)xT
consists of scalar multiples of ux”. Since u and x are arbitrary we find that N

contains all matrices with rank one, and therefore N = Mat,,, (F). O

If e is an idempotent in e then e/ e is readily seen to be an algebra with
identity element e. (Thus it is not a subalgebra of <, because it does not con-
tain 1 in general. However e« e + (1 — e)<Z (1 — e) is a subalgebra.)

13.2.2 Lemma. Let e be an idempotent in </ . If &/ is simple, so is e<f e.

Proof. Suppose that I is a non-zero ideal in e<f e (which does not mean it is an
ideal in A). Then I = ele and so

I=edelede=codlde.

Now «f I.of is anon-zero ideal in o, hence it equals «f and therefore I = e</e.0

The argument in the above proof actually shows that if I is an ideal in e/ e
then I = eJe for some ideal J of <.

Our next result implies that any isomorphism between summands of the
regular module of «/ can be realized by left multiplication by elements of <.

13.2.3 Lemma. Let e and f be idempotents in the algebra </ and suppose that
ed = fof. Then there are elements a and b in <« such that aes/ = f< and
bfof =ed.
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Proof. Let ¢ be an isomorphism from e« to f</. Then there are elements x
and y in & such that

v =fx, vy '(fl=ey.
Then
e=y ' (fO=y ' (f fO=y  (ifx=eyfx

and, similarly, f = fxey. If
a:=fxe, b:=eyf,

it follows that left multiplication by b is an isomorphism from e« to f</ and
left multiplication by a is an isomorphism from f.<f to e</. As ab = e and ba =
f, these isomorphisms from an inverse pair. O

13.2.4 Lemma. Let «f be an algebra, let M be a simple submodule of </ and let
I be the sum of all submodules of &/ isomorphic to M. Then I is an ideal.

Proof. Let .4 denote the set of all submodules of </ isomorphic to M. Let e
be a primitive idempotent such that M = e« and let f be a second idempo-
tent. If fof = e/ then, by Lemma 13.2.3, there is an element a in « such that
[ = aesl. Consequently every simple submodule in ./ lies in the ideal o« e/ .
Clearly «/ e« is a sum of submodules of the form ae</, and by Corollary 11.5.2
these are all isomorphic to e</. |

The proof of the next result is left as an exercise, it is a modest generalization
of the fact that
End(R") = Mat,,,(R).

13.2.5 Lemma. If M is an «/ -module, then End_, (M") = Mat,,» ,(End (M)). O

13.2.6 Theorem. Let «f be a simple Artinian algebra overF. Then «f = Mat, (D),
where D is a division ring over [F.

Proof. If &/ is a division algebra we have nothing to do, so assume is not a divi-
sion algebra. Then it contains a non-zero element u which is not invertible and
therefore u<f is proper non-zero right ideal. Since & is Artinian we conclude
that o/ contains a minimal right ideal e, where e is a primitive idempotent.
Because A is simple it cannot contain a non-zer nilpotent ideal, and hence it
is semisimple. Now Lemma 13.2.4 implies that A is the sum of submodules
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isomorphic to eA therefore A is isomorphic to a direct sum of copies of eA.
Consequently

A°P = End,(of) = Endy ((esf)") = Mat,; ,(End,y (es?)).

Since eA is simple, End, (e<) is a division ring by Schur’s lemma. O

Lemma 13.2.4 implies that, if «/ is a simple Artinian algebra and M is a sim-
ple submodule of «/ then «f is isomorphic to a direct sum of copies of M. It fol-
lows from the Jordan-Holder theorem (Theorem 13.3.1) that a simple Artinian
algebra has a single isomorphism class of simple modules.

13.2.7 Corollary. If o is a simple Artinian algebra and M and N are modules
over &/ then M and N are isomorphic if and only if they have the same dimen-
sion. O

13.2.8 Lemma. If o is semisimple, any simple </ -module is isomorphic to a
submodule of .

Proof. Let M be a non-zero simple A-module. As A is semisimple, it is a direct
sum of simple submodules and, as M # 0, it follows that there is a simple sub-
module I such that M # 0. Hence there is an element m of M such that mI # 0.
Then mI is a non-zero submodule of M and therefore mI = M. Consequently
M=1. a

We conclude with some exercises. If e is an idempotent in «/ and M is an
&/-module, show that
Hom (esf, M) = Me.

(This is an isomorphism of vector spaces.) Consequently, if e and f are idem-
potents then
Homgy (est, fof) = fde.

Show further that Hom (e</, e<f) and (e« e)°P are isomorphic as algebras.

13.3 Composition Series
Let M be a module over A. A chain of submodules of M:

M=My=M;=---=2M,=0
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is a composition series of length r if each quotient M;/M;, is simple and not
zero. Thus a module has positive length, and its length is one if and only if it is
simple. If o = then the length of M is just its dimension over F.

The following result is known as the Jordan-Holder theorem. The proof is
an exercise in the use of the isomorphism theorems.

13.3.1 Theorem. Let M be a module over «f that is Artinian and Noetherian.
Then M has a composition series; further any two such series have the same
length and the number of times a given simple module occurs in a series is
independent of the choice of series. O

13.3.2 Corollary. Let M be a module over «f with finite length. If N is a sub-
module of M, the sum of the lengths of M/ N and N is the length of M. i

A module M is Noetherian and Artinian if and only it has a composition
series of finite length. It can be shown that any Artinian module is Noetherian.
Essentially all the modules we discuss will be Artinian, because they will be
vector spaces of finite dimension.

13.3.3 Lemma. Let <« be a semisimple algebra over F and let M be a simple < -
module such that End., (M) = F. Then the multiplicity of M in a composition
series for of is dim M.
Proof. Suppose e is an idempotent in «f and ¥ € Homy (e<f/, M). If w(e) = m
then

m=1vy(e) = w(ez) =y(e)e=me
and

v(ea) =y(e)a=mea.

Therefore y(esf) = mesf.

Now assume that e is a primitive idempotent. Then e<f is a simple submod-
ule of «f and, if ¥ # 0 then me</ is submodule of M isomorphic to e«/. As this
holds for all m in M such that me<f # 0, we see that Megf is the sum of sub-
modules isomorphic to e</. Since &« is semisimple, M is too, and we conclude
that Megf is isomorphic to (e<f)", for some integer r. Consequently

Hom (es«f, M) =Hom (e<f, (e<f)")
and, as Me = Hom,, (e<f, M), we infer that
dim(Me) = rdimEnd_ (es?).

Applying this to the regular module, we find that the multiplicity of e« as a
composition factor in & is dim(«/e)/ dim(End (e<f)), as required. |
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One canonical application of this result is to the group ring « = C[G]. In
this case «f is semisimple and, if V is a simple «/-module then End (V) = C.
It follows immediately that |G|, the dimension of </, is equal to the sum of the
squares of the dimensions of the distinct simple <« -modules.

By way of example, suppose G is the symmetric group on three symbols.
We see that & is either the sum of six pairwise non-isomorphic 1-dimensional
modules, or two 1-dimensional modules and two 2-dimensional modules. But
each element of «f acts on a 1-dimensional module as a scalar, and so in the
first case each element of «/ can be represented in its action on the regular
module as a diagonal matrix. This implies that </ is commutative, but it is not.
Therefore the second alternative holds.

13.4 Semisimple Artinian Algebras

We now derive the fundamental theorem on the structure of semisimple Ar-
tinian algebras: Wedderburn’s theorem.

13.4.1 Theorem. A semisimple Artinian algebra is isomorphic to a direct sum
of matrix algebras over division rings.

Proof. Suppose & is semisimple and Artinian. Then there are primitive idem-
potents ey, ..., e, such that
A =D e .

Define two idempotents e and f in </ to be equivalent if e« = f A. Let [e;] de-
note the set of idempotents e; (j = 1,..., n) that are equivalent to e;. We define
I:= ) ejd.

ej€le;]

We show that I is an ideal in «/. Suppose K = ae<f # 0. Then by Corol-
lary 11.5.2 it is isomorphic to e;«/. If K is not contained in I then KN [ is a
proper submodule of K, hence KNI =0. Thus, if I is the direct sum of m copies
of e;«f then K + [ is isomorphic to the direct sum of m + 1 copies of e; <. By the
Jordan-Holder theorem, all composition series for o/ contain the same number
of copies of the simple module e; </ and, by our definition of I, this number is
m. We conclude that K < I. It follows that I is an ideal in «f.

Next we prove [ is a minimal ideal. Suppose J is a non-zero ideal of & con-
tained in /. By the Jordan-Hoélder theorem, / must contain a submodule N iso-
morphic to e;«/. By Lemma 13.2.3 we have e;«/ = aN for some a in «/, whence
eiofd <Jand J=1I.
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Now define
J:= Z e j&f .
ejdle;]
Then because it is a sum of ideals, J is an ideal in «¢. Since I N J = 0 we see that
I is a summand of «f, viewed as a module over «/°P ® of and hence I = f.<f for
some central idempotent f. Consequently it is an algebra (with identity f). As
JI=1]=0,eachideal of I is an ideal of « and therefore I is a simple algebra. o

It follows that, if o is semisimple, there are primitive central idempotents
fi,--., fr such that & is the direct sum of the algebras f;«/. (Since f; is cen-
tral fiof = o fi/.) The above proof shows that if e« is a simple submodule
of o/, then &/ es/ is a summand of «¢, and hence «f e/ = g</ for some central
idempotent g. It follows that if f is primitive and central, then f</ is a simple
algebra. We conclude the decomposition of a semisimple Artinian algebra </
into simple subalgebras can be computed by first determining the decomposi-
tion of Z (&) into simple algebras. In practice this is less useful than it appears,
because it is usually not easy to determine the center of «/.
rect sum of full matrix algebras over its underlying field. The cheapest way of
arranging this is to have the underlying field algebraically closed. An algebra is
split if the minimal polynomial of each element is linear.

13.4.2 Corollary. A split commutative semisimple algebra has a basis of idem-
potents. |

13.5 Representations

The theory we have developed is very powerful, but even so does not go quite
far enough. The issue is that in practice we will not be working just with an
algebra, but rather an algebra «f and a module M on which it acts. Our module
M will be semisimple and faithful, and so « will be semisimple. Consequently
M decomposes as a sum of simple submodules and <« decomposes into a sum
of matrix algebras, the problem is to decide how these two decompositions fit
together.

Suppose & is a semisimple Artinian algebra and M is module for «/. Let
el1,...,er be central primitive idempotents in &« such that

o = @?zleid
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is the decomposition of o into simple algebras. Then Me; is a submodule of
M and if x € Me; n Mej, then since x € Me; we have x = xe; and soif i # j,

xej=xejej=0.

Hence M is the direct sum of the submodules Me;. Now Me; is amodule for the
simple Artinian algebra e; <, and therefore it is isomorphic to the direct sum of
copies of some simple module N;. Note that V; is a simple module for < too.
Since N; is annihilated by e; and N; is not, N; and N; are not isomorphic as
& -modules.

13.6 Centralizers

Suppose M is a vector space over [ and «f is a subalgebra of End(M); equiv-
alently let M be a faithful «/-module. Assume % = End(M). Thus 28 is the
centralizer of o/ in End(M) and M is a left 98-module. Our goal is to further
study the relation between <« and 8. We have already seen that the idempo-
tents in 4 determine the summands of M (viewed as an </ -module). If

€ :=Endg(M)

then «f is contained in € and M is a right ¥-module. As 98 < End¢ (M), the
idempotents of 98 determine summands of M, viewed as ¢-module. Thus any
summand of M relative to < is a summand relative to 6.

13.6.1 Lemma. Suppose that M is a faithful semisimple </ -module, 98 = End s (M)
and € = Endg(M). If x1,...,x,, are elements of M and c € € then there is an
element a in </ such that, for all i,

X;ia=Xx;c
Proof. As M is semisimple, so is M". Hence
N=(x1,...,xm)A
is a summand of M". Suppose
#' :=Endy(M™), €' :=Endg(M").

Then N is a ¢’-module. As % imbeds isomorphically in ¢’ via the diagonal
map c+— (c,...,c), we obtain

(X1,.. 0, X)) =N=NEC =(x1,..., X)) LEC = (X1,...,Xn)E.

This implies the statement of the lemma. |
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13.6.2 Corollary. If M is a finite dimensional faithful semisimple </ -module
and 28 = End (M) then Endg (M) = . O

Note that this corollary implies that if M is faithful and semisimple and
End./ (M) = F then « = Endf(M). The following result is from Goodman and
Wallach [?2, Section 3.3]

13.6.3 Theorem. If </ is a semisimple subalgebra of Mat,,«,(C), then
o = &}, (Iy, ® Matg; g, (C))

and
End/(C") = &5 (Maty; xm, (C) ® I). 0

We note some consequences.

13.6.4 Theorem. Let V be a vector space over an algebraically closed field. Any
proper subalgebra of End(V) fixes a non-zero proper subspace of V.

Proof. Suppose « is a subalgebra of End(V). If &/ does not fix a proper sub-
space of V, then V is a simple module for «/. Hence End (V) = C, and there-
fore by Corollary 13.6.2, it follows that o/ = End(V). O

13.6.5 Corollary. If V is a vector space over an algebraically closed field F and
&/ is a commutative subalgebra of End(V), there is a basis of V with respect to
which « is triangular.

Proof. Suppose dim(V) = d. We have to show that there are submodules
VosVi<--<Vy

where dim(V;) =i (and so Vy,=0and V,; = V).

We first prove that a commutative subalgebra must fix some subspace of
dimension one. Assume dim(V) = 2. Then End(V) is not commutative and so
&/ is a proper subalgebra. By the theorem it fixes a non-zero proper subspace
U of V. If dim(U) > 1, then &« acts as a commutative algebra on U and so by
induction we may assume that dim(U) = 1. (Hence U is spanned by a common
eigenvector for «/.)

Now «f acts as a commutative algebra on the quotient module V/U and by
induction again we V/U contains a chain of submodules

Wo<- < Wy_q.

Together with U we get the required chain of submodules in V. |



13.7. TRACE 141

13.7 Trace

A trace on an algebra «f is a linear map 1 from <« to F such that 7(ab) = t(ba)
for all a,b in «/. Thus a trace is an element of the dual vector space «*. If
a € &/, then the map

Ta:X—1(ax)
is also in «/*, and the map

a_’Ta

is a linear map from < to o/ *. We say that 7 is non-degenerate if this second

map is an injection. There is a second way of looking at this. The map that

takes (a, b) in «f x of to tT(ab) is a symmetric bilinear form on &« and 7 is non-

degenerate if and only if this form is non-degenerate. You might also show that

7 is non-degenerate if and only if its kernel does not contain a right ideal of /.
A bilinear form (a, b) is associative if

{a,xb) ={ax, b)

forall a,b, x in «f.
We leave the proof of the following result as an exercise.

13.7.1 Lemma. A bilinear form {a, b) arises from a trace if and only if it is sym-
metric and associative. O

If ay,...,aq is abasis for «, we say that by, ..., b, is a dual basis if
(ai,bj) =6 j.

If c € of then
c=) (¢ bias;
7

thus a dual basis provides a cheap way of expressing elements of </ as linear
combinations of the basis vectors. If o/ admits a non-degenerate symmetric
bilinear form then each basis has a dual basis. If a dual basis exists, it is unique.

