# Awful Graphs

Chris Godsil

#### Waterloo, July 2009: Tutte Seminar

# Outline



• Examples

Trees



- Matrices
- Spectra
- Generators

Examples Trees

### Cospectral Graphs



Examples Trees

## Connected Cospectral Graphs



Examples Trees

### Cospectral Graphs with Cospectral Complements



The adjacency matrices of these graphs are of the form

$$\begin{pmatrix} 0 & B_i \\ B_i^T & 0 \end{pmatrix}$$

where

$$B_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

## Proof, ctd.

If 
$$Q = \frac{1}{2}J_4 - I_4$$
, then

$$QQ^T = Q^2 = I,$$

so Q is orthogonal. Also

$$QB_1 = B_2,$$

from which it follows that

$$\begin{pmatrix} Q & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} 0 & B_1 \\ B_1^T & 0 \end{pmatrix} \begin{pmatrix} Q^T & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} 0 & B_2 \\ B_2^T & 0 \end{pmatrix}.$$

This proves our graphs are cospectral. (Since  $Q\mathbf{1} = \mathbf{1}$ , it also follows that their complements are cospectral.)

# Weighted Adjacency Matrices

After you have worked with the adjacency matrix for while, it might occur to you that we could choose scalars a, b and c, and consider matrices of the form

aI + bA + cJ.

#### Theorem

Let  $X_1$  and  $X_2$  be cospectral graphs and let a, b and c be scalars with  $b \neq 0$ . Then  $\overline{X}_1$  and  $\overline{X}_2$  are cospectral if and only if the matrices

$$aI + bA(X_1) + cJ$$
,  $aI + bA(X_2) + cJ$ 

are similar.

Examples Trees

### Some Graphs...

If X and Y are as shown:



and  $\boldsymbol{Z}$  is their 0-sum:





#### Examples

#### ... and their Characteristic Polynomial

#### then:

#### Lemma

#### $\phi(Z,t) = \phi(X \setminus u, t)\phi(Y, t) + \phi(X, t)\phi(Y \setminus v, t) - t\phi(X \setminus u, t)\phi(Y \setminus v, t)$

### A Tree and Two Vertices

There is no automorphism of the following tree T that maps the vertex u to the vertex v...



Examples Trees

Two Subgraphs

... but  $T \setminus u$  and  $T \setminus v$  are isomorphic:



Hence  $\phi(T \setminus u, t) = \phi(T \setminus v, t)$ .



Examples Trees

### Constructing Cospectral Trees

It follows that, for any tree X, the two trees below are cospectral and are not isomorphic:



#### Almost all Trees are Cospectral

#### Theorem (Allen Schwenk)

The proportion of trees on n vertices that are determined by their characteristic polynomial goes to zero as  $n \to \infty$ .

Examples Trees

# Allen Schwenk



## A Limb of a Tree

Schwenk proved that almost all trees contain a given limb, for example, the following on 11 vertices:



Examples Trees

### Zhu and Wilson: A Table

| Size | Number   | Α     | L       |
|------|----------|-------|---------|
| 8    | 23       | 0.087 | 0       |
| 9    | 47       | 0.213 | 0       |
| 10   | 106      | 0.075 | 0       |
| 11   | 235      | 0.255 | 0.0255  |
| 12   | 551      | 0.216 | 0.0109  |
| 13   | 1301     | 0.319 | 0.0138  |
| 14   | 3159     | 0.261 | 0.0095  |
| 15   | 7741     | 0.319 | 0.0062  |
| 16   | 19320    | 0.272 | 0.0035  |
| 17   | 48629    | 0.307 | 0.0045  |
| 18   | 123867   | 0.261 | 0.0019  |
| 19   | 317955   | 0.265 | 0.0014  |
| 20   | 823065   | 0.219 | 0.0008  |
| 21   | 2144505  | 0.213 | 0.0005  |
| 22   | 5623756  | 0.177 | 0.00028 |
| 23   | 14828074 | 0.168 | 0.00019 |

graphs at all sizes. Both the Laplacian and its normalised counterpart show a decreasing trend, suggesting that for larger trees the fraction which are cospectral in these matrices could be negligible. The trend for the adjacency