13.8 Maschke

13.8.1 Lemma. Let o/ be an algebra with a non-degenerate tracetr, let ay, ..., ag
be a basis for «f andlet aj, ..., a; be its dual basis. If M and N are modules over
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</ and ¢ € Hom(M, N) and
(] :=) aipa’
i

then [p] € Hom (M, N). Further, [¢] is independent of the basis.
Proof. For ¢ in «f we have
clpl =) caipa;
i
=22 (cai,aj)a;pa;
i
=) ajp) (cai,a})a;
F i
Now
(caj,a}) ={aj,ca;) = (ajc,a;)

and so the last sum equals
2 ajp) (aicana; =) ajpa;c=lylc.
J i J

Therefore [¢] € Hom (M, N).
Now suppose by,..., by is a second basis for o/ with dual basis by,...,b.
Then
a; =) (ai,bj)b;
J

and, since by, ..., by is a dual basis to by, ..., b7,

ay = ;(d;,by)b;

Hence
8k =ai,a;) = Z{:,(ai;b;f)(a;z)b[)(bj,bp
I
=2 (ai, by)ag, b)).
J
Now

bi=) (bi,a)a;,  bj =) (bj,ana;
J ¢



13.8. MASCHKE 143

and consequently
> bipb; =} (b;,a;)b;i,apajpa;
i i,j,¢
=2 0jcajpa;
j.l
= [p].
Therefore the value of [¢] is independent of the choice of basis. |

Our next resultis a version of Maschke’s theorem; its form follows Halverson
and Ram [].

13.8.2 Theorem. Ifthe trace map on the regular module for </ is non-degenerate,
then any finite-dimensional </ -module is semisimple.

Proof. We show that if M and N are «/-modules and M < N, then M has a
complement.

Since M is a subspace of N, there is an idempotent p such that Np = M and
yp =yforall yin M. If p € End(NN) we define

[p]:=) aipa}
i

and we show that [p] € Hom (M, N) and [p] is an idempotent such that N[p] =
M. By Lemma 13.8.1, we know that [p] € Hom, (M, N).
But first we consider the case where p = 1. Here we have

1

tr([11b) = ) tr(a;a; b) =) (ba;,a’) =tr(b)
i

and accordingly
tr(((11-1b) =0

for all b. Since the trace is non-degenerate, this implies that [1] = 1.
Suppose x € N. For all i,
xa;pa; € M

and hence
x[pl =) xaipa; € M.
i

So N[p] =< M. Now if y € M, then for all i

ya;p=ya;
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and hence
ylpl =) yaipa; =) yaia; =y[ll=y.
i i

Next we observe that
[1-pl=[1]-[pl=1-Ip]
is an idempotent in Hom. (M, N) that is orthogonal to [p]. It follows that N(1—

[p]) is a complement to M in N. We conclude that N is semisimple. O

We work out the trace for the group algebra F[G]. If x € F[G] and g € G, then
we use
(g, x)

to denote the coefficient of g in x. Then the trace tr(x) of x is given by

) (g, x8).
geG
Since
(g,xg)=(1,x)
it follows that

tr(x) = |G(1, x).

Now if g € G, then
tr(gx) = |GI(1, gx) = |Gl(g™ !, x)

It follows that if |G| # 0 in F, then tr(gx) = 0 for all g in G if and only if x = 0.
Thus our trace is non-degenerate if |G| # 0, and this case F[G] is semisimple.
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Division Algebras

Among other things, we prove that finite division rings are fields.

14.1 Central Simple Algebras

An algebra «/ over afield [ is central simple if is simple and Z(«/) =F. By way of
example, Mat, ., (F) is central simple but C, viewed as an algebra over R, is not.
The centre of a simple algebra is always a field. To see this, suppose z € Z ().
Then z«f = o/ zis a 2-sided ideal in o and so equals /. Thus left multiplication
by z is a surjection on «f. Next, the set

{ae ot :za=0}

is also a 2-sided ideal in «/. Thus, if z # 0, then left multiplication by z is in-
jective. It follows that left multiplication by z is an isomorphism, hence z is
invertible.

14.1.1 Lemma. If «f and 98 are algebras then Z(«f ® B) = Z(A) ® Z(AB).

Proof. Suppose that x =) ; a; ® b; € o ® 4. It is an easy exercise to show that,
if this representation of x has as few non-zero terms as possible then the ele-
ments a; are linearly independent, as are the elements b;. Suppose then that
x € Z(o ® 9B) and that
X = Z a; ® b,
1

where the b; are linearly independent. Then, for any zin &/, x(z®1) = (z® 1)x
and consequently
Z(aiz —-za;))®b; =0.
i

145
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Since the b;’s are linearly independent, this implies that a;z—za; = 0 for all z in
of,and forall i. Thus a; € Z(«f) and x € Z(<f) ® 4.

Now assume that (14.1) holds with a; € Z (<) for all i and that the b;’s are
linearly independent. If y € 28 then x commutes with 1 ® y and therefore

ybi—biy=0
for all i. This shows that b; € Z(98) and x € Z(«f) ® Z(9B8). It is evident that

Z(A)® Z(B) < Z( ® AB), so we are finished. |
If o is an algebra over R with Z(«/) = C then

Z(AxAd)=ZECoC=CoC.
Hence Z(<f ® of) is not a field.

14.1.2 Lemma. An algebra </ is central simple over [ if and only if «/°P ® of =
End(A).

Proof. If «/°P ® of = End(A) then, by the previous lemma,
F=ZEndA)EZ(APeA) = Z(AP) o Z(A)

and therefore Z(«/) = F. If I is proper non-zero ideal of o/ then «#/°P® I is a
proper non-zero ideal of «/°P ® <. Since End(A) is simple we deduce that < is
simple.

For the converse note first that, if of is simple, then it is a simple module for
o/ °P ® of . We also have

Endyorey () = Z(A) =F.

We show next that & is a faithful module. If xay = 0 for all a in &« then
x&/y = 0 and thus x«/ y<«/ = 0. Therefore the ideal o« y<f is a proper ideal and
so must be the zero ideal. Hence y =0, and « is faithful.

It folllows now from Corollary 13.6.2 that «/°P ® o/ coincides with the cen-
tralizer in End(A) of Endorg s (/). As the latter is the centre of End(A), the
lemma is proved. o

14.1.3 Lemma. If o/ is a central simple algebra over F and 98 is an algebra over
[ then the ideals of «f ® 98 are all of the form </ ® I, for some ideal I of 8.
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Proof. Let a,,..., a, be a basis for of and let T} be the element of End(A) that
maps ay to O,¢. By the previous lemma there are elements x; in <« such that,
for any u in &/ we have
Ti(u) = inuai.
l

Each element of «f ® 28 can be written in the form ) ; a; ® b;, for suitable b;.
Then we have

(ij®1) (Za,@b,-) (Za]@l) :ija,'aj@bi =1® by.
J i J i,j

This shows that any ideal that contains }_; a; ® b; must contain 1® b; for all j.
Hence, if J is an ideal in of ® 98 and

I.={beB:1®be ]},
then /= o/ ® I. O

The next result is the Noether-Skolem theorem.

14.1.4 Theorem. Let </ be a central simple algebra and let 98 be a simple al-
gebra over F. If f and g are homomorphisms from 28 into </, then there is an
element a in o/ such that a™ f(b)a = g(b), for all b in 2.

Proof. If h is a homomorphism from 28 into &« then we define an action of
o/ ® B°P on o by
a®b:x— h(b)xa.

Thus &/ is a module for «f ® 98°P, which we denote by «f h
As 2B is simple and <f is central simple, < ® °P is simple. Since o/ and
</8 are modules for this simple algebra and have the same dimension, they are
isomorphic. Let  be an isomorphism from «// to /8. Then for all b in 2 and
a, xin o,
y(f(b)xa) = g(b)y(x)a.

If b =1 this yields @ (xa) = w(x)a, now setting x equal to 1 we see that v (a) =
w(1)a for all a in «/. On the other hand if we put a and x equal to 1 here then
we find that ¢ (f (b)) = g(b)w(1). As f(b) € o, we also have

y(f ) =yAfB)=yD)f(D).

Therefore g(b)y (1) = w(1) f(b). Since v is an isomorphism, (1) must be in-
vertible, and thus the proof is complete. |
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14.2 Factors

We have

and so I ® Mat,,«,(F) is a subalgebra of Mat;;;;,« mn (F). Our next result general-
izes this.

14.2.1 Theorem. Let </ be a central simple algebra and let 98 be a subalgebra
of . If A is simple then C;(98) is simple and

dim(«/) = dim(98) dim(C, (98));

if 98 is central simple then
A =B&Cy(B).

Proof. Our constraints on </ and 2 imply that 8°° ® «f is simple, let P be a
minimal right ideal in it. Then

D:= End@0p®d(P)
is a division ring and %°P ® «f = Mat,«, (D). Hence
dim(2) dim(«/) = n® dim(D).

We show next that Co/ (%) = Endgorg o (). If v € Endggorg o« (<) then for all
bin B and x, a in «f, we have

w(bxa) = by (x)a.

Setting b equal to 1 here yields w(xa) = y(x)a, whence v (a) = w(1)a for all a in
&/ . Setting a equal to 1 and noting that b € of we also find that

by)=yw(b-1)=y1-b)=yw1)b.

It follows that the map ¢ — w(1) is an isomorphism from Endgog s (<) to
C./(98).

As < is a finite dimensional module over 28°P ® o/, it is isomorphic to P* for
some k and therefore

Cor(9B) = Endgorg. (f) = Mat k(D).
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Consequently C.(98) is simple with dimension k? dim(D) and, as
dim(«?) = kdim(P) = kndim(D)

it follows that
dim(%8) dim(Cy (4)) = dim(«).

Let x1,...,x, be a linearly independent subset of 28 and suppose yy,..., yr
lie in C./(98). We will show that if

.
Y xiyi =0,
i=1

then y; = 0 for all i. Given this it follows easily that if by, ..., b, is a basis for %
and cy,...,cs is a basis for C(98) then the rs products b;c; are linearly inde-
pendent. This implies that 8C ./ (98) spans «f and hence 8® Cy(AB) = .

To prove our claim we note that, since 28 is central simple, 80 %°P = Endy(%).
So there are elements vjx, w;y in 9 such that

Z vjkxl- w]'k = 5ijI
k
and therefore
% VikXiYiWjk = ; VikXiWikYi = Vj,

which is all we require. O

It follows from the the first part of this theorem that, if & is simple then
C.y(98) is simple and hence that C,(C., (%)) has the same dimension as %. As
Cy (Coy(9B)) contains A this provides a second proof of the double centralizer
theorem, at least when 28 is simple.

14.3 Finite Division Algebras

If F is a division algebra, let F* denote F\0, viewed as a multiplicative group.
We have another important result, again due to Wedderburn.

14.3.1 Theorem. A finite division ring is a field.
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Proof. Let D be a finite division ring. Its centre is a field, which we denote by F.
If x € D\F then x and F generate a commutative subalgebra of D, necessarily
a field. We assume by way of contradiction that D # F. It follows that there is a
maximal subfield E of D such that D > E > F.

If x € Cp(E) then E and x together generate a commutative subalgebra of
D, which is necessarily a field. Hence E = Cp(E). Since E is simple,

dim(E) dim(Cp(E)) = (dim(E))? = dim(D),

and we have shown that all maximal subfields of D have the same order. Hence
they are all isomorphic and, by the Noether-Skolem theorem, it follows that
they are all conjugate.

Suppose m = |D* : E*|. If x and y are elements of D* in the same coset
of E* then x 'Ex = y~!Ey, whence E* has at most m distinct conjugates in
D*. If |F| = q then |D*| = g = 1 and |E*| = g* — 1 for some ¢ and k, and (g° -
1)/(g* - 1) = m. Hence the number of elements of D in a conjugate of E is at
most m(qk —2)+1, but

m(gc-2)+1<m(gF-1)=q"-1.

As every element of D lies in a maximal subfield, this is impossible. O

The argument in the above proof implies that the dimension of a finite-
dimensional division ring is a perfect square. Thus the quaternions have di-
mension four over R, for example.

We add a few comments related to the quaternions. The norm of quaternion
h=a+bi+cj+djis

(@ +b* + c? +dH'2,
We call h pure if a = 0, and will use the Noether-Skolem theorem to show that all
pure quaternions of norm 1 are conjugate. As we may identify the pure quater-
nions of norm 1 with the unit sphere in R3, it follows that we have an action of H
on this sphere. (In fact H acts as a group of orthogonal transformations, which
is not hard to see.)

If p=bi+cj+dkis a pure quaternion, then

p2 =—(b*+c*+d?.

Thus if p is a pure quaternion with norm 1 then p? = —1. On the other hand, if
a € Rand p is a pure quaternion then

(a+p)? =a®+p* +2ap;
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hence (a + p)? is real if and only if ap = 0. Thus the solutions in H to the equa-
tion ¢2 + 1 = 0 are the pure quaternions of norm 1.

If p? = g = -1 then {1, p} and {1, q} are isomorphic subalgebras of H, where
the isomorphism maps p to gq. So, by the Noether-Skolem theorem, there must
be an element a of H such that a~! pa = q. This shows that all pure quaternions
are conjugate in H.

14.4 Real Algebra

The following comes from; S. H. Kulkarni, A very simple and elementary proof
of a theorem of Ingelstam, American Math. Monthly, 111 (1), 2004, 54-58.
The norm condition in the statement of the following theorem holds if we
have
lxyll < Ixlyl

forall x and y.

14.4.1 Theorem. Let A be a real algebra (with unit). Assume A is an inner prod-
uct space such that ||I|| = 1 and la?|l < llall® for all a. Then A is isomorphic to
R, C or H.

Proof. First we show that if x € I+ and || x| = 1, then x% = —1.
If t € R, then

W21+ x|1? = [ £1)% + I x|1® +2¢x, I) = 2 + 1.

By our norm condition,
11+ x| < I1¢] + x]?

and therefore

2+ 12 = ||t + %> = (FPT+2tx+ x°, 2T + 2t x + x2)
= 14+ 202, X% + 417 + 41(x, X°) + (X%, x%)

This implies that, for all real ¢
2071+ (I, X)) +4t(x, Xy + | P =1 = 0.
Hence the coefficient of ¢2 in this quadratic must be non-negative and therefore

(I, x*) < —1.
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By Cauchy-Schwarz,
2
(LA < ITIPN%1% = 1212 < x)* =1,

whence (I, x?) = —1. Hence equality holds in the Cauchy-Schwarz inequality,
and therefore x? = uI for some real number u. Therefore x? = —1.
Next we show that if x and y are orthogonal elements of norm 1 in I+, then
xy=-yx. Wehave x* = y> = -1. If
! (x+y)
—(x
N y

then ||z|| = 1. Since z € I+ it follows that

Z.=

=2 = ieyrs _ 141
=z"=7 Y HxXy+yx)= +2(xy+yx).

Therefore xy + yx =0.

This brings us to the proof of the theorem. If I+ = {0}, then A is spanned by
I and consequently A = R. Assume I+ # {0} and let x be a vector of norm 1 in
It. Then x? = —1; if dim(A) = 2 it follows that A= C.

We assume that dim(A) = 3 and that {I, x, y} is an orthonormal set in A. Let
z=xy. Then

Z? = XYXy=-yxxy= y2 =-1.
Similarly
YyZ2=2, 2y =—X, 2ZX=Y, X2=—).

Ifa,b,c,deRand u=al+bx+cy+dz, then
(@l +bx+cy+dz)(al —bx—cy—dz) = (a®>+b* + c* + d?)1.