Examples Trees

### McKay's Limbs: 1977



Matrices Spectra Generators

### Walk Matrices

#### Definition

Let A be the adjacency matrix of the graph X on n vertices and let 1 denote the all-ones vector of length n. The walk matrix of X is the  $n \times n$  matrix

$$\begin{pmatrix} \mathbf{1} & A\mathbf{1} & \dots & A^{n-1}\mathbf{1} \end{pmatrix}$$
.

# Automorphisms

The automorphism group of X is (isomorphic to) the group of permutation matrices P that commute with A.

#### Lemma

If  $P \in Aut(X)$  then P fixes each column of W.

Proof.

 $P\mathbf{1} = \mathbf{1}$  and therefore:

 $PA^r \mathbf{1} = A^r P \mathbf{1} = A^r \mathbf{1}.$ 

Matrices Spectra Generators

#### Asymmetric Graphs

#### Corollary

If rk(W) = n then X is asymmetric.

#### Proof.

If P is an automorphism then PW = W. If W is invertible, then P = I.

Matrices Spectra Generators

## Awfulness

#### Definition

A graph X is awful if its walk matrix is invertible.

#### Exercise

A graph is awful if and only if its complement is.

Matrices Spectra Generators

## The Scapegoat



Matrices Spectra Generators

### An Example



Matrices Spectra Generators

#### More Examples



Matrices Spectra Generators

# A Sequence

| 6  | 7  | 9  | 10  | 15  | 19  | 21  | 22  | 25  | 27  | 30  | 31  |
|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 34 | 37 | 39 | 42  | 45  | 46  | 49  | 51  | 54  | 55  | 57  | 61  |
| 66 | 67 | 69 | 70  | 75  | 79  | 81  | 82  | 85  | 87  | 90  | 91  |
| 94 | 97 | 99 | 102 | 105 | 106 | 109 | 111 | 114 | 115 | 117 | 121 |

#### Theorem (Godsil)

Let X be a graph with adjacency matrix A. The following claims are equivalent:

- X is awful.
- The matrices A and J generate the algebra of all  $n \times n$  matrices.
- The matrices A<sup>i</sup>JA<sup>j</sup> (0 ≤ i, j < n) are a basis for the space of n × n matrices.

Matrices Spectra Generators

# A Conjecture

#### Conjecture

Almost all graphs are awful.

Matrices Spectra Generators

#### Data

| #vxs | #graphs | #asymmetric | #awful |
|------|---------|-------------|--------|
| 6    | 156     | 8           | 8      |
| 7    | 1044    | 152         | 92     |
| 8    | 12346   | 3696        | 2332   |
| 9    | 2744668 | 135004      | 85036  |

(Computations carried out with Fidel Barrera-Cruz)

Matrices Spectra Generators

### Brouwer and Spence's Computations



Matrices Spectra Generators

# Walk Equivalence

#### Definition

Let X and Y be graphs with walk matrices  $W_X$  and  $W_Y$  respectively. We say that X and Y are walk equivalent if

$$W_X^T W_X = W_Y^T W_Y.$$

Note that

$$(W^T W)_{i,j} = \mathbf{1}^T A^{i+j} \mathbf{1}.$$

Hence any two k-regular graphs on n vertices are walk equivalent.

Matrices Spectra Generators

#### Cospectral Graphs

#### Lemma

If two graphs X and Y are cospectral, then their complements are cospectral if and only if they are walk equivalent.

Matrices Spectra Generators

### Two Walk-Equivalent Awful Graphs



Matrices Spectra Generators

## Walk-Equivalent Awful Graphs

#### Theorem (Wang & Xu)

If X and Y are walk-equivalent awful graphs, then  $Q = W_X W_Y^{-1}$  is orthogonal,  $Q^T A_X Q = A_Y$  and  $Q\mathbf{1} = \mathbf{1}$ .