Hence u =0if and only if a = b = ¢ = d = 0, and therefore {I, x, y, z} are linearly
independent and their span is isomorphic to H.

Thus the theorem holds in dim(A) < 4, and otherwise there is an orthonor-
mal set {I, x, y, z, u}. Then u?> = —1 and

xXut+tux=yu+uy=zu+uz=0.
Consequently
UZ=UXY—XUY=XYU=ZU=—UZ

and uz =0. But
(uz)2 = uzuz=-uzzu=u’= -1,

a contradiction. O



Chapter 15

Work

15.1 Classical Parameters

A distance-regular graph of diameter d has classical parameters if there are
scalars ¢, , f such that

bi = (ld] - [iD(B - ali]),
ci =il +ali—1]).

Here .
. q' -1
[i] := 7—1
We have
a;=[il(-1+a(dl-[il-1i-1]), i=1,...,d
and

k=1d1B, c=0+q)0+a), ar=(-1+a(ld]-1).

15.1.1 Theorem. If X is a distance-regular graph with classical parameters (d, q, a, f),

with d = 3. Then ‘
C2

= — 1, = —.

Y=g P=1a

and q is an integer, not 0 or —1. Further, one of the following holds:

(@) aj=aycifori=2,...,dandq=—-a; —1.

(b) a; # ayc; for some i, and
ayC3 — Cad3
ac3—das .

153
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Proof. 1If g =0, then [2] = [1] and by, = 0. If g = —1, then [i] = 0 when i is even
and ¢, =0.
Next we observe that

a;=lil(ag —a(lil+[i-1]-1))
and therefore

ai—arc;=lil(a—a(il+[i-11-1)—a1 {11 +ali—1])
=[il(a1—a(il+[i-1]1-1)—a; —ar1ali—1])
=—ali]((({]+[i-11-1D+ai[i-1])
=—calil((g+D[i-1]1+a1[i—1])
=—calilli-11(g+ 1+ ay).
In particular
@—-a1c=—alg+1)(g+1+a;) (15.1.1)
and thus

l
a;—ac; = 9 (ax—ayc).

Therefore a, — a; ¢, divides a; — a;c; and consequently [i][i — 1] is an integer,
from which it follows that g is an algebraic integer. Next

c3=[38]A+al2]), c-g=>2I0+a)-g=1+al2],

implying that c3 = [3](c2 — q). Now

3
clax—aicy) =(c2—q)3l(az—aic) = (c2—q) ) (az—ayc2) = (c2—q)(az — ayc3)

and therefore
q(aic3 — az) = c3(ax — ayc2) — c2(as — ayc3) = c3ap — C2a3.
Soif a, —ajcy #0, then
C3ap — C2ds3
aycs—das ’
since this is rational g must be an integer.

Finally assume that a, — a;c, = 0. Then a; = a;c; for i =2,...,d and, from
eq:a2alc2, g+1+a=0. O
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Adjacency Algebras

16.1 Extending the Adjacency Algebra

Suppose V is an inner product space and A is a subalgebra of End(V) that is
closed under taking adjoints (i.e., closed under transposes in the real case). If
U is a submodule of V, then U+ is also a submodule. We see immediately that
V is an orthogonal direct sum of irreducible modules (and A is semisimple). In
this context we could refer to A as a C*-algebra, or as a finite-dimensional Von
Neumann algebra. (Our preference is for the latter.)

In this section we study a special class of self-adjoint algebras. Let X be a
graph on v vertices with adjacency matrix A, let & be a nonzero vector in RY
and let H denote the matrix hh”. We study the algebra A = (A, H) generated by
Aand H.

Suppose U is an irreducible module for this algebra. If u is a vector in U
such that Hu # 0, then

Hu=(h"uheu

and therefore i € U. Accordingly U contains the A-module generated by #;
since U is irreducible it follows that U is generated by h. We call the module
generated by h the standard module for A.

Now suppose T is an A-module such that TNnU =0. If v € T and Hv # 0,
then h € T, a contradiction. Therefore Hv = 0 and, since T isamodule, HA v =
Oforall r. Since A is symmetric, it follows that (A" h, v) = 0 for all r and therefore
T<U".

We can summarize our discussion with the following pile of words.

155
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16.1.1 Theorem. Let X be a graph on v vertices with adjacency matrix A, let h
be a nonzero vector in R¥ and let H denote the matrix hh” . Finally, let A be the
algebra generated by A and H. Then RV is the direct sum of the standard mod-
ule U and a set of 1-dimensional subspaces, each spanned by an eigenvector
for A orthogonal to h. If m = dim(U), then dim(A) = m? —m+ v and A is the
direct sum of End(U) and v — m copies of R. |

Here End(U) is isomorphic to the full algebra of m x m real matrices. This
follows from the general theory, but we can offer a direct argument.

16.1.2 Lemma. If the standard module U for A has dimension m and is gener-
ated by h, then the m? matrices

A'hhT AT, (0<i,jsm-1)
are linearly independent.

Proof. First we show that the vectors A‘h for i = 0,...,m— 1 are linearly in-
dependent. If the are not, then they span an A-invariant subspace of U with
dimension less than m. Since

HA'h=hTA'mh

this subspace is H-invariant and so it is an A=module. As U is irreducible, we
conclude that our set of vectors is linearly independent.

To complete the proof, we need to show that if the vectors u;,...,u,, are
linearly independent elements of U, then

wiui, O<i,j<m

are linearly independent (elements of End(U)). We leave this as an exercise. O

16.2 Some Applications

Our main application of the theory in the previous section is to the case where
the vector £ is the characteristic vector of a subset of V (X), perhaps V (X) itself.

16.2.1 Lemma. Suppose h is the characteristic vector of the subset S of V(X).
The permutation matrices that commute with A and hh! are the automor-
phisms of X that fix S as a set. |



16.3. COSPECTRAL AWFUL GRAPHS 157

16.2.2 Corollary. Let X be a graph on v vertices and let S be a subset of V(X)
with characteristic vector h. If the standard module for (A, hh') has dimension
v, then (A, hh') is the algebra of all v x v matrices, and the only automorphism
of X that fixes S is the identity.

The standard module has dimension v if and only if the vectors A’ h for i = 0
span R”.

16.2.3 Corollary. If the vectors A'1 span R?, then Aut(X) is trivial. O

16.2.4 Corollary. Let e, be the r-th standard basis vector for R". If the vectors
A'e, span RY, then the stabilizer in Aut(X) of the r-th vertex of X is trivial.

Some writes define the main eigenvalues of A to be those eigenvalues 0
such that there is an eigenvector z for @ which is not orthogonal to 1. The num-
ber of main eigenvalues equal the dimension of the standard module generated
by 1. (Here H = J.) We can extend this to the general case.

16.2.5 Lemma. Let A be a symmetric matrix with spectral decomposition A =
Y OEy. Then the dimension of the standard module relative to h is equal to the
number of eigenvalues 6 such that hTEgh #0.

Proof. The non-zero vectors of the form Eyh form a basis for U. Since E; =Eg=
E,, we have
h'Egh=h"Ezh=h"E, Egh=|Ephll*.

Hence h” Egh = 0 if and only if Egh = 0. u|

16.3 Cospectral Awful Graphs

16.3.1 Theorem. Suppose X is an awful graph with adjacency matrix A and Y
is a graph with adjacency matrix B. If tr(A”]) = tr(B"]) for all non-negative
integersr, then X and Y are cospectral with cospectral complements.

Proof. The n? matrices A" J A%, where 0 < r, s < n form a basis for .4 = Mat,,x ,(R).
Therefore there is a unique linear mapping ¥ from . to itself such that

W(A"JA%) = B"JB".
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Now
tr(A/ JA' ATJA%) = tr(ATTSJ AT )
— ITA]+SI 1A1+r1
=tr(A/ S ) tr (A7),
The last line here is equal to tr(B/*$J) tr(B**" J) and so we deduce that, for all r
(A'JA!,A"JA%) =(B'JB’,B" JB%).
The matrices A" JA® are linearly independent and therefore their Gram matrix
(with respect to the trace inner product) must be invertible. Consequently the
Gram matrix of the matrices B" JB? is invertible, and therefore these matrices
are linearly independent. This implies that WV is invertible, since it maps a basis
of ./ to a basis.
We now show that ¥ is a homomorphism. First we observe that
ATJAT AR JAC =T ARy ATTAY (16.3.1)
It follows that to prove that ¥ is a homomorphism, it is enough to show that
YA JAT AFJAY) = w(AljAT) W (AR TAY).
Using (16.3.1) we find that
WA JAT AFJAY =1T ATF1w(ATTAY)
=17B/**1BJB*
= B'JB/ B*JB.
It follows that ¥ is an automorphism of Mat,,(R) and, by the Noether-
Skolem theorem (Theorem 14.1.4), this implies there is an invertible matrix L

such that
Y(M) =L "ML,

for all matrices M. Since
®(A)B' JB! = ®(A)D(A JA)) = DA JA)) = B JB/ = BB'JB/

and the matrices B! JB/ form a basis, it follows that ®(A) = B. Hence we deduce
that A and B are cospectral and, since ¥ (/) = J, we also see that J — I — A and
J — I — B are cospectral. |
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We offer two further proofs of this result. For the first, let M be the nx n
matrix with the vectors
1,AlL,...,A" 1

as its columns and let N be the corresponding matrix based on B. Then
M"™M=NTN,

from which it follows that there is an orthogonal matrix Q such that QM = N.
Thus we have
QA"1=B"1,

from which it follows that Q1 =1 and so
QA" QT1=B"1
for all r. Now
BTBSI — BT+SI

— QAT+SQT1

— QArQTQASI

— QAI’QTBSI
and since the vectors B’1 for s = 0,...,n — 1 form a basis it follows that B" =
QA" QT and, in particular, B = QAQ.

Our third and final proof uses spectral decomposition and walk generating
functions. The generating function all walks in X is

Yaraned =Y u@'nte.

r=0 r=0

Assuming that A has the spectral decomposition

A=) 0Ey,
0

we deduce that we have the following expression for our generating function as

a rational function: ,
17Eg1
tr(A")) = .
Z (A" )) Z =10

r=0 0
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The number of poles in this rational function is equal to the number of eigen-
values 6 such that 17 Eg1 # 0. Since the matrices Ep are symmetric and idem-
potent, 17 Eg1 # 0 if and only if Eg1 # 0 and therefore the number of poles of the
generating function is equal o the dimension of the cyclic A-module generated
by 1. If X is 1-full, it follows that the numerator of our rational function is:

[T -1t0) =" det(z ' 1- A).
0

We conclude that if X is 1-full, then its spectrum is determined by the generat-
ing function for all walks in X.

Hence if the assumptions of theorem hold, then X and Y are cospectral
and, since their generating function for all walks are equal, it follows from [?]
that their complements are also cospectral.

16.4 Modules and Walks

Let A be the adjacency matrix of a graph X. Then the entries of the powers of
A count walks in X. In particular if z and v respectively are the characteristic
vectors of subsets S and T of V(X), then

ul Aky

is the number of walks of length k in X that start at a vertex in S and end at a
vertex in T. We relate properties of the sequence (1! A*v);~( to properties of
the cyclic A-module (v) 4 generated by v.

If v is a vector in F” and A € Matg.4(F), then the minimal polynomial of A
relative to v is the monic polynomial y of least degree such that w(A)v = 0.

16.4.1 Lemma. If v and w are vectors in F"* and A € Mat;4(F), then the cyclic
A-modules generated by v and w are isomorphic if and only if the minimal
polynomials of A relative to v and w are equal.

Proof. Exercise. a

If (a;)i>0 is a sequence, the Hankel matrix H,, of order n is the n x n matrix
such that,
(Hp)i,j = Qi+ j-2.
The Hankel matrix H is the infinite matrix whose leading n x n submatrix is Hy
(for all n).
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16.4.2 Lemma. If A is self-adjoint, the sequence (u, A'u) determines the iso-
morphism class of the module (u) 4.

Proof. The first k + 1 rows of H are linearly independent if and only if there are
scalars ay, ..., ai such that for all non-negative r,

k .
Y ai{u, A uy=0
i=0

Since A is self-adjoint the left side here is equal to

k .
(u, ) a; A" uy =(A"u, p(A)u)
i=0
where p(?) is a polynomial with degree k. If U := (u) 4, this shows that p(A)u €
U-L. Since p(Aue U, we have

pAueUnUr=0

and therefore p(A)u = 0. It follows that we can read off the minimal polynomial
of A relative to u from the Hankel matrix, and therefore this minimal polyno-
mial is determined by the sequence. O

16.5 An Inner Product on Polynomials

Suppose V is an inner product space and A is a self-adjoint element of End(V).
We develop a connection between cyclic A-submodules of V and sequences of
orthogonal polynomials.

Suppose V is an inner product space, v € V and A is a self-adjoint element
of End(V). We set ourselves the innocent goal of finding an orthogonal basis for
the cyclic A-module U generated by v. This is straightforward, if dim(U) = d
then

v, Ad, ...,Ad_lv

is a basis for U and, using Gram-Schmidt, we can convert this basis to an or-
thogonal basis. The fun starts when we notice that each element of U can be
written uniquely in the form p(A)v, where p is a real polynomial with degree
less than d. So the elements of the orthogonal basis we compute can be written
as

po(A)v,...,pag-1(A)v
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where py, ..., p4-1 are real polynomials. If we apply Gram-Schmidt in the ob-
vious way and do not normalize the elements of the orthogonal basis we pro-
duce, then these polynomials will be monic and p; will have degree i. We want
to determine these polynomials without being forced to use Gram-Schmidt ex-
plicitly.

We introduce some machinery. If p, g € R[¢], define

[p,q1:={p(Av,q(Av).

This is a bilinear form on R[#] and since A is self-adjoint, this form is symmetric.
Let ¥ denote the minimal polynomial of A relative to v. Since dim(U) = d, we
see that deg(y) = d. If p has degree less than d, then p(A)v # 0, whence

[p, pl = {(p(A)v, p(Av) >0.

So our form is positive definite on the space of polynomials of degree less than
d, and thus is an inner product on this space. In fact we prefer to say that we
have an inner product on the quotient ring R[#]/ () (which is a real algebra of
dimension d).

16.6 Spectral Decomposition

To get further we need another description of our inner product. Since A is
self-adjoint, it has a spectral decomposition

A=) 0E,
0

where 0 runs over the distinct eigenvalues of A, and matrices Ey are pairwise
orthogonal projections. If p is a polynomial then

p(A) =) p(6)Ey
0

and therefore
p(Av=> p@O)Eyv.
0

16.6.1 Lemma. If A is a self-adjoint operator with spectral decomposition A =
> 9 O0Ep, then the dimension of the cyclic A-module generated by v is equal to
the number of eigenvalues 6 of A such that v Eqv #0.
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Proof. Assume U = (v) 4. If 0 # 1, then EgE; = 0 and therefore the vectors Egv
and E;v are orthogonal. Hence the nonzero vectors Egv form a linearly inde-
pendent set, and so they are a basis for U. To complete the proof we observe
that

vTEgv = UTESV = vTEeTEgv =(Egv, Egv),
which shows that Egv # 0 if and only if vTEgv #0. O

It also follows that if ¥ is the minimal polynomial of A relative to v, then

y= [[ -0).

0:Egu#0

For the next result, note that the idempotents Ey are positive semidefinite,
and therefore x” Egx = 0 for any vector x.

16.6.2 Lemma. If A is a self-adjoint operator with spectral decomposition A =
Y 90Ep, then

(p,ql = Z p©)q©®) v Egu.
0
Proof. We have

p(Av=) pOEs, qAv=> qO)Eyv,
0 0

and the result is immediate. a

It follows from this that if p is non-negative on on the set of zeros of y, then
[1,p]l =0.

16.7 Orthogonal Polynomials

If A is self-adjoint and v generates a cyclic A-module of dimension d, then
Gram-Schmidt applied to the sequence

gives rise to an orthogonal basis of the form

po(Av, p1(Av,...,pa-1(A)v
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where p; is a monic polynomial of degree i. Since these vectors are orthogonal,
ifi # j, then
(pi,pj1=0.
Thus our polynomials are orthogonal with respect to this inner product. We use
this derive a recurrence for these polynomials.
Since any polynomial of degree at most i is a linear combination of p,, ..., p;,
we see that deg(g) < j then

[pj,ql =0.
Note also that, since p; is monic,

t' = pi(0)+r(0),
where deg(r) < i and therefore
[pi, t'] = [pi, pil.
We extend our sequence of polynomials defining p; to be .

16.7.1 Theorem. Suppose A is a self-adjoint operator on the inner product space
VandveV. Thenfori=0,...,d—1, the orthogonal polynomials p; satisfy the
recurrence
tpi(0) = pi1() + a;ipi (1) + bipi—1 (1)

where
_ ltpi, pil b = [pi, pi

pipil” 7 picLpicl)
Proof. We first show that the p; can be defined by a three-term recurrence as
shown, and then we determine the coefficients a; and b;.

If j <i—1, then p;(¢) and tp;(¢) are orthogonal and therefore

i

0=I[pi tpjl=1tpi p;l
If j<i+1,then p; and tp; are orthogonal and so [¢p;, p;] = 0 in this case too.
It follows that ¢p; is a linear combination of p;;1, p; and p;_;.
Suppose
tpi(D) =cipir1(D) +aipi(t) + b;p;_1(1).
Since p; and p;4; are monic we have ¢; = 1. To determine a; we take the inner

product of each side with p;, and obtain the given expression for a;. If we next
take the inner product of each side with p;_; we find that

_ 1tpi, pi-1]
" Ipic, pic1)’
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However [tp;, pi-1] = [pi, tpi-1] and since p; and p;_, are monic,
[pi, tpi-1] = [pi, pil.
We now have
Api(Av =pis1(Av+aipi(Av+bipi-1(A)v,
whence the matrix representing the action of A relative to the basis
pPo(A)v,...,pa-1(Av

is tridiagonal:
ap 1
bl a) 1

bg—> ag—> 1
ba-1 aa-1
If we denote the characteristic polynomial of the leading i x i submatrix of this
by g;, then we find that

tqi =qir1+aiqi+b;iqi-1,

whence p; = ¢g; and pg =v. O

16.7.2 Lemma. The zeros of p; are real and distinct.

Proof. Suppose p;(t) = f(t)g(t), where g is nonnegative on the zeros of y. We
show that this implies that g is a constant polynomial, and then deduce the
claims of the lemma from this.

Suppose p; = f g where g is nonnegative and deg(f) < i. Then

0=1[pi, f1=).pi@FO) v Egv=Y_ f6)*g©®) v" Eyv.
0 0

Since both f2? and g are nonnegative on the zeros of , this implies that f(0)g(0) =
0 for all 6 and so deg(p;) = deg(y). Hence we conclude that we cannot have a
factorization of p; as described.

If p; had a repeated root 0, then it would have non-negative factor (z — 0)?;
if it had a complex root a + bi then, since p; is a real polynomial it would also
have a — bi as a root, and hence would have the nonnegative quadratic

(t—a)®+ b®

as a factor. O
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16.8 Distance-Regular Graphs

We present an application of the theory from the previous sections. Suppose X
is a distance-regular graph with distance matrices Ay, ..., Az, where Ag = I. Let
A= A; and consider the cyclic A-module generated by e; (the first vector in the
standard basis for R™).

Our first observation is that p,(A)e; is a non-zero scalar multiple of A,e;.
To prove this, we note that A, is a polynomial in A; with degree r and thus

Are1 =qr(Ae
where deg(q,(f)) = r. There is a nonzero constant y such that
(a1, qs] = {qr (A1), s(A1)) = Y(Arer, Aser) =0

Hence the polynomials g; are orthogonal with respect to our inner product on
polynomials, and therefore each g; is a non-zero multiple of p;.

It follows that the cyclic module generated by e is the space of real func-
tions on V(X) that are constant on the cells of the distance partition with re-
spect to the vertex 1. Hence the matrix representing A; relative to the orthog-
onal vectors p,(A)e; is the transpose of the intersection matrix. Equivalently
this transpose is equal to the adjacency matrix of the quotient of X relative to
the distance partition.

16.9 Locally Distance-Regular Graphs

The theorem in this section is due to Godsil and Shawe-Taylor [] (with a differ-
ent proof).

If u is a vertex in X, let 6, denote the distance partition of X relative to u.
Then X is distance regular if

(a) For each vertex u, the partition 6, is equitable, and
(b) The quotient X/d, is the same for each vertex.

Let us say a graph is locally distance regular if (a) holds. We aim to characterize
locally distance-regular graphs.

If u € V(X), then e, will denote the characteristic vector of u viewed as a
subset of V(X).
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16.9.1 Lemma. Let u be a vertex in X with valency k,. If 6, is equitable and
v~ u, then

1
(ew, Arev> =—ey, Ar+1 ey).
ky
Proof. Let A = A(X) and let U be the cyclic A-module generated by e,. Let z;
denote the characteristic vector of the i-th cell of §,,. Then the vectors zg,..., z;
form an orthogonal basis for U. If w € R", then the projection of w on U is
o (w,zp)

=) ——z.
— (zi, Zi)

A

In particular, if v € V(X) and d := dist(u, v), then

1
(Za,zq)

V= Zd.

Note that zy = e, and z; = Aey, and so if v ~ u then

. lA
UV=—A¢ey.
k,

Therefore
(ey— k' Aey, A"uy =0

for all r and thus

1 1
(ey, ATuy = —(Aey, Aey) = —(ey, AT ey). 0

16.9.2 Corollary. If u ~ v and 6, and 6, are equitable and r = 1, then

(ey,Aley) (ey, A"ey)
ke ko

We see that if u and v have the same valency, then
(e, ATey) = (ey, Al ey)

for all r and so the cyclic modules generated by e, and e, are isomorphic. This
implies that the quotients of X relative to the corresponding distance partitions
are isomorphic.

16.9.3 Theorem. If X is locally distance regular, then either X is distance-regular
or X is bipartite and semiregular.
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Proof. Suppose v, w ~ u and assume v has exactly a neighbors in common with
u. Then v has exactly k, — 1 — a neighbors at distance two from u. Since 6, is
distance regular each neighbor of u has exactly k, — 1 — a neighbors at distance
two from u. Since the number of neighbors of w at distance two from u must
be k,, — 1 - a, we conclude that k;, = k.

A standard argument yields that X is either regular or bipartite and semireg-
ular, and in the first case we see that X is distance-regular. (In the second case
you may show that the halved graphs of X are distance-regular.) O

16.10 Coherent Algebras

A coherent algebra is a matrix algebra that contains I and J and is closed under
Schur multiplication and transpose. The span of I and J provides a trivial ex-
ample. A commutative coherent algebra is the same thing as the Bose-Mesner
algebra of an association scheme (although this is not trivial). The coherent al-
gebra generated by a set of matrices is the smallest coherent algebra that con-
tains the given set. The coherent algebra of a graph X on v vertices is the co-
herent algebra generated by A(X).

16.10.1 Theorem. A coherent algebra has a unique basis of 01 -matrices. If this
basis is formed by the matrices &/ = {Ay,..., Ag} then:

(@ XiAi=].

(b) Some subset of &/ sums to I.

(c) AjoA;=08;;A;.

(d) There are scalars p;,j(r) such that A;Aj =3, p;, j(r) Ay.
(e) Al €of foreachi.

(f) All non-zero rows and columns of A; have the same sum.

We saw in Section 1.3 that the centralizer of a set of permutation matrices is
a coherent algebra. Association schemes provide an overlapping class of exam-
ples.

The basis of 01-matrices of a coherent algebra is known as a coherent con-
figuration. Their basic theory was laid out by D. Higman []. Coherent config-
urations generalize association schemes in two ways. First, the identity matrix
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might not be an element of the 01-basis and, second, the coherent algebra need
not be commutative. A coherent algebra is homogeneous if I belongs to its ba-
sis. The commutant of a permutation group is homogeneous if and only if the
the group is transitive.

16.10.2 Lemma. A commutative coherent algebra is homogeneous.

Proof. If € is commutative, then each matrix in it commutes with /. Hence any
diagonal matrix in € must be a multiple of I. O

16.10.3 Lemma. If6 is a homogenous coherent algebra, then any graph whose
adjacency matrix lies in 6 is walk regular.

Proof. If M € €, then the diagonal of M k is constant. O

If a coherent algebra is not homogeneous, then its diagonal elements deter-
mine a partition of its vertex set, and this partition is equitable.

If D is a diagonal matrix in a coherent configuration with coherent algebra
%€, then the subspace D€ D of € is an algebra with identity D. Itis Schur closed,
and hence it it gives rise to a homogeneous coherent configuration.
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Chapter 17

Line Digraphs

17.1 Line Digraphs

We now decide to view an edge i j in X as a pair of directed arcs (i, j) and (j, 7).
(So all our graphs are directed.) The line digraph LD(X) of a directed graph X
has the arcs of X as its vertices, and

(ij, ko)

is an arc in the line digraph if ij and k¢ are arcs in X and j = k. Generally
the line digraph is a directed graph. The out-valency in LD(X) of the arc ij is
equal to the out-valency of j in X. Our eventual concern will be with a weighted
adjacency matrix for LD(X).

We begin with two incidence matrices D; and D,, with rows indexed by the
vertices of X and columns by its arcs. If u is a vertex and e an arc of X, then
D, . =1if u is the initial vertex of e, while (D), =1 if e ends on u. Both Dl.T
and DOT are the characteristic matrices of partitions of the arcs set of X.

17.1.1 Lemma. If D; and D,, are the vertex-arc incidence matrices of the graph
X, then D; DY is the adjacency matrix of X and D! D; is the adjacency matrix of
its line digraph. |

From this we see that A(X) and A(LD(X)) have the same non-zero eigenval-
ues, with the same multiplicities.

Let P be the permutation matrix corresponding to the permutation of the
arc set of X that maps each arc to its reversal. Then P? = I and

D;=D,P. D,=D;P

171
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It follows that
A(LD(X)) =D/ D, =D/ D;P=PD}D,
whence
PA(LD(X))P = ALDX).

Note also that A(LD X) — P is a 01-matrix, since for each arc uv there is an arc
in LD(X) from uv to vu.

We now turn to weighted matrices. Let ﬁo and ﬁ,- denote the matrices we
get from D, and D; by scaling each row so that it is a unit vector. We have

and
DoDI'=1.
From the latter it follows that
(DIDy?=DID,DID,=DID,;
thus 135 D, is symmetric and idempotent, and represents orthogonal projec-
tion onto the column space of D[ Also

DIDi1=DID,,1=DI=1,
from which we see that D! D is the transition matrix of the Markov chain formed
by the obvious random walk on LD(X).
The matrix Dl.TDO is a weighted adjacency matrix for LD(X). Let A denote
the diagonal matrix whose diagonal entries are the valencies of the vertices of

X. Then the matrix
A2 gp-112

is the normalized adjacency matrix of X, which we denote by A. We observe
that
D;D} =D,D} = A.
So ﬁiTﬁo and A have the same non-zero eigenvalues with the same multiplici-
ties.
Why we would we consider using the normalized adjacency matrix of X?
Assume X has no isolated vertices, which means A is invertible. We have

det(t1 — A) = det(A) "' det(rA — A) = det(¢I - AL A).

Here A~! A is a non-negative matrix with each row sum equal to 1—it is the
transition matrix for the obvious random walk on X. The eigenvalues of A are
the eigenvalues of this transition matrix, and hence govern the behavior of this
random walk.



17.2. QUANTUM WALKS 173

17.2 Quantum Walks

A random walk on a (possibly directed) graph is represented by a non-negative
square matrix whose rows sum to 1. One way of constructing such a matrix is
to choose a unitary matrix U, and then take

UoU

as our transition matrix. Since quantum physicists prefer unitary operations,
they like this approach. A quantum random walk of length n based on U is
determined by

U'oU™,

The problem is to find natural constructions of unitary matrices with given un-
derlying directed graph. For line digraphs there is an easy way to do this.
Suppose M is an orthogonal projection, thatis, M = MT = M?. Then

CM~-D*=4M?-4M~+I1=4M—-4M+1=1

and, since 2M—1I is symmetric, 2M—1I is orthogonal. So referring to the previous
section we see that

2DIDy -1
is orthogonal. Since the permutation matrix P is orthogonal, so is the product

@D!D,-npP=2D!D;-P

Thus we have a quantum walk associated with each graph.
Emms et al [] determine the eigenvalues of 2D! D; — P. We will do this in a
different way.

17.3 Eigenvalues of Quantum Walks

Let U be given by
U:=2DID;-P

We will determine the eigenvalues of U, but before we do this we show that the
answer will be simpler than you might expect.

The matrix U is the product of 2D! D, — I and P, and these two matrices are
involutions—their squares are the identity matrix.
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17.3.1 Theorem. Let P and Q be v x v matrices such that P> = Q*> = 1. If z is an
eigenvector for PQ, then the subspace spanned by {z, Pz, Qz} has dimension at
most two, and is invariant under the algebra (P, Q).

Proof. Suppose z # 0 and PQz =6z. Since (PQ)_l =QP,
QPz=071z
and therefore
P{z,Pz,Qz} ={Pz,z,0z}, Q{z,Pz,Qz}= {Qz,H_lz, z}.

This proves that the span of z, Pz and Qz is (P, Q)-invariant. The image of this
subspace under P is spanned by z and Pz, and so its dimension is at most two.
Since P is invertible it follows that z, Pz and Qz are linearly dependent. O

If the involutions P and Q here are orthogonal, then the orthogonal com-
plement of a (P, Q)-invariant subspace is (P, Q)-invariant. Hence:

17.3.2 Corollary. If P and Q are orthogonal involutions of order v x v, there is
a basis of R" with respect to which P and Q are block diagonal, and each block
has order at most two. O

We turn to details.

17.3.3 Theorem. Let X be a graph with v vertices and let U be the orthogonal
matrix representing the quantum walk on LD(X). Then R" is the direct sum of
the orthogonal subspaces

colDiT + colﬁg, ker(D,) nker(D;).

The first subspace decomposes into an orthogonal direct sum of the space spanned
by the constant vectors and 2-dimensional subspaces C(1), where A runs over
the eigenvalues of A. The eigenvalues of U on C(A) are A+ VA2 — 1. The second
subspace is the direct sum of two subspaces K, and K_,; we have U [K; = I and
U[K_; =—1I. The eigenvalues 1 and —1 have equal multiplicity.