So walk-equivalent awful graphs are cospectral with cospectral complements.

Matrices Spectra Generators

## Example

$$Q = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

The matrix Q is clearly rational. The experimental evidence seems to indicate that usually 2Q is integral. If 2Q is integral, the structure of Q is known (Wang & Xu). Up to permutation equivalence we have:

Matrices Spectra Generators

## Structure I

#### Assume

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

Then we may have one of the matrices

$$\frac{1}{2} \begin{pmatrix} A & B \\ B & A \end{pmatrix}, \quad \frac{1}{2} \begin{pmatrix} A & B & 0 \\ B & 0 & A \\ 0 & A & B \end{pmatrix}, \quad \frac{1}{2} \begin{pmatrix} A & B & 0 & 0 \\ B & 0 & A & 0 \\ 0 & A & 0 & B \\ 0 & 0 & B & A \end{pmatrix}, \dots$$

Matrices Spectra Generators

Otherwise we have one of

$$\frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & -1 & 0 \\ 1 & 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & -1 \\ -1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$I + P^{2} + P^{3} - P^{4} \quad P^{7} = I$$

Matrices Spectra Generators

#### Structure IIb



Matrices Spectra Generators

# Generating the Unitary Group

Theorem (Godsil) If X is awful and A is its adjacency matrix, then the matrices  $\exp(iAt), \quad \exp(iJt) \quad (t \ge 0)$ generate a dense subgroup of the unitary group.

The operators exp(iAt) determine a continuous quantum walk.

Matrices Spectra Generators

### The Unitary Group

The unitary group U(n) consists of all complex matrices Q such that  $Q^*Q = I$ . The relevant property of the unitary group is that, if U and V are "very small" matrices such that

$$I + U, \quad I + V$$

are unitary, then I + (UV - VU) is unitary.

This implies that the vector space spanned by the "very small" matrices is closed under the Lie product

$$[U, V] := UV - VU.$$

(We can make this rigorous if we replace "very small" by "tangent space at I".)

Matrices Spectra Generators

## Showing we have Generators

- The tangent space at I in the unitary group consists of all skew Hermitian matrices, that is, the matrices H such that  $H^* = -H$ .
- We can show that if X is awful, the Lie algebra generated by A and J consists of all real  $n\times n$  matrices.
- Using this we can prove that *iA* and *iJ* generate the Lie algebra of skew Hermitian matrices.
- Since the unitary group is connected, it follows that our matrix exponentials generate a dense subgroup of it.

Matrices Spectra Generators

### Sparser Generators?

Let D denote the diagonal matrix of valencies of X. If X is connected then  $\ker(A - D)$  is spanned by 1. By spectral decomposition, it follows that  $J = \mathbf{11}^T$  is a polynomial in A - D.

#### Lemma

If X is awful, then A and D generate the algebra of all  $n\times n$  matrices.

Matrices Spectra Generators

#### This Week's News, I

We can extend the concept of awfulness to subsets of V(X). If b is the characteristic vector of a subset S of V(X), call it awful if the matrix

$$\begin{pmatrix} b & Ab & \dots & A^{n-1}b \end{pmatrix}$$

is invertible. This is the original notion if S = V(X). If S is awful then A and  $bb^T$  generate the full matrix algebra.

Matrices Spectra Generators

#### This Week's News, II

If  $S \subseteq V(X)$  and  $R \subseteq V(Y)$  such that

$$W_{X,S}^T W_{X,S} = W_{Y,R}^T W_{Y,R}$$

we say that S and R are walk equivalent. If X and Y are cospectral and S and R are awful subsets, and

$$Q := W_{Y,R} W_{X,S}^{-1}$$

then  $QA_XQ^{-1} = A_Y$ . If S and T are walk equivalent as well, then Q is orthogonal.

Awful vertices seem to be common.

Matrices Spectra Generators

# That's It!