Proof. We have

UDT =2D7 ;D" - PDT =2DT — BT = D! 17.3.1)
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and
UDI' =2DID;Dl - PDI =2DIA-DT. (17.3.2)

1

Consequently
U?B! =2UDT A~ D!
Suppose z is an eigenvector for A with eigenvalue A, and y := lA)l.Tz. Then
U’y=U*D!z=2UD/ Az- D] z=2AUy-y
and so
(U?>-2AU+ Dy =0. (17.3.3)
It follows from Equations (17.3.1) and (17.3.2) that the subspace sum
collA)iT +col D!
is U-invariant and consequently its orthogonal complement
ker(D,) nker(D;)

is also U-invariant. These subspaces are also P-invariant, and since U = 255 ﬁi—
P, the restrictions of U and P to ker(D,) nker(D;) are equal and so the eigen-
values of U on this subspace are +1.

Equation (17.3.3) shows that y and Uy span a U-invariant subspace. If this
subspace is 1-dimensional, then y is an eigenvector for U and

AT AT
y€ecolD; ncolD,.

Therefore y is constant on arcs with a given initial vertex, and constant on arcs
with a given final vertex. It follows that y is constant on the arcs in a given
component of X, and its eigenvalue is 1.

If y and Uy span a 2-dimensional space, then the minimal polynomial on
this subspace is > — 21t + 1 and the eigenvalues of U on this subspace are

A+VA2-1.

Also
Uy=UD/z=D]z
and therefore y and Uy both lie in col D + col D]
Since the trace of U on a subspace C(A) is zero and

tr(U) = tr@DID; - P) =2tr(DI D;) = 2tr(D; D) = 2tr(A) = 0,

it follows that 1 and —1 have equal multiplicity. ]
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Chapter 18

Lie Algebras

We study Lie algebras because they force themselves on us when we study the
Terwilliger algebra of the binary Hamming scheme. As we will see, there are
other combinatorial applications. Additionally we will work with the univer-
sal enveloping algebra of a Lie algebra, which provides a useful example of an
infinite dimensional algebra.

18.1 Basics

A Lie algebra over a field F is a vector space with a multiplication [a, b] such that
(@ [b,al=-la,b].
(b) For all a, b and c, we have the Jacobi identity:

[a,[b,c]] +[b,[c,all +[c,[a, bl] =0.

The only fields we will use in this context are R and C, whence we see that
[a,a] = 0 for all a. We call [a, b] the Lie bracket or commutator of a and b,
and we abbreviate [a, [, c]] to [a, b, c]. A Lie algebra is abelian if [a, b] = 0 for all
a and b.

Note that a Lie algebra is not and algebra in the sense we have used elsewhere—

the multiplication is not even associative in general.
We offer examples:

(@) gl(n,F), the Lie algebra of all n x n matrices over [, where

[A,B]:= AB—- BA.

177
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(b) The real skew symmetric matrices of order n x n form a Lie algebra over R.
(c) R3 with the cross product. We will use a A b to denote the cross product.

(d) A derivation of a commutative algebra < over F is a map 6 : &/ — F such
that

6(fg)=6(fg+fo(g).

You may check that the product of two derivations is not in general a deriva-
tion, but their Lie bracket is, and further the set of derivations of </ is a Lie
algebra. By way of a more specific example take </ to be the polynomial ring
Flx1,...,x4] and note that, for each i, partial differentiation with respect to
Xx; is a derivation.

The construction in (a) can be usefully generalized: if ¢ is an algebra over
[, then the multiplication
[a,b] := ab-ba

gives us a Lie algebra. Thus if V is a vector space, then End(V) is a Lie algebra
under this operation. For fixed a in &, the map from &/ to itself given by

X :— [a,x]

is a derivation (as you should check).

A subspace of a Lie algebra £ is subalgebra if it is closed under the Lie
bracket. You could check that the subspace of skew symmetric matrices is a
subalgbra of gl(n,F). A subspace U of £ is an ideal if [a, u] € U, for all uin U.
The subspace of strictly upper triangular matrices is an ideal in the Lie algebra
formed by the set of all upper triangular matrices.

If &£ is a Lie algebra and S, T are subsets of £, then we define [S, T] to be
the subspace of £ spanned by the set

{lx,yl:x€S§,ye T}

In particular the subspace [£, £] is a subalgebra of £, called the commutator
subalgebra.
For example, suppose Z = gl(V). Then for any A and B in £, we have

tr[A, B] =tr(AB) —tr(BA) =0.

So the commutator of g/(V) consists of matrices with zero trace. It can be
shown that it contains all matrices with zero trace. It is known as the special
linear Lie algebra and is denoted by s/(V). You may show that s/(V) is equal to
its commutator subalgebra.
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18.2 Enveloping Algebras

The construction of the Lie algebra gl/(V) from the algebra End(V) can be gen-
eralized: if «/ is an algebra and a, b € £, we can define their Lie bracket by

la,b] := ab- ba.

This leads us to ask which Lie algebras arise in this way, and the answer is that
they all do. Let us denote the Lie algebra we get from « by Lie«/. The uni-
versal enveloping algebra of £ is essentially the smallest algebra % such that
% =Lie%%. Of course the adjective ‘universal’ indicates that a category theorist
has escaped. What we should say is that % is defined by the condition that if
v : ¥ — Lie« for some algebra </, then ¢ can be factored into a Lie homomor-
phism from £ to Lie% and a Lie homomorphism from Lie % to Lie « induced
by an algebra homomorphism from % to <.

We consider a particular example, using the the Lie algebra s/(2,R). The
elements of this are the 2 x 2 matrices of trace zero, which form a vector space
of dimension three, with basis

BBl )

(X, Y]=H

We note that

and that
[H, X]1=2X, [HY]=-2Y.

The universal enveloping algebra of s/(2,F) is the quotient of the free polyno-
mial algebra in variables X, Y modulo the relations

XY-YX-H=0, HX-XH-2H=0, HY-YH+2Y =0.

Note that this is an infinite-dimensional algebra—it can be shown that the ele-
ments X*Y¢ H™ form a basis.

18.3 Posets

A poset is ranked if all elements covered by an element have the same height.
If P is ranked then the i-th level number is the number of elements with height
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i. Thus the poset formed by the subsets of {1,...,n}, ordered by inclusion, is
ranked and the i-th level number of (/). If P is ranked with height d and the
i-th level number is w;, we say that P is rank symmetric if w; = wy_; for all i,
and we say P is unimodal if the sequence of level numbers is unimodal. The
lattice of subsets of {1, ..., n} is rank symmetric and unimodal.

An antichain in a poset P is set of elements such that no two are compa-
rable. (Equivalently it is a coclique in the comparability graph of P.) The el-
ements of given height in a poset form an antichain, and we say P is Sperner
if the maximum size of an antichain is equal to the maximum level number.
More generally we call P strongly Sperner if the maximum size of a subset that
does not contain a chain of length k + 1 is equal to the sum of the k largest level
numbers. A Peck poset is a ranked poset that is rank symmetric, unimodal and
strongly Sperner. The lattice of subsets of a finite set is Peck.

We use P to denote the the vector space R”. We can represent subsets of P
by their characteristic vectors, which belong to P. If a € P we will often denote
the characteristic vector of a by a. The subspace of P spanned by the (charac-
teristic vectors of) the elements of height i will be denoted by P(i).

Suppose P is a finite ranked poset. An element of End(P) is a raising oper-
ator if for each element a of P, the support of Ra is a subset of the elements of
P that cover a. Similarly we define lowering operators. If R is a raising operator
then R” is lowering. Both raising and lowering operators are nilpotent: if P has
height d and R is a raising operator, then R4*! = 0.

The following result is due to Stanley and Griggs.

18.3.1 Theorem. Let P be a rank-symmetric poset with height h. Then P is Peck
if and only if there is an order-raising operator R such that the mappings

. h
RMIPG):PG) = P(h—i), i=0,..., L—J 0
are invertible.

Using the above result, Proctor showed the following.

18.3.2 Theorem. A ranked poset is Peck if and only if it has raising and lowering
operators R and L such that the Lie algebra generated by R and L is isomorphic
tosl(2,0). O

We derive an important consequence of these results.
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18.3.3 Corollary. If P, and P, are Peck posets, then so is Py x P,.

Proof. If ; and P, are Peck then the vector spaces °; and [P, are modules for
sl(2,C). Now
CPIXPZ =P,®P,

and therefore C”*2 is a module for sI(2,C). We conclude that P; x P, is Peck.1
If U and V are modules for an algebra «f then U® V is a module for «f x </,

but it is not in general a module for «/. However it is module for « when «f is
an enveloping algebra of a Lie algebra (and when « is a group algebra).

18.4 Representations of Lie Algebras
Alinear map v from a Lie algebra £ to a Lie algebra %> is a homomorphism if

y(la, b)) = [y(a),w (D).

A representation of a Lie algebra £ is a homomorphism into gl(n,F). More
generally ¥ could be a homomorphism into End(V) for some vector space V;
in this case we may say that V is a module over £. A subspace of V that is
invariant under the operators in ¥ (%) is a submodule. (Calling V' a module for
X is a courtesy, since modules are defined over rings—if we wish to be precise,
it is a module for the enveloping algebra.)

If £ is aLie algebra and A € £, we define the adjoint map ad 4 by

ads(X) :=[A, X].

This is a linear map, and is a derivation of the enveloping algebra. By Jacobi’s
identity
adA([X, Y] =[A [X, Y]] = -[X,[Y, Al - [V, [A, X]]
=[X,[A Y] +[[A X], Y.

We also have, by appeal to Jacobi

(adxady —ady adx)(2) = [X,[Y, Z]] - [, [X, Z]]
=[X,[Y, Z1]+[Y,[Z, X]]
=[[X,Y], Z]
=adx,y(2),
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which shows that ad 4 is a homomorphism from £ into the Lie algebra End(L).
An element A of £ is ad-nilpotent if ad 4 is nilpotent. We observe that
ada(X) = [A, X],
(ad2)*(X) = [4,[A, X]],
(ada)’(X) = [A4,[A[A, X]]]
and in general, (ad 4)**!(X) = [A, (ad 4)*(X)]. If A€ gl(n,F), then we may repre-

sent the linear map ad 4 by
A®I—-1I® A.

It follows that if A¥ =0, then (ad 4)?f = 0. In particular if A in gI(V) is nilpotent
then ad,4 is nilpotent. Thus we have the fortunate conclusion that nilpotent
elements of g/(V) are ad-nilpotent.

18.5 Bilinear Forms

Suppose v is a representation of the Lie algebra £ in End(V). A bilinear form
p on V is invariant if

By (X u,v) + Bu,y(X)v)=0
for all # and v from V. By way of example, if V is £ itself then
B(X,Y) :=tr(adxady)

is a symmetric bilinear form, known as the Killing form. We check that it is
invariant.

B(A,X],Y) =tr(ada xjady)
=tr([adx,ady]ady)
=tr(adgadxady —adxad ady)

Similarly
B(X,[A Y])=tr(adxadyady —adxady ad )

from which we see that f is invariant. (Thus the adjoint of adx relative to the
Killing form is —ady.)
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Suppose Z is a Lie algebra with a non-degenerate invariant bilinear form.
If X3,..., X, is a basis for &£, there is a dual basis Y7, ..., Y; such that

B(Xi,Yj) =0,

The Casimir element of the universal enveloping algebra is defined to be

d
Y XY
i=1

18.5.1 Theorem. Let £ be a Lie algebra with a non-degenerate invariant bilin-
ear form 3. Then the Casimir element is independent of the choice of basis for
%, and lies in the center of the universal enveloping algebra.

Proof. Let Xj,...,X,; be a basis for £ with dual basis Y7,...,Y; and let A be the
Casimir element defined using this pair of bases. Let Uj,..., Uy and V,...,Vy
be a second pair of dual bases. Then there are scalars p;,; and g; j such that

Ui=) pikXe
k
Vi=) 0jcYe.
l
We have
2 UiVi= ) pikoieXiY; (18.5.1)
i i,k,¢

Since B(X;,Y;) =6; j, we have
8i,j=BWULV)=)_pik0jk
k

So if we define matrices R and S by R := (p;,;) and S := (0;,;) then RST = 0.
Consequently SR” = 0 and therefore

8ke =) Pik0Tir-
i

Hence (18.5.1) implies that }_; U; V; = A.
We now prove A lies is central. Suppose A € £. There are scalars «; ; and
Bi,j such that
[A,Xi]=) a;;X;
J
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and
[A,Yi]=) Bi;Y;
J

Since f is invariant,
0=pBA X;l,Y)) +B(X;,[A Y;]) = a;j+ B,
This implies that

YIAXY;=) a;jX;Yi=-) B;iX;Yi=—-) Xi[AYl.
i i 0 i

Now we compute that

AN=Y AX;Y; =) [A XY +) X;AY;
i i i

and
AA=) X;YiA==) XilAYil+) X;AY,
i i i

whence we conclude that AA = AA. O
18.5.2 Lemma. If A is the Casimir element of the Lie algebra £ and ¢ is a rep-

resentation of £, then tr(p(A)) = dim(p(£)). |

18.6 An Example

We compute the Casimir element for sl(2,C), relative to the form
B(X,Y) :=tr(adxady).

Recall that X, H and Y form a basis, where
01 1 O 00
x=o o #=lo ) =[o })

[X,Y]=H, [HX]=2X, [HY]=-2Y.

and
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It follows that
0 -2 0 0 0O 20 0
ady=|0 0 1|, ady=|-1 0 0|, adyg=]0 0 O
0 0 O 0 20 00 -2
If
A:(a b)’
c —a
then
2a -2b 0
adg=|-c 0 b
0 2c -2a

and now it is easy verify that if
B(A,X)=Pp(A H)=p(AY) =0,

then A = 0. Therefore £ is nondegenerate.
Next we calculate that

BX,Y)=p(Y,X)=4, PB(H,H)=8
and all other inner products are zero. So the dual basis to (X, H,Y) is
1 1_1
Re &
4 4 '8
and the Casimir element is
1 1,
A=—(XY+YX+-H").
4 2

Using the fact that
[A,BC] =[A,B]C+ B[A,C],

itis not hard to verify directly that A is central.

18.7 Irreducible Modules

We construct a family of irreducible modules for s/(2,C), by constructing irre-
ducible modules for its enveloping algebra.
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18.7.1 Lemma. Let% denote the enveloping algebra of s1(2,C), with generators
X, Y and H, and suppose V is a module for % with finite dimension. If v is an
eigenvector for H in its action on V, then there are integers k and ¢ such that
X*v=0andY‘v=0.

Proof. Suppose Hv = Av. Recalling that [H, X] = 2X, we have
HXv=XH+2X)v=AXv+2Xv=A+2)Xv.

Hence if Xv # 0 and A is an eigenvalue of H, then A + 2 is also an eigenvalue of
H. A similar calculation shows that if Yv # 0, then Yv is an eigenvector for H
with eigenvalue A - 2. |

Note that XYv is an eigenvector for H with eigenvalue A, consistent with
the fact that H and XY commute.

If V is a module for %, an element v of V has weight A if Hv = Av. If Hv =
Av and also Xv = 0, we say that v is a highest weight vector of weight A. The
eigenspaces of H are often called weight spaces. We have seen that every finite-
dimensional module for %/ must contain a highest weight vector; the following
theorem completely specifies the structure of the cyclic /-module generated
by a highest weight vector.

18.7.2 Theorem. Suppose V is a module for % and v is a highest weight vector
in V with eigenvalue A. Let d be the least non-negative integer such that Y% v =
0. Then A = d -1, the cyclic % -module generated by v is simple and the vectors

v,Yo,..., Y41y
form a basis for it. Further, fork=0,1,...,d -1,
HY*v=(d-1-20Y"), XY*v=kd-bY*"

Proof. The adjoint map adp is a derivation of % whence

H,Y" = [H, YY" + Y[H, Y5
and a trivial induction yields that

[H,Y* = -2kY".

If Hv = Av, we have

HY*y=[H, YN+ Y*Hy = —2kY* v+ AY* v = A -2k Y 0.
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Let d be the least integer such that Y?v = 0. Then the vector space V; spanned
by the vectors
vYy,..., yi1y
has dimension d, and these vectors for a basis for it. Since these vectors are all
eigenvectors for H, we see that V; is invariant under both Y and H. We prove
that it is X-invariant.
We have
(X, Y*1 =[x, Y1Y* + VX, YF
Since Xv = 0, it follows that
XY= 1x, Yqiv=HY* v+ Y[X, Y o
and so by induction we have
XY*v=HY* v+ YHY* 2v+...+ Y*" T Ho.

Since the vectors Y ¥ v are eigenvectors for H, this implies that XY*v = ¢, Y* 1y,
for some constant c; and therefore V; is a module for %. We have

ck=A+2-2k)+A+4=2k)+-+A=kA—(K*-k) =k(A—k+1).

We see that c, is the sum of the eigenvalues of H on V; and so ¢, = tr(H). As
H=XY -Y X we have tr(H) =0, and therefore A = d — 1.

It remains to prove that V is simple. Suppose V) is a non-zero submodule of
V. Then V) contains a highest weight vector u, and since u is an eigenvector for
H it must be a non-zero scalar multiple of one of the vectors Yiv. Since Xu =0,
we see see that u is a non-zero scalar multiple of v. Hence the cyclic module
generate by u is equal to V and therefore V; = V. |

This result implies that the %/ module generated by a highest weight vector
v is determined by its dimension (or by the eigenvalue of v). Also note that any
simple module is isomorphic to one of the modules described in this theorem,
since any module contains a highest weight vector.

18.7.3 Corollary. If C is the Casimir element of sl(2,C), then CYky = (d? -
DYkw.

Proof. From above we have
Xy Yfu=(k+1(d-k-1Y*0
YXY*u=kd-kY*y
HY*v=(@d-1-2k)Y*w

and the claim follows easily from these. |
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18.8 Semisimple Elements

We derive two useful identities that hold in the enveloping algebra of sl(2,C).
We define
Hy:=H+kI

and we define Hy., recursively by Hy.o = I and
Hy;i1 = Hy;i Hg—j+1-
18.8.1 Lemma. We have

mAn
xmyn=y r!(m)
.

n

r=0 r

) Yl’l—er—an_m;r

Proof. First prove by induction that if n = 1, then
X"Y=YX"+nX""'H, (18.8.1)

and then, by a second induction, derive the lemma. O

18.8.2 Lemma. In a finite dimensional representation of % (s1(2,C)), if X* = 0

then
k-1

[ 'H-rp=0.
r=—k+1
Proof. We do not give a complete proof, but offer a generous hint and leave the
details as an exercise.
Suppose V is a finite-dimensional representation for %/. The idea is to prove
that, if X¥ =0, then fori = 1,..., k we have

X " Hy 1,941 =0,

Setting i = k in this yields the result.
For convenience we prove the above claim in the case k = 4. We have the
following equations:

XY =Y X* +4X3Hz, (18.8.2)
X4 Y2 — Y2X4 + 8YX3H2;1 + 12X2H2;2 (1883)
X*y? =YX +12Y? X Hy;1 +36Y X Hip + 24X Hy 3 (18.8.4)

XY =Y X +16Y3 X3 Hy, +72Y*X? Hyp + 216Y X Hy3 + 24Hy,,  (18.8.5)
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Since X* = 0 we see that (18.8.2) implies
X3Hz, =0.
Now multiply (18.8.3) on the right by Hs; since X H; = H;_» X, we get
0=8Y X HsH,+12X?*H, H, Hs
and since Y X3 H; = 0, we deduce that
X?Hz.3 = 0.
Next multiply (18.8.4) on the right by H> H3 and deduce that since
Y X*Hy.2HyHy = YX?HyHy Hy H3 = Y X* Hy.3 Hy = 0,

that
XHz5=0.

Finally multiply (18.8.5) on the right by H;.3 to deduce that
H3;7 =0. O
Recall that H, XY and Y X all commute.

18.8.3 Lemma. If1 < k < n, then

k-1
X"k = ([T X+ (= D Hopaien)| X"
i=0

Proof. From (18.8.1) we have
XY =YX"+nX"'H, 1 =YX "+ nH_pn X" '=(YX+nH_, ) X"}

and use induction on k. O

18.8.4 Theorem. In a finite-dimensional representation of % (sl(2,C))), the im-
agesof H, XY and Y X are semisimple.
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Proof. Since H and XY commute and Y X = XY — H, it is enough to show that
H and Y X are semisimple. By Lemma 18.7.1, there is an integer k such that
X* = 0. From Lemma 18.8.2 it follows that H is semimple, and so the underlying
vector space V is a direct sum of eigenspaces of H. Suppose V) is one of these
eigenspaces, where A is the eigenvalue of H.

By Lemma 18.8.3 we have

0=X*Y*=(YX+k(H-(k-1)D)---(YX + H)
and if z€ V), then
0=(YX+k(A—(k=1D--(YX+)z.

Hence the minimal polynomial of Y X on V) has only simple zeros, and there-
fore Y X is semisimple on V). We conclude that Y X must be semisimple. |

18.9 Semisimple Modules

18.9.1 Theorem. Any finite dimensional module for % (sl(2,C)) is semisimple.

Proof. Let % denote % (sl(2,C)), let M be a finite-dimensional % -module, and
let C be the Casimir element of %/. Since C is central and semisimple, M is the
direct sum of eigenspaces of C, and so to prove the theorem it will suffice if we
show that any eigenspace for C semisimple.

Hence we assume that M itselfis an eigenspace for C. Since H also is semisim-
ple, M is the direct sum of weight spaces M, and, if N < M, then N is the direct
sum of its weight space N, where

Ny =NnM,.

We have
dim(M,) = dim(Ny) + dim(M,/ N,).

Note that M/N is a % -module and
(M/N)g = Mg/ Ng.
Next assume we have the composition series for M:

0=My<M;<:--<M,=M.
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Then .
dim(My) = ) dim(M;/M;_1)s
i=1
but M;/M;_, is a simple %/-module and consequently dim(M;/M;_;)s = 1. We
conclude that dim(M,) = r and that dim(M) is r times the number of eigen-
values of H. The cyclic % -submodule of M generated by a non-zero element
is simple and, since all non-zero elements of M are eigenvectors for C with the
same eigenvalue, all these simple modules have the same dimension.
Choose a basis x;,..., x; for M. Then

M=x1%+---+x3%.

where each submodule x;%/ contains a simple submodule S; (say). (We do not
assume that this is a direct sum.) Since dim(M,) = r, we have d = r. Since
X1,..., X%, is a basis, the sum

Sl +---+ Sr

is direct and therefore dim(M) is bounded below by r times the number of
eigenvalues of H. But we saw that equality holds, and therefore M is a direct
sum of simple modules as required. |

This proof follows Jantzen [?].
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Chapter 19

Terwilliger Algebras

Let o/ be an association scheme with d classes and let 7 be an equitable parti-
tion of its vertex set with e classes. Define the diagonal 01-matrix F; by setting
(Fi)y,u = 1 if u lies in the i-th class of 7. Then the matrices F; are symmetric
idempotents and
Y Fi=1
1

We will study the algebra generated by « together with the matrices F;.

If u is a vertex in the scheme and the i-th cell of 7 consists of the vertices
x such that (u, x) lies in the i-th relation, the algebra we get is the Terwilliger
algebra of the scheme relative to the vertex u.

19.1 Modules

Our basic task is to determine the irreducible modules of the Terwilliger alge-
bra. Suppose < is an association scheme with d classes Ay,..., Az and vertex
set V, and assume |V| = v. Let T denote the Terwilliger algebra of this scheme
and suppose W is an irreducible T-module. Since W is invariant under «, it
must have basis that consists of eigenvectors for «/. Similarly it must have basis
that consists of eigenvectors for the matrices F;, that is, vectors whose supports
are subsets of the cells of the partition 7.

The subspace spanned by the characteristic vectors of the cells of 7 is T-
invariant and has dimension equal to ||, the number of cells of 7. We call it the
standard module 1t is a cyclic T-module, generated by 1. You may prove that it
is irreducible.

193
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This may seem an encouraging start to determining the irreducible mod-
ules for the Terwilliger algebra, but unfortunately further progress will require
much more effort. Since T is transpose-closed, R’ decomposes into an orthog-
onal sum of irreducible T-modules. Hence if W is irreducible and is not the
standard module, we may assume that it is orthogonal to it. Thus each element
of W will be orthogonal to the vectors F;1—it sums to zero on the cells of 7.

19.1.1 Lemma. IfW is an irreducible module for an algebra 98 and f is an idem-
potent in 98, then W f is an irreducible module for f B f.

Proof. We may assume dim(W) = 2, or there is nothing to prove. Since
WEfBf=WfRBf<WF,

we see that W f is a module for f2Af.

Suppose U is an f2 f-submodule of W f. Each element of U can be written
as wf where w € W and as f? = f, it follows that U f = U. Since U f% is a -
submodule of W, it is either zero or equal to W. If it is equal to W, then

U=UfBf=WFf

and therefore W f is irreducible for f28f.
To complete the proof, we show that U f28 cannot be zero. The key is to
note that the set

fue W:u% =0}

is a 8-submodule of W. Since W is simple and not zero, it follows that this set
must be the zero module. Consequently U f %8 cannot be zero. |

Note that f2f is a subspace of % and is closed under multiplication, but
fails to be a subalgebra because it does not contain ! (in general). However

fRBf+U-BU-])
is a subalgebra of 4.

When we want to use Lemma 19.1.1, we will have two possible sources of
idempotents: the matrices F; and the principal matrix idempotents E;.
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19.2 Thinness

Let T be the Terwilliger algebra for an association scheme </ and let W be a
T-submodule of R”. We say that W is thin if for each i we have

dim(F;W) < 1.
We also say that W is dual thin if for each j,
dim(E;W) < 1.

We generalise the concept of thinness. Suppose 28 is an algebra. We say that a
set of idempotents Fi,..., F; is a resolution of the identity if they are pairwise
orthogonal (F;F; =0 when i # j) and

Y Fi=1.
i

A module W for £ is thin relative to the resolution Fi,...,F; if dim(F;W) <1
for all i.

Being thin is not easy, but it is a desirable property that holds in many inter-
esting cases.

19.2.1 Lemma. If o/ is an association scheme then the standard modules are
thin and dual thin,

Proof. Exercise. |
19.2.2 Theorem. If the algebra 2 is self-adjoint, then it is thin relative to the
resolution Fy, ..., F, if and only if the subalgebra

Fi9BF,+- -+ F,2F,
Is commutative.

19.2.3 Lemma. Suppose T is the Terwilliger algebra of an association scheme
relative to some vertex. If each matrix in

FoTFy+---+F,TF,

is symmetric, or if Aut(X); is generously transitive on each cell of , then T is
thin.

Proof. For the first, two symmetric matrices commute if and only if their prod-
uct is symmetric. The second condition implies that each F;TF; is the Bose-
Mesner algebra of a symmetric association scheme. O
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19.3 Jaeger Algebras

We define some endomorphisms of Mat,«,(C). If Ais a v x v matrix define the
operators X4 and Y4 on Mat,,(C) by

Xa(M):= AM,  Ya(M)=MA*
and if B is a v x v matrix, then we define Ap by
Ap(M):=BoM.

Note that
Ya(Yg(M)) = MB*A* = M(AB)* = Y45(M),

which explains the A* in the definition of Y,4. Also X4 and Y commute, for any
Aand B.

If o/ is an association scheme, we define _# to be the algebra generated by
the matrices X, for Ain C[«/]. We define #3(<«/) to be the algebra generated by
the operators

XA: AB; A,BEC[,Q%]

We obtain _#,;(«/) by adjoining the right multiplication operators Y, as well
The vector space Mat,«,(C) is a module M for #3, and the subspace of ma-
trices with all but the i-th column zero is a submodule, which we denote by
M(i). We see that M is the direct sum of the modules M ().
Our first result shows that _#3(«/) is a kind of global Terwilliger algebra.

19.3.1 Lemma. The algebra generated by the restriction to M(i) of the oper-
ators in _¢s is isomorphic to the Terwilliger algebra of <« relative to the i-th
vertex.

Proof. We have
XA(eiejT) = (Aei)ejT

and
AB(eiejT) = (Bi,jei)ejT-

So X4, is represented on M(j) by the matrix A, and Ap by the diagonal matrix
formed from the vector Be;. |
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We say that a #3-submodule U of Mat,,(C) is thin if the subspaces A4,
are 1-dimensional, and say that it is dual thin if the subspaces Xg,;U are 1-
dimensional.

19.3.2 Lemma. If o is metric then a thin submodule of Mat, ., (C) is dual thin,
if o is cometric then a dual thin submodule of Mat, ,(C) is thin.

Proof. Suppose &« is metric relative to the Schur idempotent A;. If Cisa v x v
matrix, then
(A1(AjeC))oAj=0

if |7 — j| > 1. Hence if M is submodule of Mat,,(C), then
Aj(AjoM)<A;_1oM+A;joM+ Aj;10M. (19.3.1)

Now let r denote the least positive integer such that A, o M # 0, and let d be
the greatest positive integer such that A, 4510 M # 0. From (19.3.1) it follows
thatifr<i<r+d—-1then A;o M # 0. We also see that M is generated by the
subspace A, o M as an X4, -module. In other terms,

M= (A1)(AgoM).
If E; is a matrix idempotent, then
EiM = Ej(A1)(AroM) =Ej(AroM)

If M is thin, then dim(A; o M) = 1 and therefore dim(E;M) < 1 for all j.
Therefore M is dual thin.

Suppose & is cometric relative to E; and let s be the least integer such that
EsM # 0. Then each column of a matrix in E; M lies in col(E}), and so if C € M,
then each column of E; o (E; M) is the Schur product of a column of E; with a
vector in col(E;). Hence by ??? we have

Eio(EEM)<E;_ \M+E;M+E; M.

Given this, it is easy to prove the second part of the theorem. |
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Chapter 20

Strongly Regular Graphs

20.1 Strongly Regular Graphs

We apply the theory at hand to strongly regular graphs. Assume X is strongly
regular with adjacency matrix A, and suppose that A has the partitioned form

01" o0
A=(1 B; NT

0 N B
Thus B, is the adjacency matrix of the neighborhood of the vertex 1 in X, and
B; is the adjacency matrix of the subgraph induced by the vertices at distance
two from 1.
20.1.1 Theorem. If X is a strongly regular graph and T is its Terwilliger algebra
relative to some vertex, then an irrreducible T-module lies in one of the follow-
ing classes:

(a) The standard module, with dimension three.

(b) Modules with dimension two, parameterized by eigenvectors w of By such
that Nw is an eigenvector for B,.

(c) Modules with dimension one, arising from an eigenvector of By inker(N7)

or from an eigenvector of B, inker(N). Each of these modules is an eigenspace

for A.

199
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Proof. Suppose W is an irreducible T-module. We assume that W is not the
standard module, and hence it lies in the orthogonal complement to the stan-
dard module. In particular FoW = 0.

First we consider the case where F; W = 0. In this case if x € W, then supp(x)
is a subset of the vertices at distance two from 1. Since

o 17 o0\)\/o0 0
1 B NT[[o]|=[NTw
0 N Bg w ng

we conclude that if
0

x=10]eW,

then NTw =0 and
0

0 |eW.
ng

Since the span W, of the vectors Bzr w is Br-invariant and since B, is symmetric,
there is an eigenvector v for B, contained in W,. Hence the vector

0
0
v

spans a 1-dimensional T-invariant subspace.

Similarly if , WE =0, then dim(W) =1, and W is spanned by an eigenvec-
tor for B; that lies in ker (V).

So we assume that neither F; W nor F, W are zero. If

0

then

0
ul=FxeWwW
0
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0 0
Alul=|Biu|eW.
0 Nu

0
Blru
0

all lie in W and so there is an eigenvector w for By such that

0
z=lwleW.
0
If we assume that B; w = Aw, then
0 0
Az=Alw|=|Aw |eW
0 Nw

The matrices I, A and J form a basis for the algebra of polynomials in A, and so
the vectors

and so

Accordingly the vectors

z, Az, Jz

span the cyclic A-module generated by z. Since Jz = 0, this module is spanned
by z and Az. It follows that that the span of z and Az contains an eigenvector
for A, necessarily of the form
0
;)
BNw

for some scalar g. If the eigenvalue for this eigenvector is 0, then
0 0 0 0
0| w |=A| w |=|Biw+BN'Nw|=|[Aw+BNTNw
BNw PNw Nw+ BB, Nw Nw+ BB, Nw

whence we see that w is an eigenvector for N7 N and Nw is an eigenvector for
B,. Consequently the span of the vectors

b L
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is T-invariant; since these vectors are contained in W and since W is irre-
ducible, they must be a basis for W.

20.1.2 Corollary. The Terwilliger algebra of a strongly regular graph is thin and
dual thin. O

Proof. It follows from our work above that an irreducible T-module is thin We
prove that an irreducible T-module is dual thin. Cases (a) and (c) are easy, so
we turn to case (b). Suppose w # 0 and

0
x=|lw|eW.
0

Then Eyx =0. If E1x =0, then x = E>x and so x is an eigenvector for A and thus
generates a proper submodule of W. We conclude that neither E; x nor E>x can
be zero, and hence W is dual thin. O

20.2 Local Eigenvalues

We apply the theory built up in the previous section to get information about
local eigenvalues of strongly regular graphs.

Assume X is a strongly regular graph with parameters (v, k, a, ¢) and adja-
cency matrix partitioned as in the previous section. We assume that the eigen-

values of X are
k, 0,1

where 6 = 0 and 7 < 0. We denote the multiplicities of 8 and 7 by m(0) and m(7).
We use § to denote a — ¢ and recall that

A*=6A+(k-0o)l+c].
Since T is thin, the matrices
F,AF,, F, AF, AF;
commute and therefore the matrices

B;, NI'N
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also commute. Hence we can decompose each eigenspace of B, into the sub-
space of eigenvectors in ker(N” N) and the subspace of eigenvectors orthog-
onal to ker(NT N) or, equivalently, eigenvectors in ker N and eigenvectors in
col(NT)).

If w is an eigenvector for B in ker(N) then

0
w
0

is an eigenvector for A (with eigenvalue 6 or 7) and spans a 1-dimensional irre-
ducible T-module.
Now suppose w is an eigenvector for B; with eigenvalue A in 1+ nker(NN).
We have
F)A’F) = NBy + B;N=6N+cJ]

and consequently
ONw=ON+cJ)w=(NBy+B,N)w= (Al + B) Nw.

Therefore Nw is an eigenvector for B, with eigenvalue § — A, and the vectors

0 0
wl, 0
0 Nw

span an irreducible T-module with dimension two. It is possible to show in
a similar fashion that if z is an eigenvector for B, with eigenvalue y in 1+ n
ker(N7T), then

BiNTz=6-wN'z

and the vectors

0 0
NTz R 0
0 z

span an irreducible T-module with dimension two.
We note one further constraint. Since

FiA’F = J+BS+ NTN=6By+(k-c)I+cJ]

we have
Bi -8By~ (k—c)I=-NTN+(c-1)J
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andsoif Bw = Aw and Jw =0, then
A2 =6A1-(k-c)=-NT"Nuw.

Thus w is an eigenvalue for N N, and since this matrix is positive semidefinite,
it follows that
A =6A—(k-c) =<0,

or equivalently that
T<A1=<0.

For later use, note that
?-6t—(k—c)=(t-0)(t—71).

A local eigenvalue of a strongly regular graph s an eigenvalue of B, or B, not
equaltof or .

20.2.1 Lemma. If X is a triangle-free strongly regular graph with parameters
(v, k;0,¢), then the eigenvalues of B, are its valency k — ¢ and a subset of 0, T
and —c. i

It follows that the second neighborhood of a vertex in a triangle-free strongly
regular graph is walk regular.

20.3 Dimensions

We determine the dimension of the Terwilliger algebra of a strongly regular
graph. Most the work has already been done, the main task left is to determine
the isomorphism classes of the irreducible T-modules.

We deal with the easy cases first. The standard module is the only module
with dimension three, and so nothing more need to be said. Two 1-dimensional
modules U and V are isomorphic if either both F,U and F, V are non-zero, or
both F,U and F,V are non-zero.

So consider the 2-dimensional T-module spanned by the vectors

i) (8
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where B; w = Aw. Relative to this basis, F; and F, are represented by the matri-

ces
10 00
0 0o/ \0o 1)
We have
0 0
Alwl=| 2w
0 Nw
and

0 0 0
Al 0 |=|NN'Nw|=[-A-0A-Dw|.
Nw B,NW O6-AVNw
and therefore the matrix representing A is

(/1 —(/1—0)(/1—‘[))
1 0-A7 '

It follows that this module is determined by the eigenvalue A. We also see that
the structure of the Terwilliger algebra is determined by the eigenvalues of X
and the eigenvalues of its first and second neighborhoods.

20.3.1 Theorem. Let X be a strongly regular graph with v vertices. Let s denote
the sum of the number of eigenvalues of By in {0,1} plus and the number of
eigenvalues of B, in {0, 1}, and let r denote the number of eigenvalues of By not
in this set. Thendim(T) =9+4r+sanddim(Z(T))=1+r+s. O

Itis clear that 0 < s < 4 but in fact s must be positive if X is not a conference
graph. For
k+¢0=mg+m;

and if k > ¢ and my > m,, then A has an eigenvector with eigenvalue 0 sup-
ported on the neighborhood of a vertex. Similar conclusions hold if we reverse
one or both of these inequalities.

By way of example we consider the strongly regular graph L(K},), where n =

5. Its parameters are
n
(( ),211—4; n—2,4)
2

2n—4, n—4, -2.

and its eigenvalues are



206 CHAPTER 20. STRONGLY REGULAR GRAPHS

The neighborhood of a vertex is isomorphic to K, O Kj,_», whence its eigenval-
ues are
n-2,n-4,0, -2

and the second neighborhood is isomorphic to L(K},-»), with eigenvalues
2n—-8, n—6, —2.

Thus there are two non-local eigenvalues in the neighborhood, one non-local
eigenvalue in the second neighborhood and one local eigenvalue. It follows
that the Terwilliger algebra has dimension

9+3+4=16

while its centre has dimension five.



Chapter 21

Hamming Schemes

21.1 The Binary Hamming Scheme

The Hamming scheme H(d,2) is a metric and cometric association scheme.
The matrix A = A; is the adjacency matrix of the d-cube, and its eigenvalues
are the integers

with respective multiplicities

The automorphism group of the Hamming scheme is vertex-transitive, and so
the Terwilliger algebra is the same for each vertex.
We can write
A=R+L

where L = RT and R is the natural raising operator on the lattice of subsets of
{1,...,d}. (So L is the natural lowering operator.)

21.1.1 Theorem. The Terwilliger algebra of the binary Hamming scheme is a
quotient of the enveloping algebra U(sl(2,C)).

Proof. View the vertices of the Hamming scheme as subsets of {1,...,d}. Define
H=RL-LR.

We note that
Ryp=1

207
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if and only if « € § and |f| = |a| + 1. Further Hy g = 0 if |a| # |B] and, if |a| =
|B] =i, then
Ha,ﬁ = d - 2i.
It follows that 4
H=) (d-2)F;

i=0
and hence the the algebra of all polynomials in H is the equal to the algebra
generated by the diagonal matrices F;.

Since
[R,Ll=H, [HRI=2R, [H/L=-2L

the algebra generated by R, L and H is a homomorphic image of U(sl(2,C)).
To complete the proof we must show that R and L generate the Terwilliger
algebra of H(n,d). But since the scheme is metric, each element of the Bose-
Mesner algebra is a polynomial in A and since the algebra generated by H con-
tains each F;, we conclude that R and L generate the Terwilliger algebra. |

21.2 Modules

With what we know about the representation theory of sl/(2,C), it is easy to de-
termine the irreducible T-modules for the binary Hamming scheme H(d, 2). If
u is a vertex of H(d,2) with Hamming weight i, then the vectors

v, Ry,...,R% 2y

are a basis for an irreducible module of dimension d —2i + 1. If u and v are
binary vectors then the irreducible modules they generate are isomorphic if
and only if # and v have the same Hamming weight.

21.2.1 Lemma. We have
dim(T(H(d,?2))) = %(d +1(d+2)(d+3).

Proof. 1f 0 < 2i < d, then our Terwilliger algebra has one isomorphism class of
irreducible module with dimension d —2i + 1, whence

dim(T(H(d,2)) = ) (d—2i+1)2:é(d+1)(d+2)(d+3). O
i<d/2
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21.2.2 Lemma. The Terwilliger algebra of the Hamming scheme is thin and dual
thin.

Proof. If v has Hamming weight i, then the Hamming weight of each vector
in supp(R/v) is i + j. Hence F;, ij v = R;v, and therefore the R-module gen-
erated by v is thin. Since the Hamming schemes are metric, it follows from
Lemma 19.3.2 that this module is also dual thin. O
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Chapter 22

Spin

22.1 Braids

The braid group on n strands B, is the group generated by elements
U]. yeeey Uﬂ—l
subject to the relations:

0i0j=0j0j, ifli—j|=2
O'iO'jO'i =0'j0'l'0']', if|i—j| =1.
[braids, closure]
The map that takes o; to the transposition (i i + 1) in the symmetric group
Sym(n) extends to a homomorphism from B,,. (Its kernel consists of the pure
braids.)

The Temperley-Lieb algebra T'L,(f) contains a homomorphic image of the
Braid group.

22.2 Nomura Algebras

Let A and B be v x v matrices and suppose B is Schur invertible. The Nomura
algebra &, p consists of all v x v matrices for which all the vectors

=)
Ae; OBej

211
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are eigenvectors. If M € A, g, we define ®4 g(M) to be the v x v matrix with
i j-entry equal to eigenvalue of M associated to Ae; o Bej. Thus I € A4, p and
Oap=J.

IfM,Ne€ JVA,B, then

©4B(MN)=0,4p(M)o0,4p(N).

Thus A, p is an algebra under matrix multiplication, and the image of A4
under O 4 p is an algebra under Schur multiplication. We note that

JVA,B :</VB,A

while
Opa(M)=0,M)7T.

22.2.1 Lemma. If A is invertible and B is Schur invertible, then © 4 p is injective
and Ny p is a commutative algebra.

A v x v matrix W is a type-II matrix if it is Schur invertible and
wwOT =y,

Hadamard matrices provide one class of examples. If W is a type-II matrix, then
W is invertible and

wl = Lwor,
v

22.2.2 Lemma. The matrix W is a type-II matrix if and only if ] € Ny, ).

The Nomura algebra .4y, ;- will play an important role in our work and so
we will denote it by Ayy. We also write Oy for Oy ).

22.3 Braids

Let A, B and C be v x v matrices. We define endomorphisms X4, Ag and Y of
the vector space Mat,«,(C) by

Xa(M) = AM, Ap(M):=Bo M, Yo(M) := MC?.

(We could instead use respectively A® I, Dp and I ® C, where Dj is a diagonal
matrix with the entries of B as its diagonal entries and all three matrices are
viewed as elements of End(Mat,,(C)).)
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22.3.1 Lemma. Suppose A, B € Mat,«,(C). Then R € N3 and ®4p(R) = S if
and only
XpApXa=AgXaAs.

We see that A€ A, p and ©4 p(A) = B if and only if
XAABXA = ABXVAAB;

we call this the braid relation. [If A is invertible and B is Schur invertible and
A€ Ny p, does it follow that © 4 g(A) = B?]
We note the following result, which we call the exchange identity.

22.3.2 Theorem. Let A, B, C, Q, R, S be v x v matrices. Then
XaApXc = AgXgrAs

if and only if
XaAcXp =ArXgAgr.
Proof. Apply each of the four products to the matrix e,-ejT. ]

The bilinear form tr(MNT) on Mat,,(C) is non-degenerate and hence al-
lows to define the adjoint of elements of End(Mat,«, (C)). We denote the adjoint
by transpose and observe that

X2 =X, (Ap)") =Ap.
Thus the braid relation implies that

XATABXAT = ABXATAB.

22.4 Jones Pairs

We say that v x v matrices A and B form a one-sided Jones pair if Ais invertible,
B is Schur invertible and A € A g. They form a Jones pair if (A,BT) is also a
one-sided Jones pair.

22.4.1 Lemma. If (A, B) is a one-sided Jones pair, so are each of the following:

(a) (AT,B).
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(b) (A7, B)).

(c) (D"'AD, B), where D is diagonal and invertible.
(d) (A, BP), where P is a permutation matrix.

(e) (AA,AB), for any non-zero complex number A.

22.4.2 Lemma. The matrices A and B form a one-sided Jones pair if and only if
forall i and j we have

A(Aei OBej) = B,’,j(Ael' OBej).

22.4.3 Corollary. Let (A, B) be a pair of v x v matrices and let D be the diagonal
matrix formed from the j-th column of B. Then (A, B) is a one-side Jones pair
ifand onlyif, for j =1,...,v,

AD;A=D;AD;.

22.4.4 Lemma. If (A, B) is a one-sided Jones pair, then each column of B sums
totr(A).

Proof. From the previous result we have
-1 — . An-1
A™'DjA=D;AD;

whence A and D; are similar and tr(A) = tr(D;). Therefore each column of B
sums to tr(A). |

We say a Jones pair (A, B) is invertible if A is Schur invertible and B is in-
vertible.

22.4.5 Theorem. Suppose (A, B) is a one-sided Jones pair and B is invertible,
then A and B are type-1I matrices and the diagonal of A is constant.

Proof. If A€ A4 pthen A~! € A4, 3 and so
Op (A1) =BT,

This implies that
Xp-1A4Xp = Ap XpAgrr (22.4.1)



22.4. JONES PAIRS 215

and taking the transpose of this, we get

XpgrAaX -1 = Agor XgrAa.

If we apply the right side to I we get BT(Ao AT,

the result is

if we apply the left side to I

BOTo BT (AoD) =J(A0D)

and hence
BT(Ao ATy = J(A0 D).

Since B is invertible and its row sums are all equal t some constant g, this im-
plies that
Ao A T =B TJ(AoI) = BJ(Ao ).

The sum of the entries in the i-th column of Ao AT is

YA AN =Y (A, A =1

and therefore all columns of /(Ao I) must be equal. It follows that vAo A T=g
and so A is a type-II matrix with constant diagonal.

To complete the proof we multiply each side of (22.4.1) on the left by A 40
and on the right by X3-1 to obtain

Ay X184 = XpAgrr Xp-1.
Taking inverses on both sides yields
Ay XA = XpAgr Xp-1
and applying each side to I gives
AT o (A(AoD)=B(BToB™).

Since the diagonal of A is constant, the left side here is equal to aJ for some a
and so
B'oB'=aB!J

Arguing as before, the sum of arow of BT o B~! is 1. Therefore B~!J is a multiple
of J; from this we see that B is a type-II matrix. |
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22.4.6 Lemma. If (A, B) is Jones pair and A is Schur invertible, then B is invert-
ible.

Proof. Apply both sides of (22.4.1) to J; this yields
A (Ao (B])) = Ao (BB,

Since (A, BT) is a Jones pair the row sums of B equal tr(A) and so the left side
here is equal to tr(A) I. As Ais Schur invertible it follows that BB T g diagonal.
However the diagonal entries of BB are all equal and so it is a scalar matrix.
We conclude that B is type II and invertible. |

22,5 Gauge Equivalence

If D is an invertible diagonal matrix we say that D~ JD is a dual permutation
matrix. The Schur inverse of a dual permutation matrix is a dual permutation
matrix.

22.5.1 Lemma. If A, C and M are Schur invertible and X Ay = Ay Xc, then
CY o Aisadual permutation matrix. If B, C and M are invertible and Ag X =
XyAc, then CB™! is a permutation matrix.

22.5.2 Corollary. If (A, B) and (C, B) are one-sided Jones pairs, then C = D' AD
where D is invertible and diagonal.

22.5.3 Corollary. If (A, B) and (A, C) are one-sided Jones pairs, then C = BP
where P is a permutation matrix.

22.6 Nomura Algebras of Type-II matrices

A type-II matrix W is called a spin model if (W, W)y is aJones pair. If W € Ay,
then (W, W) need not be a Jones pair, because the columns of W) might not
sum to tr(A). If o denotes the sum of a column of W) and we choose y so that

yz triW)=0

then yW is a spin model.
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22.6.1 Theorem. Let A be a v x v type-II matrix. Then © 4 is a bijection from Ay
to N,r and © ,r is a bijection from Nt to N4. If R € N, then © 4,7 (O4(R)) =
vRT.

Proof. Suppose R € A4, and ©4(R) = S. Then
XRA - X4 =D 40 XaAs
and the transpose of this is
XarA jor Xpr = As X 41 A 4o
and applying the exchange identity to this yields
XarApr X g0 = A 1 XA 4ot

If we multiply both sides of this on the left by A 4)r and on the right by X -1
we get
XsA jor X g1 = A g XpgrApr.

Since A7~ = L AT, this yields
XsA prr Xyr = A yoor XpgrAygr

whence S € Ar and © ,7(S) = vRT.
As©,47(@4(R)) = vRT, we see that © 4 and O 47 are bijections. u|

This proof shows that the composite map
! 0,70
p ATTA

is the transpose map on .4,4. Hence 1_1;@ A0 4r is the transpose map on Ay r. In
fact ® 4 and ® 4,7 commute with the transpose.

22.6.2 Corollary. If A is a type-Il matrix and R € A, then RT e Nyand®,(RT) =
OaR).

Proof. If R € A4 then vRT = 0,7 (@ 4(R) € A4 and

OA(WRT) =04(0,7(04(R) = vOs(R)". O
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22.6.3 Corollary. If A is a v x v type-II matrix and M, N € /¥y, then
1
Oa(MoN)=—0,4(M)O(N).
v

22.6.4 Corollary. If A is a type-1I matrix then its Nomura algebra is closed un-
der matrix multiplication, Schur multiplication, transpose and complex conju-
gation.

Proof. We know that .44 is closed under matrix multiplication and that
OA(MN) =04(M)oBxs(N),

from which it follows that the image of ®4 is Schur-closed. Therefore A4/,r is
Schur-closed. Swapping A and AT, we deduce that .4} is Schur-closed.

We saw above that .4} is closed under transpose. Since it is Schur-closed it
has a basis consisting of 01-matrices, and the complex span of these matrices
is closed under complex conjugation. |

This corollary asserts that .4 is the Bose-Mesner algebra of an association
scheme.

22,7 Spin Models

By definition, W is a spin model if (W, W) is a one-sided Jones pair.

22.7.1 Lemma. If A is a type-II matrix and (A, AD)) is a one-sided Jones pair,
then it is a Jones pair.

Proof. Since (A, A7) is a one-sided Jones pair, we have
XaA g X4 =D 40 XaA 40
and taking the transpose of this yields
XarA g0 X1 = A g X 47 4.
Using the exchange identity we obtain

XArA g1 X q0) = A pr X 00 A g0
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and inverting both sides yields
X 1A yor X g1 = A g1 X g0-1A g
If we multiply on the left by A ,)r and on the right by X 4, the result is
Aot X qo18 4or = X 4018 g7 X7
We observe that A7 ~! = 1 AT, whence the last equation yields
Aprr X1 A gyor = Xpr A qor X g1

and therefore (AT, A7) is a one-sided Jones pair. From the transpose of this
we see that (A, A7) is one-sided Jones pair, and thus it follows that (4, A7) is
a Jones pair. O

22.7.2 Theorem. If A is spin model, then /4 = N ,r and© 4 = 0O 4r.

Proof. We use gauge equivalence. If (4, A”) and A, A®T are one-sided Jones
pairs, there is a permutation matrix P such that A®T = A® P, and conse-
quently

{/VA,AHT = JVAyA(—)p = JVAyA(,)

Now A € A} if and only if
AT € :/VAT’A[*) = e/‘/ATyA(*)T.

Since ./} is closed under transposes, the result holds.
Suppose R € A4 and © 4(R) = S then

XpA 4o Xa = Ay XaAs
andif Re A,r and © 4,r = T then
XRA jor Xyr = A gor XyrAr.
Consequently
(A o1 Xar A7) IA 4 XaAs = X -1 1o 400 X A
The left side here equals

AT(—) XA—TAATAA(—) XAAS = AT(—) (XA—TAATOA(—) XA)AS
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If we define
= Xp-1Apro 40 XA

then
EAg=ATE. (22.7.1)

We compute Z(M), for any v x v matrix M. Note that
EM) =AT(ATo A o (AM))

Since (A, A7) and (AT, A7) are both one-sided Jones pairs, there is an invert-
ible diagonal matrix C such that AT = C"! AC. Therefore

AloA ' =(CclAC)oA =CJC
and so
AToA Y o(AM)=(C1 JC)o(AM) =C Tt AMC = ATCIMC
and consequently
M) =AT(ATo A o (AM)) = CT MC.
Now apply each side of (22.7.1) to M; we get
To(C'MC)=C (SoM)C=So)C'MC).

We conclude that S=T. O
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Abelian Spin

We study spin models in the Bose-Mesner algebras of abelian groups, aka trans-
lation schemes.

23.1 Schemes

Suppose W is a type-II matrix. Its Nomura algebra is the Bose-Mesner algebra
of an association scheme «f; thus A}y = C[<f/]. We assume & has d classes and
therefore dim(Ay) = d + 1. Let Ey,..., E; denote the principal idempotents of
the scheme. Since El2 = E; we see that Oy (E;) must be a Schur idempotent in
Nyt and since

d
Y Ei=1
i=0
we have
d
Y Ow(E) =],
i=0
whence it follows that the Schur idempotents Oy (E;) are linearly independent.
Thus they are the principal Schur idempotents of the scheme determined by
wT.
A similar argument shows that if Ay, ..., A4 are the principal Schur idempo-
tents of the scheme determined by W, then the matrices

1
—Ow(A4;)
v

are the principal idempotents of the scheme determined by W7,

221
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Now we specialize to the case where W is a spin model. The eigenvalues
pi(j) of the scheme are defined implicitly by

d
A=) pi(DE;.
i=0
Since My = A1, we see that Oy maps C[/] to itself and the matrix which
represents relative to the basis formed by Ejy, ..., Eg has i j-entry equal to p;(i).

It is traditionally denoted by P. It is invertible and we follow tradition further
and set Q equal to vP~!. We have

1 d
Ej=—% qj(DA;i
Vi=o
where g;(i) = Q;,;. Since

Opr(4;) = l}El-T = vE;

we see that Q is the matrix that represents Oy, r relative to the basis Ay, ..., Ag.
Therefore P~1QP is the matrix representing ©,,r relative to Ej, ..., E;. Since
N1 = My, the operators Oy and ©y,r commute. Therefore

Oy Oy rOW =0y,
and therefore P~1QP = Q.
23.1.1 Theorem. If W is a spin model then P = Q.

Proof. We have Oy = Oy,r. |

23.2 Coordinate Matrices

Let W be a spin model, let « denote the associated set of principal Schur idem-
potents and let & be the set of principal matrix idempotents. Since W € Ay,
there are scalars Ay,..., 14 (the eigenvalues of W) such that

W=)> AE;.

d
i=0
Let L be the diagonal matrixwith L; ; = A;. If M is an endomorphism of a vector
space with basis § we use [M]g to denote the matrix representing M relative to

B. Let T represent the transpose map.
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23.2.1 Lemma. We have [Xylg = L and [Aw] = L7

Proof. The first claim is immediate from the definition of the coefficients w;.
For the the second note that

AiA; =Ow(WE;) =0w(W)oA; =W o A;

and consequently
W A; = AiA;

as required. O

The last equation above implies that
d
w=)Y A'A;.

i=0

Therefore

d
AcEr=WE, =Y A7 AE =

d
i=0 i=

A pin)E
0
and hence
L1=PL7'1.

We see that diagonal matrices L such that L1 = P~!1 correspond to the type-II
matrices in C[«/].

23.2.2 Lemma. We have [Xy] = PLP~ ' and [Awlg = P~'L7'P.

Proof. The matrix of eigenvalues P represents the change-of-basis map from &
to o/ and therefore
[Awle =P 'L7P

The second claim follows similarly. O

The transpose map is an endomorphism of Mat,,(C) that maps Ay to
itself, which we denote by T. Both [T]g and [T]., are permutation matrices.
Since

oM =em’,

we see that T and ® commute, and consequently [T]g = [T].,. Note that

e%=vT. (23.2.1)
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23.3 Duality

Suppose W is a spin model and «f is the corresponding association scheme.
Then Oy maps C[«/] to itself and swaps matrix with Schur multiplication. (If
</ is the scheme of the cyclic group, then Oy is better known as the discrete
Fourier transform.) We will derive various expressions for Gy, .

We begin with the observation that W € A7y and O (WT) = WET, Hence

Xyt Ao Xw = Ao XwAyor (23.3.1)
Denote either side of this identity by A and note that AT = A.

23.3.1 Theorem. IfR € Ay and Oy (R) = S, then A" XgA = Agand A1 AgrA =
Xg.

Proof, Since R commutes with W, we have

A XRA = Xy Ay Xpy-1 Xg Xppr Ao Xy
= X1 Aw XrA o Xy
= Ag.

Next

A 'AGr A = Ayr Xy 1 Aw Agr Ao Xiw Ao
=Aywr Xpy-1Agr Xw Ay or.

As R € N1 and O = Oy, 1, we have
XpAy-1 Xyt = A1 XyyrAs
and therefore by the exchange identity
XrAyr X1 = Ayr Xyy-1Agr.

It follows that
A Agr A = XpAyr Xy X Ayyor = Xg.

23.3.2 Corollary. If R € Ny, then A"2XgA? = Xzr and A"2AsA? = Agr.
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Proof. First
As= (AT = (AT XgA) T = AXprA™!

and therefore
A2XRpA? = A AgA = Xpr.

Second
A2AgrA* = AT XgA = Ag

and so taking transposes we get
A*Ag, A2 = Ag,

which yields our second claim. O

You may also show that A™2XprA? = Xg and A"2AgrA? = Ag, from which
we get the following.

23.3.3 Corollary. IfW is a spin model, then the map A* commutes with Xz and
Ag forall R, S in Ny O

It is worth noting that we are dealing here with several algebras. First we
have Mat, ., (C) and its subalgebra .4}y = C[</], which is the Bose-Mesner al-
gebra of «/. Then inside the algebra End(Mat,.,(C)) we have the algebra gen-
erated by all operators

XR» AR; ReﬂwzﬂwT.

This may be viewed as an extended version of the Terwilliger algebra of « (and
is not commutative). We will call it the Jaeger algebra and denote it by _#3. The
map given by conjugation by A is an endomorphism of Mat,«, (C) which fixes

I3.
Suppose (A, B) is a 1-sided Jones pair and define

K:= XAABXA = ABXAAB.

Then
K? = (XaApXa)* = (XaAp)®

from which it follows that A commutes with X4 and Ap. It is easy to verify that

K 'X4K=Ap
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and consequently that
K 'ApK = Xg.

Specializing to the case where Ais type Il and B = A®), we see that conjugation
by K is a linear map that fixes the algebra generated by X4 and A 4. This is, in
general, a subalgebra of the Jaeger algebra.

23.4 Modular Invariance

We combine the work from the previous two sections.

23.4.1 Lemma. If W is a spin model with 6 = W;; and M € Ny, then ©(M) =
vSATH(M).

Proof. If R € A}y and O(R) = S, then A~ Xz A = Ag and therefore
S=As()) = A XpA().

Here
A = Ao XwAyor(D) = Ao WWOT =pwSor.

If 6 := W, ;, then it follows that
S=A"'Xgr@vD) =6vAT (R). 0

The next result is known as the modular invariance property for the pair
(B D).

23.4.2 Theorem. Let W be a spin model with association scheme </ and 6 =
W, ;, let P be the matrix of eigenvalues of «/ and let L be the diagonal matrix of
eigenvalues of W. Then (PL)* = 1.

Proof. From the previous lemma,
O = vSA  wE Xy r Ao X
If F is the matrix that represents transpose, then we have
[Xwle =L [Awole=P 'LP, [Xyrlg=FLF

Since [B]g = P, we have
P=vSFLFP 'LPL
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and so
I=v6(P'F)L(FP~YHYLPL.

As ©% = v T we have P? = vF and so

1
P lF=Fp7l=p
1%

from which we infer that
I=vsv 2(PL).

23.5 The Cyclic Group

The index set of the matrices in this section start at 0.

Choose the complex number 6 so that 62 is a primitive v-th root of unity.
(Thus is v is odd then 0 has order v, but if v is even then its order is 2v.) Define
the v x v matrix W by

Wi, = Q(i—j)z.
Let S denote the diagonal matrix with S; ; = 0%". Then
o= =g 9-21igS"
and therefore if V is the Vandermonde matrix given by
Vij=0"H"Y

then
W =S8VS.

23.5.1 Theorem. The matrix W is a spin model.

Proof. First

: 2 . 2 2 .2 ..
WwOT),; ;=3 iU =977y g2U=r,
=X >

r

The last sum equal v if i = j and is otherwise zero. Therefore WW 7T = pT and
so W is a type-1I matrix.
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The matrix W lies in the Bose-Mesner algebra of the cyclic group of order v,
equivalently it is a circulant. If {, is the column vector with i-entry 2% then {,
is an eigenvector for all circulants of order v x v. Now

(We, o WelT), = gli-n?g—li=s)* _ gr’-s*g-2i(r-s)
S ’

whence )
We,owelT =0""5¢,_.

This implies that W € A}y, and therefore we conclude that W is a spin model. &
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